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Abstract

The exact numerical simulation of plasma turbulence is one of the assets and challenges in
fusion research. For grid-based solvers, sufficiently fine resolutions are often unattainable due
to the curse of dimensionality. The sparse grid combination technique provides the means
to alleviate the curse of dimensionality for kinetic simulations. However, the hierarchical
representation for the combination step with the state-of-the-art hat functions suffers from
poor conservation properties and numerical instability.

The present work introduces two new variants of hierarchical multiscale basis functions
for use with the combination technique: the biorthogonal and full weighting bases. The new
basis functions conserve the total mass and are shown to significantly increase accuracy for
a finite-volume solution of constant advection. Further numerical experiments based on the
combination technique applied to a semi-Lagrangian Vlasov–Poisson solver show a stabilizing
effect of the new bases on the simulations.

1 The curse of dimensionality in kinetic simulations

The simulation of the time evolution of plasma in magnetic confinement fusion devices is an
important part of plasma fusion research, and as such, serves both as an asset and a challenge.
While a magnetohydrodynamic (MHD) description of the plasma can capture many properties,
important phenomena—as for instance the Landau damping phenomenon—are not present in the
MHD model. In this case, the more comprehensive kinetic description in phase-space is necessary.
Such a description is computationally much more demanding due to the phase-space being six
dimensional. Under certain conditions, the gyrokinetic and the drift-kinetic models—that reduce
the dimensionality to five or four—provide an accurate description with a reduced dimensionality
in velocity space. In addition to the high dimensionality, a further challenge stems from the
fact that important plasma features can occur on small scales, in a way that they only start to
appear at fine resolutions in the simulation. The so-called curse of dimensionality—the exponential
increase in the number of degrees of freedom (DOF) when increasing the dimensionality—haunts
any approach that fits a regular grid into the phase space for direct simulation. Taking these two
properties (high dimensionalities and small scales) together, it becomes obvious that simulations
that are resolved finely enough to have predictive quality can be too large in terms of compute
time and/or memory footprint even for today’s largest compute systems.

One approach to alleviate the curse of dimensionality is to use the sparse grid combination
technique. It combines differently resolved numerical solutions multiple times throughout the
course of the simulation. The combination technique allows to re-use existing solvers in a black-
box fashion and adds an extra level of parallelism to the parallelism that may already be present in
the solver [27]. For instance, previous work applying the gyrokinetic solver GENE [21] has shown
that the eigenvalues in the linear part of the simulation can be obtained by a combination technique
solution [25]. However, current approaches usually did not include the conservation of invariants—
such as mass—and even had to deal with a more general problem: When simulating up to the
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nonlinear quasi-stationary turbulent phase of an ITG instability scenario, the GENE combination
technique might become numerically unstable [27, p. 319]. The effect was more prevalent when
using shorter recombination intervals, a greater number of grids, or higher resolutions [29, section
3.6.4]. This presented a severe problem for running large-scale combination technique plasma
instability simulations at physically meaningful resolutions.

This work now employs two solvers that are easier to analyze numerically than GENE because
they preserve known invariants: a finite volume solver and a semi-Lagrangian Vlasov solver im-
plemented in the SeLaLib library [23] that both conserve mass up to machine precision. With
the finite volume solver we consider a simple advection equation where the solution is known an-
alytically, which provides a verifiable baseline. For the semi-Lagrangian solver we then study two
benchmark problems from plasma physics: the Landau damping phenomenon and the two-stream
plasma instability.

We introduce two variants of mass-conserving hierarchical multiscale bases that turn the com-
bination step into a mass-conserving operation and establish the connection to sparse grid and
combination technique theory. Both types of basis function are rooted in the theory of biorthog-
onal [6] and lifting [38] wavelets. The exact hierarchization and dehierarchization steps are il-
lustrated, and we draw parallels to related work that solves the Vlasov equation directly in the
hierarchical sparse grid space [17; 2; 8; 9; 22; 16; 39] or using the combination technique [26; 27].
The mass-conserving basis functions are shown to reduce the error between combination technique
and full grid solution in the advection scenario. When using an equal number of degrees of free-
dom, the mass-conserving combination technique delivers results that are comparable in accuracy
to a full grid solution in the cases of Landau damping and two-stream instability. Furthermore,
the most important finding is that the mass-conserving bases provide stability in combination
technique scenarios where the current state of the art, based on interpolets, becomes numerically
unstable. This fact may permit future exa-scale plasma simulations to draw from all benefits of
the sparse grid combination technique.

1.1 Related work

There is a wide field of closely and loosely related work touching on the main topic of this paper:
using sparse-grid techniques to efficiently compute solutions for kinetic problems. A necessary dis-
tinction is whether the numerical scheme (differential operators, integral operators, time-stepping)
is formulated in terms of the multiscale basis functions, or if the combination technique—also
known as Smolyak sparse grids—is used, which allows to have the solver operate with an arbitrary
basis representation.

The works by Haefele et al. [17] and Besse et al. [2] fall into the first category. These works
are particularly related to our work, since they use a semi-Lagrangian scheme for the solution of
the Vlasov–Poisson system, employing interpolet—a.k.a. hat—basis functions. A similar approach
is taken by Deriaz and Peirani [8], using interpolets with finite difference schemes. Earlier work
by Deriaz and Perrier [9] focuses on divergence- and curl-free—i. e., conservative—schemes with
wavelet constructions for flow simulations. While neither of the mentioned lines of work explicitly
uses a sparse grid construction, they employ adaptive hierarchical schemes, which will result in ba-
sis constructions that are similar to spatially adaptive hierarchical sparse grid bases [32]. Kormann
and Sonnendrücker [22] implemented hierarchical basis operators for the Vlasov–Poisson equations
into the SeLaLib [23] code, using the classical hat functions and higher order polynomials. The
work introduces a multiplicative δf ansatz to cope with the problem of approximating Gaussians
with the sparse grid technique. More recently, a line of work by Guo and Cheng [16; 39] successfully
used an adaptive multiwavelet basis for Discontinuous Galerkin simulations of the Vlasov–Poisson
and Vlasov–Maxwell systems. Notably, the multiwavelet basis also conserves momenta up to the
chosen order of the DG basis. Griebel and Koster [15; 24] employed spatially adaptive sparse grids
with biorthogonal basis constructions—like ψbo introduced in Section 2.2.2—for the simulation of
turbulent flows.

The second category, combination technique based solvers, employs the hierarchical basis only
between the solver steps to exchange the information between the component grids. For flow
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simulations, Huber [20] formulated custom hierarchization and dehierarchization operators to make
the simulation stable. These operators were problem and domain specific, taking into account the
physical properties to be conserved and the geometry of the domain in the simulation.

Previous work for plasma simulations could extrapolate eigenvalues in the linear part of the
simulation by way of the combination technique [25]. The combination technique—with some
adaptation—also performed well for linearized gyrokinetic simulations [26]. For turbulent plasma
simulations however, as discussed before, the combination technique applied to GENE would often
become numerically unstable [27, p. 319].

Our new results are based on the semi-Lagrangian approach to the Vlasov–Poisson system;
in contrast to e. g., Haefele et al. [17] and Deriaz and Peirani [8], this work solves the systems
of equations not directly in the hierarchical basis, but employs the combination technique to
couple solvers for structured grids. It introduces biorthogonal linear wavelets as intermediate
representations in the combination technique, since the interpolet basis is not mass-conserving
and can lead to the simulation becoming unstable. The results presented here may allow to revisit
some of the aforementioned experiments with relatively little overhead at improved stability and
accuracy.

To the best of our knowledge, so far no attempts have been made at higher-dimensional com-
bination technique time-dependent simulations with bases other than hierarchical hat functions.

2 Wavelets, hierarchical basis and basis transformations

To introduce the necessary concepts used in this paper, we give a short overview on the theory of
multiresolution analysis and the wavelet transform [5]. In this context, we will introduce biorthog-
onal wavelet bases [6], and, as a special case, the hierarchical hat function basis. We consider
an unbounded domain in this section and discuss boundary conditions for compact domains in
section 2.4.

2.1 Multiresolution analysis and biorthogonal wavelets

A multiresolution analysis on L2(R) is a hierarchy of function spaces

. . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(R) (1)

with the following properties:

• The union of all function spaces is dense in L2(R) and there is no redundancy:

∪l∈ZVl = L2(R) , ∩l∈ZVl = {0} . (2)

• Each space is spanned by dilates/translates of a scaling function φ (it is possible to have a
set of scaling functions, but we focus on the case with only one scaling function):

φls(x) := φ(2lx− s) , Vl = span{φls}s∈Z . (3)

One can think of the series of spaces as successive approximation spaces for a function f ∈ L2(R).
Each projection Plf ∈ Vl is an approximation with resolution 2−l. We call l the level of the
approximation. The level l = 0 corresponds to the coarsest possible level on the unit interval,
which will be discussed later.

