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Abstract While sparse grid least squares regression algorithms have been frequently
used to tackle Big Data problems with a huge number of input data in the last 15
years, a thorough theoretical analysis of stability properties, error decay behavior
and appropriate couplings between the dataset size and the grid size has not been
provided yet.

In this paper, we will present a framework which will allow us to close this gap
and rigorously derive upper bounds on the expected error for sparse grid least squares
regression. Furthermore, we will verify that our theoretical convergence results also
match the observed rates in numerical experiments.
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1 Introduction

One of the most common tasks in Big Data applications is function regression. Here,
we aim to approximate a function g : Ω → R defined on an open domain Ω ⊂ Rm.
However, we only have access to n (possibly noisy) evaluations (ti,g(ti)+ εi) ∈
Ω ×R, i = 1, . . . ,n of g. Note that this is a special instance of a much more general
regression or even density estimation problem, see e.g. [15].

Although many successful regression algorithms such as generalized clustering
methods, radial basis function neural networks or support vector machines have been
proposed over the last decades, see e.g. [1, 14, 20], one of the main problems in Big
Data applications, namely the vast number n of data points, still presents a severe
limitation to these so-called data-centered algorithms. This phenomenon usually
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prevents the user from applying the above mentioned methods straightforwardly
because of their superlinear runtime dependence on n, i.e. the number of compu-
tational steps grows much faster than n, e.g. O(n3) for applying direct solvers to
the regression problem. In order to cope with this problem, several enhancements
to these algorithms, such as chunking or sparse greedy matrix approximation, have
been introduced, see [20]. Furthermore, since many data-centered methods are based
on kernel representations, we need to have access to a closed form of an appropriate
kernel function. However, in many cases only infinite series expansion kernels are
provided and an evaluation is not straightforward, see [12, 13].

To circumvent these issues and obtain an algorithm which naturally employs linear
runtime complexity with respect to n, grid based discretizations have been proposed.
Here, sparse grids are particularly well-suited since they allow to efficiently treat
also higher-dimensional domains, i.e. m > 3, which is not possible with full tensor-
product grids due to the curse of dimensionality. This means that - for a full grid
space - the number of grid points Nk scales like O

(
2km
)
, where k denotes the grid

level. In the sparse grid case, however, the scaling of Nk is only O
(
2kkm−1

)
. Many

variants of sparse grid regression algorithms can be found in e.g. [3, 5, 9, 10, 19].
Even though sparse grid regression algorithms have proven to be a good choice

for many practical Big Data problems, there has not yet been a thorough theoretical
justification for their good performance, i.e. the overall error convergence behavior
and suitable couplings between Nk and n have yet to be determined. In this paper, we
aim to close this gap for the case of (unregularized) least-squares function regression.
Here, the corresponding problem is to determine

argmin
h∈Vk

1
n

n

∑
i=1

(h(ti)−g(ti)− εi)
2,

where Vk is the sparse grid space of level k, i.e. we search for the function h ∈ Vk
which minimizes the average squared distance between point evaluations of h and
the unknown function g in the input data points ti, i = 1, . . . ,n. The evaluation in
ti is perturbed by some additive noise term εi. For this setting, we will derive the
optimal coupling between Nk and n and present the corresponding error convergence
rate. As we will see, the rate is governed mainly by the best approximation error in
the sparse grid space and a sample-dependent term in which the noise variance σ

will play an important role. To obtain our results, we will enhance the analysis of
[7] on least-squares regression with orthonormal basis sets, which has been applied
to derive convergence properties for global polynomial spaces in [6, 17, 18], to
arbitrary basis sets and apply it to our sparse grid basis functions. While the choice
of the particular basis is arbitrary in the orthonormal case, the quotient of the frame
constants enters our estimates for non-orthonormal bases. Therefore, we use the
sparse grid prewavelets since they form an L2 Riesz frame and reveal essentially the
same properties in our estimates as an orthonormal basis does in [7]. Furthermore, the
prewavelets lead to sparsely populated system matrices for least-squares regression
because of their compact support. Thus, our basis choice leads to a fast least-squares
algorithm with quasi-optimal convergence rate in the piecewise linear case.
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The remainder of this paper is structured as follows: In section 2 we recapitulate
the least squares regression problem and introduce the necessary notation. Then, we
briefly present our sparse grid spaces and the according basis functions in section 3.
Our main results on the coupling and the convergence rate can be found in section
4. Subsequently, we provide numerical experiments to underscore our theoretical
results in section 5. Finally, we conclude in section 6 with a short summary and an
outlook on possible future research directions.

2 Least-squares regression

We now define the necessary ingredients to state and analyze the least squares
function regression problem. To this end, let ρ be a probability measure on the
Lebesgue σ -algebra of Ω ⊂ Rm and let g : Ω → R be a point-evaluable, bounded
function, i.e. there exists an r > 0 such that ‖g‖L∞,ρ (Ω) ≤ r. We define a real-valued
random variable ε = ε(t), which models the noise and fulfills

E [ε | t] = 0 for all t ∈Ω and σ
2 := sup

t∈Ω

E
[
ε

2 | t
]
< ∞. (1)

Our n input data points for the least-squares regression are then given by

Zn := (ti,g(ti)+ εi)
n
i=1 ⊂Ω ×R,

where the ti are drawn i.i.d. according to ρ and the εi = ε(ti) are instances of
the random variable ε . Finally, we denote our scale of finite-dimensional search
spaces, i.e. the spaces in which the solution to the regression problem will lie, by
Vk ⊂ L2,ρ(Ω) for a scale parameter k ∈ N, which will be the level of our grid spaces
later on. In the following we will write Nk := dim(Vk) to denote the dimension of the
search space of level k. Then, as already mentioned in the introduction, we can write
the least-squares regression problem as

Determine fZn,Vk := argmin
h∈Vk

1
n

n

∑
i=1

(h(ti)−g(ti)− εi)
2 . (2)

Note that a regularized version of this problem, where a penalty term is added to the
above formulation, is also often considered. However, in this paper we solely focus
on the unregularized case (2) and give sufficient conditions such that this problem is
stably solvable also without a penalty term.

