
Endenicher Allee 19b � 53115 Bonn � Germany
phone +49 228 73-69828 � fax +49 228 73-69847

www.ins.uni-bonn.de

B. Bohn, M. Griebel, C. Rieger

A representer theorem for deep kernel learning

INS Preprint No. 1714

May 2019

A representer theorem for deep kernel learning

Bastian Bohn† Michael Griebel†‡ Christian Rieger†

May 9, 2019

Abstract

In this paper we provide a finite-sample and an infinite-sample representer theorem for the concate-
nation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results
serve as mathematical foundation for the analysis of machine learning algorithms based on compositions
of functions. As a direct consequence in the finite-sample case, the corresponding infinite-dimensional
minimization problems can be recast into (nonlinear) finite-dimensional minimization problems, which
can be tackled with nonlinear optimization algorithms. Moreover, we show how concatenated machine
learning problems can be reformulated as neural networks and how our representer theorem applies to a
broad class of state-of-the-art deep learning methods.

1 Introduction

The interpolation or regression of given function values is one of the main tasks in modern data mining
and machine learning applications. Due to the famous representer theorem for empirical risk minimization
in reproducing kernel Hilbert spaces (RKHS), see e.g. [16, 23, 24], various algorithms based on finite linear
combinations of kernel translates have gained much popularity in the last decade, like, for example, support
vector machines (SVMs) and Tikhonov-regularized least-squares in RKHS. In general, these methods work
very well if the underlying problem fits the chosen reproducing kernel space H, e.g. if the given input values
stem from a function g ∈ H. However, if H contains for instance only smooth functions but g has a kink
or a jump, the interpolant or regressor, respectively, in H might not represent a good approximation to
the true function g anymore. Then, if it is not known how to choose an appropriate kernel K of H a
priorily, one usually relies on so-called multiple kernel learning (MKL) algorithms, which try to determine
the optimal kernel adaptively, see e.g. [2]. But while most of these methods allow to learn a suitable kernel
by simply constructing a linear or convex combination of a given set of input kernels, they still do not achieve
considerably better results than standard a-priori kernel choices for many applications, see [11].
In recent years, promising new variants of kernel learning methods, namely deep kernel learning and multi-
layer-MKL (MLMKL) algorithms have been developed. They have proven to be very successful in regression
and classification tasks. Here, motivated by multi-layer feed-forward neural networks, a kernel function is
concatenated with one or more nonlinear functions in order to achieve a highly flexible new kernel function,
see e.g. [5, 7, 21, 25, 27, 28]. The main idea behind this approach is to combine the flexibility of deep neural
networks, in which the feature detection in the data set is done completely automatically, with the approxi-
mation power of kernel methods, in which a feature map is determined by the chosen kernel. This way, the

†Institute for Numerical Simulation, University of Bonn, Wegelerstr. 6, 53115 Bonn, Germany.
‡Fraunhofer Center for Machine Learning, Fraunhofer Institute for Algorithms and Scientific Computing SCAI,

Schloss Birlinghoven, 53754 Sankt Augustin, Germany.
The authors want to thank the anonymous referees for their suggestions and remarks and especially for pointing out the relation
to [9]. The authors were partially supported by the Sonderforschungsbereich 1060 The Mathematics of Emergent Effects funded
by the Deutsche Forschungsgemeinschaft.

1

neural network architecture learns the optimal kernel that best represents important features of the data
for the task at hand. While first steps towards creating a mathematical framework to analyze deep neural
networks - especially for image classification tasks - have been made in e.g. [17, 18, 20], deep approximation
theory for kernel based approaches is still missing at large. Moreover, the underlying nonlinear minimization
problem is usually tackled by simple gradient descent and heuristic backpropagation algorithms without
a thorough theoretical analysis of its properties. An initial cornerstone for the analysis of chained kernel
approximations has been provided by [9], where two-layer kernel networks were considered and their relation
to MKL was established. However, an analysis of deeper kernel networks and their connection to MLMKL
has not been considered so far.
In this paper, we consider the problem of optimal concatenated approximation in reproducing kernel Hilbert
spaces, which will directly lead to a variant of multi-layer kernel learning problems and will extend the results
achieved in [9]. For this class, we will prove a representer theorem, which allows us to reduce the nonlinear,
potentially infinite-dimensional optimization problem to a finite-dimensional one. Consequently, standard
nonlinear optimization techniques can be used to tackle this problem. At least to our knowledge, this is the
first derivation of a representer theorem for concatenated function approximation in the literature. It is also
valid for certain types of hidden layer neural networks and deep SVMs.
The remainder of this paper is organized as follows: In Section 2, we briefly review the interpolation and
the regression problem in an (possibly infinite-dimensional) RKHS and discuss how the classical representer
theorem allows to recast these problems into finite-dimensional linear equation systems. In Section 3, we
introduce the optimal concatenated approximation problem for arbitrary loss functions and regularizers.
We derive a representer theorem for this problem in the multi-layer case and discuss its relation to deep
learning and multi-layer multiple kernel learning methods. Furthermore, we exemplarily derive algorithms
for interpolation and least-squares regression in the two-layer case from it. The latter will be a natural
generalization of the RLS2 method developed in [9], which only deals with a linear outer kernel. Section 4
illustrates the application of our concatenated interpolation and regression algorithms to two simple examples
and serves as a proof of concept. Finally, we conclude with a summary and an outlook in Section 5.

2 Interpolation and regression in reproducing kernel Hilbert spaces

In this section we shortly review interpolation and least-squares regression problems, respectively, in an
RKHS. To this end, we consider the standard representer theorem and show how it helps to find an inter-
polant/regressor.

2.1 Interpolation

Let Ω ⊂ Rd be an open domain and let the pairwise disjoint points X := {x1, . . . ,xN} ⊂ Ω and the values
Y := {y1, . . . , yN} ⊂ R be given. Let furthermore H := H(Ω,R) be a reproducing kernel Hilbert space of
real-valued functions on Ω. The minimal norm interpolant is

f∗X,Y := arg min
f∈H

‖f‖H such that f(xi) = yi ∀ i = 1, . . . , N. (1)

The classical representer theorem, see e.g. [23, 24] for scalar-valued functions and [19] for vector-valued
functions, now states that f∗X,Y can be written as a finite linear combination of kernel evaluations in the
data, namely

f∗X,Y (x) =

N∑
i=1

α∗iK(xi,x), (2)

where K : Ω× Ω→ R denotes the reproducing kernel of H and α∗i ∈ R, i = 1, . . . , N , are the corresponding
coefficients. For details on RKHS, see [1]. Therefore, the solution to the possibly infinite-dimensional

2

optimization problem (1) resides in the N -dimensional span of the functions K(xi, ·), i = 1, . . . , N . To
compute the coefficients, we simply have to solve the system

MX,Xα
∗ = y (3)

of linear equations with

MX,X :=

K(x1,x1) . . . K(x1,xN)
...

. . .
...

K(xN ,x1) . . . K(xN ,xN)

 , α∗ :=

α∗1
...
α∗N

 and y :=

 y1

...
yN

 . (4)

Note that this N × N system admits a unique solution if the kernel K is strictly positive definite. For
example, for Sobolev kernels it can be shown that the condition number of the system matrix MX,X only
grows moderately with the size N provided that the data points are quasi-uniformly distributed, see [8].
Moreover, for infinitely smooth kernel functions (e.g. Gaussian kernels or multiquadrics) it can be necessary
to perform an appropriate basis change before solving the above equation system, see e.g. [26].

2.2 Least-squares regression

In real-world applications, the values yi, i = 1, . . . , N are usually not exactly given, but are perturbed by
some noise term. Therefore, a direct interpolation might no longer be appropriate. In this case, one considers
the corresponding regularized least-squares regression problem

fλX,Y := arg min
f∈H

λ‖f‖2H +

N∑
j=1

|f(xi)− yi|2, (5)

where the side condition in (1) is substituted by a penalty term. Here, the Lagrange multiplier λ weights
the importance of the norm minimization against the function evaluation error. Again, the representer
theorem [19,23,24] tells us that fλX,Y is of the form (2), i.e.

fλX,Y (x) =

N∑
i=1

αλiK(xi,x).

This time the coefficients αλi , i = 1, . . . , N , are determined by

(MX,X + λI)αλ = y, (6)

where I denotes the N ×N identity matrix. The size of the Lagrange parameter λ > 0 now also influences
the condition number of the system matrix, i.e. the larger λ is, the smaller the condition number becomes.

3 Interpolation and regression with compositions of reproducing
kernel Hilbert spaces

As already mentioned in the introduction, the standard interpolation and regression algorithms in RKHS
work well if the samples yi are (perturbed) evaluations of a function g ∈ H, where the reproducing kernel
space H is known in the first place. However, if the appropriate RKHS H is unknown, it is advisable to
resort to multiple kernel learning methods or multi-layer multiple kernel learning methods.
We now explain this aspect in more detail and, to this end, motivate a first two-dimensional, two-layer
approach with an example: Let the kernel K of H be a tensor-product of two univariate Matérn Sobolev

3

(a) yi = g1(xi), f ∈ H (b) yi = g2(xi), f ∈ H (c) yi = g2(xi), f ∈ {h ◦R | h ∈ H}

Figure 1: Solutions to (1) in the two-variate tensor-product Matérn-kernel Sobolev space H of order one,
see also [10], with 200 uniform samples xi, i = 1, . . . , 200 (marked in black), shown in the domain [−1, 1]2.
(a) depicts the solution f ∈ H for values yi sampled from g1, whereas (b) shows the optimal solution for
yi sampled from g2. (c) presents the best interpolant of type f ◦ R, where f ∈ H and R is a rotation by
45◦ for yi sampled from g2. For reasons of comparability, we restricted our representation to [−1, 1]2 here,
although some data points were mapped outside of this domain by applying the rotation R and the kernel
was defined on the whole R2.