Since φ ∈ V0 ⊂ V1 = span{φ1s}s∈Z the scaling function has to satisfy the multiscale equation

φ(x) =
∑
s∈Z

hsφ(2x− s) (4)

with coefficients hs ∈ R, which explains its name.
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Let us consider the complement space of Vl−1 in Vl, also known as the hierarchical increment
space Wl

Vl = Vl−1 ⊕Wl , Vl−1 ∩Wl = {0} . (5)

Applying this relation iteratively leads to the decomposition (setting W0 := V0)

Vl = ⊕ll′=0Wl′ , L2(R) = ⊕∞l′=0Wl′ . (6)

We aim to define basis functions ψls for Wl, so that Wl = span{ψls}s∈Z. These functions will
be called wavelets. Then, every function f ∈ L2(R) can be represented as

f =

∞∑
l=0

∑
s∈Z

αlsψls , (7)

where we set ψ0s := φ0s. We call αls the hierarchical or wavelet coefficients.
However, the space Wl is not uniquely defined, it needs further specification. Requiring it to

be the orthogonal complement, for example, leads to orthonormal wavelets [7]. Here, instead, we
only demand that the ψls are dilates/translates of a mother wavelet ψ, i.e. ψls(x) := ψ(2l−1x−s),
in particular ψ10 = ψ. Since W1 ⊂ V1, there are—similar to Equation (4)—coefficients gs ∈ R, so
that

ψ(x) =
∑
s∈Z

gsφ(2x− s) . (8)

In order to uniquely define the mother wavelet ψ, we employ biorthogonal wavelets. For this
purpose, we require a dual multiresolution analysis with a dual scaling function φ̃, a dual mother
wavelet ψ̃ and coefficients h̃s, g̃s, so that

φ̃(x) = 2
∑
s∈Z

h̃sφ̃(2x− s) , ψ̃(x) =
∑
s∈Z

g̃sφ̃(2x− s) . (9)

Theorem 3.8 in [6] states that, if (hs) and (h̃s) are finite sequences with
∑
s hsh̃s−2k = δk0, if

the Fourier transforms of the corresponding φ and φ̃ are bounded and in L2(R), and if we define

gs := (−1)1−sh̃1−s , g̃s := (−1)1−sh1−s , (10)

then the ψls, ψ̃ls constitute two dual frames, so that for any f ∈ L2(R),

f =

∞∑
l=0

∑
s∈Z

2l〈ψ̃ls, f〉ψls =

∞∑
l=0

∑
s∈Z

2l〈ψls, f〉ψ̃ls . (11)

Furthermore, if and only if
∫
φ(x)φ̃(x− s)dx = δs0, the ψls, ψ̃ls are two dual Riesz bases and we

have the following biorthogonality relations

〈φls, φ̃ls′〉 = 2−lδss′ , 〈ψls, ψ̃l′s′〉 = 2−lδll′δss′ ,

〈φ(l−1)s, ψ̃ls′〉 = 0 , 〈ψls, φ̃(l−1)s′〉 = 0 ,
(12)

where 〈·, ·〉 is the L2 scalar product. Note that we use different normalization factors compared
to the original paper.

In practice, we are interested in calculating the wavelet transform or hierarchization of a
function whose approximation in Vl is given by fl := Plf =

∑
s∈Z clsφls. This amounts to

computing αl′s = 2l
′〈ψ̃l′s, fl〉 for 0 ≤ l′ ≤ l, s ∈ Z. One starts by choosing the two sequences (hs)

and (h̃s) in such a way that they meet the above mentioned conditions. The scaling functions and
wavelets do not have to be known explicitly. From an algorithmic point of view, it suffices to know
(hs), (h̃s) and, by consequence, (gs), (g̃s) in order to perform the well-known wavelet transform:
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Due to Equation (5) we can expand fl as

fl =
∑
s∈Z

clsφls =
∑
s∈Z

c(l−1)sφ(l−1)s +
∑
s∈Z

αlsψls . (13)

Taking the scalar product with 2lψ̃lk and using Equation (9) and Equation (12) we obtain

αlk = 2l〈ψ̃lk, fl〉 = 2l
∑
s∈Z

cls〈ψ̃lk, φls〉 =
∑
s∈Z

∑
s′∈Z

clsg̃s′2
l〈φ̃l(s′+2k), φls〉 =

∑
s∈Z

∑
s′∈Z

clsg̃s′δ(s′+2k)s

=
∑
s∈Z

clsg̃(s−2k) .

(14)
Analogously, taking the scalar product with 2l−1φ̃(l−1)k, we get

c(l−1)k = 2l−1〈φ̃(l−1)k, fl〉 = 2l−1
∑
s∈Z

cls〈φ̃(l−1)k, φls〉 =
∑
s∈Z

∑
s′∈Z

clsh̃s′2
l〈φ̃l(s′+2k), φls〉

=
∑
s∈Z

clsh̃(s−2k) .
(15)

Replacing l by l − 1, these two steps can be applied iteratively down to l′ = 0. Alternatively, the
transform could just be carried through to some other level lmin ≥ 0 in order to retain a hybrid
representation of fl. This is a beneficial property when discussing the sparse grid combination
technique.

Equations (14) and (15) have the structure of a convolution with the filter mask (g̃s) resp.
(h̃s), which is displaced with a stride of two. (h̃s) covers the even indices, while (g̃s) covers the
odd ones (due to the shift of one in Definition (10)).

The inverse wavelet transform or dehierarchization is obtained by taking the scalar product of
(13) with 2lφ̃lk,

clk = 2l〈φ̃lk, fl〉 =
∑
s∈Z

c(l−1)s2
l〈φ̃lk, φ(l−1)s〉+

∑
s∈Z

αls2
l〈φ̃lk, ψls〉

=
∑
s∈Z

c(l−1)shk−2s +
∑
s∈Z

αlsgk−2s ,
(16)

which, again, can be computed iteratively from level zero or some lmin up to l. Due to Equa-
tions (14) to (16), (h̃s) and (g̃s) are called decomposition filters while (hs) and (gs) are called
reconstruction filters.

2.2 Relevant bases for this paper

The following three types of hierarchical basis functions will be used throughout this paper. They
all employ the classical hat function, either as scaling function or dual scaling function,

φ(x) = max(1− |x| , 0) . (17)

This function has compact support, which leads to finite filter lengths, and it is interpolating, thus
φ(s) = δs0 for s ∈ Z. The latter implies that the coefficients for the representation of fl ∈ Vl in
terms of the φls are just the function values at the grid points, i.e. cls = f(2−ls). Since the hat
function is piecewise linear, fl will be a linear spline approximating f in Vl. It is easy to verify
from the multiscale equation (4) that the corresponding filter coefficients are given by

(hs)−1≤s≤1 = ( 1
2 , 1,

1
2 ) . (18)
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Figure 1: “Hat” function: scaling function for piecewise linear multi-resolution analysis, and
standard choice for hierarchical basis ψhat.

2.2.1 Hierarchical hat basis

The hierarchical hat basis is the standard basis used in most of the sparse grid literature. This
is why we use it in this paper as a point of reference. Outside of the sparse grid literature, it
is often framed as the interpolet basis of first order [10]. Here, the dual scaling function is the
Dirac distribution φ̃(x) = δ(x) [38]. In this case φ̃ /∈ L2(R) and all scalar products have to be
understood as a dual pairing. Also, this violates the requirements of Theorem 3.8 in [6] and one
can show that the hierarchical hat basis is indeed not a Riesz basis.

The Dirac distribution satisfies the functional equation δ(x) = 2δ(2x), which immediately
serves as its multiscale equation. Hence, the corresponding filters have only one non-vanishing
entry, h̃s = δs0. It follows from Equation (10) that gs = δs1. Therefore, the wavelets themselves
are also hat functions that live at odd grid points, and we will refer to them as ψhat (cf. Figure 1).
In addition, the second step of the decomposition, Equation (15), becomes redundant. The cls stay
the same throughout the levels. This makes the hierarchical basis transform especially efficient
(“lazy wavelets”, cf. [38]). In summary, the full set of filters is given by

(hs)
hat
−1≤s≤1 = ( 1

2 , 1,
1
2 ) , (gs)

hat
0≤s≤2 = (0, 1, 0) ,

(h̃s)
hat
−1≤s≤1 = (0, 1, 0) , (g̃s)

hat
0≤s≤2 = (− 1

2 , 1,− 1
2 ) .