To solve (2), let ν1, . . . ,νNk be an arbitrary basis of Vk. Then it is straightforward to
show that the coefficients α :=

(
α1, . . . ,αNk

)T of fZn,Vk =∑
Nk
i=1 αiνi can be computed

by solving the linear system
nBBT

α = Bx, (3)

where B ∈ RNk×n is given by Bi j := 1
n νi(t j) and x := (g(t1)+ ε1, . . . ,g(tn)+ εn)

T .
For a more detailed discussion on this system, we refer to [2, 9].
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3 Full grids and sparse grids

In order to solve (3) on a full grid space, i.e. Vk = V full
k of level k, or a sparse grid

space, i.e. Vk = V sparse
k of level k, we have to define appropriate basis functions

ν1, . . . ,νNk . To this end, we consider the so-called piecewise linear prewavelet basis,
see also [11], since it forms a Riesz frame, which will be of major importance for the
analysis in the subsequent section. The prewavelets are based on linear combinations
of the hat functions

φl,i(t) := φ(2l · t− i)|[0,1] with φ(t) :=
{

1−|t| if t ∈ [−1,1],
0 else. (4)

The univariate prewavelet basis functions γl,i : [0,1]→ R are then defined by

γ0,0 := 1, γ0,1 := φ0,1, γ1,1 := 2 ·φ1,1−1.

for l ≤ 1 and by

γl,i := 2
l
2 ·
(

1
10

φl,i−2−
6

10
φl,i−1 +φl,i−

6
10

φl,i+1 +
1

10
φl,i+2

)
for l ≥ 2 and i ∈ Il \ {1,2l − 1} with Il :=

{
i ∈ N | 1≤ i≤ 2l−1, i odd

}
. For the

boundary cases i ∈ {1,2l−1}, we have

γl,1 := 2
l
2 ·
(
−6

5
φl,0 +

11
10

φl,1−
3
5

φl,2 +
1

10
φl,3

)
, γl,2l−1(t) := γl,1(1− t).

The m-variate prewavelet functions are defined by a simple product approach

γl,i(t) :=
m

∏
j=1

γl j ,i j(t j), (5)

where l = (l1, . . . , lm) denotes the multivariate level index and i = (i1, . . . , im) denotes
the multivariate position index. The graph of two exemplary univariate and two
exemplary bivariate prewavelet basis functions can be found in figure 1. In the
multivariate case, the appropriate index sets are given by

Il :=
{

i ∈ Nm
∣∣∣∣0≤ i j ≤ 1, if l j = 0,
1≤ i j ≤ 2l j −1, i j odd if l j > 0

for all 1≤ j ≤ m
}
,

which lead to the hierarchical increment spaces

Wl := span
{

γl,i | i ∈ Il
}
.

Now, the full grid space of level k > 0 is defined by
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Fig. 1: Piecewise linear prewavelet examples.
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(c) γ(3,4),(1,7) (d) γ(3,4),(3,7)

V full
k :=

⊕
l∈Nm

|l|`∞≤k

Wl,

whereas the sparse grid space of level k > 0 is given by

V sparse
k :=

⊕
l∈Nm

ζm(l)≤k

Wl

with ζm(0) := 0 and

ζm(l) := |l|`1 −m+
∣∣{ j | l j = 0}

∣∣+1

for a non-zero l∈Nm. The specific choice of ζm guarantees that the highest resolution
of a subgrid on the boundary is the same as the highest resolution of a subgrid in the
interior of [0,1]m. The corresponding grids Gfull

k and Gsparse
k , i.e. the centers of the

support of the involved prewavelet basis functions, can be found in figure 2.
As we mentioned above, full grids suffer from the curse of dimensionality, i.e. the

degrees of freedom grow like



6 Bastian Bohn

Fig. 2: Two-dimensional full grid and sparse grid and their corresponding index sets.

(a) Full grid Gfull
4 (b) Sparse grid Gsparse

4 (c) {l ∈ N2 | |l|`∞
≤ 4} (d) {l ∈ N2 | |ζ2(l)≤ 4}

dim
(
V full

k

)
= (2k +1)m = O

(
2km
)
,

which depends exponentially on the dimension m of the domain. For sparse grids, it
can easily be obtained that

dim
(
V sparse

k

)
= O

(
2kkm−1

)
see e.g. [4] for grids in the interior of the domain and [8] for grids which are also
allowed to live on the boundary. As we see, the curse of dimensionality only appears
with respect to the level k instead of 2k. Therefore, sparse grids can be used also for
m > 3.

4 Error analysis

After introducing the least-squares problem and our grid discretization in the previous
sections, we can now present our main theorems on the stability and the error decay
of a sparse grid regression algorithm. Our results are built on theorems 1 and 3 of
[7] and can be seen as an extension thereof since only orthonormal bases are treated
there, whereas our result also holds for arbitrary non-orthonormal bases.

4.1 Well-posedness and error decay

In the following, we denote the maximum and minimum eigenvalues of a symmetric
matrix X by λmax(X) and λmin(X). We start with a Matrix Chernoff bound, which is
proven in section 5 of [21].

Theorem 1 (Chernoff inequality for random matrices). Let D ∈ N and δ ∈ [0,1)
be arbitrary and let X1, . . . ,Xn ∈ RD×D be independent, symmetric and positive
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semidefinite matrices with random entries. Let R > 0 be such that λmax(Xi)≤ R holds
for all i = 1, . . . ,n. Then, it holds

P

[
λmin

(
n

∑
i=1

Xi

)
≤ (1−δ )cmin

]
≤ D

(
e−δ

(1−δ )1−δ

) cmin
R

and

P

[
λmax

(
n

∑
i=1

Xi

)
≥ (1+δ )cmax

]
≤ D

(
eδ

(1+δ )1+δ

) cmax
R

with cmin := λmin (E [∑n
i=1 Xi]) and cmax := λmax (E [∑n

i=1 Xi]).

