
Wegelerstraße  •  Bonn • Germany
phone +  - • fax +  -

www.ins.uni-bonn.de

A. Rüttgers, M. Griebel, L. Pastrik, H. Schmied,
D. Wittmann, A. Scherrieble, A. Dinkelmann,

T. Stegmaier

Simulation of the oil storage process in the scopa
of specialized bees

INS Preprint No. 1404

June 2015





Simulation of the oil storage process in the scopa of specialized bees
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Abstract

Several species of specialized bees possess special structures to store and transport floral oils. By using closely spaced
hairs at their back legs, the so called scopa, these bees can absorb and release oil droplets without loss. The high
efficiency of this process is a matter of ongoing research. Based on recent x-ray microtomography scans from a bee’s
scopa, we build a three-dimensional geometric computer model. Then, using NaSt3DGPF, a two-phase flow solver
developed at the Institute for Numerical Simulation, we compute the micro flow in the scopa model. Our calculations
reveal the laminar to turbulent air flow in the scopa during flight. Furthermore, we simulate the deformation of an oil
droplet in the scopa due to surface tension effects on a microscopic length scale. Our results are in good agreement
with measurements for an oil-wetted scopa at steady state which are obtained from x-ray scans. Both simulations are
relevant for the understanding of the process of oil absorption and transportation in the real scopa of a bee. Due to the
large computational complexity of the problem, massively parallel computations are essential for our simulations.

Keywords: bee morphology, two-phase flow, high-performance computing, large eddy simulation, simulation on
x-ray computed tomography data

1. Introduction

Several species of specialized bees such as Centridini,
Tetrapediini, Ctenoplectridae, see Fig. 1(a), have devel-
oped structures to store and transport fatty floral oils in-
stead of nectar (cf. Dressler [1], Buchmann [2]). The floral
oil is mixed with pollen and fed to the bee’s larvae. The
advantage of collecting floral oils instead of nectar stems
from the oil’s much (8 times) higher energy content. The
oil is also used for coating breeding cells to prevent water
intrusion due to its hydrophobic behavior.

The oil is collected from the flowers by bristles at the
front legs of the bees. It is then transferred from the front
legs to closely spaced hairs at the bee’s back legs, the so
called scopa (cf. Fig. 1(b)), to allow for transportation of
the oil to the larvae. This transport structure can be used
repeatedly and shows a high efficiency of transported oil
mass compared to the scopa’s weight.

The scopa has a multiscale structure as its size ranges
from millimeters to micrometers. It consists of several
types of main hairs (cf. Fig. 1(c)) with a length of 2-3 mm
and a diameter of approximately 40 µm. About 20 lat-
eral hairs with lengths of 400 µm and diameters of 5-12
µm branch out from each main hair. In total, the scopa
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contains about 900 hairs. They form a three-dimensional
grid structure in which the oil is stored. Furthermore, the
scopa has an oleophilic surface which, beside the geome-
try, further facilitates oil collection and storage.

The properties of the multiscale microstructure of the
scopa are of great practical interest. Man-made structures
with an oil storage efficiency comparable to that of the bi-
ological role model are not known yet. One application is
the oil separation of washing solutions. These solutions
occur, for instance, in the process of car engine cleaning.
The washing solution can only be given to the wastewater
after the oil has been separated out. In practice, expensive
steel coalescer are used for the separation process. Struc-
tures that increase the efficiency of the process and which
are cheaper to produce are intensively searched for. The
scopa of bees might be a role model for such future struc-
tures. Therefore, its precise properties need to be better
understood. As the effects in the scopa take place on a
microscopic length scale and are difficult to measure, sim-
ulations of the biological system are necessary. But to the
authors’ knowledge, there have been no simulations of
the oil storage process in a bee’s scopa so far. Instead of
that, numerical simulations in literature primarily focus
on the insect’s wing design, see, e.g., Young et al. [3]. In
the following, we present the first 3D two-phase flow sim-
ulations of an oil droplet within the microscopic scopa.

The remainder of this article is organized as follows:
First, in Section 2, we describe the micro-CT measurement
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(a) specialized bee Epicharis dejeanii

(b) scopa (magnified) (c) single hair

Figure 1: Photos were taken by the Institute of Crop Science and Re-
source Conservation (INRES).

of the scopa and the post processing of the measured data
necessary to derive a geometric model of the scopa. We
then consider the mathematical model for flow dynam-
ics within the scopa. To this end, we state the governing
equations and their spatial and temporal discretization
used for the two-phase flow solver NaSt3DGPF in Sec-
tion 3. Special focus is given to the boundary conditions
on a microscopic length scale. We also explain our do-
main decomposition approach for parallel computations
and discuss the parallel speed-up behavior for the con-
sidered problem. In Section 4 we present the simulation
results for two specific situations: First, the laminar to
turbulent air flow around the scopa’s hairs is computed
in Section 4.1. Second, in Section 4.2, the deformation of
an oil droplet in the scopa geometry is simulated and the
outcome is compared to experimental measurements of
an oil filled scopa. Finally, in Section 5, we evaluate our
findings and give some conclusions.

2. Processing of micro-CT data

The geometric complexity of the scopa is illustrated in
Fig. 1(b). In principle, two different approaches are pos-
sible to allow for simulations. The structure can either
be modeled in a tedious process by hand with a common
computer-aided design (CAD) program or it can directly
be measured in an experiment from a real scopa by, e.g.,
a CT scan. The advantage of a CAD modeled geometry is
that the surface of the geometry is properly defined and
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Figure 2: Histogram with typical distribution of the density values.

inaccuracies and artifacts due to measurement errors are
avoided. On the other hand, a modeled geometry might
not capture all relevant details of the scopa’s structure.
Nowak, Kakade and Annapragada [4], for instance, sim-
ulate the airflow and the particle deposition in two differ-
ent geometries of the human lung. While the first geom-
etry is an idealized model, the second geometry bases on
a CT-scan and achieves more accurate results.

For this reason, we derive a geometric model from
a CT microtomography measurement of the bee species
Epicharis dejeanii that lives in Southern America. The
measurement was performed at the Institute of Textile
Technology and Process Engineering Denkendorf (ITV
Denkendorf). To this end, the micro-CT nanotom m build
by GE Sensing & Inspection Technologies GmbH was
used. Nanotom m has been funded by the Federal Min-
istry of Education & Research (BMBF) in two projects for
the analysis of fiber-reinforced composites and of surface
coatings.

The micro-CT consists of an x-ray tube and a digital
detector for image capturing. The x-ray tube allows long-
time measurements for up to 8 hours. Focused on a small
target of micrometer size, the x-rays have a power of up
to 15 watt. The DXR detector has 3072× 2400 pixels with
a pixel size of 100 µm. It allows for a scanning resolution
up to an accuracy of 0.8 µm. The sensor has a 14 bit color
depth so that 16384 different gray-scale values are used to
distinguish small density variations. A CT scan results in
a large number of voxel cells which are represented and
processed with the software VG-Studio MAX 2.2 by Vol-
ume Graphics.

