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Abstract

The Poisson-Voronoi tesselation is commonly used as an approximation to the microstructure of polycrys-
talline material. Although simple, this approximation fails to respect basic physical properties observed
empirically, including the generally lognormal distribution of grain sizes. Stochastic approximations
such as genetic algorithms can be used to adjust a Poisson-Voronoi tesselation to better reflect such a
distribution. We apply techniques from multilevel optimisation to give a new approach to the evolution-
ary generation of polycrystalline structures, in a way that allows approximation of a target lognormal
grain size distribution with unit mean and arbitrary variance. Results obtained through this method
indicate almost perfect distribution fitting, show up to two orders of magnitude improvement in the num-
ber of evolutionary steps required for an acceptable fit, and suggest a reduction of the overall problem
complexity from Θ(N3) to Θ(N2).

1. Introduction

1.1. Existing Approaches to Polycrystalline Structure Generation

Polycrystalline materials are, by definition, composed of many inhomogenous grains. The character-
istics of such materials are deeply related to the collective properties of these grains; their size, shape,
relative orientation, etc. It follows that the accuracy and validity of any numerical simulation of the
behaviour of a polycrystalline material is founded upon the grain properties entailed by its initial con-
ditions; the properties of the initial model of the structure should match, as closely as possible, those of
an empirical sample of the material.

Techniques for the characterisation of such samples have historically been laborious, particularly
those that consider all three dimensions [1, 2]. Although recent developments show promising reductions
in processing time and can deal with larger samples [3–5], physical analyses can still require several
days to complete. Therefore, it is desirable to have an efficient method for the numerical generation of
polycrystalline structures, in such a way that the produced microstructure displays statistical similarity
to a sample of the material in question.

A common first approximation to a natural grain structure is the Voronoi tesselation of a (periodic)

Bravais unit cell X ⊂ R3, for a finite, uniform-randomly chosen set of seed points x =
(
xi ∈ R3

)N
i=1

within that cell [6, 7]. This tesselation associates a subset Xi of the unit cell with each seed point xi;
these Voronoi cells have the defining property that Xi = {y ∈ X | d(xi,y) ≤ d(xj ,y) ∀ j 6= i}, where
d(·) is an appropriate metric on X. The metric chosen is usually standard Euclidean distance, calculated
to obey the minimum image convention. The Voronoi cells thus produced are convex polytopes, disjoint
everywhere except on their boundaries, and are treated as idealised grains for the purposes of simulation.

Although this method is straightforward to implement, the properties of the grain structures it
generates are not a good fit to those observed in nature. In particular, the grain sizes generated by a
set of uniformly-random seed points follow the Poisson-Voronoi distribution [8], while the grain sizes
of polycrystalline structures generally follow a lognormal distribution [9–12]. To address this problem,
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several stochastic techniques have been proposed to progressively optimise an initial guess at seed point
locations, until the grain size distribution of the derived grain structure matches one that would be
expected in reality to some “acceptable” degree, as measured by the minimisation of a suitable penalty
function.

By nature, grain structures modelled with the Voronoi tesselation cannot capture a number of prop-
erties that can be empirically observed in real polycrystalline structures [6]. For example, Voronoi
tesselations produce planar grain boundaries, and cannot represent oblique or non-convex grains [13]. A
number of approaches have been described that represent grain structures using alternative tesselations
[13–16], generally created by optimisation against more sophisticated statistical properties than the grain
size distribution. Although we restrict ourselves to a discussion of techniques using the standard Voronoi
tesselation and optimising against grain size distribution only, we note that many of these alternatives
are also reliant upon randomly-chosen parameters and could potentially replace the standard Voronoi
tesselation in the method we describe below.

Gross and Li apply an inverse Monte Carlo technique to approximate a target (lognormal) distri-
bution; they begin with a uniformly-random set of seed points, and iteratively adjust the location of
individual seeds by a small amount [10]. After each such adjustment, the quality of the set of seed
points is (re-)evaluated by a penalty function χ2 : R3N → R≥0, constructed such that χ2 (x′) < χ2 (x)
implies that the distribution of the grain sizes entailed by the set of seed points x′ is in some sense closer
to the target distribution than that of the seed points x. If an adjustment yields a sufficiently signifi-
cant improvement in the penalty function, or if it degrades the distribution fit by less than a random
amount chosen under a low, linearly-decreasing ceiling, then it is retained; otherwise, it is discarded.
(The allowance of degradation serves to enable the algorithm to escape local minima in the search space,
particularly during early phases of the run.) The process continues until the penalty function falls below
a preset threshold, at which point the target distribution is considered to be sufficiently approximated.
This technique is capable of generating a population of grains exhibiting a lognormal size distribution;
however, it is computationally expensive, in that a large number of individual adjustments are required,
each of which necessitates a costly recalculation of the Voronoi tesselation; it is also inherently sequential,
which limits its performance on modern-day parallel architectures.