For a basis ν1, . . . ,νNk of Vk, we introduce the quantity

S(ν1, . . . ,νNk) := sup
t∈Ω

Nk

∑
i=1
|νi(t)|2, (6)

which will play a pivotal role throughout the rest of this paper. Note that this quantity
is named K(Nk) in [7] since it is independent of the basis choice there as the authors
only deal with orthonormal bases. However, in our more general case, the quantity
S(ν1, . . . ,νNk) is highly dependent on the concrete choice of the basis of Vk.

In the following, we denote the mass matrix on level k by M = M(ν1, . . . ,νNk) ∈
RNk×Nk , i.e. Mi j = 〈νi,ν j〉L2,ρ (Ω). With the help of theorem 1, we are able to prove
the following stability result, which is an extension of theorem 1 of [7].

Theorem 2 (Well-posedness). Let n≥ Nk, c =
∣∣∣log

(
e0.5

(1.5)1.5

)∣∣∣≈ 0.1082 and let

S(ν1, . . . ,νNk)≤ c · λmin(M)

1+θ
· n

log(n)
(7)

for a θ > 0. Then, the solution fZn,Vk = ∑
Nk
j=1 α jν j of (3) exists, is unique and fulfills

‖ fZn,Vk‖L2,ρ (Ω) ≤
√

6 · λmax(M)

λmin(M)
· 1√

n
‖x‖`2

with probability at least 1−2n−θ , where x := (g(t1)+ ε1, . . . ,g(tn)+ εn)
T .

Proof. The proof follows the lines of [7] with the necessary generalizations for
arbitrary basis functions. Let X ∈ RNk×Nk be the random, positive semi-definite
matrix with entries Xi j := 1

n νi(t) · ν j(t), where t is drawn according to ρ and let
X1, . . . ,Xn be n realizations of X with t = t1, . . . , tn from the samples Zn. Then,
nBBT = ∑

n
i=1 Xi and M = E [∑n

i=1 Xi].
Note that λmax(X) ≤ 1

n S(ν1, . . . ,νNk) almost surely since X = nAAT with A =
1
n

(
ν1(t), . . . ,νNk(t)

)T and we have
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λmax(X) = nλmax(AAT ) = n ·max
|y|=1
‖Ay‖2

`2
= n ·

(
1
n2

Nk

∑
i=1
|νi(t) ·1|2

)

≤ 1
n

S(ν1, . . . ,νNk).

Therefore, we can apply theorem 1 with D = Nk, R = 1
n S(ν1, . . . ,νNk) and δ = 1

2 to
obtain

P := P
[

λmin(nBBT )≤ λmin(M)

2
or λmax(nBBT )≥ 3λmax(M)

2

]

≤ Nk

(
e−0.5

0.50.5

) nλmin(M)
S(ν1 ,...,νNk

)

+Nk

(
e0.5

1.51.5

) nλmax(M)
S(ν1 ,...,νNk

)

≤ 2Nk

(
e0.5

1.51.5

) nλmin(M)
S(ν1 ,...,νNk

)

,

where the last inequality follows from λmin(M)≤ λmax(M) and 0< e−0.5

0.50.5 <
e0.5

1.51.5 < 1.
Using (7) and the definition of c, we obtain

P≤ 2Nke
− cnλmin(M)

S(ν1 ,...,νNk
) ≤ 2Nk ·n−(1+θ) ≤ 2n−θ

since we assumed Nk ≤ n. Therefore, (3) is uniquely solvable with probability at
least 1− 2n−θ . Noting that ‖B‖2

Lin(Rn,RNk )
= 1

n‖nBBT‖Lin(RNk ,RNk ) =
1
n λmax(nBBT )

holds for the operator norm of the linear operator B and writing the L2 norm with the
help of the mass matrix, we finally get

‖ fZn,Vk‖2
L2,ρ (Ω) = α

T Mα
(3)
= xT BT (nBBT )−1M(nBBT )−1Bx

≤ ‖x‖2
`2
‖B‖2

Lin(Rn,RNk )
λmax((nBBT )−1)2

λmax(M)

=
1
n
‖x‖2

`2
λmax(nBBT )

1
λmin(nBBT )2 λmax(M)

≤ 1
n
‖x‖2

`2

3λmax(M)

2
4

λmin(M)2 λmax(M) = 6
λmax(M)2

λmin(M)2 ·
1
n
‖x‖2

`2

with probability at least 1−2n−θ , which proves our assertion. ut

Theorem 2 tells us that the regression problem with basis ν1, . . . ,νNk is stably solvable
for all k ∈ N with high probability if the number of samples n is large enough such
that n≥ Nk and (7) are fulfilled and if the fraction λmax(M)

λmin(M) , i.e. the condition number
of the mass matrix, does not grow too fast with k→ ∞. Note that it is also possible to
prove a more general version of this theorem if a (Tikhonov) regularization term is
added, see [2].

Recall the L∞ bound r on the function g from which the data Zn is sampled. For
our error bound, we need to define the truncation operator τr : L∞,ρ(Ω)→ L∞,ρ(Ω)
by τr( f )(·) := Pr( f (·)), where the convex projection Pr : R→ R is defined by
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Pr(x) =
{

x if |x| ≤ r,
x
|x| · r else.

Note that τr is a non-expansive operator with respect to the L2,ρ(Ω) norm, i.e. ‖τr( f1)−
τr( f2)‖L2,ρ (Ω) ≤ ‖ f1− f2‖L2,ρ (Ω) for all f1, f2 ∈ L∞,ρ(Ω). Now, we can provide a
theorem on the expected error behavior.