A typical distribution from a micro-CT density mea-
surement is shown in the histogram plot in Fig. 2. The
density in each resolved grid cell can have values be-
tween 1 and 16384=214. Thus, there is no natural distinc-
tion between solid cells from the scopa cells and the sur-
rounding air cells which renders direct numerical simu-
lations impossible. In the area of medical image segmen-
tation, one viable approach to allow for this distinction is
thresholding, see Pham, Xu and Prince [5] and the refer-
ences cited therein. We here give the necessary informa-
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(a) threshold C1 (b) threshold C2

Figure 3: Scopa visualization for different threshold values.

tion for its application in a CFD solver. First, a threshold
value C has to be chosen such that all voxel cells with a
gray-scale value smaller than C are set to air cells. Con-
sequently, cells with a gray-scale value larger than C are
identified as a part of the scopa. Fig. 3 compares two dif-
ferent threshold values for the scopa data set. The thresh-
old value C1 in Fig. 3(a) was deliberately chosen too small
so that a larger part of the surrounding volume was iden-
tified as a part of the scopa. The same data set is shown
in Fig. 3(b) for a different threshold value C2 > C1. The
corresponding geometry occupies less volume and agrees
better with the biological data. Since most volume cells
of the data set correspond to air, the threshold value is
in practice chosen relatively large as indicated by the red
vertical line in Fig. 2.

The CT measurement and a first post-processing of
the scopa from the bee Epicharis dejeanii at the ITV Denk-
endorf required about ten days of work. In the end, the
scopa was derived as shown in Fig. 4(a). Here, the phys-
ical dimensions are 7.1× 7.1× 5.5 mm3 with a resolution
of 3072× 3072× 2400 voxel cells. These voxel data can not
directly be used as input for our flow solver NaSt3DGPF
due to its huge size and complexity. We thus restrict our
simulations to a subdomain that contains 8 single hairs
(cf. Fig. 4(b)). There, the grid resolution still contains
439× 633× 1289 cells with a mesh width of ∆x = 2.3 µm.
Consequently, the diameter of a main hair is resolved
with about 17 voxel cells. 4-5 voxel cells are used to model
the basis of the lateral hairs which reduces to 2 voxel cells
in the tips. The threshold value that is associated with the
geometries in Fig. 4(a) and Fig. 4(b) is C = 12400. With
this threshold, the geometry is fully captured but contains
minor artifacts close to the surface. This artificial noise is
illustrated in Fig. 5(a). The artifacts have to be removed
before numerical simulations are feasible. To this end, we
have used the following approach:

(a) larger part of scopa (CT data) (b) eight single hairs
used in the simulation
(CT data)

Figure 4: Scopa data for threshold C = 12400 from micro-CT measure-
ment at ITV Denkendorf.

First, we assign all voxel cells that have been identi-
fied as a part of the geometry, i.e. with a density value
larger than C = 12400, to their associated connected com-
ponents. Then, if a connected component does not consist
of at least two geometry cells in each coordinate direction,
the complete connected component is flagged as liquid.
Here, the minimum number of two grid cells is necessary
to ensure that boundary conditions can be set correctly in
our flow solver later on. This is a standard approach for
flow solvers with a finite difference based Cartesian grid.
This way, artifacts such as those colored blue in Fig. 6 are
removed. Furthermore, we demand that the total number
of cells in a component is larger than 11. This approach
removes, for instance, the green structure in Fig. 6 if its ex-
tension to the third coordinate direction (not shown here)
is smaller than three grid cells. We note that the stated
number of 11 cells is not derived from theory but from
a heuristic approach which delivers good results for this
specific geometry. The resulting geometry is depicted in
Fig. 5(b). Here, all artifacts have been removed but the
actual shape of the scopa geometry is still conserved.

In Fig. 5 (b) we note that the hairs have a bumpy sur-
face when the magnification is largest. This is an effect
of the image segmentation with thresholding. A typi-
cal approach to reduce the bumpy surface is to apply a
volume and topology preserving smoothing on the ge-
ometry, see, for instance, the book of Weickert [6] on
anisotropic diffusion in image processing. The smoothed
geometry can be used as basis for elaborated numerical
methods to describe boundaries such as the immersed
boundary method (IB) by Peskin [7], see also Mittal and
Iaccarino [8] for a review of IB and cut-cell methods. On
the other hand, a disadvantage of smoothing is that fine-
grain details in the CT data might get lost.

In this work, we avoid a smoothing of the geometry
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(a) noise on CT data

(b) noise free geometry

Figure 5: Smoothing of CT data is necessary to allow for numerical sim-
ulations.

Figure 6: Illustration of flag field approach and artifacts, colored in blue
and green, that have to be removed.

and directly perform simulations on the mesh obtained
from thresholding. NaSt3DGPF uses a Cartesian grid, the
so called flag field, to resolve geometries (cf. Fig. 6). In the
present work, the flag field coincides with the CT gener-
ated voxel mesh. In general, a flag field approach deliv-
ers only a coarse geometry approximation. In this appli-
cation, however, the CT dataset after thresholding does
not contain any additional geometric information as those
resolved with a Cartesian mesh. Consequently, the flag
field approach used in NaSt3DGPF does not limit the ac-

curacy even though the biological role model involves a
complicated multiscale geometry.

Although the scopa model in Fig. 5(b) shows high
agreement to the biological role model, apart from the
limitations due to thresholding, it cannot yet be used for
numerical simulations with NaSt3DGPF. This becomes
clear from a cut through the scopa as in Fig. 7(a). The
scopa hairs are hollow. In nature, this decreases the
weight of the scopa and leads to a better ratio of oil stor-
age capability compared to the structure’s own weight.
However, flow solvers with a flag field based approach
as NaSt3DGPF do not distinguish between air cells inside
the hollow hairs and from the surrounding. For this rea-
son, the airflow within the scopa hairs would also be com-
puted in the hollow inside of a hair which is physically
meaningless but may cause numerical problems since, in
this case, the matrix of the linear system of equations that
has to be solved (cf. Section 3.4) can contain rows with
zero entries only. To prevent this, we just fill up the inte-
rior part of each hair. This does not affect the simulation
results but results in stability of the flow solver.

A simple approach for filling the interior part of a
Cartesian grid geometry is the following: Let us assume
that the eight scopa hairs are oriented in vertical direc-
tion as shown in Fig. 4(b). Then, air cells within a scopa
hair are surrounded by geometry cells in all perpendic-
ular directions. Consequently, a scopa cell lies within a
neighborhood of m cells in these directions. We convert
such cells into geometry cells. In practice, m is chosen
comparatively small, i.e. m = 3−5, and the algorithm is
applied several times. If m would be chosen too large,
the space between two scopa hairs might accidentally be
interpreted as an interior cell as well. This approach is
sufficient for the subsequent applications. It is, to the best
of our knowledge, not yet described in the literature. The
resulting geometry is shown in Fig. 7(b). It will now be
used for our numerical simulations.