Inspired by the approach of Gross and Li, Suzudo and Kaburaki apply a variant of the genetic
algorithm to the problem of grain-size distribution fitting [11, 17]. They begin with a population of
multiple sets of seed points, each distributed in a random fashion across a cubic lattice spanning the unit
cell, and progressively “evolve” the population over some number of generations. At each generation,
penalty function values are calculated for each member of the population; a fitness function is additionally
defined, as the inverse of the penalty function. A new population is then formed, by drawing elements
with replacement from the old population in proportion to their relative fitness values.

Some of the seed points in each element of the new population are subjected to mutation, with
mutation probability proportional to the size of the surrounding grain. Mutation of a seed point takes
one of two forms: either the seed point is relocated randomly to another lattice point within the unit
cell, or it is shifted to an adjoining location on the lattice. An elitism strategy is also applied: to ensure
that existing good solutions are not discarded, the best few elements of the old population are included
in the new population without mutation. The process of generating new populations continues until
an element of the new population has a penalty function lower than a preset threshold, in which case
convergence is deemed to have occurred, or until a large number of generations have elapsed without
convergence.

In this way, Suzudo and Kaburaki are able to generate a grain structure with approximately lognormally-
distributed sizes in a more efficient manner than Gross and Li. Their method is also trivially parallelisable
in the population size, as the calculation of the penalty function for each member of a population (which
requires the calculation of a Voronoi tesselation, the most computationally-intensive component of the
algorithm) is completely independent on that of the other members.

However, the basic genetic-algorithm approach still requires a sizeable number of generations to
converge, and does not work well on larger sets of seed points. Here, we propose an extension to the
approach of Suzudo and Kaburaki, that uses the multilevel transform described in Section 1.2 below to
rapidly accelerate the speed of convergence, and attempt to evaluate in a more rigorous way the quality
of the resulting grain structure.
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1.2. Multilevel Optimisation and the Multilevel Transform

In general, a global optimisation problem is characterised by a d-dimensional objective function
f : Xd → Y which takes a global minimum at some (not necessarily unique) point x∗ ∈ Xd. The goal
of such a problem is then to find the point x∗ that minimises the value of the objective function; or,
failing that, to find an approximate point x such that f(x) is as close to the global minimum as possible.
Clearly, the problem outlined in Section 1.1 above is one of global optimisation: we seek to find a set of
seed points that best approximates a global minimum of χ2.

Multilevel optimisation is a well-established approach to global optimisation. Consider the family of
smooth maps C∞

(
Xd → Xd

)
. For any initial guess x(0) ∈ Xd, there must be at least one such map

T ∗ that takes x(0) to x∗; that is, there exists some T ∗ such that f
(
T ∗
(
x(0)

))
= argminy∈X f(y).1 The

original optimisation problem is then equivalent to that of finding either an optimal map T ∗, or another
such smooth map T that offers a sufficiently good approximation to some T ∗.

In the context of the problem of grain-size distribution optimisation, we consider maps of the form
T ∈ C∞

(
T3N → T3N

)
, where T3 is the 3-torus formed from [0, 1)3. Any such map can be represented

as a collection of N functions
(
Tm : T3 → T3

)N
m=1

, which act elementwise on a collection of seed points

S =
(
sm ∈ T3

)N
m=1

, so that T (S) = (Tm(sm))
N
m=1. These seed points represent points in a Bravais unit

cell X ⊂ R3, specified in fractional coordinates with respect to some set of lattice parameters. We seek
to find or approximate an optimal map T ∗, which takes some initial set of seed points S(0) to an optimal
collection of seed points S∗, which is mapped to a set of points R3N that minimises χ2 : T3N → R≥0.