Theorem 3 (Expected regression error). Let n≥Nk and let fZn,Vk be the solution to
(3) - or fZn,Vk = 0 if no unique solution to (3) exists. Let, furthermore, S(ν1, . . . ,νNk)
and n fulfill (7) for a fixed θ > 0 and for all k ∈ N. Then,

E
[
‖τr
(

fZn,Vk

)
−g‖2

L2,ρ (Ω)

]
≤
(

1+
8cλmax(M)

(1+θ)λmin(M) log(n)

)
inf
f∈Vk
‖ f −g‖2

L2,ρ (Ω)

+ 8r2n−θ +8σ
2
(

λmax(M)

λmin(M)

)2

· Nk

n
(8)

with c from (7). Here, the expectation is taken with respect to the product measure
ρn := ρ× . . .×ρ .

Proof. Again, the proof generalizes the one in [7], where only orthonormal bases are
considered. In the following we will just write Lp for Lp,ρ(Ω) with p ∈ [1,∞]. Let
Ω n = Ω × . . .×Ω and let

Ω
n
+ :=

{
(t1, . . . , tn) ∈Ω

n | λmax(nBBT )≤ 3λmax(M)

2
and λmin(nBBT )≥ λmin(M)

2

}
and let Ω n

− := Ω n \Ω n
+. We have already shown in the proof of theorem 2 that

P(Ω n
−) ≤ 2n−θ since (7) holds. Let us denote E := E

[
‖τr
(

fZn,Vk

)
−g‖2

L2

]
. Since

|τr( f )(t)− g(t)| ≤ |τr( f )(t)|+ |g(t)| ≤ 2r holds for all f ∈ L∞ and almost every
t ∈Ω , we obtain

E =
∫

Ω n
+

‖τr
(

fZn,Vk

)
−g‖2

L2
dρ

n +
∫

Ω n
−
‖τr
(

fZn,Vk

)
−g‖2

L2
dρ

n

≤
∫

Ω n
+

‖τr
(

fZn,Vk

)
−g‖2

L2
dρ

n +
∫

Ω n
−

4r2 dρ
n

≤
∫

Ω n
+

‖τr
(

fZn,Vk

)
−g‖2

L2
dρ

n +8r2n−θ

≤
∫

Ω n
+

‖ fZn,Vk −g‖2
L2

dρ
n +8r2n−θ , (9)

where the last inequality holds since τr is non-expansive and g = τr(g) holds almost
everywhere.

Next, we define the projection Pn
Vk

onto Vk by

Pn
Vk
( f ) := argmin

h∈Vk

1
n

n

∑
i=1

(h(ti)− f (ti))
2 ,



10 Bastian Bohn

which is well-defined for point-evaluable functions f on Ω n
+ since the coefficients

of Pn
Vk
( f ) are given by (3) if we substitute the vector x by ( f (t1), . . . , f (tn))

T . Note
that the coefficients of fZn,Vk are given by Pn

Vk
(g+ ε). Furthermore, we need the

(standard) orthogonal L2 projector PVk onto Vk. Obviously, it holds Pn
Vk
◦PVk = PVk .

Therefore, we have

‖ fZn,Vk −g‖2
L2

= ‖Pn
Vk
(g+ ε)−Pn

Vk
◦PVk(g)+PVk(g)−g‖2

L2

= ‖Pn
Vk

(
g−PVk(g)

)
+Pn

Vk
(ε)‖2

L2
+‖g−PVk(g)‖2

L2

≤ 2‖Pn
Vk

(
g−PVk(g)

)
‖2

L2
+2‖Pn

Vk
(ε)‖2

L2
+‖g−PVk(g)‖2

L2
(10)

since Id−PVk is L2-orthogonal on Vk. To bound (9) from above, we will now deal
with each of the three summands in (10) separately.

First, note that Pn
Vk

(
g−PVk(g)

)
= ∑

Nk
i=1 βiνi with β = (β1, . . . ,βNk)

T given by

β =
(
nBBT

)−1
ξ with ξ = Ba and a j = g(t j)−PVk(g)(t j) for j = 1, . . . ,n. Thus, we

have

‖Pn
Vk

(
g−PVk(g)

)
‖2

L2
= β

T Mβ = ξ
T (nBBT )−1

M
(
nBBT )−1

ξ

≤ λmax(M)
1

λmin (nBBT )2 ‖ξ‖
2
`2
≤ 4λmax(M)

λmin(M)2 ‖ξ‖
2
`2

(11)

on Ω n
+, on which nBBT is invertible. This yields∫

Ω n
+

2‖Pn
Vk

(
g−PVk(g)

)
‖2

L2
dρ

n ≤ 8λmax(M)

λmin(M)2 E
[
‖ξ‖2

`2

]
. (12)

With the independence of t1, . . . , tn, we deduce

E
[
‖ξ‖2

`2

]
=
∫

Ω n

Nk

∑
j=1

(
1
n

n

∑
i=1

ν j(ti) · (g−PVk(g))(ti)

)2

dρ
n(t1, . . . , tn)

=
1
n2

Nk

∑
j=1

(n2−n)

∫
Ω

ν j(t) · (g−PVk(g))(t)dρ(t)︸ ︷︷ ︸
=0


2

+
1
n2

Nk

∑
j=1

n
∫

Ω

(
ν j(t) · (g−PVk(g))(t)

)2 dρ(t)

(6)
≤ 1

n
S(ν1, . . . ,νNk)‖g−PVk(g)‖2

L2

(7)
≤ cλmin(M)

(1+θ) log(n)
‖g−PVk(g)‖2

L2
.

Applying this to (12), we finally obtain∫
Ω n
+

2‖Pn
Vk

(
g−PVk(g)

)
‖2

L2
dρ

n ≤ 8cλmax(M)

(1+θ)λmin(M) log(n)
‖g−PVk(g)‖2

L2
. (13)
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For the second summand of (10), we proceed similarly. Note that ϑ =
(
nBBT

)−1
η

are the coefficients of Pn
Vk
(ε) with respect to ν1, . . . ,νNk . Here, η = Bb with bi = ε(ti).