3. Governing equations and numerical discretization

The diameters of the smallest hairs of the bee’s scopa
have a size in the order of about 5 µm. In this article,
we still rely on the continuum assumption for the oil and
air flow. The continuum assumption can fail when the
mean free path of a molecule is in the order of the small-
est significant length scales. This ratio is expressed by
the dimensionless Knudsen number. According to Karni-
adakis, Beskok and Aluru [9], the length scales in our case
lie somewhere between the continuous flow regime and
the slip flow regime. In this regime, the Navier-Stokes
equations are valid. However, fluid slip has to be taken
into account which will be discussed in Section 3.3.

We first state the mathematical flow model. More de-
tails can be found for one-phase flows in Griebel, Dorn-
seifer and Neunhoeffer [10] and for two-phase flows in
Groß and Reusken [11]. Section 3.4 gives details on the
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(a) scopa hair as in nature

(b) filled hair for simulation

Figure 7: Comparison of original and filled scopa hair.

numerical discretization in NaSt3DGPF. The paralleliza-
tion approach and speedup measurements are presented
in Section 3.5.

3.1. Mathematical model for the flow system
We consider a rectangular domain Ω ⊂ R3 that con-

tains two immiscible incompressible fluid phases Ω1(t),
Ω2(t) for which Ω̄ = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The

interface Γ(t) = ∂Ω1(t) ∩ ∂Ω2(t) separates both phases.
The conservation of mass and momentum for the pres-
sure p = p(x, t) and the velocity field u = u(x, t) in both
subdomains Ωi for i = 1, 2 are written as

ρi

(
∂

∂t
+ u · ∇

)
u− divσi = ρig in Ωi × [0, T], (1)

div u = 0 in Ωi × [0, T], (2)

[σn]Γ = τκn, [u]Γ = 0 at Γ× [0, T] (3)

with appropriate initial and boundary conditions for u
and p. In equation (1), σi = −pI + µiD(u) denotes the
stress tensor and D(u) = ∇u + (∇u)T represents the de-
formation tensor. The viscosities µi, the corresponding
densities ρi and the gravitation force g are assumed to be
constant. Furthermore, (3) describes the coupling at the
interface Γ. Here, the surface tension leads to a jump of
the normal stresses whereas u is continuous over the in-
terface.

The interface Γ(t) is implicitly given as the zero con-
tour of a signed distance function ϕ, the so called level-set
function, i.e. Γ(t) = {x ∈ Ω|ϕ(x, t) = 0}. The level-set
function is used to indicate the phase-dependent mate-
rial parameters, see Osher and Sethian [12] and Sussman,
Smereka and Osher [13]. ϕ is known at the beginning and
is then transported with the fluid field u according to

∂ϕ

∂t
+ u · ∇ϕ = 0 in Ω× [0, T]. (4)

The transport equation (4) does not necessary guaran-
tee that |∇ϕ| = 1, i.e. that ϕ remains a distance func-
tion. In practice, (4) is augmented with a Hamilton-Jacobi
type reinitialization equation to ensure |∇ϕ| = 1 close to
the interface, for details see Sussman, Smereka and Os-
her [13].

Note that the equations (1) and (2) also cover one
phase flows which will be performed in Section 4.1. In
this case, we set ρ = ρ1 = ρ2 and µ = µ1 = µ2 in Ω and
Γ = ∅.

3.2. Turbulence model
For turbulence modeling of the one phase flow sys-

tem in Section 4.1, we employ a Large Eddy Simulation
(LES). There, in contrast to κε-models and κω models,
the number of parameters is strongly reduced. As these
parameters are in general not exactly known, the LES
model is less prone to calibration errors. A comprehen-
sive overview of Large Eddy models can be found in
Sagaut [14].

The basic idea of LES models is to resolve the large
scales of the flow field whereas the small scales are mod-
eled. LES represents a very efficient technique for high
Reynolds number flow. It has been applied, for instance,
to simulate the turbulent flow at Re = 2.1 · 106 around an
airfoil, see Mary and Sagaut [15].
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The LES model was first introduced by Smagorin-
sky [16] in 1963 and was later analyzed by Deardorff [17].
Smagorinsky assumed that the flow is in constant equi-
librium with no accumulation of energy over time. In this
approach, a space averaging filter is applied to the equa-
tions for conservation of momentum (1) and conservation
of mass (2). This leads in the case of one-phase flows to
the filtered equations

ρ

(
∂

∂t
+ ū · ∇

)
ū− divσ̄ + divτ = ρg in Ω× [0, T], (5)

divū = 0 in Ω× [0, T] (6)

with ū and σ̄ = − p̄I + µD̄(ū) as spatially filtered quan-
tities. Compared with (1), the equation for the conserva-
tion of momentum (5) now contains an additional stress
tensor τ. This tensor models stress on a sub-grid scale.
Smagorinsky’s approach [16] relates the sub-grid stresses
τ to the coarse scale deformation tensor D̄(ū) = ∇ū +
(∇ū)T according to

τ = −νtD̄(ū).

Here, the eddy viscosity νt, a factor of proportionality, is
defined as

νt =
(
Cs ∆

)2 (2D̄ : D̄
)1/2 (7)

where Cs is the Smagorinsky constant and ∆ is the local
filter size. Subsequently, the filter size ∆ used for a grid
with constant mesh widths ∆x, ∆y and ∆z in the three
coordinate directions is

∆ =
√

∆x2 + ∆y2 + ∆z2.

However, other filter sizes would be possible as well.
In Section 4.1 we use a Smagorinsky constant Cs =

0.0825. Although Cs can be estimated from ab initio as-
sumptions, in practice it often represents a degree of free-
dom to adjust the numerical results. To this end, different
values of Cs have been proposed in the literature. For in-
stance, Johnson [18] (pp. 14-88) states that values for C2

s
in literature vary from approximately 0.005 to 0.05, i.e. Cs
is in the range of 0.07 - 0.22. The lower values of Cs are
normally chosen for channel flows while the larger val-
ues of Cs are used in situations with isotropic turbulence.
An advantage of the Smagorinsky model stems from the
fact that it dissipates the exact amount of energy provided
that Cs is chosen correctly.

3.3. Boundary conditions
The adequate choice of the fluid boundary conditions

at the solid-liquid interface is an open problem since the
19th century. Bernoulli first assumed that the fluid’s
movement at the interface is equivalent to the movement
of the interface. These boundary conditions are known
as no slip boundary conditions. No slip boundary condi-
tions are normally prescribed in macroscopic flow fields.

ls

liquid

solid

no slip generalized slip free slip

Figure 8: Illustration of generalized Navier boundary conditions.