(19)

2.2.2 2,2-biorthogonal bases

The simplest biorthogonal wavelet basis that uses the hat function as scaling function, is the
example with (N, Ñ) = (2, 2) in chapter 6.A of [6]. We will denote it by ψbo. The full set of filters
is given by

(hs)
bo
−1≤s≤1 = ( 1

2 , 1,
1
2 ) , (gs)

bo
−1≤s≤3 = (− 1

8 ,− 1
4 ,

3
4 ,− 1

4 ,− 1
8 ) ,

(h̃s)
bo
−2≤s≤2 = (− 1

8 ,
1
4 ,

3
4 ,

1
4 ,− 1

8 ) , (g̃s)
bo
0≤s≤2 = (− 1

2 , 1,− 1
2 ) .

(20)

The third type of basis we use in this paper is almost identical to the last example. Only the
roles of φ and φ̃ are interchanged. This means that the decomposition filters become the analysis
filters and vice versa:

(hs)
fw
−2≤s≤2 = (− 1

4 ,
1
2 ,

3
2 ,

1
2 ,− 1

4 ) , (gs)
fw
0≤s≤2 = (− 1

2 , 1,− 1
2 ) ,

(h̃s)
fw
−1≤s≤1 = ( 1

4 ,
1
2 ,

1
4 ) , (g̃s)

fw
−1≤s≤3 = (− 1

8 ,− 1
4 ,

3
4 ,− 1

4 ,− 1
8 ) .

(21)
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Figure 2: The two choices of mass-conserving wavelet functions: ψbo to the left and ψfw to the
right.

We call this version the full weighting basis, ψfw, because the decomposition filter (h̃s) in this case
is known from the full weighting restriction in the multigrid literature.

The shapes of ψbo and ψfw can be seen in Figure 2. ψbo is a linear B-spline wavelet just like ψhat,
while ψfw is the wavelet that serves as the dual for ψbo. Although the filters in the biorthogonal
case are wider than for ψhat, they can be computed in-place with two data sweeps per level instead
of one, where the intermediate filters are always three elements wide. This is due to their possible
decomposition as lifting wavelets, as discussed in [38]. Figure 3 displays the hierarchization and
dehierarchization operations resulting from the bases introduced in this section, and highlights the
decomposition and reconstruction filters where applicable.

2.3 Conservation of mass

For our application, the motivating advantage of the biorthogonal bases over the hierarchical basis
is the fact that they have a vanishing integral or zeroth moment. For the two cases presented in
this work, this can easily be shown by Equation (8), together with the fact that in both cases φ is
integrable (as proved in [6]) and

∑
s∈Z gs = 0. This implies for the hybrid representation

fl =
∑
s∈Z

clminsφlmins +
∑

lmin<l′≤l

∑
s∈Z

αl′sψl′s (22)

that the zeroth moment is fully concentrated in the minimal level and, consequently, that it
remains the same throughout all approximations, independent of the level.

In a physical sense, this signifies the conservation of mass throughout the levels of approxima-
tion. Since the conservation of mass is a key property of the type of PDEs considered in this paper,
this can potentially play an important role when applying the sparse grid combination technique,
cf. Section 3.2. The reason is that the latter is based on an extrapolation using approximations
on different levels. Conservation of mass throughout the levels results in a conserved mass for the
extrapolant.

Conversely, this is not the case when using the hierarchical hat basis. In this scenario, the
wavelets themselves are hat functions with a non-vanishing integral, so the contributions to the
integral are spread among the levels. As an extreme example, consider a function whose mass
is distributed very granularly, so that all clmins and αls for l < L are zero. All approximations
with l < L will carry no mass and the extrapolant will effectively consist of only one partial
approximation at level L.
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, i oddcli−2 cli−1 cli cli+1 cli+2

cli−1 cli+1

=cl−1
j =cl−1

j+1αl
i−2 αl

i αl
i+2

+

·9 1
2 ·9 1

2·1g̃hat continue on
coarser level
l← l−1
i← j

(a) Hierarchical hat basis: For the hierarchiza-
tion, new values on the coarser level are identical
to the previous ones.

cl−1
j cl−1

j+1αl
i−2 αl

i αl
i+2

cli−2 cli−1 cli cli+1 cli+2 , i odd

+

· 12 · 12·1

continue on
finer level
l← l+1
j ← i

(b) Hierarchical hat basis: Coarser values are
kept, finer values are obtained by the sum of
interpolation and hierarchical surplus.

, i oddcli−2 cli−1 cli cli+1 cli+2

cli−1 cli+1αl
i−2 αl

i αl
i+2

+

·9 1
2 ·9 1

2·1g̃bo

cl−1
j cl−1

j+1αl
i−2 αl

i αl
i+2

+

· 14 · 14·1
+

· 14 · 14·1

continue on
coarser level
l← l−1
i← j

(c) Biorthogonal basis: Hierarchical coefficients
are calculated as before, but then the scaling
function coefficients are updated, too.

cl−1
j cl−1

j+1αl
i−2 αl

i αl
i+2

+

·9 1
4 ·9 1

4·1

+

·9 1
4 ·9 1

4·1

cli−2 cli−1 cli cli+1 cli+2 , i odd

+

· 12 · 12·1 continue on
finer level
l← l+1
j ← i

(d) Biorthogonal basis: The pattern of inverse
signs for odd-numbered stencil positions com-
pared to the hierarchization is visible.

, i oddcli−2 cli−1 cli cli+1 cli+2

cl−1
j cl−1

j+1cli−2 cli cli+2

+

· 14 · 14· 12
+

· 14 · 14· 12h̃fw

cl−1
j cl−1

j+1αl
i−2 αl

i αl
i+2

+

·9 1
2 ·9 1

2·1

continue on
coarser level
l← l−1
i← j

(e) Full weighting basis: The filters are virtu-
ally the same as in the biorthogonal case, but
applied in reverse order.

cl−1
j cl−1

j+1αl
i−2 αl

i αl
i+2

+

· 12 · 12·1

cli−2 cli−1 cli cli+1 cli+2 , i odd

+

·9 1
2 ·9 1

2·2

+

·9 1
2 ·9 1

2·2 continue on
finer level
l← l+1
j ← i

(f) Full weighting basis: One can observe the
“lifting” property, allowing to greedily compute
the transform in-place.

Figure 3: Filters for the hierarchization and dehierarchization operations for the different mul-
tiscale bases. The hierarchization (left column) is described by Equations (14) and (15); the
dehierarchization (right column) is described by Equation (16). In Figures (c) to (f), filters from
Equations (20) and (21) that are not explicitly depicted arise from the subsequent execution of
the two lifting steps.

This leads to the hypothesis that the biorthogonal wavelet bases are better suited for the con-
text of mass conservation than the hierarchical basis. Section 5 is going to validate this proposition
by three numerical studies.
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2.4 Wavelets on compact domains

In this work, only functions on compact domains will be considered, which can be scaled to the
unit interval [0, 1] or the hypercube [0, 1]d in d dimensions. Usually, one would need to make
boundary adjustments for the basis functions close to the boundary in order to account for the
desired regularity properties, when faced with reduced stencil sizes due to missing neighboring
points outside the domain. For instance, a suitable boundary treatment for ψbo is derived in
[24]. In all cases considered here, we will use periodic boundary conditions, which means that the
boundaries can be treated like the boundaries at internal partitions of the solver. This removes
the need for boundary adjusted basis functions.

3 Sparse grids and the combination technique

In this chapter we introduce sparse grids and, based on that, the sparse grid combination technique
[3]. The concept is based on the hierarchical subspace splitting presented in the last chapter.

3.1 Sparse grids

Sparse grids can be seen as a compression technique for the representation of multidimensional
functions. Consider a function f : [0, 1]d → R. In order to discretize it, we choose a hybrid
wavelet representation similar to Equation (22). We use tensor products of the one-dimensional
approximation spaces to generalize them to multiple dimensions. For example, the two-dimensional
version of the subspace decomposition in (5) reads as

Vl1,l2 = Vl1 ⊗ Vl2 = (Vl1−1 ⊕Wl1)⊗ (Vl2−1 ⊕Wl2)

= (Vl1−1 ⊗ Vl2−1)⊕ (Vl1−1 ⊗Wl2)⊕ (Vl2−1 ⊗Wl1)⊕ (Wl1 ⊗Wl2) .
(23)

Again, this can iteratively be expanded into hierarchical increment spaces down to a minimal level.
In order to account for the remaining cross terms between V andW , we define the multidimensional
scaling resp. wavelet functions as

φls(x) =

d∏
i=1

φlisi(xi) , ψls(x) =

d∏
i=1

ψ′lisi(xi) , ψ′lisi =

{
φlisi li = lmin

i

ψlisi li > lmin
i

, (24)

where bold indices are multi-indices, e.g. l = (l1, . . . , ld). The multidimensional (de-)hierarchization
operation reduces to a sequential execution of one-dimensional (de-)hierarchization operations.