Analogously to (11), we get

‖Pn
Vk
(ε)‖2

L2
≤ 4λmax(M)

λmin(M)2 ‖η‖
2
`2

on Ω n
+. Therefore, it remains to estimate∫

Ω n
+

2‖Pn
Vk
(ε)‖2

L2
dρ

n ≤ 8λmax(M)

λmin(M)2 E
[
‖η‖2

`2

]
. (14)

Because of (1) we have Eρ [εν j] = 0 for all j ∈ 1, . . . ,Nk. Thus, we obtain

Eρn
[
‖η‖2

`2

]
=
∫

Ω n

Nk

∑
j=1

(
1
n

n

∑
i=1

ν j(ti) · ε(ti)

)2

dρ
n(t1, . . . , tn)

=
1
n2

Nk

∑
j=1

(n2−n)

Eρ [εν j]︸ ︷︷ ︸
=0


2

+
1
n2

Nk

∑
j=1

nEρ

[
ε

2
ν

2
j
]

=
1
n

Nk

∑
j=1

∫
Ω

ν j(t)2Eρ [ε
2 | t]dρ(t)

(1)
≤ σ2

n

Nk

∑
j=1

∫
Ω

ν j(t)2dρ(t)

≤ σ2

n

Nk

∑
j=1

λmax(M) =
Nkσ2

n
λmax(M).

Plugging this into (14), we get∫
Ω n
+

2‖Pn
Vk
(ε)‖2

L2
dρ

n ≤ 8σ2λmax(M)2

λmin(M)2 · Nk

n
. (15)

Since the third summand of (10) is independent of the samples, we have∫
Ω n
+

‖g−PVk(g)‖2
L2
≤ ‖g−PVk(g)‖2

L2
= inf

f∈Vk
‖g− f‖2

L2
.

Finally, we combine this estimate together with (13) and (15) into (9) and (10), which
completes the proof. ut

The first term of the expected rate from theorem 3 depends mainly on the best
approximation error in Vk and the quotient λmax(M)

λmin(M) , which can be bounded from
above independently from k for Riesz bases for example. The second summand
scales like n−θ , which resembles the decay of the error with respect to the amount of
data n in the noiseless case, i.e. when σ2 = 0 and the third summand vanishes. In the
noisy case, the third summand is also present and the best possible decay rate with
respect to n scales like n−1.
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4.2 Application to sparse grids

In the following, we assume that the measure ρ is the m-dimensional Lebesgue
measure on Ω = [0,1]m, i.e. the data ti, i = 1, . . . ,n are distributed uniformly in Ω .
We now apply theorems 2 and 3 to the regression problem on sparse grid spaces
Vk = V sparse

k and need to bound

S(ν1, . . . ,νNk) = sup
t∈Ω

∑
ζm(l)≤k

∑
i∈Il

γl,i(t)2.

from above. To this end, we provide the following lemma.

Lemma 1. For each l ∈ Nm, it holds

max
t∈[0,1]m ∑

i∈Il

γl,i(t)2 ≤ 2|l|`1 ·2|{ j∈{1,...,m}| l j=0}| ·
(

36
25

)|{ j∈{1,...,m}| l j>0}|
. (16)

Proof. We first consider the univariate case m = 1 and define Sl(t) := ∑i∈Il γl,i(t)2.
For l = 0, we obtain

S0(t) = γ
2
0,0(t)+ γ

2
0,1(t) = 1+ t2 ≤ 2

and for l = 1 we have

S1(t) = γ
2
1,1(t) = (2φ1,1(t)−1)2 ≤ 1

with t ∈ [0,1]. In the general case l ≥ 2, Sl is a sum of the piecewise quadratic
polynomials γ2

l,i(·) with i∈ Il . Therefore, the quadratic term of the piecewise quadratic
polynomial Sl(·) has a positive coefficient everywhere and the maximum of Sl over
[0,1] can only reside on one of the grid points 2−l i with i = 0, . . . ,2l . This is also
illustrated in figure 3, where S4 is plotted exemplarily.

We now prove that the maximum of Sl is always attained at the boundary point
t = 1. For l = 0 and l = 1, this is immediately clear. The (local) maxima of S2 are
denoted below in a mask-type notation which contains a prefactor 2l and the nodal
values at the grid points. The calculation

S2(t) = γ
2
2,1(t)+ γ

2
2,3(t)

= 4 [ 36
25

121
100

9
25

1
100 0 ]

+ 4 [ 0 1
100

9
25

121
100

36
25 ]

= 4 [ 36
25

61
50

18
25

61
50

36
25 ]

shows that the largest value 4 · 36
25 is attained at the boundary grid points. Analogously,

we have
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Fig. 3: The squared sum S4 of the univariate prewavelet basis functions for k = 4.
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S3(t) = γ
2
3,1(t)+ γ

2
3,3(t)+ γ

2
3,5(t)+ γ

2
3,7(t)

= 8 [ 36
25

121
100

9
25

1
100 0 0 0 0 0 ]

+ 8 [ 0 1
100

9
25 1 9

25
1

100 0 0 0 ]

+ 8 [ 0 0 0 1
100

9
25 1 9

25
1

100 0 ]

+ 8 [ 0 0 0 0 0 1
100

9
25

121
100

36
25 ]

= 8 [ 36
25

61
50

18
25

51
50

18
25

51
50

18
25

61
50

36
25 ]

for l = 3. Due to the local support of the basis functions, analogous calculations
show that the value of Sl never exceeds 2l · 36

25 also for higher levels l. Therefore,
the maximum of Sl is always attained for t = 1. If l = 0, the maximum value is
2 and if l ≥ 2, it is 2l · 36

25 . For the special case l = 1, we use the crude estimate
S1(1) = 1 < 2 · 36

25 . Therefore, the assertion (16) is proven for m = 1.
The case m > 1 follows directly from the tensor product construction of the basis.