They have been validated in various experiments, for in-
stance, for water flowing through glass pipes.

The situation is however different for microscopic
flows. Here, several experiments have shown fluid slip
at the contact line. An overview of the so-called mov-
ing contact line problem is given by Qian, Wang and
Sheng [19]. Slip for liquids such as water often occurs at
hydrophobic surfaces, and is also observed for the flow
of non-Newtonian polymer solutions.

A problematic feature of the no slip model which can-
not be ignored on a microscopic length scale is that the
predicted shear rate at the interface is unlimited. This
leads to a singularity at the interface. The occurrence of
singularities gives one explanation for the poor predic-
tions of the no slip model on this length scale.

The generalized Navier condition, proposed by Navier
[20] in 1824, removes this singularity by weakening the
no slip assumption. The model has been made popular
by Huh and Scriven [21] in 1971. The quantity of slip is
measured by the slip length ls. This parameter can be de-
rived by extending the velocity profile into the solid do-
main. The slip length then specifies the distance from the
boundary to the zero value of the extrapolated velocity
profile. This principle is illustrated in Fig. 8.

Following Shikhmurzaev [22], the fluid velocity u
close to the interface can be written as

u = β nT · τs · (Id− n⊗ n) (8)

with n the unit normal, β the coefficient of sliding friction
or slip coefficient and τs = −p Id + µ(∇u + (∇u)T) the
stress tensor for a viscous Newtonian fluid. The Navier
slip boundary condition is then derived as the tangential
projection of (8) using (Id− n⊗ n) where
(Id− n⊗ n)2 = (Id− n⊗ n) and

u (Id− n⊗ n) = β nT · τs · (Id− n⊗ n) . (9)

Then, we define uslip = u (Id− n⊗ n) as slip velocity. In
the literature, equation (9) is often written in a simplified
form in which n is aligned with one of the coordinate di-
rections. For instance, at the wall y = 0 the unit normal is
n = (0, 1, 0)T and for a generalized slip flow u = (u, 0, w)
on this wall, as illustrated in Fig. 8, equation (9) becomes

uslip = βµ

(
∂u
∂y

, 0,
∂w
∂y

)T
. (10)
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The term βµ in (10) has a length unit and is exactly the
slip length ls that is shown in Fig. 8, i.e. ls = βµ.

As illustrated in Fig. 8, different boundary conditions
correspond to different slip lengths ls, i.e.

ls


= 0, for the no slip BC,
> 0, for the generalized slip BC,
→ ∞, for the free slip BC.

(11)

On a microscopic length scale, the slip length ls is dif-
ficult to measure. In general, ls is close to zero on a com-
pletely wetting surface and therefore the no slip assump-
tion is valid. On the other hand, for non-wetting surfaces,
such as for the flow of water in hydrophobic micro chan-
nels, slip lengths of several micrometers have been mea-
sured experimentally. Maali and Bhushan [23] give a re-
view on techniques that are used to determine ls on hy-
drophobic surfaces. In certain pressure-drop experiments
slip lengths larger than 20 µm were measured.

The exact slip length ls for an oil flow in the scopa,
which has an oleophilic surface, is not yet known. Due
to the oleophilic surface of the scopa, we expect ls to be
much smaller than in the cases considered by Maali and
Bhushan [23]. In Section 4.2 we compare the effect of dif-
ferent slip lengths on the simulation result. Furthermore,
in Section 3.4 we discuss the discretization of the Navier-
Slip boundary condition and show that the slip length is
then linked with the mesh width h. Nevertheless, the ap-
proach allows us to get rid of the stress singularity and
to obtain a realistic droplet behavior on the microscopic
length scale.

For the boundary conditions of the level set function ϕ
a suitable approach is required. Dirichlet boundary con-
ditions could be used to enforce a static contact angle at
the contact line but this might lead to unphysical results
since the contact angle varies over time. Therefore, a dy-
namic contact angle model is required. This is still an area
of active research, see Shikhmurzaev [22]. For our two-
phase flow simulations we use, for reasons of simplicity,
a more straight forward approach: Homogeneous Neu-
mann boundary conditions are employed for ϕ whereas
the wetting of the scopa is modeled with the slip length
ls. Then, the angle at the contact line is always 90◦ but the
apparent macroscopic contact angle computed over sev-
eral cells can still vary over time. Using this approach, an
oleophilic behavior of the surface can be approximated
quite well. Of course, this does not reproduce all features
of a dynamic contact angle model but gives sufficiently
good results.

3.4. Numerical discretization
NaSt3DGPF employs a finite difference (FD) scheme

on a staggered grid for the spatial discretization of the
flow equations (1)–(6) for one-phase turbulent flows and
for two-phase flows with surface tension. Therefore, we
subdivide Ω into rectangular cells and evaluate the un-
knowns p, φ in the cell centers and the velocity field u

on the cell faces. This ensures a strong coupling between
pressure and velocity field and avoids spurious modes.
Apart from the convective terms in (1), (4) and (5), we
discretize all spatial derivatives with second-order cen-
tral differences. For the discretization of the convective
terms, we use a 5th-order WENO scheme due to Jiang
and Shu [24] to avoid oscillatory solutions. This high-
order scheme requires the grid values from adjacent cells,
which complicates the parallelization described in Sec-
tion 3.5. For modeling surface tension effects, the con-
tinuum surface force method by Brackbill, Kothe and
Zemach [25] is used. More details on NaSt3DGPF’s spa-
tial discretization can be found in Croce, Griebel and
Schweitzer [26] and in Griebel et al. [10].

The temporal discretization in NaSt3DGPF differs for
single flows and multiphase flows. The filtered equations
(5) and (6) are treated with a semi-implicit pressure cor-
rection scheme proposed by Bell, Colella and Glaz [27]
which is of second-order accuracy in time. Here, the pres-
sure field p and the diffusive velocity terms are treated
implicitly. This leads to a diffusion equation for p with
flow phase dependent coefficients and to three modified
Helmholtz equations for an intermediate velocity u∗ in
every time step. Here, the equation for p is solved with
an AMG-preconditioned BiCGStab solver and a SSOR-
preconditioned CG method is used for the Helmholtz sys-
tem. Details on the implementation in NaSt3DGPF can be
found in Verleye et al. [28]. Furthermore, details on the
employed Algebraic Multigrid Method (AMG) are given
in Metsch [29].

The two-phase flow system in (1)–(4) is solved implic-
itly in the pressure and explicitly in the velocity field. For
this purpose, Chorin’s projection method [30] is used to
decouple u and p. Again, the pressure diffusion equation
is solved with an AMG-preconditioned BiCGStab solver.
The velocity field is treated with an explicit 2nd-order
Runge-Kutta method. In time, the transport equation
for the level set function (4) is treated with a 3rd-order
Runge-Kutta scheme. Due to the splitting of the velocity
and the pressure field, the ansatz is of first-order accuracy
in time.