Because the order of seed points within the collection is arbitrary, we assume the penalty function
χ2 is invariant under permutation; that is, for any permutation P ∈ ΣN , we have χ2(S) = (χ2 ◦ P )(S).
We are interested only in maps that preserve this property, such that (χ2 ◦ P ◦ T )(S) = (χ2 ◦ T ◦ P )(S)
for all P . One way of ensuring this is to assume that Tm = Tn for any choice of m and n, so that the
same function is applied to each seed point, regardless of order; we denote this function t : T3 → T3,
and write t(s) = (t1(s), t2(s), t3(s)) where s ∈ T3 is any seed point and tj : T3 → T. Given an optimal

set of distinct seed points S∗, and an arbitrary initial guess S(0), at least one optimal T ∗ = (t∗)
N
m=1 is

guaranteed to exist.2

Under the further assumption that sj 6= 0, the functions

gj(s) =
tj(s)

sj
− 1 (1)

are well-defined on T3, and can be written as three-dimensional Fourier expansions

gj(s) =
∑
k∈Z3

ckje
2iπkTs, (2)

where each ck ∈ C3 is the vector of Fourier coefficients corresponding to the multi-dimensional index k.
Rewriting, we obtain

tj(s) = sj

(
1 +

∑
k∈Z3

ckje
2iπkTs

)
, (3)

or alternatively, using � to indicate component-wise multiplication,

t(s) = s + s�
∑
k∈Z3

cke
2iπkTs. (4)

Expressed this way, t has the desirable property of ensuring that a set of zero-valued Fourier coefficients
provides the identity transformation.3 The original optimisation problem is then equivalent to finding a
set of Fourier coefficients that minimises the difference between χ2 (T (S)) and χ2 (S∗).

1The constant map T ∗(x) = x∗ is a trivial example.
2 Fix j ∈ {1, 2, 3}. Let ϕj = {ϕmj : T3 → T | 1 ≤ m ≤ N} be a set of smooth bump functions chosen such that

ϕmj(s
(0)
m ) = s∗mj . Because the seed points are distinct, these functions can be chosen such that supp(ϕm) ∩ supp(ϕn) = ∅

for m 6= n. Now set tj(s) =
∑N

m=1 ϕmj (s). Because each ϕmj is smooth, so is tj , as is t(s) = (t1(s), t2(s), t3(s)). If

T = (t)Nm=1, then by construction, T (S(0)) = S∗, and T is optimal.
3This property is “desirable” in the context of several other related applications of multilevel optimisation; we apply

this representation here for consistency. There are, of course, many other choices for the representation of t.
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In order for the problem to be computationally tractable, we must consider truncated expansions of
the Fourier series in the functions tj ; that is, we restrict the indices k to an index set of level K,

IK =
{
k ∈ Z3 | ‖k‖∞ ≤ K

}
, (5)

and write
t(s) ≈ tK(s) = s + s�

∑
k∈IK

cke
2iπkTs. (6)

Results in sparse grid methods [18–21] have shown that rather than using the ‖·‖∞ norm in Equation (5),
acceptable accuracy can be obtained simply with the ‖ · ‖1 norm. Applying this refinement to the
construction of the index set IK allows non-trivial computational savings.

A large amount of computation can be further avoided by noting that because the codomain of t is
R3, it must be the case that ck = c−k; this allows us to write

tK (s) = s + s� c0 + s�
∑
k∈I′K

2cke
2iπkTs (7)

where I ′K =
{
k ∈ IK | − k <d k

}
, using <d to denote the standard lexicographic (total) ordering on Z3.

We refer to the map TK =
(
tK
)N
m=1

as the multilevel transform of order K.
Varying the order K of a multilevel transform enables different types of topological transformations

to be applied to the input set of seeds S. At order K = 0, the transform describes a linear scaling and
translation. As the order K increases, the transform acts more and more distinctly on each individual
point in the initial guess. As K approaches infinity, every point in the initial guess can be considered to
move (or not move) in space in a manner almost completely decoupled from the other points. Such a
transform is sufficient to capture the behaviour of an iteration of the genetic algorithm described above,
regardless of whether each seed point is moved slightly, randomised, or left static. Therefore, the set of
all possible multilevel transforms of any order (or equivalently, the set of all possible coefficient matrices
of any size) can be considered a superset of all possible outcomes of an iteration of the genetic algorithm.

Multilevel optimisation is often paired with other optimisation techniques, whereby the set of coeffi-
cients {ck} is optimised with respect to the output of the penalty function, as applied to the same original
input. In the context of genetic algorithms, we propose a different usage. At every generation, we allow
some or all of the members of the new population to undergo a multilevel transform of some order K, in-
stead of the standard mutation process of Suzudo and Kaburaki. This transform is described by a matrix
of randomly-chosen coefficients. The intention is to allow a wider range of exploration options over the
search space, and (particularly in the case of lower orders K) to take advantage of potentially-beneficial
topological changes which are vanishingly unlikely to occur through standard mutation.