kernels of order one on R, see Section 4 for a definition of this kernel. The corresponding function space
H is often also called Sobolev space of “mixed smoothness” of order one and it is of special importance for
e.g. sparse grid discretizations, see [4], and quasi Monte Carlo quadrature, see [14]. Now, let us consider the
continuous function g1(x, y) := (0.1 + |x|)−1, which has a kink that is perpendicular to the x-axis. It can
easily be shown that g1 ∈ H and, therefore, the interpolant of g1 by a function from H resembles a good
approximation to g1, see Figure 1(a). If we now look at g2(x, y) := (0.1 + |x− y|)−1, which has a kink along
the diagonal with x = y, then g2 /∈ H. Therefore, the interpolant of g2 by a function in H is a rather bad
approximation to g2. This can be seen in Figure 1(b). However, if we let R−1 be a rotation by 45◦, then
g2 ◦R−1 ∈ H would have an axis-aligned kink like g1. To use this fact when interpolating g2, we can simply
look for the best interpolant in {f ◦ R | f ∈ H} in (1) instead of f ∈ H. This example is illustrated in
Figure 1(c). As we can see, the interpolant in Figure 1(c) is a much better representative for g2 than the one
in Figure 1(b). This example illustrates that, already in the very simple case of employing a concatenation
with a rotation, a two-layer approach can be a good choice to overcome the restrictions of a standard kernel
learning algorithm. Let us remark that already this motivating example exhibits a fundamentally different
setting from the one considered in [9] because of the nonlinearity of the outer kernel. While the RLS2
algorithm introduced there can be interpreted as an MKL variant, where a convex combination of given
kernel functions is computed, we are looking for an inner function, which transforms the domain in such a
way that it is optimal for the (possibly nonlinear) outer kernel.
Now, instead of just considering one layer of simple rotations as in the above example, we allow for a fully
flexible multi-layer kernel learning approach, where we employ arbitrary functions from reproducing kernel
Hilbert spaces in each layer. This approach can successfully deal with a much broader class of interpolation
and regression problems, see also [21,28]. To this end, we consider concatenated machine learning problems.
We introduce a new representer theorem for the case of multiple concatenations of functions from RKHS,
which allows us to derive the related, finite-dimensional, nonlinear optimization problem.

3.1 A representer theorem for concatenated kernel learning

In this section, we show how a concatenated representer theorem can be derived for a very general class
of problem types and an arbitrary number L ∈ N of concatenations. For more details on vector-valued

4

reproducing kernel Hilbert spaces, we refer the reader to [19]. For a two-layer variant of this theorem, we
refer to [9].

Theorem 1. Let H1, . . . ,HL be reproducing kernel Hilbert spaces of functions with finite-dimensional do-
mains Dl and ranges Rl ⊆ Rdl with dl ∈ N for l = 1, . . . , L such that Rl ⊆ Dl−1 for l = 2, . . . , L, DL = Ω and
R1 ⊆ R. Let furthermore L : R2 → [0,∞] be an arbitrary loss function and let Θ1, . . . ,ΘL : [0,∞)→ [0,∞)

be strictly monotonically increasing functions. Then, a set of minimizers (fl)
L
l=1 with fl ∈ Hl of

J(f1, . . . , fL) :=

N∑
i=1

L (yi, f1 ◦ . . . ◦ fL(xi)) +

L∑
l=1

Θl

(
‖fl‖2Hl

)
(7)

fulfills fl ∈ Ṽl ⊂ Hl for all l = 1, . . . , L with

Ṽl = span {Kl (fl+1 ◦ . . . ◦ fL (xi) , ·) ekl | i = 1, . . . , N and kl = 1, . . . , dl} ,

where Kl denotes the reproducing kernel of Hl and ekl ∈ Rdl is the kl-th unit vector.

Proof. We denote by ΠṼl
and Π⊥

Ṽl
the projector onto Ṽl and its orthogonal complement in Hl, respectively,

for l = 1, . . . , L. First, we note that

fl ◦ fl+1 ◦ . . . ◦ fL(xi) =

dl∑
k=1

(
ΠṼl

(fl) + ΠṼ ⊥l
(fl) ,Kl (fl+1 ◦ . . . ◦ fL(xi), ·) ek

)
Hl

· ek

=

dl∑
k=1

(
ΠṼl

(fl) ,Kl (fl+1 ◦ . . . ◦ fL(xi), ·) ek
)
Hl
· ek

=

dl∑
k=1

(
eTk ΠṼl

(fl) (fl+1 ◦ . . . ◦ fL(xi))
)
· ek

= ΠṼl
(fl) (fl+1 ◦ . . . ◦ fL(xi))

for all i = 1, . . . , N and l = 1, . . . , L. Since this holds for each function in the chain, we can iterate this
process to obtain

fl ◦ fl+1 ◦ . . . ◦ fL(xi) = ΠṼl
(fl) ◦ΠṼl+1

(fl+1) ◦ . . . ◦ΠṼL
(fL) (xi) (8)

for each l = 1, . . . , L. Therefore, we have

J(f1, . . . , fL) =

N∑
i=1

L
(
yi,ΠṼ1

(f1) ◦ . . . ◦ΠṼL
(fL)(xi)

)
+

L∑
l=1

Θl

(
‖ΠṼl

(fl)‖2Hl
+ ‖ΠṼ ⊥l

(fl)‖2Hl

)
≥ J(ΠṼ1

(f1), . . . ,ΠṼL
(fL))

and equality only holds if fl ∈ Ṽl for each l = 1, . . . , L because of the strict monotonicity of each Θl. This
completes the proof.

Note that theorem 1 also holds for

J(f1, . . . , fL) := L (y1, f1 ◦ . . . ◦ fL(x1), . . . , yN , f1 ◦ . . . fL(xN)) +

L∑
l=1

Θl

(
‖fl‖2Hl

)

5

with arbitrary loss L :
(
R2
)N → [0,∞]. However, the version we proved above is more consistent with the

remainder of this paper. Furthermore, because of (8), we could also state an even more general version
of Theorem 1 where the loss function L not only depends on the point evaluations f1 ◦ . . . ◦ fL(xi) for
i = 1, . . . , N , but also on the intermediate values fl ◦ . . . ◦ fL(xi) for any l = 2, . . . , L. However, for the sake
of readability, we proceed with (7). Theorem 1 now states that

(f1, . . . , fL) = arg min
f̄l∈Hl

l=1,...,L

J(f̄1, . . . , f̄L) = arg min
f̄l∈Ṽl

l=1,...,L

J(f̄1, . . . , f̄L) (9)

with J from (7). This means that the (possibly) infinite-dimensional optimization problem

arg min
f̄l∈Hl

l=1,...,L

J(f̄1, . . . , f̄L)

can be recast into the finite-dimensional optimization problem

arg min
f̄l∈Ṽl

l=1,...,L

J(f̄1, . . . , f̄L).

In this way, our representer theorem is a direct extension of the classical representer theorem, see Section 2
and [23], to concatenated functions. We obtain that the solution to (9) is given by a linear combination of at
most N basis functions in each layer. Therefore, the overall number of degrees of freedom in the underlying
optimization problem (9) is given by

#dof =

L∑
l=1

dim
(
Ṽl

)
=

L∑
l=1

N · dl = N ·

(
1 +

L∑
l=2

dl

)
.

According to Theorem 1, we can write f1 as

f1(·) =

N∑
j=1

αjK1 (f2 ◦ . . . ◦ fL(xj), ·)

for some coefficients αj ∈ R. Therefore, the concatenated function h(·) = f1 ◦ . . . ◦ fL(·), which we are
interested in, can be expressed as

h(·) =
N∑
j=1

αjKL(xj , ·)

with the deep kernel
KL(x,y) = K1 (f2 ◦ . . . ◦ fL(x), f2 ◦ . . . ◦ fL(y)) . (10)

Due to the definition of Ṽl for l = 1, . . . , L, the corresponding fl is defined recursively. In general, it is thus
not possible to simply write down a closed formula for KL for arbitrary L. To illustrate the structure of the
kernel KL, we therefore consider a two-layer example with L = 2 in the following. In this case, we obtain
Ṽ2 = span{K2(xi, ·)ek2

| i = 1, . . . , N and k2 = 1, . . . , d2}. From Theorem 1, we know that

f2(·) =

N∑
i=1

d2∑
k2=1

ci,k2K2(xi, ·)ek2

for certain coefficients ci,k2 ∈ R. Furthermore, we have that f1 ∈ Ṽ1 = span{K1(f2(xi), ·) | i = 1, . . . , N}
and thus

f1(·) =

N∑
j=1

αjK1

(
N∑
i=1

d2∑
k2=1

ci,k2
K2(xi,xj)ek2

, ·

)
.

6

The concatenated function is then given by h(·) := f1 ◦f2(·) =
∑N
j=1 αjK2(xj , ·) with the composition kernel

K2(x,y) = K1

(
N∑
i=1

d2∑
k2=1

ci,k2
K2(xi,x)ek2

,

N∑
i=1

d2∑
k2=1

ci,k2
K2(xi,y)ek2

)
. (11)

Therefore, instead of considering the infinite-dimensional optimization problem of finding f1 ∈ H1 and
f2 ∈ H2 that minimize

J(f1, f2) =

N∑
i=1

L (yi, f1(f2(xi))) + Θ1

(
‖f1‖2H1

)
+ Θ2

(
‖f2‖2H2

)
,

we can restrict ourselves to finding the N +N · d2 coefficients αj , ci,k2
for i, j = 1, . . . , N and k2 = 1, . . . , d2.