To see this, let t ∈ [0,1]m and l ∈ Nm be arbitrary. It holds

∑
i∈Il

γl,i(t)2 = ∑
(i1,...,im)∈Il

m

∏
j=1

γl j ,i j(t j)
2 =

m

∏
j=1

∑
i j∈Il j

γl j ,i j(t j)
2

due to the structure of Il. Therefore, the maximization of the term on the left can
be split into the maximization of Sl j for each direction j ∈ {1, . . . ,m}. Since the
maximum is bounded by 2 for directions j with l j = 0 and by 2l j · 36

25 for directions j
with l j ≥ 1, the inequality (16) follows. ut

We are now able to present an upper bound on S(ν1, . . . ,νNk) for sparse grids.

Theorem 4. For Vk = V sparse
k , S(ν1, . . . ,νNk) can be bounded by

S(ν1, . . . ,νNk)≤
(

72
25

)m

(Nk +1). (17)

Proof. In the following, we write Z(l) := |{ j ∈ {1, . . . ,m} | l j = 0}| for the number
of zeros of a multiindex l ∈ Nm. Applying lemma 1, we obtain
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S(ν1, . . . ,νNk)≤ ∑
|l|`1+Z(l)≤k+m−1

2|l|`1+Z(l) ·
(

36
25

)m−Z(l)
,

where we used ζm(l) = |l|`1−m+Z(l)+1. Substituting i = |l|`1 +Z(l), this becomes

S(ν1, . . . ,νNk)≤
k+m−1

∑
i=0

2i ·
m

∑
l=0
|{l ∈ Nm | |l|`1 = i− l and Z(l) = l}| ·

(
36
25

)m−l

.

Obviously, it holds |{l ∈ Nm | |l|`1 = i− l and Z(l) = l}|= 0 for all l = 0, . . . ,m if
i < m. Therefore, we can begin the summation over i from m. If i≥m holds, a simple
combinatorial argument, see also [4], leads to

|{l ∈ Nm | |l|`1 = i− l and Z(l) = l}| = |{l ∈ (N\{0})m−l | |l|`1 = i− l}| ·
(

m
l

)
=

(
i− l−1
m− l−1

)(
m
l

)
for arbitrary l = 0, . . . ,m−1 and furthermore

|{l ∈ Nm | |l|`1 = i−m and Z(l) = m}|=
{

1 if i = m
0 else = δim.

Therefore, we have

S(ν1, . . . ,νNk) ≤
k+m−1

∑
i=m

2i ·
(

δim +
m−1

∑
l=0

(
i− l−1
m− l−1

)(
m
l

)(
36
25

)m−l
)

= 2m ·
k−1

∑
i=0

2i ·
(

δi0 +
m−1

∑
l=0

(
i+m− l−1

m− l−1

)(
m
l

)(
36
25

)m−l
)

= 2m ·
(

1+
m−1

∑
l=0

(
36
25

)m−l(m
l

)(k−1

∑
i=0

2i
(

i+m− l−1
m− l−1

)))

= 2m +2m
m−1

∑
l=0

(
36
25

)m−l(m
l

)
|Gm−l

k |,

where |Gm−l
k | denotes the size of an m− l-dimensional level-k sparse grid without

boundary, see lemma 3.6 of [4] for a proof. To derive a bound with respect to the
number of grid points Nk in a sparse grid with boundary points of level k in dimension
m, we rewrite the above inequality by

S(ν1, . . . ,νNk) ≤ 2m +
m−1

∑
l=0

(
2 · 36

25

)m−l

·2l
(

m
l

)
|Gm−l

k |

≤ 2m +

(
72
25

)m

·
m−1

∑
l=0

2l
(

m
l

)
|Gm−l

k |= 2m +

(
72
25

)m

Nk,
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where the last equality is proven in lemma 2.1.2 of [8]. Since 2 < 72
25 = 2.88, this

completes the proof. ut

Combining the statements of theorem 2 and 4, we see that the sparse grid regres-
sion problem is well-posed with probability larger than 1−2n−θ if(

72
25

)m

(Nk +1)≤ c
λmin(M)

1+θ
· n

log(n)
. (18)

Since the prewavelet basis of Vk is a Riesz frame with respect to the L2,ρ(Ω) norm, the
fraction λmax(M)

λmin(M) is bounded from above independently of the level k ∈ N. Therefore,
the necessary scaling is essentially

Nk ' 2kkm−1 .
n

log(n)
,

where the . notation implies an m- and θ -dependent constant. The following corol-
lary states our main result for sparse grids. There we deal with the (Bessel-potential)
Sobolev spaces Hs

ρ,mix(Ω) of dominating mixed smoothness with respect to the
L2,ρ(Ω) measure, see e.g. [2, 16].

Corollary 1 (Regression error for sparse grids). Let g ∈ Hs
ρ,mix(Ω) for some 0 <

s≤ 2 and let Vk = V sparse
k . Let, furthermore, (18) hold for an arbitrary θ > 0. Then,

the regression problem is well-posed in the sense of theorem 2 with probability at
least 1−2n−θ and the expected error fulfills

E
[
‖τr
(

fZn,Vk

)
−g‖2

L2,ρ (Ω)

]
≤Cm,s,θ ,σ

(
2−2skkm−1 +

1
nθ

+
2kkm−1

n

)
(19)

with a constant Cm,s,θ ,σ , which depends on m,s,θ ,σ and ‖g‖Hs
ρ,mix(Ω).