The classical discretization on a full grid, i.e. a regular rectangular grid of level l, is then given
by

fl =
∑
s

clminsφlmins +
∑

lmin≤l′≤l

∑
s

αl′sψl′s . (25)

Binary operators between multi-indices are understood component-wise. Also, whenever the first
term is written out for clarity, it should implicitly be excluded from the sum in the second term.
The number of basis functions and thus the number of grid points in each direction is given
by Ni := 2li + 1 (including both boundaries). For an isotropic discretization (Ni = N) the
total number of grid points is then given by Nd. The exponential dependency on the number of
dimensions d is often referred to as the curse of dimensionality.

In order to lift this curse, we introduce the so called generalized sparse grid approximation

f
(s)
l =

∑
s

clminsφlmins +
∑
l′∈Il

∑
s

αl′sψl′s . (26)

Here, the second sum does not run over all levels up to l but, instead, the levels are chosen from an
index set Il. This index set is usually designed to exclude many of the levels with high isotropic
resolution compared to the full grid, while most of the anisotropic levels are kept. This reduces the
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number of grid points drastically. The resulting target level l of the set is defined by the maximal
occurring l′i in each direction.

The specific design of the index set depends on the decay behavior of the wavelet coefficients,
which is linked to the regularity properties of the considered function class. It is also possible to
let the index set be chosen by an adaptive algorithm [11; 32]. The only requirement for the index
set is to be downward closed, i.e. ∀l′ ∈ Il : lmin ≤ j ≤ l′ ⇒ j ∈ Il, which ensures that the
(de-)hierarchization operations exist.

Let us, as an example, consider the classical sparse grid for an isotropic target resolution

l = (n, . . . , n) for some n ∈ N, and denote it by f
(s)
n . The corresponding level set is given by

In =
{
l′ ∈ Nd : |l′|1 ≤ n

}
(27)

with lmin = (0, . . . , 0) and the `1 norm |·|1. Geometrically, this level set is merely a simplex in
Nd compared to the full hypercube that corresponds to Equation (25). This choice is optimal
for the approximation in the L2 norm of functions from Sobolev spaces with dominating mixed
smoothness, f ∈ H2

mix. This Sobolev space consists of all functions whose mixed weak derivatives
up to second order are bounded in L2,

H2
mix :=

{
f ∈ L2 : ‖f‖H2

mix
<∞

}
, ‖f‖H2

mix
:=

 ∑
|m|∞≤2

‖Dmf‖2L2

1/2

, (28)

where Dmf := ∂|m|1

∂
m1
x1
···∂mdxd

is the m-th weak derivative.

For the case of the hierarchical basis, it can be shown [3] that the bound for the representation
error is given by (N := 2n) ∥∥∥f − f (s)

n

∥∥∥
L2

. N−2(logN)d−1 ‖f‖H2
mix

, (29)

which is only worse by a logarithmic factor compared to the usual O(N−2) for a piece-wise linear
approximation on a full grid. In contrast, the number of points on the sparse grid behaves asymp-
totically like O(N(logN)d−1). This is orders of magnitude less than in the full grid case, since
the exponential dependency on the dimension is only present in the log-Term.

3.2 The combination technique

The combination technique (CT) is an alternative representation of a sparse grid function (26). The
goal is to represent the sum over hierarchical increment spaces by a linear combination of full grid
functions (25), which can be decomposed into the necessary hierarchical subspaces, i.e., all spaces
in the index set I. Since many subspaces on lower levels will then be counted multiple times, one
has to account for it by subtracting suitable full grid functions containing those subspaces. This
is similar to the inclusion exclusion principle from combinatorics. For example, for the classical
sparse grid (27) in 2D this leads to the combination formula

f (s)
n =

∑
l1+l2=n

fl1,l2 −
∑

l1+l2=n−1

fl1,l2 . (30)

That is, all full grid functions with levels that lie on the bounding diagonal of the level set have
a combination coefficient of λ = +1 while functions with levels on the diagonal below have a
coefficient of λ = −1. For a general index set, this leads to the formula

f
(s)
l =

∑
l′∈Il

λl′fl′ , with λl′ =

1∑
z=0

(−1)|z|1χIl(l′ + z) , (31)

where χ denotes the indicator function [18], defined by the index set I.
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In this paper we use a combination scheme that allows for anisotropic minimal and target
levels. For a more distinctive notation we will denote minimal and target level by lmin and lmax,
respectively. The level set has the form

Ilmin,lmax =
{
l′ ∈ Nd : l′ ∈ conv(lmin, lmin + d(1), . . . , lmin + d(d))

}
, (32)

where d(i) = (0, . . . , lmax
i − lmin

i , . . . , 0), and conv denoting the convex hull. This again describes
a simplex, but one that is situated at lmin and stretches out to lmax

i in the i-th direction. The
potential for anisotropic minimal and target levels can be used to increase the resolution for more
important directions versus directions that may be sampled at lower resolutions, compare [12].
Additionally, some solvers inherently require a minimal number of grid points, e.g. for the stencils
they use, or to make sure that some relevant physical scale can be resolved.

In the case of interpolating a known function, the representations (26) and (31) are identical.
Thus, the representation error of the combination technique is the same as in Equation (29). But
if the full grid functions constituting the sum in (31) are derived in a separate way, e.g. by solving
a PDE, they carry an additional discretization error and it is not guaranteed that Equation (29)
holds for the total error. However, there are cases where it can be shown that it does. Firstly, if
the full grid solutions satisfy an error splitting assumption of the form

(f − fl)(xl) =

d∑
i=1

∑
{j1,...,ji}⊂{1,...,d}

κj1,...,ji(xl;hj1 , . . . , hji)h
2
j1 · · ·h2

ji (33)

at all full grid points xl, with bounded |κj1,...,ji(xl;hj1 , . . . , hji)| ≤ K and hj := 2−j , then the
point-wise total error of the combined function has the same asymptotic rate as in Equation (29)
[14]. The same can be shown for the L2-error of the combined function, if the full grid functions
are solutions of operator equations with elliptic operators acting on arbitrary Gelfant triples [13].
Further analysis for the advection-diffusion equation is found in [36], where the same asymptotic
convergence rates are shown. Error analysis for the combination technique with multiple time
intervals in the case of the advection equation can be found in [28].

Still, a general theory for arbitrary, particularly nonlinear, PDEs is not available. For the case
of kinetic equations, such as the Vlasov–Poisson system or the gyrokinetic equations, the notion of
convergence itself has to be defined first. While in certain scenarios or temporal regimes, where the
nonlinearity of the equations is negligible, a convergence of fl(t) to the exact solution is expected,
this is not the case anymore for the long term simulation of turbulent/chaotic behavior. In this
situation, the combination technique can only be expected to work well for the solution of the
PDE for very small time frames ∆T [28]. In practice, we therefore iterate the application of the
combination technique m times in order to arrive at a final time m∆T .

For the combination step that is necessary after every interval, all subproblems on the different
full grids have to be combined in the resulting sparse grid space, according to Equation (31). For
this purpose, the full grid functions are hierarchized and the resulting hierarchical coefficients are
added to or subtracted from the sparse grid solution, where the coefficients from missing subspaces
are padded with zeros. After that, the sparse grid solution has to be redistributed to the original
full grids. There are several ways to do this. Carrying out an L2 projection would yield, on each
full grid, the best approximation to the sparse grid function in the L2 norm. However, in practice,
such a projection requires more computational effort because a linear system of equations involving
the mass matrix Ml′s′,ls = 〈ψl′s′ , ψls〉 has to be solved. Thus, we use the method of keeping the
coefficients of all hierarchical difference spaces contained in the full grid and omitting the rest:

Plf
(s) = Pl

 ∑
l′∈Ilmin,lmax

∑
s

αl′sψl′s

 :=
∑

lmin≤l′≤l

∑
s

αl′sψl′s , ∀l ∈ Ilmin,lmax . (34)

Afterwards, the dehierarchization operation is applied on each full grid.