The explicit treatment of the velocity terms leads to a
Courant-Friedrichs-Lewy (CFL) condition to ensure nu-
merical stability. This condition limits the size of a time
step. It includes velocity contributions due to convec-
tive and diffusive velocity terms and due to volume and
surfaces forces. An efficient parallelization strategy is
therefore important to obtain results within a reasonable
amount of time.

The numerical simulation of two-phase flows with the
level set technique often suffers from numerical diffu-
sion in the reinitialization step. One approach to circum-
vent volume loss are so-called volume correction meth-
ods. For all two-phase simulations in Section 4.2, we em-
ploy a global volume correction scheme that is described
in Croce et al. [26] and in Croce [31]. Here, in each time
step a new zero contour line of the level set function ϕ is
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sought such that the resulting mass of both phases coin-
cides with the initial mass. For this purpose, we define
a Picard iteration which adds a constant c to ϕ and con-
sequently shifts the zero contour line of ϕ. Let l = 1, . . .
denote the steps of our iterative procedure in each time
step, ε a given error tolerance, V0 the initial fluid volume
and V(ϕl) the fluid volume of ϕ at iteration l. We then
perform for l = 1, . . . the iteration

c← ω (V0 −V(ϕl))

ϕl+1 ← ϕl + c

until
|V(ϕl+1)−V0|

V0
< ε.

The parameter ω is used to convert the volumetric quan-
tities into a distance quantity.

In Section 3.3 we discussed a generalized Navier
boundary condition. In the following, we describe its dis-
cretization on a staggered grid and show how the bound-
ary condition is linked with the mesh width. As an ex-
ample, we consider the boundary condition (10) for the
first velocity component at the wall y = 0. This can be
straightforwardly generalized to the discretization of (8).

For simplicity, we assume a discretization with equidis-
tant mesh width h = ∆x = ∆y = ∆z. In an FD scheme
on a staggered grid, the x-component of the velocity field
is only computed at the grid points ui,j,k = u(ih, (j −
0.5)h, (k− 0.5)h) with i = 1, . . . , imax, j = 1, . . . , jmax and
k = 1, . . . , kmax. This is extended with a boundary strip
that has the index positions i = 0 and i = imax + 1
and analogously for j and k to allow for the setting of
boundary conditions. Due to the staggered grid, the x-
component of the slip velocity has to be averaged from
the nearest grid point ui,1,k in the flow domain and from
the nearest grid point ui,0,k in the boundary strip (ghost
cells). Using central differences, equation (10) is dis-
cretized with second-order accuracy in h as

ui,0,k + ui,1,k

2
= ls

ui,1,k − ui,0,k

h
. (12)

Equation (12) is solved for ui,0,k and set as boundary con-
dition in the ghost cells. We note from Fig. 8 that the mag-
nitude of the slip velocity is between zero (no slip case )
and the fluid velocity close to the boundary ufluid (free
slip case), i.e.

‖uslip‖ = r ‖ufluid‖ with r ∈ [0, 1]. (13)

In this example, we have ufluid ≈ (ui,1,k, vi,1,k, wi,1,k) and
by combining equation (12) and (13) we obtain a relation
between ls and the factor r for the percentage of slip ve-
locity magnitude to fluid velocity magnitude as

ls =
r h

2− 2r
. (14)

In Section 4.2 we consider, beside others, the case r = 0.5
in which the slip velocity is half the size of the fluid veloc-
ities. In this case, ls has to be chosen as half of the mesh
width h in NaSt3DGPF.

Ω1 Ω2

Ω3 Ω4

Figure 9: Illustration of the domain decomposition approach for paral-
lelization in 2D.

3.5. Parallelization
The large amount of data obtained from the micro CT

measurement and the underlying problem requirements
demand an efficient parallelization strategy. NaSt3DGPF
is parallelized by a domain decomposition approach. For
this purpose, the flow domain is subdivided into subdo-
mains, and each subdomain is assigned to a different pro-
cessor. Processors with a common boundary face have
to exchange data in every time step, which is illustrated
in Fig. 9. Data exchange is performed with the Message
Passing Interface (MPI) on parallel CPUs.

The subsequent results have been computed on the
parallel CPU cluster Atacama at the University of Bonn.
The cluster consists of 78 Dell PowerEdge M620 compute
nodes with 1248 Intel Xeon CPU E5-2650 2.60GHz CPUs
in total. Each compute node contains 16 CPUs and we al-
ways employ all processors per node in the simulations.
The system has a main memory of 4992 GB. The MPI
communication is conducted with 56 Gb/sec (4X FDR)
Infiniband. Altogether, the system shows a Linpack per-
formance of 20630 GFlop/s with a parallel efficiency of
80%. The cluster is operated by the Institute for Numer-
ical Simulation and the Sonderforschungsbereich 1060 at
University of Bonn.

Before we discuss our simulation results in Sections 4.1
and 4.2, we focus on the weak and strong scaling of NaSt-
3DGPF. The scaling behavior of a NaSt3DGPF porting to
NVIDIA’s CUDA framework to allow for GPU comput-
ing of two-phase flows has been investigated by Zaspel
and Griebel [32]. Furthermore, the parallel scaling behav-
ior of NaSt3DGPF for non-Newtonian one-phase flows
was studied by Griebel and Rüttgers [33]. Since a ge-
ometry with a comparable complexity was not used for
parallel scaling measurements of NaSt3DGPF before, we
present our recent results in the following.

We investigate the weak scaling for an one-phase test
problem. For this purpose, we consider three different
subdomains l1, l2, l3 of the eight single hairs shown in
Fig. 4(b). These subdomains have grid resolutions of
219× 165× 219 cells for l1, 439× 165× 417 cells for l2 and
439× 330× 833 cells for l3. Consequently, the number of
grid cells increases by a number of four from subdomain
to subdomain. We visualize all three domains in Fig. 10.
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Figure 10: Comparison of simulation domains for the scale-up measure-
ment.

Table 1: Weak scaling/ scale-up results with respect to l1 on the cluster
Atacama.

subdomain # cores absolute time [s] efficiency [%]
l1 16 757 100
l2 64 731 104
l3 256 865 88

The cuboid colored in blue represents subdomain l1 and
the red and black cuboid show the simulation domains l2
and l3.

As the size of the simulation domain li increases with
the index i, the ratio of geometry to surrounding fluid
cells differs in each case. The ratio of geometry cells to the
total number of grid cells is roughly 0.016 for l1 (7.9 · 106

grid points containing 127.732 obstacle cells), 0.01 for l2
(3 · 107 grid points containing 296.240 obstacle cells) and
0.007 for l3 (1.2 · 108 grid points containing 840.349 obsta-
cle cells). Therefore, only a small amount of grid cells in
Fig. 10 is actually used to represent parts of the scopa ge-
ometry.