2. Method

2.1. Basic Algorithm

We apply a modified variant of the standard genetic algorithm approach. A starting population is
created, consisting of some number of chromosomes. Each chromosome is simply a set of seed points S as
described in Section 1.2 above; initially, chromosomes are populated in a uniformly-random fashion from
the 3-torus. Under transformation by the coordinate matrix composed of lattice vectors describing a
Bravais unit cell X ⊂ R3, each chromosome maps to a set of N points x = (xi)

N
m=1 ∈ X. The suitability

of a chromosome can be evaluated according to a penalty function χ2 : T3N → R≥0; the precise choice
of the penalty function is discussed in Section 2.3 below.

After each iteration, all candidate chromosomes are ranked according to a fitness function, defined
as the inverse of the penalty function, 1/χ2 (x). A pre-determined number of the best-ranked of these
candidates are termed elite; these chromosomes are carried over into the new population unchanged.
The remaining chromosomes in the new population are then created as mutations of members of the old
population.4

4We concur with Suzudo and Kaburaki [11] that generating the new population through crossover provides no significant
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The process of creating a new mutant is as follows. A chromosome from the old population is selected
and replicated into the new population, with probability of selection proportional to its fitness function
value. The selected chromosome is then subjected to either standard or multilevel mutation, according
to a probability pml.

Under standard mutation, the individual seeds of each chromosome are either mutated or left un-
changed, according to a probability pmut, called the mutation rate. If mutated, they are either reset to a
uniformly random location within the simulation volume, or shifted slightly by the addition of a “jitter
vector” j ∈ R3, with ji ∼ N (0, σ2

jitter). The probabilities of each mutation type occurring are given by
pjitter and prandomise, with the obvious restriction that these two probabilities sum to unity.

Under multilevel mutation, the entire chromosome is mutated according to a randomised multilevel
transformation of some order K. An |I ′K + 1|× 3 matrix of complex Fourier coefficients C is formed; the
real and imaginary parts of these coefficients are uncorrelated, and are drawn separately from a normal

distribution N (0, σ2
coeff). The transformed chromosome S′ =

(
TK(sm)

)N
m=1

then becomes part of the
new population.

Once the new population has been completely generated, the penalty function for each new element is
evaluated. If the “best” (i.e. lowest) penalty function falls below some pre-set threshold χ2

conv, then the
algorithm is considered to have “converged”, and terminates, returning the corresponding chromosome
as the desired result; otherwise, a new population is created once more, and the process repeats.

2.2. Adaptive Mutation

There are several parameters in our mutation algorithm that can be tuned. They include:

1. pmut, the per-seed mutation rate for standard mutation.

2. pjitter and prandomise, the probabilities of the different types of standard mutation.

3. σjitter, the standard deviation of the normal distribution used to generate jitter vectors.

4. pml, the likelihood of a new population member undergoing multilevel mutation instead of standard
mutation.

5. K, the order of multilevel mutation.

6. σcoeff, the standard deviation of the normal distribution used to generate multilevel coefficients.

It is useful to vary some or all of these parameters over the course of an evolutionary run. In particular,
it is useful to apply larger, more aggressive mutations early in the run, to allow wider exploration of the
search space from the initial populations, and to then switch to finer-scale mutations as the population
elements approach good solutions.

In their test case, Suzudo and Kaburaki apply a change of (standard) mutation rate from pmut = 0.1
to pmut = 0.001 at the 500th generation; this rule was derived from repeated observation of the process
of their algorithm. In general, it would be better to have an automatic approach, in the hope of assuring
satisfactory performance without the need for repeated inspection of the behaviour of the algorithm on
a particular case. To this end, we apply a strategy of adaptive mutation.

Under adaptive mutation, a series of threshold events are scheduled before runtime. As mutation
proceeds, the algorithm maintains awareness of its past behaviour, particularly the previous best values
of the penalty function χ2. The presence of at least one elite in each new population guarantees that the
best value of χ2 decreases monotonically over time; however, it is possible (and common) that multiple
generations can pass before the best value of χ2 changes. This is referred to as a plateau, and for a given
set of parameters, becomes more likely over time. Once a plateau has continued for a preset number of
generations, the algorithm assumes that no further benefit will be obtained from the current settings;
the next threshold event is applied, adjusting one or more of the parameters above, usually towards a
finer mutation type.