11



For an orthogonal multiscale basis, e.g. orthonormal wavelets, this would be identical to the
L2 projection, since in this case Ml′s′,ls = δl′s′,ls. For biorthogonal wavelet bases it is not, so
the best approximation property is lost. However, as noted earlier, the mass is conserved by this
projection when using biorthogonal wavelet bases, since it is wholly contained in the subspace
lmin, which is present in all full grids. We argue that, in this instance, mass conservation is the
more important property compared to L2 best approximation.

Finally, quantitative analysis of the solution is commonly done by studying certain quantities
of interest that are typically averaged over the phase-space. This is why, in our simulations
of the Vlasov-Poisson system, we assess the quality of the combined solution by analyzing its
performance in two benchmark problems via the time traces of the potential energy. A similar
approach was taken in [27] for simulations of the gyrokinetic equations with the code GENE [21].
A full convergence study of the combination technique failed, however, since for many index sets
the simulations became unstable. Therefore, the main goal of this paper is to show that the use
of biorthogonal wavelet bases helps to alleviate this problem.

4 Mass-conserving solvers for hyperbolic problems

Naturally, the total mass can only be conserved in a combination technique with the novel hierar-
chical bases if the underlying solvers are also mass-conserving. We therefore choose a finite volume
advection solver and a semi-Lagrangian solver for the kinetic equations that both conserve mass
and, moreover, operate on a structured six-dimensional grid.

By contrast, plasma turbulence codes such as GENE that are closely inspired by predictions for
experimental nuclear fusion devices typically incorporate optimizations and simplifications that
make a numerical analysis on the system level difficult. Moreover, they do not conserve mass
or other momenta, since they only simulate a perturbation from equilibrium instead of the full
distribution function.

4.1 Finite volume advection solver

As a first benchmark problem, we consider the incompressible advection equation

∂u(x, t)

∂t
+ a · ∇xu(x, t) = 0 (35)

on the unit hypercube Ω = [0, 1]d in d dimensions. The advection velocity a is 1, constant through-
out Ω. Note that a purely diagonal advection is the most challenging direction for combination
technique simulations.

The spatial boundary conditions are periodic, which makes this problem well-suited for our
purposes, since the analytical solution can be obtained in a straightforward manner by periodically
translating the initial distribution. This makes a direct Monte Carlo integration of the error
possible, cf. Section 5.1.

A straightforward discretization is the first-order finite volume upwinding scheme for positive
velocities

∇iu =
∂u

∂xi
≈ u(x, t−∆t)− u(x−∆xi, t−∆t)

∆xi
,

∂u

∂t
≈ u(x, t)− u(x, t−∆t)

∆t
,

(36)

which conserves the mass ‖u‖1—assuming positivity of u—up to machine precision. Note that the
numerical value of the mass (at initial time) can vary slightly depending on the resolution due to
the numerical interpolation of the initial solution.

Plugging Equation (36) into Equation (35) and solving for u(x, t) results in the explicit Euler
time-stepping scheme

u(x, t) = u(x, t−∆t)−∇u · a ·∆t, (37)
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which is first-order accurate in both space and time (provided that the loose CFL conditions
of the combination technique are fulfilled, cf. [1]). The solver is implemented directly into the
distributed combination technique framework DisCoTec.

4.2 Semi-Lagrangian Vlasov plasma solver

In a second example, we study a simulation of the Vlasov–Poisson system in 3d3v (three spatial
and three velocity dimensions). We focus on the case of electrons in a neutralizing background.
Let f(x,v, t) be the distribution function of the electron species of a plasma in phase space
(x,v) ∈ Ω× R3, Ω ⊂ R3. This distribution function evolves according to the Vlasov equation

∂tf(x,v, t) + v · ∇xf(x,v, t) +
q

m
(E(x, t) + v ×B(x, t)) · ∇vf(x,v, t) = 0, (38)

where q and m denote electron charge and mass, respectively, E the electric and B the mag-
netic field. The self-consistent fields are given by Maxwell’s equations or—for low-frequency
phenomena—by Poisson’s equation. In this paper, we focus on the Poisson equation given by

−∆xφ(x, t) = 1−
∫
f(x,v, t) dv, E(x, t) = −∇xφ(x, t). (39)

and B(x, t) = 0.
Several discretization schemes are possible in order to approximate the Vlasov equation: meth-

ods of Eulerian, semi-Lagrangian, and Lagrangian type. While Lagrangian particle methods over-
come the curse of dimensionality to some extent, they suffer from inherent numerical noise. In this
paper, instead, we propose to use the sparse grid combination technique applied to a grid-based
method in order to overcome the curse of dimensionality with a noise-free method. We choose the
semi-Lagrangian method as the basis for our full grid simulations, since semi-Lagrangian schemes
allow for larger time steps in explicit time propagation schemes compared to Eulerian methods.

The semi-Lagrangian method discretizes the distribution function on a grid and the propagation
is based on the characteristic equations

dX

dt
= V ,

dV

dt
=

q

m
(E + V ×B) (40)

along which the distribution function is constant, i.e.

f(x,v, t) = f0(X(0;x,v, t),V (0;x,v, t)),

where (X(τ ;x,v, t),V (τ ;x,v, t)) is the solution of the characteristic curve at time τ starting at
(x,v) at time t and f0 is the initial solution at time τ = 0.

Since the fields depend on the distribution function, we cannot follow the characteristics from
final to initial time. However, over small time intervals, approximating the fields by a constant
value in time is a good approximation. Based on this assumption, the Vlasov equation can be
solved in two steps: Solving the ODE system of the characteristics is followed by evaluating the
interpolated distribution function at the foot of the characteristic. Using an operator splitting
method and solving the x and the v advection separately, the advection coefficients are constant
in each time step so that the solution of the system of ODEs can be found analytically. This
algorithm has been proposed in [4]. Several schemes are conceivable for the one-dimensional
interpolations. In our implementation, we use Lagrangian interpolation, since the interpolation is
local, a fact which is favorable in the context of distributed domains. It can be shown that this
scheme conserves both mass and momentum up to round-off errors.

For our simulations, we use the semi-Lagrangian method implemented for high performance
computing simulations in SeLaLib [23]. In order to couple SeLaLib to the DisCoTec framework,
some adaptations were implemented regarding computation and communication of the distribu-
tion function. Fortunately, the coordinate placement used in SeLaLib naturally results in nested
coordinates when doubling the resolution, which matches the requirements of the combination
technique perfectly.
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5 Combination technique experiments

In our combination technique simulation experiments, the solvers described in Section 4 are used
to perform a time step update on each of the component grids. These solver updates are inde-
pendent between the component grids and can be performed in parallel. Information between the
component grids is only exchanged in the combination step: The recombination transforms the
data on each component grid into their hierarchical representations—coefficients corresponding to
either of ψhat, ψbo, ψfw—and sums them up to a common sparse grid according to the combination
formula (Equation (31)). The decombination then “scatters”, i. e., projects, the sparse grid data
back to the component grids and, afterwards, performs the inverse transformation on each grid to
recover the interpolating coefficients. Then, the next time step can begin.

The three numerical experiments were designed to investigate different behaviors: First, to
verify that mass is now conserved up to machine precision; second, to showcase the error properties
of the combination technique using the different basis functions w.r.t. an analytical solution, cf.
Section 5.1; and, third, to apply the different combination technique approaches to plasma physics
scenarios while comparing them to the monolithic full grid solution at a fixed amount of available
memory, cf. Sections 5.2 and 5.3.

In order to achieve a fair comparison, the number of degrees of freedom for the full grid
simulations is calculated as the number of points on that single grid

#DOFfg =

d∑
i=1

2l
fg
i , (41)

whereas for the combination technique, we need to consider the sum of points on all component
grids

#DOFct =
∑

l∈I|λl 6=0

d∑
i=1

2li . (42)

This implies that the combination technique solution is not necessarily “cheaper” than a full
grid of level lmax, and that the index set I needs to be chosen carefully. We use only double-
precision floats for the representation of the (interpolating and hierarchical) basis coefficients,
such that the memory consumption can be obtained as #DOF · 8/230 GiB.

Another aspect that is common to all experiments is the choice of the recombination interval
∆T . Lastdrager et al. [28] analyzed the different error terms introduced by the combination
technique with hat functions for advection-type problems. They could show that by recombination
at constant simulation time intervals throughout the simulation, the leading time-error term would
be of first order [28, Eq. (32)]. However, they did not take the solver’s own time-dependent error
into account, but only the solver’s spatial error. Hence, we restrict ourselves to recombination
after each solver time step ∆t for our experiments, i. e., ∆T = ∆t, in order to avoid unforeseen
numerical artifacts originating from different time ranges and error expansions between the solver
and the combination technique.