In Table 1 we list the scale-up results for our turbu-
lent flow simulations on l1, l2 and l3. The simulation itself
will be discussed in detail in Section 4.1. Here, we con-
centrate on the aspect of parallelization. Table 1 lists the
required physical time for the simulation of 40 time steps
of the semi-implicit scheme described in Section 3.4. Ide-
ally, the additional number of processors compensates the
increase in the grid cell number.

We employ 16, 64 and 256 CPU cores for the simula-
tions on the three subdomains. Against our expectations,

Table 2: Strong scaling/ speed-up results with respect to 64 CPUs on the
cluster Atacama for subdomain l3.

#cores absolute timing [s] speedup efficiency [%]
64 3391 1.0 100
128 1702 2.0 100
256 865 3.9 98
512 478 7.1 89

the absolute time decreases from l1 to l2 so that the theo-
retical scaling is 104%. This behavior can be explained by
the different ratio of geometry cells to the total number
of grid cells. Subdomain l1 has the largest ratio of 0.016,
which has two different effects: On the one hand, each
grid cell that resolves the geometry and is not used to
compute the air flow decreases the number of unknowns
in the linear system of equations. Theoretically, this de-
creases the problem size. On the other hand, l1 contains
many more surface cells on which boundary conditions
have to be set. This deteriorates the condition number of
the corresponding matrix so that more iterations of the it-
erative solver are necessary. In practice, the second effect
seems to be dominant which leads to the lower comput-
ing time for subdomain l2. For l3 we observe a decrease
to 88% parallel scale-up which is still comparatively high.
In this case, the decrease in parallel efficiency results from
the communication overhead. Note that the high effi-
ciency which is observed for l3 might slightly decrease,
if the lower geometry cell ratio for l3 is taken into ac-
count. Nevertheless, we are able to reproduce the good
weak scaling results from Zaspel and Griebel [32] and
from Griebel and Rüttgers [33] for the considered com-
plex geometry.

Next, we investigate the strong scaling of NaSt3D-
GPF for the eight hair geometry. We list the results in
Table 2. In this case, we compare the absolute time for
the simulation of 40 time steps of a turbulent air flow de-
scribed in Section 4.1 with a number of processors which
ranges from 64 to 512. Note that the minimum num-
ber of processors used for the strong scaling performance
measurement is 64 since the large number of grid cells
requires a minimum amount of compute nodes due to
memory requirements. In each case, we consider sub-
domain l3 shown in Fig. 10 with a mesh that consists of
439× 330× 833 cells. The speed-up results are nearly op-
timal with an efficiency of about 90% or better. In contrast
to the weak scaling results, the simulation domain is now
identical for the different number of processors so that the
complex geometry does not affect the strong scaling re-
sults. We conclude that NaSt3DGPF is perfectly adapted
to perform massively parallel computations even in a ge-
ometry as complex and irregular as the bee’s scopa.
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4. Numerical results

Now, we discuss the simulation results computed
with NaSt3DGPF. In nature, the whole process of oil stor-
age and transport is very complex due to the involved
scales. The process of oil storage in the scopa geome-
try takes fractions of seconds up to seconds depending
on whether the complete scopa is filled with oil or only a
small part of it. The process of oil transport requires time
in the order of minutes as several flowers are searched for
floral oil, and the oil has to be transported to the breed-
ing cells. We therefore subdivide the simulation of this
process into two parts:

• First, we discuss simulation results of a laminar to
turbulent air flow around the scopa hairs that oc-
curs during the flight process. In this case, we re-
strict ourselves to the simulation of a semi turbu-
lent one-phase flow. This is due to the fact that the
involved time scale is relatively large and higher
flow velocities occur. We therefore require a semi-
implicit scheme that allows for larger time steps.
This is available in NaSt3DGPF for the one-phase
flow solver. Furthermore, the matrix has a better
condition in the one-phase flow case which further
reduces the required amount of CPU time. The sim-
ulation will reveal regions of strong vortex activity
at which the floral oil is most likely to get lost. For
this reason, the simulation is of high practical rele-
vance for the considered problem.

• Second, we simulate the oil storage process within
the scopa. For this purpose, the two-phase flow
solver with surface tension is used. As this problem
possesses a much larger mathematical complexity,
the mesh resolution is lower in this case compared
to the one-phase problem. Here, we will compare
our simulation results with that of a CT measure-
ment of the oil filled scopa.

4.1. Simulation of turbulent air flow around the scopa hairs
The first application of NaSt3DGPF for the CT mea-

sured geometry is the simulation of a turbulent air flow
around the scopa hairs. The corresponding situation in
nature is the flight process of the bee species Epicharis de-
jeanii whose typical flying speed is used here. Due to the
complexity of the eight scopa hairs for a resolution with
439× 633× 1289 cells, see Fig. 4(b), we concentrate our-
selves here to the central part of the geometry. First, we
investigate in a model problem if such a restriction has
influence on the simulation results, i.e. if such a simplifi-
cation can be applied without changing the outcome too
much. In a second step, we present the simulation results
that are adapted to the biological prototype. In contrast
to the simulations in Section 4.2, experimental compar-
isons are not available here. However, we refer to Griebel

and Rüttgers [33] for a validation of NaSt3DGPF for a one-
phase flow problem for which an analytical solution ex-
ists.

In the first test case, we analyze three different but
overlapping subdomains of the scopa hair geometry. To
this end, we reuse the simulation domains that were em-
ployed in the weak-scaling analysis of NaSt3DGPF in Sec-
tion 3.5, see Fig. 10. The three nested subdomains have a
resolution of l1 = 219× 165× 219 cells, l2 = 439× 165×
417 cells and l3 = 439 × 330 × 833 cells. The physical
size of the subdomains is 0.5 mm × 0.39 mm × 0.5 mm
for l1, 1.0 mm × 0.39 mm × 0.97 mm for l2 and 1.0 mm ×
0.77 mm × 1.9 mm for l3. The basic idea is to perform a
turbulent flow simulation for each subdomain with the
same inflow condition and to compare the result on the
common domain of all three meshes. All three meshes
contain the part of the flow domain that is resolved on l1.
In Fig. 10 the common domain of all three simulations is
indicated in the center of the light blue cuboid together
with a slice on which we depict our three different solu-
tions.

The typical flying speed of a bee is ũ ≈ 24 km/h
= 6 2

3 m/s. We prescribe an air flow with u = (ũ, 0, 0)
on the inflow face in x-direction. As the channel length
in x-direction is lm ≈ 1 mm for l2 and l3, we obtain a
Reynolds number Re = (lm ũ ρ)/µ ≈ 500 for air with den-
sity ρ = 1.29 kg/m3 and viscosity µ = 1.72 · 10−5 Pa s.
This Reynolds number lies in the transition regime be-
tween laminar and turbulent flow behavior.