Proof. To prove the expected error, we combine theorems 3 and 4 and use that the
squared best approximation error behaves like

inf
f∈V sparse

k

‖ f −g‖2
L2,ρ (Ω) ≤Cm,s2−2skkm−1‖g‖2

Hs
ρ,mix(Ω)

for g ∈ Hs
ρ,mix(Ω) with an m- and s-dependent constant Cm,s, see e.g. theorem 3.25

of [2]. Furthermore, λmax(M)
λmin(M) is bounded from above independently of k since the

prewavelet basis is a Riesz frame with respect to the L2,ρ(Ω) norm. Together with
the fact that Nk ≤Cm2kkm−1 holds for an m-dependent constant Cm, see e.g. [8], the
statement of the corollary follows immediately. ut

Finally, we can ask for the optimal coupling between the number of samples n and
the number of sparse grid basis functions Nk, which achieves the best possible con-
vergence rate in the sense that the terms in the error estimate (19) are (approximately)
balanced. The resulting coupling is stated in the following corollary.
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Corollary 2 (Optimal coupling and convergence rate for sparse grids). Let g ∈
Hs

ρ,mix(Ω) for some 0 < s≤ 2 and let Vk = V sparse
k . Then, the following holds:

1. Let σ2 > 0 (noisy case) and let (18) hold for a θ ≥ 2s
2s+1 . Then, the asymptotically

optimal coupling between n and Nk is

Nk ∼ n
1

2s+1 log(n)m−1 (20)

and the resulting convergence rate for n→ ∞ is

E
[
‖τr
(

fZn,Vk

)
−g‖2

L2,ρ (Ω)

]
= O

(
n−

2s
2s+1 log(n)m−1

)
. (21)

2. Let σ2 = 0 (noiseless case) and let (18) hold for a θ > 2s. Then, the asymptotically
optimal coupling between n and Nk is

Nk ∼
n

log(n)
(22)

and the resulting convergence rate for n→ ∞ is

E
[
‖τr
(

fZn,Vk

)
−g‖2

L2,ρ (Ω)

]
= O

(
n−2s log(n)(2s+1)m−1

)
. (23)

Proof. Let E := E
[
‖τr
(

fZn,Vk

)
−g‖2

L2,ρ (Ω)

]
. Note that Nk ∼ 2kkm−1 in the sense

that there exist two constants c1,c2 > 0 such that c12kkm−1 ≤ Nk ≤ c22kkm−1 holds
independently of k. Note, furthermore, that there exists a constants C1,C2 > 0 such
that C1 log(n)≤ k ≤C2 log(n) for n≥ 2 for each of the scalings (20) and (22). This
can easily be obtained by taking the logarithm on both sides of (20) and (22).

We begin with the proof for the noisy case σ2 > 0 and insert the coupling (20)
into the error formula (19). Since we will see that this balances the first and third
summands there, the coupling is also optimal. Indeed, we have

E . 2−2skkm−1 +
1

nθ
+

2kkm−1

n
. (Nk)

−2s k(m−1)(2s+1)+n−θ +
Nk

n

.
(

n
1

2s+1 log(n)m−1
)−2s

log(n)(m−1)(2s+1)+n−θ +
n

1
2s+1 log(n)m−1

n
θ≥ 2s

2s+1
. n−

2s
2s+1
(
log(n)m−1 +1+ log(n)m−1)= O

(
n−

2s
2s+1 log(n)m−1

)
. (24)

As we see in (24), the first and third summand of the error estimate (19) are bal-
anced for the coupling (20). Note that the coupling is valid in the sense that it
(asymptotically) fulfills condition (18). This completes the proof for the noisy case.

In the noiseless case σ2 = 0, the third summand in (19) vanishes, see also theorem
3. Therefore, for θ = 2s+δ with some arbitrary δ > 0, the number of basis functions
Nk needs to be chosen as large as possible (with respect to n) to achieve the fastest
possible convergence of the first summand of (19). This is achieved by choosing n as
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the smallest integer such that (18) is still fulfilled, i.e. the corresponding scaling is
(22). Therefore, we obtain

E . 2−2skkm−1 +
1

nθ
. (Nk)

−2s k(m−1)(2s+1)+n−θ

.

(
n

log(n)

)−2s

log(n)(m−1)(2s+1)+n−θ
θ=2s+δ

. n−2s
(

log(n)(2s+1)m−1 +n−δ

)
= O

(
n−2s log(n)(2s+1)m−1

)
,

which concludes the proof. ut

For all of our proven convergence results, we see that the curse of dimensionality
appears only in terms which scale logarithmically in the number of samples n. This is
the well-known sparse grid effect, which we are used to when considering the spaces
V sparse

k for interpolation or approximation for instance, see [4].
As we see from corollary 2, the optimal main rate that can be achieved in the noisy

case is n−
2s

2s+1 , which becomes n−
4
5 in the smoothest setting (s = 2) that the piecewise

linear basis functions can exploit.1 This comes at an expense of oversampling by
n ∼ N2s+1

k if we neglect the logarithm. In the noiseless case, however, the much
better main rate n−2s can be achieved and there is only a logarithmic oversampling,
see (22). This oversampling has to be present to fulfill the necessary condition (18)
anyway.

Finally, note that our stability and error analysis for sparse grids heavily relies on
the fact that we are dealing with a Riesz basis. Nevertheless, if we choose a basis
for which λmax(M)

λmin(M) is unbounded, e.g. the hierarchical hat basis built from φl,i, see
(4), we can still obtain well-posedness of the regression problem if an appropriate
regularization term is added to (2), see also [2]. However, then it is not directly clear
how to derive a variant of theorem 3 for the regularized case.

5 Numerical experiments

In this section, we have a look at numerical experiments, which illustrate our theoreti-
cal results from the previous section. To this end, we choose Ω = [0,1]2, Vk = V sparse

k
and ρ = λ[0,1]2 as the two-dimensional Lebesgue measure. We use the example
function g : [0,1]2→ R given by

g(t1, t2) = exp(−t2
1 − t2

2 )+ t1t2. (25)

Since g is infinitely smooth, we have g∈H2
ρ,mix((0,1)

2) and we can expect our results
from the previous section to hold with smoothness index s = 2. We now discern two

1 For higher order spline bases, a larger choice of s can be exploited here. However, one needs to
prove an analogous result to theorem 4 for the corresponding basis functions first.
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cases: The noiseless case, in which our samples are given as Zn = (ti,g(ti))
n
i=1, and

the noisy case, where we deal with Zn = (ti,g(ti)+ εi)
n
i=1 and the εi are independent

instances of a normally distributed random variable ε ∼N (0,0.01).
Since ‖g‖L∞,ρ ([0,1]2) < 2 and P [|ε|> 1]< 10−2000, we can safely assume that r = 3

is large enough to assure that (with probability almost 1) |g(ti)+ εi| < r holds for
each i =,1 . . . ,n. Therefore, τr

(
fZn,Vk

)
= fZn,Vk since fZn,Vk is the optimal piecewise

linear regression function in Vk and, thus, cannot be larger than maxi=1,...,n |g(ti)+εi|
anywhere. Therefore, we can apply theorem 3 and corollaries 1 and 2 for fZn,Vk
instead of τr( fZn,Vk) in our setting.