benefit. We hypothesise that this is due to the nature of the chromosome, which encodes information only about the location
of seed points and not about their spatial interrelationships. As the size of the Voronoi cell surrounding each seed point
is determined entirely by the locations of some subset of the other seeds within the chromosome (i.e. those which share
a cell wall with the original seed), and no guarantees can be made about their position within the chromosome, any
kind of crossover results in unpredictable changes to potentially all the Voronoi cells in the parent individuals. From this
perspective, a crossover is simply another form of random mutation.
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2.3. Choice of Penalty Function

The choice of penalty function χ2 is critical to the behaviour of the algorithm. The original formu-
lation provided by Gross and Li [10] is

χ2 (S) =
1

N

N∑
m=1

[Pr(dm)− P (dm)]
2
, (8)

where N is the number of seed points in the chromosome S, dm is the size of the grain surrounding the
(transformed) seed point xm, Pr is the desired lognormal probability density function

Pr(x) =
1

xσ
√

2π
exp

[
− (ln (x)− µ)

2

2σ2

]
, (9)

with location and scale parameters µ, σ ∈ R, σ > 0, and P is a probability density function representing
the distribution of the grain sizes in the configuration. We generate tesselations using the Voro++ library
[22], and follow the example of Gross and Li and Suzudo and Kaburaki by normalising grain sizes such
that they have unit mean.

Both Gross and Li and Suzudu and Kaburaki appear to estimate P as a histogram of the obtained
grain sizes, with frequencies normalised such that the total area of the bins is unity. Although simple,
there are a number of issues with this approach, the most notable of which is the difficulty of choosing
an appropriate bin size. If too large or too small a bin size is chosen, then the underlying probability
distribution will be under- or oversampled respectively. In general, there is no single best choice of bin
size for a histogram representing an unknown distribution, although a number of heuristics exist. This
is also true under the assumption that the data approximate a lognormal distribution with unknown
parameters.

As an alternative, we use as Pr and P the cumulative distribution function (CDF) of the target
lognormal distribution and the empirical CDF (ECDF) of the obtained grain size distribution, given
respectively as

CDF (dm) =
1

2
+

1

2
erf

(
ln (dm)− µ√

2σ

)
, (10)

and

ECDF (dm) =
1

N

N∑
n=1

amn, (11)

where amn is unity if dn ≤ dm and zero otherwise. This approach has the advantage of not requiring any
a priori assumptions about optimal bin size, and is only marginally less efficient than the calculation of
a histogram; the calculation of the ECDF of the grain size values requires O (N log (N)) operations and
is still much cheaper than the evaluation of the Voronoi tesselations.

3. Results

3.1. Test Cases

We tested our algorithm over three test cases. The first was that used by Gross and Li and Suzudo and
Kaburaki: optimisation of the grain structure of a simple-cubic polycrystal, to fit a lognormal grain-size
distribution with parameters µ = 0 and σ = 0.35.

The second test case was a similar optimisation, but against a lognormal distribution with µ =
−0.06125 and σ = 0.35. The non-zero choice of µ sets the mean of the target lognormal distribution to

be precisely unity, rather than exp
[

0.352

2

]
≈ 1.063 as is the case with µ = 0 – the significance of this is

explained in Section 3.2 below.
The third test case was a triclinic polycrystal, with lattice parameters a = 7.48Å, b = 9.95Å, c =

7.68Å, α = 111.65◦, β = 115.383◦, γ = 69.433◦. These parameters match one informal presentation of
the crystalline structure of turquoise[23] – the precise choice of parameters is unimportant, as the goal
of the test case is only to examine the behaviour in a sample triclinic structure. The grain structure of
this cell was fitted against a target lognormal distribution with σ = 0.4 and µ = −0.08, again with µ
chosen to ensure unit mean.
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N. Seeds 500 1000 1500 2000 2500 3000

Crit. Value 0.087183 0.061648 0.050335 0.043592 0.038989 0.035592

Table 1: Critical values for Kolmogorov-Smirnov goodness-of-fit test, α = 0.001, by number of seeds.

Test cases were fitted for numbers of seeds N between 500 and 3000, increasing in increments of 500.
Power-of-two population sizes were tested, from 8 up to 128. In every case, the number of elites was set
at one-eighth of the population size.

Four mutation strategies were tested. The first strategy was that given by Suzudo and Kaburaki, i.e.
no multilevel mutation, equal likelihood of jitter and randomisation, and mutation rate set at 0.1 for the
first 500 generations and 0.001 thereafter.