Note at this point that the problem of finding these coefficients is highly nonlinear and becomes more
complicated for a larger number of layers L. While the corresponding problem of optimizing the outermost
coefficients, i.e. αj for j = 1, . . . , N in our example, is still convex if the loss L and the penalty terms
Θ1,Θ2 are convex, the optimization of the inner coefficients, i.e. ci,k2 for i = 1, . . . , N and k2 = 1, . . . , d2, is
usually not convex anymore and can have many local minima. Here, finding a global minimum is an issue
because standard (iterative) optimization methods strongly depend on the chosen initial value and usually
just deliver some local minimum.
If the optimization functional J is smooth, one can rely on a Newton-type minimizer such as BFGS to solve
the underlying optimization problem. However, if one deals with nonsmooth loss functionals or penalty
terms, one should resort to specifically designed stochastic gradient algorithms which fit the problem at
hand, see e.g. [22].
It remains to note that our representer theorem covers much more than just interpolation or least-squares
regression algorithms. In the same fashion as the standard representer theorem in [23], it can directly be
applied to more involved settings such as regression with a concatenation of support vector machines for
instance. To this end, just choose L to be the ε-insensitive loss function and Θ1(x) = . . . = ΘL(x) = x.
Furthermore, the choice of the additive penalties Θ1, . . . ,ΘL in (7) is rather arbitrary and one could think of
more complex interactions between the penalties for each function fl, l = 1, . . . , L, as long as the arguments
in the proof of Theorem 1 remain valid.

3.2 An infinite-sample representer theorem for concatenated kernel learning

After deriving the representer theorem 1 for the case of multi-layer kernel approximations, we now extend
our results to the case of infinitely many samples. This has to be understood in analogy to the results in
chapter 5 of [24], where such an infinite-sample representer theorem is provided for the single-layer case.
Although such a result can usually not directly be applied to a practical problem unless the distribution
of the data points is known, it can serve as a cornerstone for the analysis of robustness with respect to a
measure change and can lead to a-priori convergence results, see [24]. We will restrict the loss function to
be an L-times differentiable Nemitski loss for the following theorem. For a definition, we refer to [24] or
our appendix, where we define an even more general type of Nemitski vector loss. Note that, when we refer
to convexity or differentiability of Nemitski losses or reproducing kernels, this should always be understood
with respect to the second argument, i.e. dK(x, z) should be understood as ∂

∂zK(x, z). In the following, we
denote by B(X,Y) the space of bounded linear operators from X to Y , endowed with the standard operator
norm.

Theorem 2. Let H1, . . . ,HL and the domains and ranges of their elements be as in theorem 1 and let
λ1, . . . , λL > 0. Let, furthermore, the kernel Kl of Hl fulfill Kl ∈ C1(Dl ×Dl) together with

sup
x∈Dl

‖Kl(x,x)‖2 ≤ cl and sup
x,z∈Dl

‖dKl(x, z)‖B(Dl,Rdl×dl) ≤ cl (12)

7

for some cl < ∞ and all l = 1, . . . , L. Let P be a distribution on Ω × R1 and let L : R1 × R → [0,∞)
be a convex, P-integrable and 1-times differentiable (w.r.t. the second variable) Nemitski loss such that the
absolute value of the derivative is also a P-integrable Nemitski loss, which fulfills∣∣∣L(k)(y, z)

∣∣∣ ≤ bk(y) + hk(|z|) for all (y, z) ∈ R1 × R

for some L1,PR1
-integrable1 bk : R1 → [0,∞) and some increasing hk : [0,∞) → [0,∞) for k = 0, 1. Then,

if we assume that a set of minimizers (fl)
L
l=1 with fl ∈ Hl of

J(f1, . . . , fL) :=

∫
Ω×R1

L (y, f1 ◦ . . . ◦ fL(x)) dP(x, y) +

L∑
l=1

λl‖fl‖2Hl
(13)

exists, it fulfills the Bochner-type integral equation

fl(·) = − 1

2λi

∫
Ω×R1

Kl (·, fl+1 ◦ . . . ◦ fL(x))Afl,fl+1,...,fL(x, y) dP(x, y) (14)

for some Afl,fl+1,...,fL ∈ L1,P(Ω×R1;Rl) for all l = 1, . . . , L.

Proof. The proof works layer-wise and it is an extension of the proof of theorem 5.8 of [24] to the multi-layer
case and to Nemitski vector loss functions, see also definition 5. Let gi ∈ Hi be arbitrary for all i = 1, . . . , L.
Let G1 : Ω × R1 → R2 × R1 be defined by G1(x, y) = (g2 ◦ . . . ◦ gL(x), y). Obviously, G1 is a measurable
map and we can define the pushforward G1,?(P) of P onto R2 ×R1. With this we obtain∫

Ω×R1

L (y, g1 ◦ . . . ◦ gL(x)) dP(x, y) =

∫
R2×R1

L (y, g1(ξ)) dG1,?(P)(ξ, y).

Now, with the functional Jg2,...,gL : H1 → [0,∞) defined by

Jg2,...,gL(g1) :=

∫
R2×R1

L (y, g1(ξ)) dG1,?(P)(ξ, y) + λ1‖g1‖2H1
,

we can reformulate the minimization problem as

min
g1∈H1,...,gL∈HL

J(g1, . . . , gL) = min
g2∈H2,...,gL∈HL

(
min
g1∈H1

Jg2,...,gL(g1)

)
+

L∑
l=2

λl‖gl‖2Hl
.

Since G1 leaves the second argument unchanged, it directly follows from the P-integrability that L is also a
G1,?(P)-integrable Nemitski loss. Therefore, the application of the infinite-sample representer theorem 5.8
in [24] states that the minimizer g?1 of Jg2,...,gL can be written as

g?1(·) =− 1

2λ1

∫
R2×R1

L(1) (y, g?1(ξ))K1(·, ξ) dG1,?(P)(ξ, y)

=− 1

2λ1

∫
Ω×R1

L(1) (y, g?1 ◦ g2 ◦ . . . ◦ gL(x))K1(·, g2 ◦ . . . ◦ gL(x)) dP(x, y),

where L(1) denotes the first derivative of L w.r.t. the second argument. For the choice gi = fi for i = 2, . . . , L,
we obtain the minimizer f1 = g?1 . Note that f1 is continuous and ‖f1‖∞ := supx∈D1

|f1(x)| < ∞ since
H1 ↪→ C(D1) follows directly by (12). Therefore, (14) is true for l = 1 since

|Af1,...,fL(·)| :=
∣∣∣L(1) (y, f1 ◦ f2 ◦ . . . ◦ fL(·))

∣∣∣ ≤ b1(y) + h1 (|f1 ◦ f2 ◦ . . . ◦ fL(·)|)

≤ b1(y) + h1 (‖f1‖∞)

1Here, PR1
denotes the marginal distribution of P w.r.t. the second variable.

8

is in L1,P since b1 ∈ L1,PR1
(R1).

To tackle the next layer, we define L̃ : R1 ×R2 → [0,∞) by

L̃(y,z) := L(y, f1(z)).

We proceed by showing that L̃ is a P-integrable and 1-times differentiable Nemitski vector loss. Then we
show that we can use analogous techniques as in [24] - but for vector-valued functions - to ensure the
representation (14) for l = 2. These arguments can then be iterated until we reach the innermost layer and
the proof is completed. Since the details are quite technical, we outsourced them into appendix 5.

Theorem 2 states that the solution fl in the l-th layer of (13) is an element of the range of the integral
operator defined by the kernel Kl (·, fl+1 ◦ . . . ◦ fL(·)) : Dl × Ω → Rdl×dl . Note that the statement of
theorem 1 can be derived by choosing a sum of finitely many Dirac measures δxi,yi as P in theorem 2. In
this special case, the result boils down to fl being in the span of the kernel evaluations in the data points.
Note furthermore that - in contrast to the finite sample case - fl is defined as a convolution with the
asymmetric kernel in (14). This can be interpreted as a smoothing step for many kernel choices. In this
sense, we can expect the solutions fl of (13) to employ a higher degree of smoothness than in the case of
(7), where the solutions are only finite linear combinations of kernels. However, this of course comes at the
cost of the regularity condition on the kernels in the requirements of theorem 2.

3.3 Relation to neural networks and deep learning

We now come back to the finite sample case in this section and discuss the relation of our representer theorem
1 to two of the most common approaches in deep learning with kernels, namely multi-layer multiple kernel
learning (MLMKL) and deep kernel networks (DKN), see e.g. [5, 7, 21, 25, 27, 28]. For reasons of simplicity,
we restrict ourselves to the two-layer case L = 2 here.

3.3.1 Relation to hidden layer neural networks

Let us first illustrate how our approach can be encoded as a hidden layer feed-forward neural network. The
idea behind artificial neural networks is the same as for multi-layer kernel learning, namely using concate-
nations of functions to compute good approximations. More precisely, the so-called universal approximation
theorem states that already a two-layer neural network can approximate any continuous function arbitrarily
well, see [6,15]. For more details on artificial neural networks and deep learning, we refer the reader to [12].

As mentioned in the two-layer case above, we are aiming to find a function h(·) = f1◦f2(·) =
∑N
j=1 αjK2(xj , ·)

with f1 ∈ H1 and f2 ∈ H2 and associated K1 and K2, respectively, where the kernel K2 is given by (11).
The construction of h can be easily encoded as a feed-forward neural network with one hidden layer if K1

is a radial basis function (RBF) kernel for instance2. We illustrate3 the case d2 = 1 with an RBF kernel
K1(z1, z2) = a(|z1− z2|) for some function a : R→ R in Figure 2. The first layer is split into the input layer
with values K2(xi,x) for i = 1, . . . , N and an artificial “always on” layer with neuron-clusters that supply
the constant values K2(xi,xj) with weights −cj for i, j = 1, . . . , N . Note that the i-th cluster K2(xi,xj) of
the “always on” layer is only connected to the i-th neuron of the hidden layer. Note furthermore that the
inputs K2(xi,x) can also easily be computed by a neural network with fixed weights if K2 is a radial basis
kernel. If we consider a “deeper” concatenation, we would need a deeper neural network with additional
layers, i.e. for f1 ◦ . . . ◦ fL, we need L− 1 hidden layers.

2For many other types of kernels, e.g. tensor products of RBF kernels, one can still construct a more complex Sigma-Pi
neural network for the computation of the output values.

3Note that we only choose d2 = 1 for illustrative reasons. For d2 > 1, a neural network can be built analogously with an
additional hidden layer to compute the norm of the difference of d2-dimensional vectors. However, this additional layer, which
just computes ‖x − y‖2 for given x and y, has fixed weights and does not play any role for the optimization of the neural
network.