Next, the nondimensionalization of all units is per-
formed by a scaling with reference units. To this end, we
employ the channel length in x-direction lm ≈ 1 mm as
a characteristic length scale and use um = 1 m/s as ref-
erence velocity. Then, we obtain tm = lm/um = 1 ms as
characteristic time scale and 6 2

3 as inflow velocity.
For the simulation of turbulent flow, we use our Large

Eddy turbulence model with Cs = 0.0825. This value lies
in the range of 0.07 - 0.22 as stated in Section 3.2. A com-
paratively low value for Cs was chosen since the turbu-
lent viscosity is oriented in x-direction. On the outflow
face in x-direction, we prescribe homogeneous Neumann
boundary conditions while we set free slip boundary con-
ditions on the lateral four faces. Furthermore, we employ
no slip boundary conditions on the surface of the hairs.

The three simulations were conducted up to a physical
time of t/tm = 1 for all subdomains l1, l2, l3. In Fig. 11
we compare the outcome of the turbulence model on a
slice with normal n = (0, 0, 1) at an lm-normalized height
of 0.72 in z-direction. This slice goes through the center
of the light blue cuboid in Fig. 10. To allow for a better
comparison in Fig. 11, we restrict the x/y-planes for l2
and l3 so that they coincide with l1. Consequently, the
x/y-cut for l1 in Fig. 11(a) has 219× 165 cells, Fig. 11(b)
contains additional cells in x-direction and the mesh of
Fig. 11(c) is extended in the directions x and y.

In general, the results of the three simulations for the
turbulent viscosity νt as defined in (7) agree very well.
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(c) l3 = 439× 330× 833 cells (shown is an x/y-extract
with 219× 165 cells)

Figure 11: Comparison of the turbulent viscosity νt at z/lm = 0.72 for
three simulations in which different parts of the scopa have been re-
solved. The complete simulation domains and the position of the slice
are shown in Fig. 10.

The turbulent viscosity is largest at the side and behind
the scopa hairs in the flow direction. Note that the scopa
in Fig. 11 is colored white. An exact analysis, in which
the absolute difference of the results is measured, shows
that the peak values of the turbulent viscosity differ by

x
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Figure 12: LIC streamline visualization of the airflow around the scopa
hairs. In the top figure, the flow field is shown on a slice at z/lm = 0.74
and at different streamlines with initial heights z/lm = 0.5, z/lm = 1.1
and z/lm = 1.47. In the bottom figure, the velocity field is shown on the
same slice from a different perspective.

at most 10%. Another difference is visible around the
lowest scopa hair in y-direction in Fig. 11(c). The simula-
tions l1 and l2 predict a much lower turbulent viscosity at
this single lateral hair. This is due to the free slip bound-
ary at the bottom side in these two simulations so that
the velocity gradient is very low there. As the free slip
boundary for l3 is further away and is not shown here,
higher flow variations occur at the lateral hair and lead to
a larger turbulent viscosity. In conclusion, a subdomain
of the scopa shows flow structures similar to the full ge-
ometry as long as boundary interference is avoided. We
can therefore consider interesting subdomains of the full
geometry shown in Fig. 4(b). This, however, still leads to
an enormous computational effort.

We now focus on the largest domain l3 with a reso-
lution of 439 × 330 × 833 cells for a detailed analysis of
the airflow within the bee’s scopa. The simulation was
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Figure 13: Turbulent viscosity νt visualized on planes through the scopa
hairs with height z/lm = 0.74 and z/lm = 1.47. The figure at the bottom
shows the slice at z/lm = 0.74 from a different perspective.

conducted up to a physical time of t/tm = 1. The com-
putation of the described problem ran for 160 hours on
256 CPUs of the HPC cluster Atacama. The simulation re-
quired 25.000 time steps with an average time step width
of ∆t/tm = 4 · 10−5.

Fig. 12 shows the laminar to turbulent flow around
the hairs of the scopa. At the top, we display several
streamlines and visualize them on a slice at z/lm = 0.74
in z-direction with a Line Integral Convolution (LIC) fil-
ter. At the bottom of Fig. 12, we show the flow field on
the same slice from a different perspective. Several mi-
nor vortices form directly behind the hairs. The vortices
partially overlap due to the proximity of the various side
hairs. However, sufficiently far away from the hairs there
is laminar flow as expected for Re ≈ 500. For comparison,
Fig. 13 shows the turbulent viscosity νt defined in (7) on
slices at positions z/lm = 0.74 and z/lm = 1.47. Again,
the turbulent viscosity is largest in the vortex regions di-
rectly behind the scopa in the flow direction. Because of

the accurate resolution of the hairs from the CT measure-
ment, both figures now show small scale structures that
would not have been resolved on a coarser mesh. Note
that the CT model allows for a resolution of the hair’s ge-
ometry which indeed captures all relevant flow phenom-
ena for this problem.

4.2. Simulation of the oil storage process within the scopa
The second problem which we consider is the pro-

cess of oil absorption within the scopa. In the follow-
ing, we discuss our simulation results for a microscopic
oil droplet that spreads between the branched hairs. In
a first step, the mesh independence of the simulation is
investigated, i.e. we show that our CT-adapted mesh is
sufficiently fine to resolve all quantities in the flow do-
main. We then investigate the effect of the slip length ls
that has been introduced in Section 3.3. Finally, we dis-
cuss the results of our simulations of the physical process
and compare them with a direct CT-measurement of an
oil-filled scopa. Note that NaSt3DGPF has been recently
used to establish a three-dimensional two-phase bench-
mark configuration. In this benchmark, the outcome of
NaSt3DGPF has been compared with the results of two
other flow solvers DROPS and openFOAM, see [34]. This
indicates the suitability of NaSt3DGPF for this problem.

Again, our mesh widths are prescribed by the micro
CT scan resolution ∆x = 2.3 µm which depicts the finest
grid resolutions in our numerical simulation. Neverthe-
less, we still have to ensure that the resolution of the
flow domain is sufficient to simulate the oil absorption
process. For this purpose, we employ the following ap-
proach: We coarsen the scopa mesh two times which re-
sults in meshes with a resolution of ∆x = 3.1 µm and
∆x = 4.6 µm. Then, we investigate the oil droplet de-
formation on these three different meshes and show that
the steady state of the droplet is similar in each case. This
shows that the employed finest mesh is indeed sufficient.