In the simulations, the mass (and other properties) of the combination technique solution
are obtained by evaluating the same property on each component grid and summing with the
combination formula

Qct(f) :=
∑
l∈I

λl ·Q(fl). (43)

Note that the formula is only equivalent to the interpolated sparse grid properties

Qsg(f) := Q

(∑
l∈I

λl · fl
)

(44)

for linear operators, e.g. the mass. For instance in the maximum norm, one can easily imagine
that the combined maximum is not the same as the sparse grid maximum, since the maximal
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function value will usually be attained at different points in the component grids—and the sparse
grid point with maximal value will likely not be present in each of the component grids.

Sections 5.2 and 5.3 are going to deal with both the (linear) mass and the (nonlinear) potential
energy φ(f) as combined quantities Qct(f). We validated the approach of using the combined
potential energy with coarsely resolved CT plasma simulations, where both φct(f) and the inter-
polated φsg(f) could be feasibly computed. The result was that, for those time intervals where
the simulation was stable, the properties would be in close agreement. We can therefore assume
that the combination technique linearization assumption

Qsg(f) ≈ Qct(f) (45)

for a general quantity of interest Q(·) holds sufficiently in the cases that are physically relevant.
And conversely, we observed that physical bounds—such as the positivity of the potential energy—
are only violated at the onset of numerical instabilities.

The following sections use the combined quantities of interest unless otherwise indicated.

5.1 Advecting a Gaussian

The finite volume advection solver introduced in Section 4.1 is used to compare the different
hierarchical basis functions on an analytically solvable scenario in arbitrary dimensions.

The unknown concentration u is initialized at t = 0 by a Gaussian distribution

u(x, t = 0) = exp

(
−

d∑
i=1

(
xi −

1

2

)2

· 1

σ2

)
, (46)

that is, a multivariate normal distribution with standard deviation σ = 1
3 . It is normalized, such

that the maximum value is always 1, independently of d. Gaussians are the typical initial conditions
in velocity space for plasma physics simulations, and they can be particularly challenging to be
represented on sparse grids [32].

The solver time step size ∆t is set to 1× 10=4, to fulfill the CFL condition for all considered
resolutions, and recombination takes place after each time step. While the full grid reference
simulations are each run on a single grid at different isotropic resolutions, all combination technique
simulations have a fixed minimum level of lmin = (2)d but different target levels lmax, which
correspond to the resolutions of the reference simulations. This results in an increasing number
of component grids as lmax increases.

We first investigate the combination technique’s behavior with respect to the one known in-
variant of the solver: uexact is chosen such that the mass ‖uexact‖1—assuming positivity of u—is
approximately 0.570792d, cf. Equation (46). The full grid simulations all conserve the mass up to
machine precision. Figure 4 shows the mass fluctuations throughout the simulation time in the
combination technique solutions. It clearly states that the ψbo and ψfw bases lead to the desired
conservation of mass, in contrast to ψhat.
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Figure 4: Difference ∆m between the combined masses
∑

l∈I λl ·
∫
ul(x, t) dx and analytical mass∫

uexact(x, ·) dx ≈ 0.186 for a combination technique 3D advection scenario with lmin = (2, 2, 2),
lmax = (11, 11, 11) (136 component grids). Using hierarchical hat functions leads to fluctuations
of up to 2.7% of the analytical mass. The maxima in the mass are reached whenever the Gaussian’s
maximum passes through those regions of the sparse grid where there are fewer degrees of freedom.
By comparison, the biorthogonal and full weighting bases conserve the mass in the simulation up
to an accuracy of 1× 10=10.

Next, we consider different errors at t = 1.0, i. e., after one full cycle of diagonally advecting
the initial solution through the domain. Since the true solution is known analytically, the relative
error norms w.r.t. the analytical solution are obtained by Monte Carlo integration

‖uct − uexact‖1
‖uexact‖1

(t) ≈
∑N
j=1 |uct(xj , t)− uexact(xj , t)|∑N

j=1 |uexact(xj , t)|
,

‖uct − uexact‖2
‖uexact‖2

(t) ≈
∑N
j=1 |uct(xj , t)− uexact(xj , t)|2∑N

j=1 |uexact(xj , t)|2
,

‖uct − uexact‖∞
‖uexact‖∞

(t) ≈ maxxj |uct(xj , t)− uexact(xj , t)|
maxxj |uexact(xj , t)|

,

(47)

on N = 1× 105 randomly sampled coordinates xj (the pseudorandom numbers are generated
using the Mersenne Twister algorithm). N is chosen numerically such that the variance of the
Monte Carlo integrals over multiple runs with different random coordinates is sufficiently small.
Using random coordinates—not sparse grid collocation points—is particularly important since the
analytical solution is not contained in the linear ansatz space; it is necessary to capture the error
between collocation points especially for low-resolution simulations.

Figure 5 displays several characteristics of the different solutions: For the same lmax, the
combination technique solutions require drastically smaller numbers of degrees of freedom than
the full grid solutions, while providing similar numerical accuracy in all considered error norms.
Furthermore, using the mass-conserving basis functions reduces the errors further, an effect that
gets more significant as the dimensionality increases.

These errors can be split up in a meaningful way: For a combination scheme with minimum
level lmin and maximum level lmax, it seems unlikely to attain errors below that of the reference
full grid solution ufg,lmax , since all coordinates contained in the sparse grid are a subset of the full
grid’s DOF. We therefore take the full grid errors as a bound to the combination technique errors.
Thus, we may decompose the total error into the solver’s error itself and the error introduced by
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Figure 5: Monte Carlo errors for the advection solver over the number of degrees of freedom used.
Curves are shown for dimensionalities of 2, 4, and 6, comparing the full grid reference solutions
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Figure 7 at t = 0.5
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Figure 7: Error decomposition for the 2D advection solution at t = 0.5: The combination technique
error is split into the full grid error and the difference between full grid and combination technique
solution. All solvers used lmax = (11, 11), and the combination technique used lmin = (2, 2),
leading to approximately 4.19× 106 DOF for the full grid and 1.19× 105 DOF for the combination
technique simulations, cf. the ellipses in Figure 5. We use t = 0.5 instead of t = 1.0, because the
slight differences in Figure 7a are easier to compare when the maxima of the errors are centered.
The difference between the full grid and CT solutions is visible on a smaller scale only, hence the
separate color bar on the right.
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the combination technique scheme:

uct − uexact = (ufg,lmax − uexact) + (uct − ufg,lmax) ,

‖uct − uexact‖ ≤
∥∥ufg,lmax − uexact

∥∥+
∥∥uct − ufg,lmax

∥∥ .
(48)

Visually, it is instructive to investigate one fixed set of data points, namely the two-dimensional
problem with maximum level lmax = (11, 11) (cf. the ellipse in Figure 5). The analytical solution
at t = 0.5, interpolated onto l = lmax (i. e., N = (2048, 2048)), is displayed in Figure 6.

In Figures 6 and 7, the solutions are displayed at time t = 0.5, i. e., the Gaussian in the
analytical solution has moved along the diagonal, such that the maximum of 1 is now exactly on
the corner points. The error field w.r.t. the analytical solution is shown in Figure 7—making it
a visualization of the error decomposition, Equation (48). To plot the two-dimensional fields, we
choose t = 0.5 instead of t = 1.0 (like in Figure 5) because the slight differences in Figure 7a are
easier to compare when the maxima of the errors are centered.

For all solver schemes, most of the error is introduced along the middle axes. This is to be
expected, given that the analytical solution is C∞ in most of the domain, but only C0 along the
middle axes, since the middle axes at t = 0.5 are the boundary of the initial solution u(t = 0)
that is being advected through the domain. High values of uexact are underestimated while low
values tend to be overestimated. We observe that the errors are dominated by the full grid error∥∥ufg,lmax − uexact

∥∥, and the sparse grid projection error
∥∥uct − ufg,lmax

∥∥ is more than one order
of magnitude lower for all choices of hierarchical basis functions—note the different color scale
in Figure 7. Also, the sign of the sparse grid projection error appears to form a checkerboard
pattern: The values are underestimated at the center of the domain, partially compensating the
full grid solver’s error. In the other regions of Ω, the full grid solver’s error is slightly amplified
by the sparse grid projection error.