9

Figure 2: A hidden layer, feed-forward neural network to simulate the concatenation of two functions f1 and
f2 from reproducing kernel Hilbert spaces. For reasons of readability, we choose d2 = 1 and write ci := ci,1.
The outer kernel is K1(z1, z2) = a(|z1 − z2|). Note that the i-th artificial “always on” neuron-cluster in
the lower half of the first layer is written as K2(xi,xj), which stands for N single neurons with values
K2(xi,x1), . . . ,K2(xi,xN). The cluster K2(xi,xj) is only connected to the i-th neuron of the hidden layer

with weights −cj (red lines). This means that the value
∑N
j=1−cjK2(xi,xj) is forwarded to the i-th neuron

of the hidden layer.

3.3.2 Relation to multi-layer multiple kernel learning

The common idea in MLMKL methods is to learn a kernel K̃, which consists of a chain of linear combinations
of functions and an inner kernel, e.g.

K̃(x,y) =

n1∑
`=1

ν1,`k1,`

(
n2∑
i=1

ν2,iK2,i(x,y)

)

in the two-layer case, where k1,` are real-valued functions for ` = 1, . . . , n1 and K2,i are different scalar-

valued kernels for i = 1, . . . , n2. Note that the functions k1,` are chosen such that K̃ is still a kernel. In
the case of linear k1,`, [9] has shown that the resulting algorithm becomes a standard MKL procedure and
can be interpreted as a two-layer kernel network with a linear outer kernel. However, for arbitrary k1,` this
is not the case and we are dealing with a true MLMKL approach. The specific MLMKL algorithm then
aims to find the optimal values for the coefficients ν1,`, ν2,i in order to determine the best K̃ for a regression
of the given data X and Y with e.g. a support vector regression algorithm. Note that the kernels and the
k-functions are usually chosen heuristically, e.g. as polynomials, Gaussians, sigmoidals, etc., see [21,28].
To apply our result to the two-layer MKL method above, let us consider the case n1 = 1 and n2 = N . We
set ν1,1 = 1 without loss of generality. We let the outer function k1,1(z) = a(|z|) be the radial basis function

10

used for the outer kernel (i.e. middle layer) in Figure 2. Furthermore, we set

K2,i(x,y) := K2(xi,x)−K2(xi,y).

Note that the K2,i are no longer kernels anymore in this setting. However, they are now directly connected
to our concatenated function learning approach since

K̃(x,y) = k1,1

(
N∑
i=1

ν2,iK2,i(x,y)

)
= a

(∣∣∣∣∣
N∑
i=1

ν2,iK2(xi,x)− ν2,iK2(xi,y)

∣∣∣∣∣
)

= K1

(
N∑
i=1

ν2,iK2(xi,x),

N∑
i=1

ν2,iK2(xi,y)

)
= K2 (x,y)

from (11) with ci = ν2,i and the kernels K1 and K2 used in Figure 2. Altogether, we thus see that an
MLMKL algorithm with these parameters already determines the optimal solution (provided that the right
hand side of (9) is solved exactly) among all functions of type h = f1 ◦ f2 with f1 ∈ H1 and f2 ∈ H2

according to Theorem 1. This way, our representer theorem for concatenated functions directly applies to
a special case of MLMKL networks. Note however that a generalization of our arguments to more layers,
i.e. L > 2, is not straightforward for MLMKL.

3.3.3 Relation to deep kernel learning approaches

The class of DKN methods consists of algorithms which build a kernel by nonlinearly transforming the input
vectors before applying an outer kernel function. This is in contrast to the MLMKL approach, where only
the innermost function is a two-variate kernel and its evaluations are modified by some nonlinear outer
functions. The models in this class range from simple feature map powers for some function Ψ, i.e.

K̃(x, y) = Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
L−1 times

(x) ·Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
L−1 times

(y),

see [5], to more general variants like

K̃(x, y) = K (f2 ◦ . . . ◦ fL(x), f2 ◦ . . . ◦ fL(y))

with nonlinear functions f2, . . . , fL, see [27]. If we assume that fl ∈ Hl for l = 2, . . . , L stem from reproducing
kernel Hilbert spaces with associated kernels Kl, we can apply Theorem 1 to this approach and obtain that
each fl can be written as a finite linear combination of evaluations of the kernel Kl. Thus, we can directly
apply our representer theorem for L-layer DKN algorithms.

3.4 The two-layer interpolation problem

After analyzing the general multi-layer kernel concatenation problem in Theorem 1, we now have a closer,
more detailed look at the main component of it, namely the concatenation of two functions. To this end,
we specifically consider the interpolation problem for L = 2. This simple, illustrative setting gives further
insights into the way concatenation works in machine learning problems.

3.4.1 Definition of the problem

We slightly adapt our notation to this special case to obtain a direct relation to the single-layer interpolation
problem from Section 2. To this end, let D := d2 and consider the domain Φ := D1 ⊆ RD together with the
two function spaces

H (Φ,R) := H1 ⊂ C(Φ) := {f : Φ→ R | f continuous} – “outer” space,

H (Ω,Φ) := H2 ⊂
{
g = (g1, . . . , gD)

T
: Ω→ Φ | g continuous

}
– “inner” space.

11

Both spaces are supposed to be reproducing kernel Hilbert spaces, i.e. there is an (outer) kernel K := K1 :
Φ× Φ→ R for H (Φ,R) such that

K (x, ·) ∈ H (Φ,R) for all x ∈ Ω,

f (x) = (f,K (x, ·))H(Φ,R) for all x ∈ Ω and all f ∈ H (Φ,R) .

The function space H (Ω,Φ) is assumed to be a vector-valued RKHS, i.e. there is an (inner) kernel K :
Ω× Ω→ RD×D such that

K (x, ·) c ∈H (Ω,Φ) for all x ∈ Ω and all c ∈ RD,
cTg (x) = (g,K (x, ·) c)H(Ω,Φ) for all x ∈ Ω, all c ∈ RD and all g ∈H (Ω,Φ) .

To formulate the concatenated interpolation problem in the spirit of (1), we have to define an appropriate
functional and propose an appropriate search set for the minimization task. To this end, we consider the
functional J : H (Φ,R)×H (Ω,Φ)→ R given by

J (f, g) := ‖f‖2H(Φ,R) + ‖g‖2H(Ω,Φ) ,

which penalizes the norms of both the outer and the inner function, and the admissible set

AX,Y := {(f, g) ∈ H (Φ,R)×H (Ω,Φ) | f ◦ g (xj) = yj 1 ≤ j ≤ N} ⊂ H (Φ,R)×H (Ω,Φ) ,

i.e. the set of all concatenations of functions from H (Φ,R) and H (Ω,Φ) which interpolate the data. With
this notation, we can define the following variational optimization problem

J (f, g)→ min for (f, g) ∈ AX,Y (P)

As explained in Section 2, the solution f∗X,Y to the standard interpolation problem (1) can be computed by
solving the system (3) of linear equations for a given set of fixed and pairwise disjoint input data points
X := {x1, . . . ,xN}. Therefore, if we assume for a moment the inner function g in (P) to be fixed and
Z := g(X) = {zi = g(xi) | i = 1, . . . , N}, then we obtain that the solution f∗Z,Y to (1) with data points Z is
the only admissible minimizer of the concatenated interpolation problem (P), i.e.

f∗Z,Y = arg min
f∈{h∈H(Φ,R)|(h,g)∈AX,Y }

‖f‖2H(Φ,R).

Note that the coefficients α∗ ∈ RN of f∗Z,Y =
∑N
i=1 α

∗
iK(zi, ·) can be computed by solving the system

MZ,Zα
∗ = y

and the value of the optimal energy, i.e. the squared norm, is given by∥∥f∗Z,Y ∥∥2

H(Φ,R)
= α∗TMZ,Zα

∗ = yTM−1
Z,Zy.

3.4.2 Application of the representer theorem

In order to rewrite the concatenated interpolation problem (P) into an unconstrained minimization problem
by applying the above result, we first have to discuss what happens if g (xj) = g (xk) for two indices j 6= k.
If equality holds also for the corresponding values from Y , i.e. yj = yk, we can simply remove the pair
(xj , yj) ∈ X × Y from the input data and with it also the corresponding condition from the admissible set.
However, if yj 6= yk, there cannot be an f ∈ H (Φ,R) such that (f, g) ∈ AX,Y . In this case, we simply set
J (f, g) =∞. Using this convention, we can recast (P) into the unrestricted optimization problem

J
(
f∗g(X),Y , g

)
= yTM−1

g(X),g(X)y + ‖g‖2H(Ω,Φ) → min for g ∈H (Ω,Φ) . (uP)

12

Therefore, we only have to consider the minimization with respect to g ∈H (Ω,Φ) since the optimal outer
function f∗g(X),Y is completely determined by the inner function values g(X) and Y .

Note that the side condition g (xj) 6= g (xk) for j 6= k can also be enforced by adding a penalty term of
type

∑
i<jW

(
‖g(xi)− g(xj)‖22

)
to J , where W is a smooth function with W (0) =∞, e.g. W (x) = coth(x).

This can also remedy the problem of small condition numbers of Mg(X),g(X) for large sample sizes since it
maximizes distances between the point evaluations of g. Adding this to (uP), we obtain

Jγ

(
f∗g(X),Y , g

)
:= J

(
f∗g(X),Y , g

)
+ γ

∑
1≤i<j≤N

coth
(
‖g(xi)− g(xj)‖22

)
(15)

→ min for g ∈H (Ω,Φ) .

However, since using J0 = J in our experiments in Section 4 works out already well and the side condition
does not seem to affect the results for moderate sample sizes, we restrict ourselves to the problem (uP) in
the following.
Although the above considerations seem to simplify the concatenated interpolation problem, we still have
to solve a highly nonlinear optimization problem over the (possibly) infinite-dimensional RKHS H (Ω,Φ).
Nonetheless, by applying Theorem 1 to the unrestricted concatenated interpolation problem (uP), we can
restrict the search space H (Ω,Φ) to the span of the kernel translates in the input data.