Since the prewavelet basis is a Riesz frame, we know that λmax(M)
λmin(M) is bounded

independently of k. To see that this quotient is not severely large, we exemplarily
calculated it for k = 1, . . . ,8 and observed that it does not exceed 5 in the two-
dimensional case.

Error decay

First, we compute the error for different pairs of grid levels k and numbers of data
points n. Since our result on the regression error in corollary 1 is only given in
expectation, we compute the average AvErr of the error ‖ fZn,Vk −g‖2

L2,ρ (Ω) over 10
independent runs with different input data sets for each parameter pair (k,n). To
compute the error values, we interpolated both fZn,Vk and g on a full tensor-product
grid of level 11, i.e. we interpolated in V full

11 , and computed the norm of the difference
there. The results can be found in figure 4.

We directly observe the expected error decay rates, i.e. 2−4k · k for fixed n and
n−1 for fixed k in the noisy setting (if we tacitly assume θ ≥ 1), see also corollary
1. For fixed k, we would expect the error to behave like n−θ in the noiseless setting.
However, since θ grows when the quotient n

k grows, we cannot expect the error
behavior to be of type n−p for some p. For both, the noisy and the noiseless case, we
observe that if the varying parameter (e.g. n) is too large, the error is saturated and
the other parameter (e.g. k) has to be increased to guarantee a further error reduction.
Note that the error for fixed n in the noisy regression setting even increases for large
k. This is an overfitting effect, i.e. the basis size Nk is too large for the corresponding
number of data n. Since there is no regularization in our approach, the error thus
grows for large k and small n.

Balancing the error

In a next step, we balance the error terms according to corollary 2 and inspect the
resulting convergence rates. For the noisy setting, we have for θ ≥ 4

5 that the optimal
coupling is given by

Nk ∼ n
1
5 log(n).
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Fig. 4: The average of ‖ fZn,Vk −g‖2
L2,ρ (Ω) over 10 runs for several parameter pairs

(k,n) for which Nk ≤ n holds. Top: Noisy data, Bottom: Noiseless data. Left: Each
line represents a fixed n, Right: Each line represents a fixed k.
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We, therefore, (approximately) solve N5
k = n log(n)5 for n and determine the optimal

number of data points for k = 1, . . . ,6. For k = 6, the amount n of data points already
exceeds 225. In the noiseless setting, the picture is quite different. Here, the optimal
coupling is given by

Nk ∼
n

log(n)

if θ > 4. More accurately, we look for the smallest n such that (18) is fulfilled with
θ > 4. Therefore, we equate both sides of (18) and (approximately) solve for n. Here,
we set θ = 4 and λmin(M) = 1 and obtain that sampling by n

log(n) = 384 · (Nk + 1)
suffices to fulfill (18). The average errors (over 10 runs) for the optimal coupling in
the noisy and in the noiseless setting can be found in figure 5.

We directly see that the convergence rate in the experimental results asymptotically
matches the proven rates from corollary 2, i.e. n−

2s
2s+1 log(n)m−1 = n−

4
5 log(n) in the

noisy case and n−2s log(n)(2s+1)m−1 = n−4 log(n)9 in the noiseless case. Furthermore,
we observe that the initial error decay for noisy data is better than the convergence
rate suggests. This is due to the fact that the noise effects the convergence behavior
only if the overall error is already smaller than a certain (noise) level. Note also that
the oversampling factor 384 is the reason why we already have more than 215 data
points for the smallest level k = 1 in the noiseless case. However, since our sampling
resembles only a sufficient condition to ensure well-posedness of the regression
problem with high probability, a much smaller oversampling constant might also do
the job for practical applications.
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Fig. 5: The average of ‖ fZn,Vk − g‖2
L2,ρ (Ω) over 10 runs for the optimal coupling

between k and n. Left: Noisy data with coupling n log(n)5 = N5
k , Right: Noiseless

data with coupling n
log(n) = 384 · (Nk +1), which resembles (18) for our example.
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(b) Noiseless data
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6 Conclusion

In this article we presented error bounds, stability results and optimal parameter
couplings for the least-squares regression problem and applied them to the sparse grid
setting. To this end, we extended the results of [7] to arbitrary bases and provided an
upper bound for the crucial quantity S(ν1, . . . ,νNk) from the stability and convergence
estimates. Our results showed that the sparse grid prewavelet basis behaves (up to
constants) like an orthonormal basis in the regression estimates because of its Riesz
property. Therefore, it is a good choice for regression problems on sparse grid spaces
since it employs both beneficial convergence behavior and small support of the
corresponding basis functions, which is directly connected to the availability of
cost-efficient linear equation system solvers, see e.g. [3, 5]. Finally, we presented a
numerical example to illustrate that our results are not only of theoretical interest but
resemble the true convergence behavior of actual sparse grid regression algorithms.

An interesting question which still has to be answered is if the general behavior of
the growth of S(ν1, . . . ,νNk), see theorem 4, carries over also to higher-order spline
bases on sparse grids. This is not directly clear from the proof techniques used in
this paper as they rely on the piecewise linear structure of the regression function.
Furthermore, it remains open how our results generalize to the regularized case,
where a penalty term is added in the minimization problem. A first step into this
direction regarding the stability estimate can be found in [2]. However, the rate of
error decay and the optimal parameter coupling are still unknown in this case. Finally,
a thorough comparison of our derived convergence rates for the sparse grid method
with the error decay behavior of other regression algorithms such as support vector
machines or multilayer neural networks still has to be done.
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