The second strategy was adaptive, with a plateau length of 10 generations, using only standard
mutation (so pml = 0). Mutations are performed with pjitter = 0.8, and prandomise = 0.2; both pmut and
σjitter are varied over the range 0.1 to 0.001, decreasing by an order of magnitude after each plateau with
σjitter varying more frequently (that is, pmut = 0.1 while σjitter varies from 0.1 down to 0.001, then again
with pmut = 0.01, and so on).

The third strategy was also adaptive, with an identical plateau length. Both multilevel and standard
mutations were performed, with the probability of multilevel mutation set at pml = 0.25. Multilevel
mutations are performed from order 1 up to order 5, with σcoeff for each varying over the range 0.01 to
0.0001, decreasing by an order of magnitude after each plateau. Beyond order 5, the size of the index set
I ′K increases dramatically and multilevel mutations become prohibitively expensive in both computation
and memory. Standard mutations are performed as in the strategy above.

The fourth strategy was similar to the third, but with only multilevel mutation allowed to take place
(so pml = 1).

All test cases were allowed to run for 104 generations, with no prior convergence threshold set (i.e.
χ2

conv = 0). At every generation, the normalised grain sizes of the population member with the lowest
penalty functions were tested for goodness-of-fit against the target distribution using the one-sample
Kolmogorov-Smirnov test (as implemented in the SciPy package for scientific computing [24]), generating
two-sided p-values against the null hypothesis that the obtained grain sizes follow the target distribution.
Significance was set at α = 0.001, leading to critical values for the various numbers of seeds tested as
given in Table 1.

Each test case was repeated over an ensemble of 32 individually-seeded populations; all results (best
penalty functions, etc.) are given as mean values over the elements of the ensemble unless otherwise
specified.

3.2. Discussion

We begin by investigating the behaviour observed for the Gross-Li/Suzudo-Kaburaki parameter set
(σ = 0.35, µ = 0). Graphs displaying the ensemble-averaged best penalty function for N = 2000 can
be seen in Figure 1. In all cases and for all values of N , the best penalty function decreased from a
starting value slightly above 10−2 to a final value between 10−3 and 10−4 after 104 generations. The
two mutation strategies involving multilevel mutation (cf. the lower two of the four graphs) show rapid
decrease up to 102 generations or slightly less, and only gradual decrease thereafter; by contrast, the
non-multilevel mutation strategies show more consistent rates of decrease throughout the generations.
The size of the population appears not to have a significant impact on either the best penalty function
value or the rate of decrease.

The Kolmogorov-Smirnov (KS) test results for this case do not indicate good behaviour in terms of
distribution fitting. (For ensemble-averaged KS test values for N = 2000, cf. Figure 2.) For the standard-
only mutation strategies, the average p-values obtained increase slowly and roughly linearly from zero
to between 10−2 (for 500 seeds) and 10−6 (for 3000 seeds) from the thousandth generation onwards; by
comparison, the average p-values for the multilevel strategies show similar increase between 101 and 102

generations, remain roughly static until 103 generations, and generally begin to slowly decrease again.
Cases for higher numbers of seeds increase more slowly; for example, for N = 3000, KS test values are
still increasing at the 104th generation. There are very few places in the evolutionary process where
these values exceed the critical values in Table 1, and even then only for the case of 500 seeds; therefore,
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Figure 1: Progression of ensemble-averaged best χ2

penalty function value over time, fitting 2000 seeds in
a unit cell to a target grain-size lognormal distribution
with σ = 0.35, µ = 0, using different mutation strategies.
Note that the results for different population strategies
are almost indistinguishable to the naked eye.
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Figure 2: Progression of ensemble-averaged Kolmogorov-
Smirnov p-values over time, corresponding to the pop-
ulation elements with best χ2 values in Figure 1. Note
that the lower vertical range of the graph is set at 10−16,
roughly machine-precision.

the hypothesis that the obtained grain-size distributions follow the target distribution can almost always
be rejected outright.

This behaviour is unsurprising. By construction, observed grain-size distributions are normalised
to have unit mean; however, the target lognormal distribution possesses a slightly non-unit mean, as
outlined above. It is therefore unreasonable to expect good convergence of the latter distribution with
any example of the former, regardless of the optimisation technique used. Given this, we are unable to
account for the results reported by Gross and Li and Suzudo and Kaburaki, as both also normalise grain
sizes to unit mean.