Corollary 3. Let VX := span{K(xi, ·)ej | i = 1, . . . , N and j = 1, . . . , D}, where ej denotes the j-th unit
vector in RD. Then, the solution g∗ to the unconstrained concatenated interpolation problem (uP) fulfills
g∗ ∈ VX .

Proof. We apply Theorem 1 with L = 2, Θ1(x) = Θ2(x) = x and

L (yi, f ◦ g(xi)) =

{
0 if f ◦ g(xi) = yi
∞ else,

which exactly resembles the interpolation problem (uP).

Due to Corollary 3, we can recast the unrestricted concatenated interpolation problem (uP) into

J
(
f∗g(X),Y , g

)
= yTM−1

g(X),g(X)y + ‖g‖2H(Ω,Φ) → min for g ∈ VX ⊂H (Ω,Φ) . (uP-X)

This is a nonlinear, finite-dimensional and unrestricted optimization problem. We fix the kernel basis
{K (xj , ·) e` | (j, `) ∈ I} with I :=

{
(j, `) ∈ N2 | 1 ≤ j ≤ N, 1 ≤ ` ≤ D

}
to solve (uP-X). Then, the optimal

solution can be written as
g∗(·) =

∑
(j,`)∈I

c∗j,`K (xj , ·) e`. (16)

In order to express the minimization problem (uP-X) with respect to the coefficients c∗ =
(
c∗1,1, . . . , c

∗
N,D

)T
,

we introduce

QX,X (c) = Mg(X),g(X) =

K
 ∑

(j,`)∈I

cj,`K (xj ,xn) e`,
∑

(j,`)∈I

cj,`K (xj ,xm) e`

1≤n,m≤N

(17)

and the corresponding quadratic form

Q : RND → R, c 7→ yTQX,X (c)
−1
y.

13

Furthermore, to express ‖g∗‖2H(Ω,Φ) with respect to c∗, we need

N : RND → R, c 7→
N∑

j,k=1

 cj,1
...

cj,D

T

K (xj ,xk)

 ck,1
...

ck,D

 . (18)

Finally, we obtain the finite-dimensional optimization problem

c∗ = arg min
c∈RND

Q (c)︸ ︷︷ ︸
‖f∗

g(X),Y
‖2
H(Φ,R)

+ N (c)︸ ︷︷ ︸
‖g‖2

H(Ω,Φ)

. (Int)

3.4.3 Solving the minimization problem

The unconstrained problem (Int) is highly nonlinear because the coefficients cj,` are transformed by the
outer kernel function K. It can be tackled by any suitable iterative optimization algorithm. If the kernels K
and K are differentiable, a quasi-Newton approach is appropriate. If this is not the case, a derivative-free
optimizer should be chosen.
Note that we can restrict the minimization in (Int) to a compact subset of RND without loss of generality.
To this end, let K ∈ RND×ND be the N ×N matrix of matrices K(xi,xj) ∈ RD×D and note that

Q(c) +N (c) ≥ 0 + λmin (K) · ‖c‖22
‖c‖2→∞−→ ∞,

where λmin (K) > 0 denotes the smallest eigenvalue of K. Therefore, we can restrict our search to the
compact set A :=

{
c ∈ RND | ‖c‖2 ≤ C

}
for a large enough C > 0. Unfortunately, we cannot directly

obtain the existence of a minimizer from this since (Int) is not continuous. However, if we add a smooth
term

Pγ(c) = γ
∑

1≤m<n≤N

coth
(
‖g(xm)− g(xn)‖22

)

= γ
∑

1≤m<n≤N

coth

∥∥∥∥∥∥
∑

(j,`)∈I

cj,` (K (xj ,xm)−K (xj ,xn)) e`

∥∥∥∥∥∥
2

2

 ,

which is equivalent to (15), for γ > 0, we can deduce the existence of a minimizer with the direct method
from the calculus of variations. To this end, note that for a minimizing sequence (ci)

∞
i=1 of Q + N + Pγ ,

there necessarily exist i0 ∈ N and C0 > 0 such that all mutual squared distances ‖g(xm)− g(xn)‖22 with
1 ≤ m < n ≤ N are larger than C0 for all ci with i > i0. Therefore, we can restrict the minimization to the
compact subdomain

A ∩
{
c ∈ RND | ‖g(xm)− g(xn)‖22 ≥ C0 for 1 ≤ m < n ≤ N

}
,

on which Q+N +Pγ is continuous, and the existence of a minimizer follows. Nevertheless, as we explained
above, the critical condition Pγ(c) =∞ is practically never met for moderate data set sizes and, therefore,
it is safe to assume that there also exists a minimizer for (Int). Note however that, depending on the kernels
and the data at hand, there usually might exist many minimizers and the solution to (Int) might not be
unique. To reduce the chance of getting stuck in a local minimum, we propose to restart the minimization
procedure several times with different starting values for c∗.
Since we will be dealing with differentiable kernel functions in Section 4 and since the derivatives of these
kernels can be computed explicitly, we propose a BFGS minimization algorithm to solve (Int). To this end,

14

note that the only derivatives we need are essentially the derivative of the inverse of QX,X(c), i.e.

∂

∂cm,n
Q−1
X,X(c) = −Q−1

X,X(c)
∂

∂cm,n
QX,X(c)Q−1

X,X(c),

and the derivative of QX,X(c). The latter consists of the derivative of the outer kernel K, which is known
analytically for all kernel choices that we discuss in Section 4, and

∂

∂cm,n
g(x) =

∂

∂cm,n

∑
(j,`)∈I

cj,`K (xj ,x) e` = K (xm,x) en

for each (m,n) ∈ I. The overall computational cost complexity for one BFGS step, i.e. the evaluation of
Q,N and their derivatives, is bounded by O

(
N3D + (ND)2

)
.

3.5 Two-layer Least-squares regression

After the discussion of the two-layer interpolation problem in the last section, we now consider the regularized
two-layer least-squares problem in more detail. This is a natural extension of the two-layer least-squares
problem RLS2 considered in [9] to the case of nonlinear outer kernels.

3.5.1 Definition of the problem

For concatenated, regularized least-squares regression, the minimization task changes to

Jλ,µ (f, g) :=

N∑
j=1

|f ◦ g (xj)− yj |2 +λ ‖f‖2H(Φ,R) + µ ‖g‖2H(Ω,Φ) (R)

→ min for f ∈ H (Φ,R) , g ∈H (Ω,Φ)

with λ, µ > 0, which is in the same fashion as the standard least-squares regression problem (5).
Analogously to our considerations in Section 3.4, we find that, for fixed inner points Z = g(X) ⊂ Φ, the
function fλZ,Y , see (5), is the solution of the problem

N∑
j=1

|f(zj)− yj |2 + λ ‖f‖2H(Φ,R) → min for f ∈ H (Φ,R) .

The corresponding coefficients αλ ∈ RN with respect to the basis {K(zj , ·) | j = 1, . . . , N} are computed
by solving

(MZ,Z + λI)αλ = y.

Therefore, each of the terms of the optimal energy can be expressed as∥∥fλZ,Y ∥∥2

H(Φ,R)
= αλ

T
MZ,Zα

λ = yT (MZ,Z + λI)
−1
MZ,Z (MZ,Z + λI)

−1
y,

N∑
j=1

∣∣fλZ,Y (zj)− yj
∣∣2 =

∥∥MZ,Zα
λ − y

∥∥2

2
=
∥∥∥(I −MZ,Z (MZ,Z + λI)

−1
)
y
∥∥∥2

2
.

15

3.5.2 Application of the representer theorem

Analogously to (uP), we can use

Jλ,µ

(
fλg(X),Y , g

)
= λyT

(
Mg(X),g(X) + λI

)−1
Mg(X),g(X)

(
Mg(X),g(X) + λI

)−1
y

+ µ ‖g‖2H(Ω,Φ) +
∥∥∥(I −Mg(X),g(X)

(
Mg(X),g(X) + λI

)−1
)
y
∥∥∥2

2
(19)

to reformulate (R) as

Jλ,µ

(
fλg(X),Y , g

)
→ min for g ∈H (Ω,Φ) . (uR)

Corollary 4. The solution gλ,µ to the unconstrained concatenated regression problem (uR) fulfills gλ,µ ∈ VX .

Proof. We apply Theorem 1 with L = 2, Θ1(x) = λ · x, Θ2(x) = µ · x and

L (yi, f ◦ g(xi)) = |f ◦ g (xi)− yi|2 ,

which resembles the regression problem (R).

Hence, as for interpolation, we obtain a representer theorem for concatenated least-squares regression, which
allows us to replace the infinite-dimensional optimization problem (R) with the finite-dimensional problem

Jλ,µ

(
fλg(X),Y , g

)
→ min for g ∈ VX ⊂H (Ω,Φ) . (uR-X)

Finally, we want to express (uR-X) in terms of the coefficients cλ,µ =
(
cλ,µ1,1 , . . . , c

λ,µ
N,D

)T
of gλ,µ with respect

to the basis {K (xj , ·) e` | (j, `) ∈ I}. To this end, we set A :=
(
QX,X (c) + λI

)−1
and define the quadratic

forms

Qλ : RND → R, c 7→ λ · yTAQX,X (c)Ay,

N µ : RND → R, c 7→ µ · N (c) and

Cλ : RND → R, c 7→ yT
(
I −QX,X (c)A

)T (
I −QX,X (c)A

)
y

with the help of (17) and (18). Subsequently, we arrive at the optimization problem

cλ,µ = arg min
c∈RND

Qλ (c) +N µ (c) + Cλ (c) , (Reg)

which is the equivalent to (uR-X).

3.5.3 Solving the minimization problem

Note that the existence of a minimizer follows by similar arguments as in the previous section for the
interpolation problem, i.e.