Yet, strikingly, the difference between the mass-conserving CT solutions and the full grid
solutions

∥∥uct − ufg,lmax

∥∥—the combination technique projection error—is significantly lower than
for the hat basis combination technique: It generally has the same shape but is lower by a factor
of ≈ 3 throughout the domain.

This also explains the differences in the error norms highlighted in Figure 5: For the same
lmax, the projection error measure

∥∥uct − ufg,lmax

∥∥
p

is decreased by a factor of ≈ 3 when using

ψbo or ψfw instead of ψhat for the combination. This error reduction is observed in all advection
simulations considered here—across all dimensionalities d and norm parameters p.

In addition to maintaining the conservation of mass, the increased accuracy is a substantial
benefit for combination technique simulations.

5.2 Landau damping with the semi-Langrangian solver

For the Vlasov–Poisson system, we study two typical benchmark problems, Landau damping
and the two-stream instability. Landau damping refers to the effect of exponential damping of
longitudinal waves in plasmas. It can be studied when simulating the Vlasov–Poisson system with
the initial condition

f0(x,v) =

(
1 + ε

3∑
i=1

cos(kxi)

)
1

(2π)3/2
exp

(
−‖v‖

2
2

2

)
(49)

on the domain [0, 2π
k ]3 × R3 for certain ranges of k, typically k = 0.5.

A linear dispersion analysis reveals the damping rate and the oscillation frequency in time
to first order in ε. For the mode k = 0.5 the damping rate is ω = −0.1533. For a small
value of ε = 0.01, the electric energy practically coincides with the linear prediction from the
second oscillation onwards. In grid-based simulations, however, the so-called numerical recurrence
phenomenon occurs: After a certain time depending on the resolution of the velocity grid, more
precisely when T = 2π

k∆v with ∆v being the (minimal) resolution in velocity space, a sudden growth
in potential energy occurs. This phenomenon is a purely numerical artefact.
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For low-resolution test runs of the combination technique, we could verify that the combined
potential energy ‖φ‖22,ct is a very good approximation to the sparse grid potential energy ‖φ‖22,sg,

cf. Equation (45): The sparse grid’s energy ‖φ‖22,sg is obtained by interpolating fct onto lmaxand

then computing ‖φ‖22 on the finely-resolved grid. This holds at least for the regions where the

simulation is stable—in those cases where ‖φ‖22,ct becomes smaller than 0, it is plausibly quite

different from ‖φ‖22,sg, since the latter is guaranteed to be positive.
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Figure 8: Landau Damping: The 5.5 GiB full grid with a resolution of N = (16, 16, 16, 57, 57, 57)
is compared to combination technique solutions with lmin = (4, 4, 4, 2, 2, 2), lmax =
(4, 4, 4, 8, 8, 8) at 5.4 GiB for the f data structures. This means that the x space resolutions
are exactly the same between the full and combination simulations, and combination is only em-
ployed in the v space, resulting in 64 component grids for the combination technique simulations.
For the combination technique simulations, combination is performed after every time step of
∆t = 0.01.

Initial Landau damping test simulations showed that the hierarchical coefficients rapidly ap-
proach zero for finer x space resolutions, such that the x levels are uniformly chosen at a relatively
coarse resolution of lx = 4 for this experiment. This also becomes clear from the structure of the
problem, since the perturbation is chosen aligned with the grid. This alignement persists in the
dynamics of the linearized equation that decouples the three one-dimensional perturbations. Thus,
we are effectively reducing the combination dimensions to the three velocity components v1, v2, v3.

The exact combination technique scenario is lmin = (4, 4, 4, 2, 2, 2), lmax = (4, 4, 4, 8, 8, 8),
resulting in 64 component grids, which take up a total of 5.4 GiB for the distribution functions’
data structures. We compare this to the same simulation run on a single full grid with resolution
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N = (16, 16, 16, 57, 57, 57) (i.e, l ≈ (4, 4, 4, 5.83, 5.83, 5.83)), totalling ≈ 5.5 GiB for the f field
and matching the x resolutions of the combination technique simulations exactly.

The simulation is performed with a three-point Lagrange interpolation used for the semi-
Lagrangian method. Using this relatively low-order interpolation, we have a minimal overhead
due to ghost-cell transfer but on the other hand, we clearly see some deviations of the simulation
from the analytical damping rate. For the full grid solution, we expect the recurrence at time
T = 2π·57

0.5·12 ≈ 59.7 which can also be observed (cf. Fig. 8). The combination technique solutions
show no clear recurrence but we observe smaller jumps in the damping profile of the energy curve.
With the pure hat function sparse grids, this occurs already very early around time 30. For the
full weighting and biorthogonal solutions, on the other hand, the effect occurs at a time similar to
the recurrence time.

5.3 Plasma instability with the semi-Langrangian solver

Next, we consider the two-stream instability with initial condtion

f0(x,v) =

(
1 + ε

3∑
i=1

cos(0.2xi)

)
1

2(2π)3/2
·(

exp

(
− (v1 − 2.4)2

2

)
+ exp

(
− (v1 + 2.4)2

2

))
exp

(
−v

2
2 + v2

3

2

) (50)

on the domain
[
0, 2π

0.2

]3 × R3. A linear dispersion analysis shows that there is a growing mode
with growth rate given by ω = 0.2258. The two-stream instability is bound to appear along
the first dimension while Landau damping dominates along the others. For a perturbation with
ε = 0.001, the potential energy curve follows the linear dispersion after some initial oscillations
with a growth rate of ω. However, at some point the perturbation from equilibrium becomes
so strong that nonlinear effects start dominating: Particles get trapped and the electric energy
oscillates around a certain energy level.

Typical pitfalls of numerical methods during the nonlinear phase are too high oscillations or
numerical damping of the electric energy, as observed in previous experiments [22].

Here, we compare a sparse grid combination solution with 84 component grids of lmin =
(3, 3, 3, 3, 3, 3), lmax = (6, 6, 6, 6, 6, 6) and a single full grid solution with N = (22, 22, 22, 24, 24, 24)
(i.e, l ≈ (4.46, 4.46, 4.46, 4.58, 4.58, 4.58)), since both configurations result in a similar memory
footprint. For the linear regime we recover the growth rate with very good accuracy in all sim-
ulations. Therefore, in Figure 9, we focus on the nonlinear part of the simulation. It can be
seen that the pure combination technique solution based on hat functions becomes unstable just
before time 106 while the other three simulations oscillate around the reference solution from a
simulation on a full grid with l = lmax. In particular, no numerical damping is observed. The
medium-resolution full grid solution contains a rather uniform oscillation with a larger amplitude
and can therefore be considered slightly worse than the ones obtained with a full weighting or a
biorthogonal combination technique.

Figure 10 shows the deviation of the mass over time. It can be seen that the full grid solution
conserves mass to machine precision and the full weighting and biorthogonal combination tech-
nique solutions show a slow and small variation in mass. We attribute this to the accumulated
errors from the individual hierarchization and dehierarchization operations on each grid: By defi-
nition, the hierarchical increments αls should be very small in smooth regions of the solution. In
calculating them, we are subtracting very similar values from each other, which results in numer-
ical cancellation for α to some degree. The visible mass changes for the ψbo and ψfw at ≈ 10−11

are due to the output accuracy of 11 digits in the SeLaLib diagnostic files; the mass change slowly
accumulates on each component grid but only becomes visible in Figure 10 once it has reached
the output threshold of 1× 10=11 for the common sparse grid sum. This is also how the tiny
spikes are introduced at the changes of mass, for instance in the case of ψbo at t ≈ 185: Some
of the component grids display the change in mass one or two time steps earlier than the others,
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and it may happen that those grids’ combination coefficients have the same sign, which leads
to the spikes. The combination coefficients also help to understand the high-frequent behavior
when using ψhat for the combination technique: Even though the combination technique using the
hierarchical hat basis is not mass-conserving, the error in mass shows an oscillatory behavior with
rather small deviations up to the point where the simulation becomes unstable. In particular,
mass conservation remains on the order of 10−10 way beyond time ≈ 94 where the values of the
potential energy start to strongly oscillate, including negative values (which may occur due to the
extrapolation of the potential energy from the values of the component grids, cf. Equation (43)).

Thus, it appears that the conservation of mass itself is not the determining factor for the
numerical stability of the problem. Rather, the causality may be in the reverse direction: The
choice of stable basis functions also introduces conservation of mass in the distribution function.