The behaviour of both the penalty function and the KS test changes when the second set of test
cases is considered, i.e. seeds in a unit box fitted against lognormal distributions with σ = 0.35 and
µ = −0.06125. Similar graphs to those given for the first test case can be found in Figures 3 and 4.
Over the course of 105 generations, the best penalty function values decrease to between 10−5 and 10−7.
The standard-only mutation strategies appear steady until well past 103 generations, particularly in the
cases with larger numbers of seeds; by contrast, the strategies that make use of multilevel mutation
show their most rapid rates of decrease between 10 and 100 generations, are less marked thereafter,
and generally show less difference as the number of seeds is varied. The impact of different choices for
population size is noticeable, with larger populations showing slightly quicker rates of decrease in the
penalty function; however, the difference is never large enough to justify the added computational expense
of population sizes larger than 32, and in some cases 16. (Although we did not perform exhaustive timing
tests due to limits on computational resources, we note anecdotally that doubling the population size
had a roughly equivalent effect on the computation time per generation; as calculation is dominated
by Voronoi tesselation, which is independent for each population member, this is not surprising.) A
sample visualisation displaying slices taken from both an initial (Voronoi-Poisson) tesselation and a
fitted tesselation can be seen in Figure 5.

The p-values obtained through KS tests for the second set of test cases also show a marked change.
Both of the standard-only mutation strategies display eventual progression towards unity in a more-or-less
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Figure 3: Progression of ensemble-averaged best χ2

penalty function value over time, fitting 2000 seeds in
a unit cell to a target grain-size lognormal distribution
with σ = 0.35, µ = −0.06125, using different mutation
strategies.
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Figure 4: Progression of ensemble-averaged Kolmogorov-
Smirnov p-values over time, corresponding to the popu-
lation elements with best χ2 values in Figure 3. Again,
the lower vertical range of the graph is set at roughly
machine-precision.

monotonic fashion, and eventually pass the criticality thresholds given in Table 1. The p-values of both
the mutation strategies involving multilevel mutation also progress towards unity and pass criticality;
however, they do so much more rapidly than the standard-only strategies, in all cases passing into the
range [10−1, 1] between 10 and 100 generations, as opposed to between 1000 and 10,000 generations.
For standard-only mutation types, the KS test values for larger numbers of seeds remain below machine
precision much longer than those for smaller numbers of seeds (for 500 seeds, machine precision is passed
between 10 and 100 generations, while for 3000 seeds, around 2000 generations are required); however,
for multilevel mutation strategies, machine precision is passed in all cases by the 100th generation.

The results for the third set of test cases, i.e. those in the triclinic system, display similar behaviour
as those in the second (cf. Figure 6 and Figure 7 for results with N = 2000). Best penalty function values
for standard-only strategies stay relatively stable at first, before decreasing rapidly in later generations,
with larger numbers of seeds showing delay before reduction. Interestingly, the best penalty functions
obtained for standard-only mutation strategies display more consistent decay across runtime; however,
the final penalty function values stabilise between 10−5 and 10−7, as for the previous case. KS test
behaviour is also similar, although standard-only strategies do begin to increase above machine precision
earlier than for the unit-cell case, corresponding to the earlier point of penalty function decrease. Again,
larger population sizes do result in slightly more rapid decrease in penalty function and increase in KS
test value, although again, the difference is not marked enough to recommend the consistent use of larger
population sizes.

We note that Kolmogorov-Smirnov test values past criticality do not, strictly speaking, provide
affirmative evidence that the obtained grain-size distributions follow the target distributions; rather,
they only serve to disallow the rejection of that hypothesis under the test conditions. Nevertheless, these
p-values allow us to make an informed definition about a sensible choice of the convergence threshold in
the general case. In all our measurements, obtained penalty function values below 10−5 correspond to
p-values greater than or equal to 0.95, well above criticality for any reasonable choice of α or number of
seeds and corresponding to very tight agreement between the target and observed CDFs.
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(a) (b)

Figure 5: Comparison of slices from polycrystalline structures with 2500 grains each; (a) an initial (Voronoi Poisson)
distribution of grain sizes, and (b) lognormal distribution (σ = 0.35, µ = −0.06125), obtained only through the use of
adaptive multilevel mutation.