Qλ (c) +N µ (c) + Cλ (c) ≥ µ · λmin (K) · ‖c‖22
‖c‖2→∞−→ ∞

and we can thus restrict the search for a minimizer to a compact subset of RND. For regression we need the
inverse of QX,X(c) + λI to compute Qλ, which is positive definite for every λ > 0 and, therefore, there are

no pathological cases as in the interpolation setting. Thus, the functions Qλ,N µ, Cλ are continuous and the
minimization of (Reg) over a compact subset of RND has a minimizer. Nevertheless, also in this case the
minimizer is not necessarily unique.

16

While the optimization for the coefficients in the RLS2 algorithm proposed in [9] boils down to a simplex-
constrained linear least-squares problem, we have to deal with a high degree of nonlinearity here. Neverthe-
less, if the kernel functions are differentiable, we can again - as in the interpolation case - employ a BFGS
algorithm with several restarts to approximately find the optimal coefficients cλ,µ. To this end, note that Qλ
and N µ can be computed similarly as Q and N in the interpolation case. Furthermore, also the derivative
of Cλ can be computed with the same techniques since we essentially only need the derivatives of QX,X(c)

and
(
QX,X (c) + λI

)−1
. While the number of terms is larger than in the interpolation case, the asymp-

totic computational runtime is still bounded by O
(
N3D + (ND)2

)
. Furthermore, the condition number

of the matrix QX,X (c) + λI is smaller than the one of QX,X , which had to be inverted for interpolation.

Therefore, computing Qλ(c) with an iterative solver for the application of
(
QX,X (c) + λI

)−1
needs fewer

computational steps than computing Q(c) in the interpolation case.
Finally, let us remark that for both interpolation and least-squares regression there exists another possibil-
ity to obtain a finite-dimensional optimization problem from (P) and (R), respectively, without using the
representer theorem. We could discretize the functions f1 ∈ H1 and f2 ∈ H2 by f̃1 ∈ V1 and f̃2 ∈ V2 with
finite-dimensional spaces V1, V2, see e.g. [3] for an error analysis of this scenario for single-layer regression.
However, when following this approach, the choice of the specific discretization can severely influence the
results of the minimization. Furthermore, we are limited by the size of the dimensions of the discretization
spaces V1, V2, which influences the computational costs for solving the underlying optimization problem.

4 The effects of concatenated learning

This section serves to illustrate the main operating principle behind the concatenated interpolation and
regression algorithms presented in the previous section. Note that our brief considerations in this section
are not meant to provide a thorough numerical analysis of the performance of the algorithms but are rather
thought to aid the understanding of their internal mechanisms. For benchmarks of highly performant variants
of our basic algorithms on real-world data we refer the interested reader to [7, 21,28].

4.1 Kernel choice

For reasons of simplicity, we will stick to the two-layer case and to outer function spaces H (Φ,R) with
associated kernel K which are defined on the whole space RD. This way, the image Φ of the inner function
space is automatically contained in the domain of the outer function space. Furthermore, if not stated
otherwise, we assume that the matrix-valued kernel K : Ω×Ω→ RD×D of the inner RKHS can be written
as

K(x,y) = KI(x,y) · diag(a) (20)

for some weight vector a ∈ RD+ . Here, diag(a) denotes the diagonal matrix A with Aii = ai and KI :
Ω× Ω→ R is a scalar-valued kernel function.
Possible outer and inner kernel functions K and KI are the polynomial kernel

KPoly,p(x,y) :=
(
xTy + 1

)p
,

the Gaussian kernel

KGauss,σ(x,y) := exp

(
−‖x− y‖

2

2σ2

)
and the tensor-product Matérn kernel

KTensorMatérn,s(x,y) :=

d∏
i=1

κ 2s−1
2

(|xi − yi|) · |xi − yi|
2s−1

2 .

17

where κα denotes the modified (hyperbolic) Bessel function of the second kind with parameter α. Note that
the latter characterizes the Sobolev space of dominating mixed smoothness of order s ∈ N, see e.g. [10, 13]
for a bi-variate version. These Sobolev spaces play an important role for hyperbolic cross or sparse grid
approximations for instance, see e.g. [4]. Note that the Gaussian kernel is already a tensor product kernel
by nature.

4.2 Experiment design

Let us choose Ω = [−1, 1]2. We will evaluate our method for the two test functions

h1 : Ω→ R h1(x, y) := (0.1 + |x− y|)−1

h2 : Ω→ R h2(x, y) :=

{
1 if x · y > 3

20
0 else

.

The function h1 employs a kink-like structure along the diagonal of the domain, while h2 represents an
indicator function with a jump. Neither of these two functions is an element of a reproducing kernel space
spanned by any of the above kernel functions for arbitrary parameters p, s ∈ N, σ ∈ (0,∞). Therefore they
cannot be approximated too well by a single-layer method. The approximation of such functions with kinks
or jumps by (a composition of) smooth functions plays an important role in applications from econometrics,
finance or two-phase flow problems for example.
We choose D = d = 2, i.e. Ω,Φ ⊂ R2, and a = (1 1)T . Then, we independently draw N = 100 random
equidistributed points {x1, . . . ,xN} ⊂ Ω and set yi := h∗(xi) + εi for all i = 1, . . . , N for the function
h∗ ∈ {h1, h2}. Here, εi are additive noise perturbations which are drawn i.i.d. according to a centered
Gaussian distribution with standard deviation 0.01. To solve (Int) or (Reg), respectively, we use a BFGS
algorithm with random initialization of the coefficient vector c of the inner function, see also (16). As the
goal functions employ many local minima, we run the algorithm sufficiently many times to achieve a good
approximation to the global minimum. It turned out that 64 runs were sufficient for our case of 100 data
points in 2 dimensions. From the 64 runs we pick the vector c (and with this the functions f and g) for
which the smallest goal function value in (Int) or (Reg), respectively, is achieved.
To be able to compare our computed f(g(·)), which approximates the true solution f∗g(X),Y (g∗ (·)) or

fλg(X),Y

(
gλ,µ(·)

)
, respectively, to the result of a standard kernel interpolation/regression, we also calcu-

late the interpolant/regressor w ∈
{
f∗X,Y , f

λ
X,Y

}
. This resembles the solution to (1) or (5), respectively,

for the reproducing kernel Hilbert space H(Ω,R) which employs the same kernel type and parameters as
H (Φ,R) but on the domain Ω instead of Φ. We then define ti, i = 1, . . . , nt, as the points of a uniform grid
of meshwidth 1

50 over Ω = [−1, 1]2, i.e. nt = 1012, and consider the pointwise error

| (f ◦ g − h∗) (ti)| and | (w − h∗) (ti)|,

which we visualize in a two-dimensional contour plot.

4.2.1 Interpolation

We first compare the results for two-layer interpolation, see (Int), with the results for single-layer interpola-
tion, see (1). To this end, we choose an outer Matérn kernel K = KTensorMatérn,s with s = 1 and an inner
polynomial kernel KI = KPoly,p with p = 1 or p = 2. In Figure 3 we display the pointwise errors. We
observe that there is a visible improvement in the error when dealing with two-layer interpolation instead
of single-layer interpolation. While the benefits of two-layer interpolation are already observable for the test
function h2, they become even more obvious for h1. As explained in the beginning of Section 3, the fact
that the kink of h1 is not parallel to a coordinate axis poses a problem when dealing with the tensor-product
kernel. Since a linear transformation (rotation) would suffice to remedy this problem, the polynomial kernel

18

Figure 3: The pointwise error for standard interpolation with w = f∗X,Y (left) and for concatenated interpo-
lation with outer kernel KTensorMatérn,1 and inner kernel KPoly,1 (mid) or KPoly,2 (right), respectively. We
plotted both, the error for h1 (top) and h2 (bottom). The color scale ranges from blue (0% error) to red
(more than 10% error), where the percentage has to be understood with respect to the ‖ · ‖L∞ norm of h1

or h2, respectively.

of degree p = 1 already suffices to obtain a better error behavior. Therefore, p = 2 can already lead to a small
overfitting effect as we observe in Figure 3. Nevertheless, the error is still significantly better than in the
single-layer case. In the case of h2, however, we have a jump along two nonlinear curves. Here, p = 2 seems
to be more appropriate to deal with this problem. Overall, we come to the conclusion that interpolation
in reproducing kernel Hilbert spaces can significantly benefit from a two-layer approach if the reproducing
kernel at hand does not suit the underlying function.

4.2.2 Regression

Now we have a look at solving the least-squares regression problem (Reg). To determine the optimal
parameters λ and µ, we run a 5-fold cross-validation on the input data for all possible choices λ, µ ∈
{2−2t+1 | t = 1, . . . , 10}. Subsequently, we use the parameter pair (λ, µ) for which the smallest function
value of (Reg) is achieved and run the regression algorithm on the whole input data set to obtain our final
results. We compare the two-layer case with the single-layer regression, see also (5), with the parameter λ,
which achieves the smallest error, i.e. we compare to the best possible single-layer solution.
Since the results for interpolation and least-squares regression with the same kernel choices as above happen
to be similar, we employ an outer kernel of Gaussian type K = KGauss,σ with σ = 0.1 instead of Matérn
type here. For the inner kernel we again choose KI = KPoly,p with p = 1, 2. As we observe in Figure 4, there
is a significant improvement of the two-layer approach over the single-layer one. Note that we deliberately
employ the kernel width σ = 0.1, which appears to be too small for single-layer regression. However, the
two-layer approach seems to remedy this bad choice automatically by adjusting the inner transformation
accordingly. In this regard, the algorithm can also be understood as an implicit hyperparameter tuner.

19

Figure 4: The pointwise error for standard least-squares with w = fλX,Y (left) and for concatenated least-
squares with outer kernel KGauss,0.1 and inner kernel KPoly,1 (mid) or KPoly,2 (right), respectively. We
plotted both, the error for h1 (top) and h2 (bottom). The color scale ranges from blue (0% error) to red
(more than 10% error), where the percentage has to be understood with respect to the ‖ · ‖L∞ norm of h1

or h2, respectively.