6 Discussion of kinetic CT simulations with mass-conserving
basis functions

In summary, this work introduces the mass-conserving basis functions ψbo and ψfw for combination
technique simulations. While the biorthogonal basis has been previously used for sparse grid
simulations [24], the full weighting basis is a new approach that shows a connection to geometric
multigrid methods.

A starting point for our research was the conservation of mass in the individual component
grids, which is generally not to be expected if the combination technique is performed with hat
functions. The present work shows the conservation of mass by ψbo and ψfw theoretically as well
as experimentally for a finite volume advection solver and the semi-Lagrangian SeLaLib solver,
which both use periodic boundary conditions. For solvers with non-periodic boundary conditions,
theory tells that also the first moment—the location of the center of mass—should be conserved,
which corresponds to conservation of momentum when considering velocity coordinates like in
SeLaLib and other grid-based Vlasov solvers.

Furthermore, the direct comparison to the full grid solution in Section 5.1 showed that the mass-
conserving basis functions decrease the projection error of the combination technique solution by
a factor of ≈ 3 as opposed to hat functions.

Perhaps the most important feature of the introduced mass-conserving bases is that they nu-
merically stabilize the simulation. In the Landau damping test case, cf. Section 5.2, the standard
combination technique with the hat basis loses numerical stability even before the first numerical
recurrence occurs. This problem is not encountered for the mass-conserving bases: When allocat-
ing the same number of DOF, the biorthogonal and full weighting combination technique solutions
are very similar to the full grid solution for the time before recurrence.

Fre the plasma instability scenario discussed in Section 5.3 the hat basis leads to the simula-
tion becoming numerically unstable after some simulation time, which even causes it to abort. By
contrast, the biorthogonal and full weighting functions let the simulation run stable well into the
quasi-stationary turbulent phase. This fact is particularly interesting in the context of previous
work in the EXAHD project [33; 27; 29] which was severely impacted by recombination simula-
tions with hat functions becoming numerically unstable. Those cases that were most likely to
become unstable were the ones that had many grids, fine resolutions, and short recombination
intervals [29]. The results of the plasma scenarios in Sections 5.2 and 5.3 show that the mass-
conserving basis functions solve this problem, at least for the range of resolutions that was tested.
It is worth noting that, contrary to previous numerical experiments directly in the hierarchical
hat basis [22], no additional (unphysical) damping occurs in the two-stream instability scenario.
Further investigations are required to apply the approach to other grid-based solvers, in particular
solvers that do not conserve any moments of the distribution function.

The time-based comparison of mass and potential energy in Section 5.3 suggests that the con-
servation of mass and the increased stability of the basis are closely linked: both result from the
increased regularity of the biorthogonal wavelets ψ̃ [6]. Analytical results obtained by Koster [24]
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had predicted insufficient numerical stability for some PDE computations directly in the hier-
archical hat basis sparse grid representation. The same effect appears to hold in the SeLaLib
simulations presented here, although the time-stepping does not take place in the hierarchical
basis, but in the nodal representation on each component grid individually. Only the numerical
“synchronization” is carried out in the hierarchical basis, yet this is enough to skew the component
solutions in a way that makes the simulation unstable over time.

Thus far, we observed no reason to prefer one of the two mass-conserving multiscale bases over
the other. The 2D errors plotted in Section 5.1 illustrate that there is a slight difference in the
shape of the error introduced, although it is very small and not distinguishable in the measured
Monte Carlo error plots. Nevertheless, the long-term behavior in Figure 9 shows that these ever-
so-slight discrepancies lead to differences in the time trajectory of the system. At this point, it
is not obvious whether one of ψbo and ψfw should be preferred over the other for combination
technique simulations, but they both clearly outperform ψhat in terms of conservation of mass,
accuracy, and stability of the solution.

7 Benefits and potential of mass-conserving basis functions
for combination technique simulations

From our numerical experiments, it can be concluded that the newly introduced full weighting
basis and the biorthogonal basis positively influence the numerical properties of the combination
technique applied to high-dimensional advection problems compared to the state-of-the-art hat
functions.

It is worth noting that the kinetic simulations performed in Section 5 use relatively simple,
“standard” combination schemes. By employing dimensionally [11; 37] or spatially [30] adaptive
schemes, the accuracy could be improved further for the same number of degrees of freedom. This
applies to both selecting the initial set of component grid resolutions as well as automatically
updating the scheme during the course of a simulation, in analogy to the adaptivity in the hier-
archical bases as described in [16]. Furthermore, the benefit of mass conservation is not limited
to hyperrectangles. As long as the domain transform’s Jacobian can be formulated in terms of a
tensor product (such as for cylindrical coordinates), a straightforward transformation of the basis
functions is possible.

And even for lower-dimensional simulations, it can be sensible to employ the combination
technique with ψbo and ψfw: If the combination technique does not introduce any additional
numerical instabilities, as is possible with the basis functions introduced in this work, it can be a
viable option for finely resolved simulations on 2D or 3D structured grids.

The computational overhead introduced by the mass-conserving hierarchization and dehier-
archization operations affects the additional parallelism provided by the combination technique
only to a small extent [35]. This fact allows to revisit previous attempts at exa-scale combination
technique plasma scenarios [31; 19] with the newly introduced basis functions. Even though codes
such as GENE do not generally conserve mass, the increased accuracy and stability properties
should be beneficial for the simulation of experimental nuclear fusion devices. This includes re-
sults for algorithm-based fault tolerance in the presence of hard and soft faults [31] as well as the
distribution across compute systems [34].

Furthermore, the concept of biorthogonal basis functions shows a way of extending the con-
servation to higher-order moments of the combined function, such as velocity moments of the
Vlasov distribution function. To this end, it is necessary to use higher-order ansatz functions in
the simulations, such as a B-spline basis [40]. Then, longer filters h, h̃, g, g̃ can be applied to retain
more moments [6] of the combined function.

All of these properties—stability, conservation, adaptivity, fault tolerance, and parallelizability—
are highly desirable for predictive plasma turbulence simulations at scale. For grid-based solvers,
the combination technique offers a black-box approach to break the curse of dimensionality, with-
out the complexity of involved multiscale sparse grid solver schemes. In this way, the mass-
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conserving hierarchical basis functions will hopefully foster the usage of the combination technique
in plasma (and other) simulations.
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[19] Mario Heene and Dirk Pflüger. Efficient and scalable distributed-memory hierarchization
algorithms for the sparse grid combination technique. Parallel Computing: On the Road to
Exascale, pages 339–348, 2016. doi: 10.3233/978-1-61499-621-7-339. URL https://ebooks.

iospress.nl/doi/10.3233/978-1-61499-621-7-339. Publisher: IOS Press.

[20] Walter Huber. Turbulenzsimulation mit der Kombinationsmethode auf Workstation-Netzen
und Parallelrechnern. Herbert Utz Verlag, 1996. ISBN 978-3-89675-139-3. URL https:

//www5.in.tum.de/publikat/diss/huberw.ps.gz.

[21] Frank Jenko, Daniel Told, Tobias Görler, Jonathan Citrin, Alejandro Bañón Navarro,
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parallel fault tolerant sparse grid approach for high-dimensional turbulent plasma simulations.
In Software for Exascale Computing - SPPEXA 2016-2019, pages 301–329. Springer, 2020.
ISBN 978-3-030-47955-8. doi: 10.1007/978-3-030-47956-5 11.

[28] Boris Lastdrager, Barry Koren, and Jan Verwer. The sparse-grid combination technique
applied to time-dependent advection problems. Applied Numerical Mathematics, 38(4):377–
401, September 2001. ISSN 0168-9274. doi: 10.1016/s0168-9274(01)00030-7.

[29] Michael Obersteiner. A spatially adaptive and massively parallel implementation of the fault-
tolerant combination technique. Dissertation, Technische Universität München, 2021. URL
https://mediatum.ub.tum.de/doc/1613369/1613369.pdf.

[30] Michael Obersteiner and Hans-Joachim Bungartz. A generalized spatially adaptive sparse
grid combination technique with dimension-wise refinement. SIAM Journal on Scientific
Computing, 43(4):A2381–A2403, 2021. ISSN 1064-8275. doi: 10.1137/20M1325885. URL
https://epubs.siam.org/doi/abs/10.1137/20M1325885. Publisher: Society for Industrial
and Applied Mathematics.

[31] Michael Obersteiner, Alfredo Parra Hinojosa, Mario Heene, Hans-Joachim Bungartz, and
Dirk Pflüger. A highly scalable, algorithm-based fault-tolerant solver for gyrokinetic plasma
simulations. In Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, pages 1–8, 2017.
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