By setting χ2
conv = 10−5 and replaying the tests, we can evaluate the speed of convergence of the

various mutation strategies. Box-whisker plots displaying the range across the ensemble of generations
required to attain convergence for the second and third test cases are given in Figures 8 and 9 respectively.
For the second test case, we see that the standard-only mutation strategies behave similarly as the
number of seeds increases, following a roughly linear progression. The spread of generations required is
consistently between one and two thousand, although slightly higher for lower numbers of seeds; as the
calculation of the Voronoi tesselation for each of the N chromosomes is at worse Θ(N2) [25], this implies
that the cost of fitting a lognormal grain-size distribution with a standard-only mutation strategy is at
worst case roughly Θ(N3) in the number of seeds, at least for the sizes we have examined here.

(Behaviour for standard-only strategies in the third test case is similar, although the slope of the
linear increase is lower than that for the second case. We hypothesise that this is due to the change in
the σ parameter, rather than that of the geometry of the unit cell, presumably giving a target distribution
that is in some way “easier to reach” from the Poisson-Voronoi starting point; as Voronoi tesselation
is being performed according to the minimum image convention, the geometry of the Bravais unit cell
should be relatively unimportant to scaling.)

By contrast, the generations required for convergence in the multilevel strategies are significantly
lower than those for the standard-only strategies, both for the second and third test cases. Full tables of
results for the second and third test cases can be found in Table 2 and Table 3 respectively. The speedup
in generations-until-convergence over standard-only strategies is of two orders of magnitude for most
of our test cases (i.e. 1000 seeds and higher). However, it is more interesting to consider the scaling.
Although extremely wide for 500 seeds, the range of generations requires tightens markedly for larger
numbers of seeds, with the spread for 3000 seeds around a fifth of that for 500 seeds. The median and
minimum generations required stays quite static for 1000 seeds and greater. These results suggest that
the number of generations required to fit a target grain-size distribution with a multilevel strategy is
approximately constant, and that the cost in the worst case is therefore roughly Θ(N2) in the number
of seeds. Although current applications of polycrystal generation do not require more seeds than tested,
it is not unreasonable to expect this to change in the future; as such, the reduction in order represents
a significant improvement.
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Figure 6: Progression of ensemble-averaged best χ2

penalty function value over time, fitting 2000 seeds in a
triclinic unit cell to a target grain-size lognormal distri-
bution with σ = 0.4, µ = −0.08, using different mutation
strategies.
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Figure 7: Progression of ensemble-averaged Kolmogorov-
Smirnov p-values over time, corresponding to the popu-
lation elements with best χ2 values in Figure 6..

4. Conclusions and Future Work

We have presented an alternative and improved approach to the evolutional generation of initial
polycrystalline structures for use in numerical simulation.5 Through the application of the multilevel
transform described in Section 1.2 as a mutation type, we observe a significant change in the rate
with which the penalty function decreases, and correspondingly in the rate at which a target lognormal
grain-size distribution can be approximated. This change is around two orders of magnitude in terms
of generations required for convergence below a sensibly-chosen penalty-function threshold; the extra
computational effort of the multilevel transform is not great, and does not account for a significant
increase in per-generation raw computation time. Notably, use of the multilevel transform appears to
change the scaling of the algorithm as larger numbers of grains are modelled; rather than increasing
linearly, the number of generations required for convergence stays relatively constant. This implies
that polycrystalline structures containing potentially indefinitely many grains can be modelled with the
only change in computation cost coming from the Voronoi tesselation required to calculate their sizes;
approaches without multilevel mutation also incurred a linearly-increasing cost in the number of grains.
The overall effect is a reduction of the worst-case fitting time to a quadratic function of the number of
seeds.

As noted in Section 1.1, the use of grain-size distribution alone is not sufficient to produce realistic
models, nor is the standard Voronoi tesselation capable of the representation of arbitrary grain structures.
However, the multilevel approach is agnostic with respect to the penalty function being optimised over,
as well as the precise choice of tesselation. Therefore, we see no reason why it could not be applied to
more complicated penalty functions that measure alternative characteristics of polycrystalline structures,
represented in turn by more sophisticated tesselations. We suspect that the computational benefits in
these cases may be be similar or greater.

5An implementation of our approach is included in the SCAITools addon of the software package Virtual NanoLab [26].
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Figure 8: Generations until “convergence” below χ2 =
10−5 is achieved in the second test case, fitting varying
numbers of seeds within a unit cell to a target grain-size
lognormal distribution with σ = 0.35, µ = −0.06125, and
using different mutation strategies (all with population
size of 32).
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Figure 9: Generations until “convergence” below χ2 =
10−5 is achieved in the third test case, fitting varying
numbers of seeds within a unit cell to a target grain-size
lognormal distribution with σ = 0.4, µ = −0.08, and
using different mutation strategies (all with population
size of 32).
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