4.2.3 Linear outer kernel

In this section, we again want to emphasize the difference of our approach, which allows for nonlinear outer
kernels, to the MKL-type RLS2 algorithm of [9], where only a linear outer kernel is considered and the inner
kernel is given by a diagonal matrix with its entries being different scalar-valued (nonlinear) kernels. To this
end, we run our two-layer least-squares regression approach for the following two settings:

(1) Outer polynomial kernel K = KPoly,1 of order 1, inner mixture kernel K(x,y),

(2) Outer Matérn kernel K = KTensorMatérn,1 of order 1, inner mixture kernel K(x,y).

For the inner mixture kernel, we deviate from (20) and from D = 2 here. To this end, we set D = 5 and
use a diagonal kernel K with different scalar-valued kernels as entries. For the five scalar-valued kernels we
choose three Gaussian kernels KGauss,σ with σ = 0.1, 1, 10 and two polynomial kernels KPoly,p with p = 1, 2.
Setting (1) serves to represent the RLS2 algorithm4, where similar choices for the inner kernel have been
made, see [9]. To determine the optimal parameters λ, µ ∈ {10−2t+1 | t = 1, . . . , 6}, we again run a 5-fold
crossvalidation5. The results can be found in figure 5. As we have already seen for interpolation, the structure
of the function h1 admits a good representation by a two-layer kernel discretization of type (2). However,
despite the quite generic choice of the inner kernel in setting (1), the two-layer kernel approach with a linear
outer kernel is not able to find a good representation of the function. This shows that a nonlinear choice for
the outer kernel can be necessary to find suitable approximations by the two-layer algorithm. Although the
results do not differ that much for h2, we again see that there is a slight advantage in approximating with a
nonlinear outer kernel.

4Note however that we did not use a diagonal scaling of the linear kernel and our optimization algorithm is different from
the one used in [9], which is adjusted to the problem with a linear outer kernel.

5Note that we scan a coarser (but wider) range than in the previous section, which seemed to be appropriate here.

20

Figure 5: The pointwise error for standard least-squares with Matérn kernel and w = fλX,Y (left) and for
concatenated least-squares with setting (1) (mid) and setting (2) (right) from section 4.2.3. We plotted both,
the error for h1 (top) and h2 (bottom). The color scale ranges from blue (0% error) to red (more than 10%
error), where the percentage has to be understood with respect to the ‖ · ‖L∞ norm of h1 or h2, respectively.

4.3 Transformation by the inner function

To get a better impression on how the two-layer algorithms work, we exemplarily inspect the inner function
g in the case of interpolation with K = KTensorMatérn,s for s = 1 and KI = KPoly,p for p = 1 or p = 2, i.e. for
the setting from Section 4.2.1. To this end, we depict isotropic grid points in Ω = [−1, 1]2 and have a look
at how these points are transformed by g in Figure 6.
We observe that for h1 in both cases p = 1 and p = 2, the inner function aligns the kink almost perpendicular
to the y-axis. Therefore, one can easily characterize the kink by the y-coordinate after the inner transfor-
mation. This reduces the original two-dimensional kink description x − y = 0 to just the one-dimensional
description y = 0. While the function with the kink along the diagonal does not reside in the tensor-product
Matérn space of order 1, which corresponds to the outer kernel in this example, a function with a kink
parallel to one of the coordinate axes does. Therefore, the inner function g transforms the domain in such
a way that the result resides in the RKHS to which the outer function belongs.
Considering the test function h2, we see that a linear inner transformation, i.e. p = 1, essentially just rotates
and shears the domain and does not change the alignment of the jump very much. However, in the case
p = 2, the inner function g manages to transform the domain in such a way that the jump is now almost
parallel to the y-axis. We observe that the pointwise errors in Figure 3 really benefit from this transformation
and the jump is resolved almost perfectly. Overall, we see that the inner function g tries to align the features
of the original test function in such a way that they can be easily resolved by the outer function f .

5 Conclusion

In this paper, we presented both a finite- and an infinite-sample representer theorem for concatenated
machine learning problems. In the finite-sample case, the statement essentially boils down to the fact that the
a priori infinite-dimensional optimization problem, which appears when dealing with function compositions
from reproducing kernel Hilbert spaces, can be recast into a finite-dimensional optimization problem, where

21

Figure 6: The transformation of the isotropic grid points (left) by the inner function with p = 1 (mid) and
p = 2 (right). The underlying problem is interpolation of h1 (top) and h2 (bottom) for the outer kernel
KTensorMatérn,1 and the inner kernel KPoly,p. The color scale represents the values of h1 or h2, respectively.

we only have to deal with at most N kernel translates in each layer of the composition. Here, N denotes the
number of input data points. In the infinite-sample case, we derived an analogous result stating that the
solution in each layer is an element of the image space of the integral operator defined by the corresponding
kernel evaluated at the innermost functions. We introduced a simple neural network architecture, which
represents the concatenated functions we are dealing with. Furthermore, we established a connection between
our representer theorem and two types of state-of-the-art deep learning algorithms, namely multi-layer
multiple kernel learning and deep kernel networks. Finally, we presented a detailed analysis on a two-
layer interpolation and a two-layer least-squares regression algorithm, which can directly be derived from
our representer theorem. We illustrated the operating principles of these algorithms with the help of two
artificial test functions and explained why the two-layer approach is able to remedy the shortcomings of a
single-layer variant. Furthermore, we highlighted that the use of a nonlinear outer kernel, instead of a linear
one as in [9], can be inevitable to obtain good two-layer approximations. Nevertheless, the nonlinearity of
the outer layer makes the numerical treatment of the underlying optimization problem more difficult.
While we presented specific two-layer (L = 2) algorithms and applied them to two-dimensional (d = 2)
toy problems for illustrative reasons, our representer theorems can also be applied in the high-dimensional
case with an arbitrary number of layers. Note furthermore that, apart from interpolation and least-squares
regression, also more general choices of the loss function L and the regularizers Θl are allowed in (7).
Therefore, one can also think of multi-layer support vector machines for instance. The construction of
such efficient deep kernel learning algorithms for high-dimensional problems and a thorough analysis of the
interplay between the number of layers L and the dimension d will be future work.

Appendix A: Remainder of the proof of theorem 2

To continue the proof of theorem 2, we note that we already showed that f1 has the desired structure (14).
Let us assume we have shown (14) for all f1, . . . , fl−1 for an l ∈ {2, . . . , L}. To obtain (14) for fl, we
proceed in the same fashion as in the first part of the proof in section 3.2. To this end, we now define

22

Jgl+1,...,gL : Hl → [0,∞) by

Jgl+1,...,gL(gl) :=

∫
Rl+1×R1

L̃l (y, gl(ξ)) dGl,?(P)(ξ, y) + λl‖gl‖2Hl
,

where L̃l(y,z) := L(y, f1 ◦ . . . ◦ fl−1(z)) and Gl,?(P) is the pushforward of P onto Rl+1 × R1 defined by
Gl(x, y) = (gl+1 ◦ . . . ◦ gL(x), y). Then it holds

min
gl∈Hl,...,gL∈HL

J(f1, f2, . . . , fl−1, gl, gl+1, . . . , gL)

= min
gl+1∈Hl+1,...,gL∈HL

(
min
gl∈Hl

Jgl+1,...,gl+1
(gl)

)
+

L∑
i=l+1

λi‖gi‖2Hi

and we need to show that a minimizer of Jgl+1,...,gL admits a representation of type (14). To this end, we
begin by defining a Nemitski vector loss function and we subsequently prove that these loss functions admit
the representation we need.

Definition 5. Let L : R1×D → [0,∞) for some domain D ⊂ Rd. Let PR1
denote the marginal distribution

of P w.r.t. the second variable. We call L a P-integrable Nemitski vector loss, if there exist b : R1 → [0,∞)
with b ∈ L1,PR1

(R1) and a measurable, increasing h : [0,∞)→ [0,∞) such that

L(y,z) ≤ b(y) + h(‖z‖) for all (y,z) ∈ R1 ×D.

If L is k-times differentiable w.r.t. the second variable for all y ∈ R1, we call it a k-times differentiable
Nemitski vector loss.

Lemma 6. Let l ∈ {2, . . . , L} and let Pl be a distribution6 on Rl+1 × R1 and let L? be a Pl-integrable and
1-differentiable Nemitski vector loss on R1 × Rl such that the derivative w.r.t. the second argument ∇2L
fulfills

‖∇2L?(y,z)‖ ≤ b?(y) + h?(‖z‖) for all (y,z) ∈ R1 ×Rl

for some b? ∈ L1,Pl
R1

(R1) and a measurable, increasing h? : [0,∞) → [0,∞). Then, the functional Rl,Pl :

Hl → [0,∞) defined by

Rl,Pl(f) :=

∫
Rl+1×R1

L?(y, f(z)) dPl(z, y)

is Frechet differentiable and the derivative dRl,Pl : Hl → B(Hl,R) is given by

dRl,Pl(f)(g) =

∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y). (21)

Furthermore, a critical point of J? : Hl → [0,∞) defined by

J?(f) := Rl,Pl(f) + λl‖f‖2Hl

is given by

f(·) = − 1

2λl

∫
Rl+1×R1

Kl(·, z) · ∇2L?(y, f(z)) dPl(z, y). (22)

6Note that we set RL+1 := DL = Ω.

23

Proof. We have

lim
‖g‖Hl

→0

Rl,Pl(f + g)−Rl,Pl(f)−
∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y)

‖g‖Hl

= lim
‖g‖Hl

→0

∫
Rl+1×R1

L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

dPl(z, y)

(∗)
=

∫
Rl+1×R1

lim
‖g‖Hl

→0

L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

dPl(z, y) = 0,

where the last equation follows from the differentiability of L? and (∗) follows by the dominated convergence
theorem since the integrand is bounded by∣∣∣∣L?(y, f(z) + g(z))− L?(y, f(z))−∇2L?(y, f(z))T · g(z)

‖g‖Hl

∣∣∣∣
=

∣∣∣∣∇2L?(y, cf(z) + (1− c)g(z))T · g(z)−∇2L?(y, f(z))T · g(z)

‖g‖Hl

∣∣∣∣
≤ 2b?(y) + h?(‖cf(z) + (1− c)g(z)‖) + h?(‖f(z)‖)

for some c ∈ [0, 1] due to the mean value theorem. Since the last line is bounded by 2b?(y) + 2h?(‖f(z)‖+ 1)
independently of g for any g with ‖g‖Hl

≤ 1, the dominated convergence theorem can be applied, which
proves (21).
Since a critical point f of J? fulfills

0 = dJ?(f)(g) = dRl,Pl(f)(g) + 2λl〈f, g〉Hl
,

for all g ∈ Hl, we obtain

〈f, g〉Hl
= − 1

2λl
dRl,Pl(f)(g)

= − 1

2λl

∫
Rl+1×R1

∇2L?(y, f(z))T · g(z) dPl(z, y)

= − 1

2λl

∫
Rl+1×R1

∇2L?(y, f(z))T ·
dl∑
i=1

〈g,Kl(·, z)ei〉Hl
· ei dPl(z, y)

= − 1

2λl

dl∑
i=1

〈∫
Rl+1×R1

∇2L?(y, f(z))TKl(·, z)ei dPl(z, y), g

〉
Hl

· ei

with the reproducing property of Kl, which is equivalent to the Bochner-type integral formulation (22). This
finishes the proof.

Now, we can apply lemma 6 with Pl = Gl,?(P) and L? = L̃l, which shows that a critical point g?l of Jgl+1,...,gL

can be written as

g?l (·) = − 1

2λl

∫
Rl+1×R1

Kl(·, ξ) · ∇2L̃l(y, g?l (ξ)) dGl,?(P)(ξ, y) (23)

= − 1

2λl

∫
Ω×R1

Kl(·, gl+1 ◦ . . . ◦ gL(x)) · ∇2L̃l(y, g?l ◦ gl+1 ◦ . . . ◦ gL(x)) dP(x, y),

which is of type (14). Therefore, it just remains to show that L̃l fulfills the prerequisites of lemma 6 and
that Afl,fl+1,...,fL(x, y) := ∇2L̃l(y, fl ◦ fl+1 ◦ . . . ◦ fL(x)) ∈ L1,P.

24

Lemma 7. L̃l is a Gl,?(P)-integrable and 1-differentiable Nemitski loss and the derivative w.r.t. the second
argument fulfills ∥∥∥∇2L̃l(y,z)

∥∥∥ ≤ b̃(y) + h̃(‖z‖) for all (y,z) ∈ R1 ×Rl (24)

for a b̃ ∈ L1,Gl,?(P)R1
(R1) and a measurable, increasing h̃ : [0,∞)→ [0,∞).

Proof. Since

|L̃l(y,z)| = |L(y, f1 ◦ . . . ◦ fl−1(z))| ≤ b0(y) + h0(f1 ◦ . . . ◦ fl−1(z)) ≤ b0(y) + h0(‖f1‖∞),

L̃l is a Gl,?(P)-integrable Nemitski-loss. Here, we again used that f1 ∈ H1 ↪→ C(D1) because of (12). Since

f1, . . . , fl−1 are differentiable because the respective kernels are in C1, L̃l is also 1-differentiable by the chain
rule. It remains to show (24). To this end, note that the chain rule gives us

∇2L̃l(y,z)(·) =
∂

∂z
(L (y, f1 ◦ . . . ◦ fl−1(z)))

= L(1)(y, f1 ◦ . . . ◦ fl−1(z)) · df1(f2 ◦ . . . ◦ fl−1(z)) (df2(f3 ◦ . . . ◦ fl−1(z)) (. . . dfl−1(z)(·))) ,

which leads to

‖∇2L̃l(y,z)‖ ≤ (b1(y) + h1(|f1 ◦ . . . ◦ fl−1(z)|)) ·
l−1∏
i=1

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri)

≤ (b1(y) + h1(‖f1‖∞)) ·
l−1∏
i=1

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri). (25)

Because of our assumption that we already showed (14) for f1, . . . , fl−1 and because of (12), we get by the
dominated convergence theorem that

sup
xi∈Di

‖dfi(xi)‖B(Di,Ri) ≤
1

2λi
ci‖Afi,...,fL‖L1,P

for all i = 1, . . . , l− 1. Therefore, by setting b̃(y) := c · b1(y) and choosing a constant h̃ := c ·h1(‖f1‖∞) with

c :=
∏l−1
i=1

1
2λi

ci‖Afi,...,fL‖L1,P <∞, we obtain (24).

Applying lemma 6 and lemma 7 shows us that fl fulfills the integral equation (23). To conclude the proof
of theorem 2, we note that

Afl,fl+1,...,fL(x, y) := ∇2L̃l(y, fl ◦ fl+1 ◦ . . . ◦ fL(x)) ∈ L1,P,

which directly follows from (25) and the fact that b1 ∈ L1,PR1
. This finally shows that fl admits a represen-

tation of type (14). Since the argument is valid for each l = 2, . . . , L and we already proved (14) for l = 1
in section 3.2, this finishes the proof of theorem 2.

References

[1] N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society 68
(1950), no. 3, 337–404.

[2] F. Bach, G. Lanckriet, and M. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm,
Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 1–9.

25

[3] B. Bohn and M. Griebel, Error estimates for multivariate regression on discretized function spaces,
SIAM Journal on Numerical Analysis 55 (2017), no. 4, 1843–1866.

[4] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica 13 (2004), 147–269.

[5] Y. Cho and L. Saul, Kernel methods for deep learning, Advances in Neural Information Processing
Systems (Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, eds.), vol. 22, Curran
Associates, Inc., 2009, pp. 342–350.

[6] G. Cybenko, Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals,
and Systems 2 (1989), no. 4, 303–314.

[7] A. Damianou and N. Lawrence, Deep Gaussian processes, Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics, 2013, pp. 207–215.

[8] S. de Marchi and R. Schaback, Stability of kernel-based interpolation, Adv. Comput. Math. 32 (2010),
155–161.

[9] F. Dinuzzo, Learning functions with kernel methods, Ph.D. thesis, University of Pavia, Pavia, Italy,
2011.

[10] G. Fasshauer and Q. Ye, Reproducing kernels of generalized Sobolev spaces via a Green function approach
with distributional operators, Numerische Mathematik 119 (2011), no. 3, 585–611.

[11] M. Gönen and E. Alpaydin, Multiple kernel learning algorithms, JMLR 12 (2011), 2211–2268.

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.

[13] M. Griebel and H. Harbrecht, Approximation of bi-variate functions: singular value decomposition
versus sparse grids, IMA J. Numer. Anal. 34 (2014), no. 1, 28–54.

[14] A. Hinrichs, L. Markhasin, J. Oettershagen, and T. Ullrich, Optimal quasi-Monte Carlo rules on higher
order digital nets for the numerical integration of multivariate periodic functions, Numerische Mathe-
matik 134 (2016), no. 1, 163–196.

[15] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (1991),
no. 2, 251–257.

[16] G. Kimeldorf and G. Wahba, A correspondence between Bayesian estimation on stochastic processes
and smoothing by splines, The Annals of Mathematical Statistics 41 (1970), no. 2, 495–502.

[17] S. Mallat, Understanding deep convolutional networks, Phil. Trans. R. Soc. A 374 (2016), no. 2065.

[18] H. Mhaskar, Q. Liao, and T. Poggio, When and why are deep networks better than shallow ones?,
Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017, pp. 2343–2349.

[19] C. Micchelli and M. Pontil, On learning vector-valued functions, Neural Computation 17 (2005), 177–
204.

[20] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, Explaining nonlinear classifica-
tion decisions with deep Taylor decomposition, Pattern Recognition 65 (2017), 211–222.

[21] I. Rebai, Y. Benayed, and W. Mahdi, Deep multilayer multiple kernel learning, Neural Computing and
Applications 27 (2016), no. 8, 2305–2314.

26

[22] S. Reddi, S. Sra, B. Poczos, and A. Smola, Proximal stochastic methods for nonsmooth nonconvex finite-
sum optimization, Advances in Neural Information Processing Systems 29 (D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, eds.), Curran Associates, Inc., 2016, pp. 1145–1153.

[23] B. Schölkopf and A. Smola, Learning with Kernels – Support Vector Machines, Regularization, Opti-
mization, and Beyond, The MIT Press – Cambridge, Massachusetts, 2002.

[24] I. Steinwart and A. Christmann, Support vector machines, Springer, New York, 2008.

[25] E. Strobl and S. Visweswaran, Deep multiple kernel learning, Proceedings of the 12th International
Conference on Machine Learning and Applications, 2013, pp. 414–417.

[26] H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, 2005.

[27] A. Wilson, Z. Hu, R. Salakhutdinov, and E. Xing, Deep kernel learning, Proceedings of the 19th Inter-
national Conference on Artificial Intelligence and Statistics, 2016, pp. 370–378.

[28] J. Zhuang, I. Tsang, and S. Hoi, Two-layer multiple kernel learning, Proceedings of the 14th Interna-
tional Conference on Artificial Intelligence and Statistics, 2011, pp. 909–917.

27

	Introduction
	Interpolation and regression in reproducing kernel Hilbert spaces
	Interpolation
	Least-squares regression

	Interpolation and regression with compositions of reproducing kernel Hilbert spaces
	A representer theorem for concatenated kernel learning
	An infinite-sample representer theorem for concatenated kernel learning
	Relation to neural networks and deep learning
	Relation to hidden layer neural networks
	Relation to multi-layer multiple kernel learning
	Relation to deep kernel learning approaches

	The two-layer interpolation problem
	Definition of the problem
	Application of the representer theorem
	Solving the minimization problem

	Two-layer Least-squares regression
	Definition of the problem
	Application of the representer theorem
	Solving the minimization problem

	The effects of concatenated learning
	Kernel choice
	Experiment design
	Interpolation
	Regression
	Linear outer kernel

	Transformation by the inner function

	Conclusion