The scopa subdomain that we use for this grid conver-
gence study is shown on the right hand side of Fig. 14. In
this case, the grid has a resolution of 160× 160× 350 cells
and a physical size of 0.37 mm × 0.37 mm × 0.82 mm.
The coarsening of the scopa geometry, i.e. of the three di-
mensional flag field, is performed with a cubic interpola-
tion to the reduced mesh. In the flag field description a
value of zero is used to denote a fluid cell and a value of
one is used to denote a cell from the scopa. As the inter-
polated flag field contains intermediate floating point val-
ues, flag cells with a value below 0.5 are rounded to fluid
cells. Otherwise, they are rounded to geometry cells, i.e.
they are rounded up to 1.0. This coarsening procedure
can lead to an insufficient number of geometry cells for
the description of the hairs on a coarser mesh as already
discussed in Section 2 and as illustrated in Fig. 6. Here,
lateral hairs of the scopa are erased that do not consist
of sufficiently many cells. Consequently, the side hairs
vanish on coarser grids. This is avoided by converting
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Table 3: Material properties for the oil storage simulations.
ρoil µoil ρair µair τ

910 0.1 1.2 1.8−5 2.8−2
[kg/m3] [kg/m s] [kg/m3] [kg/m s] [kg/s2]

air cells into geometry cells if such a situation is encoun-
tered. On the other hand, this leads to an increase in size
of the lateral hairs compared to the main hairs. The coars-
ened meshes with resolutions of 120× 120× 262 cells and
80× 80× 175 cells are shown on the left hand side and in
the middle of Fig. 14. The effect of the increased lateral
hair size can be seen in mesh l1 on the left hand side of
Fig. 14.

l1=80×80×175 l2=120×120×262 l3=160×160×350

y y y

z z z

Figure 14: Comparison of the meshes for the convergence study. The CT
measured mesh is shown on the right hand side. The results of the two
coarsening steps are displayed on the left hand side and in the middle.

For all three meshes, we simulate the deformation
of a microscopic oil droplet with largest extension of
0.56 mm in z-direction. The material properties for the
two-phase system of oil and surrounding air are listed
in Table 3. Note that the simulations in this section, in
contrast to those in Section 4.1, now employ dimensional
units. We furthermore prescribe the gravitational force
g = (0, 0,−9.81)m/s2 in z-direction. We use this pa-
rameters for all simulations in this section. At the be-
ginning of the simulation, the droplet has an ellipsoidal
shape and a small initial velocity (0, 0,−0.5)m/s in ver-
tical direction. In all three simulations the droplets have
the same surface area but, as the scopa geometry that is
surrounded by the droplet is slightly different due to the
coarsening procedure, the droplets’ masses differ slightly.
The initial position of the oil droplet and its steady state
at about t = 0.3 ms are shown for all three simulations in
Fig. 15. Since the initial velocity was deliberately chosen
very small, only a slight movement in vertical direction
occurred. We observe that the droplet evolves along the
scopa hairs. As shown in Fig. 15 the steady state result
is similar in all simulations. This indicates that the em-
ployed mesh is sufficiently fine.

Next, we investigate the influence of the slip length

l1=80×80×175 l2=120×120×262 l3=160×160×350

y y y

z z z

y y y

z z z

Figure 15: Comparison of the initial and the steady state at t = 0.3 ms of
an oil droplet for different mesh accuracies.

ls on the contact line, see Section 3.3. For this purpose,
we perform four simulations of a deforming oil droplet
that coincide in all parameters but for the slip length ls.
As before, the material parameters are listed in Table 3.
Furthermore, we reuse the same scopa subdomain with
a physical size of 0.37 mm × 0.37 mm × 0.82 mm and
a mesh resolution of 160 × 160 × 350 grid cells. In this
case, a smaller droplet with an extension of 0.26 mm in z-
direction and an initial velocity (0, 0,−0.5)m/s has been
simulated since only the contact line at one lateral hair
is investigated. This subdomain, however, is representa-
tive for the other parts of the scopa. Using relation (14)
the slip length ls is chosen such that uslip is zero for the
no slip boundary condition and it is 10%, 50% and 90%
of the fluid velocity u close to the boundary. The corre-
sponding slip lengths for the generalized slip boundary
conditions are 0.13 µm, 1.15 µm and 10.35 µm. We avoid
free slip boundary conditions as they do not take interac-
tions between fluid and scopa into account.

We show the droplet’s position at steady state in
Fig. 16. In the first row, the droplet is shown for the no
slip boundary condition and for a slip velocity condition
uslip = 0.9 u with the surrounding geometry. Then, both
results are compared on a zoomed extract that primarily
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Figure 16: Influence of the slip length ls on the fluid/geometry interac-
tion.

focuses on the oil droplet. On this length scale both re-
sults closely agree with each other. The influence of ls
becomes only visible at the contact line that is shown in
the second row of Fig. 16. Depending on the slip velocity,
the wetting of the scopa is different. It is largest for the no
slip boundary condition. The more the slip velocity is in-
creased, the less of the structures is wetted. Note that the
wetting of the lateral scopa hair disappears completely
if free slip boundary conditions are employed. Conse-
quently, the largest difference in the wetting behavior oc-
curs between uslip = 0.9 u and the free slip boundary con-
dition.

It is known from experimental measurements that the
scopa has an oleophilic surface so that large parts of the
scopa are wetted with oil. As mentioned before, fluid slip
is observed in experiments on a microscopic length scale,
see Karniadakis, Beskok and Aluru [9]. In Section 3.3 we
roughly estimated the slip length ls as lower or equal to
1 µm. A slip length ls = 1 µm approximately corresponds
to a slip velocity uslip = 0.5 u and we use this bound-
ary condition for the following simulations. We note that
there is no profound verification for this choice. As a re-
sult, the subsequent simulation has an uncertainty with
respect to the wetting of the scopa at the contact line. This
uncertainty is shown in the second row of Fig. 16. Since
the influence of r from (13) in the range [0, 0.9] is hardly
noticeable from a more macroscopic perspective, see first
row of Fig. 16, we will discuss the influence of ls on the
following results only when the contact line is taken into
account.

Using the parameters obtained from the previous test
studies, we simulate the deformation of an oil droplet

on the scopa’s hairs and compare the outcome with ex-
perimental measurements. The simulation has a phys-
ical size of 0.46 mm × 0.77 mm × 1.1 mm and a reso-
lution of 200 × 330 × 389 grid cells. This subdomain
is smaller than the simulation domain with a size of
1.0 mm × 0.77 mm × 1.9 mm that was considered in Sec-
tion 4.1. Nevertheless, the current simulation is the most
demanding with respect to computing time. The simula-
tion required about 4 weeks on 256 CPUs on Atacama, see
Section 3.5, to reach its steady state at about t = 1.0 ms.
The number of time steps was 56.000 and the typical time
step width was ∆t ≈ 1.8 · 10−5 ms. This is a much more
severe restriction than for the one phase flow simulations
in Section 4.1 since the involved fluid velocities are lower
by a factor of 10.

As before, we place an ellipsoidal shaped droplet in
the upper part of the simulation domain and investi-
gate its deformation over time. The droplet’s axes have
lengths of 0.28 mm, 0.51 mm and 0.26 mm in the x, y and
z coordinate directions, respectively. We list the mate-
rial parameters in Table 3. Furthermore, we prescribe a
small initial velocity of the droplet of (0, 0,−0.4) m/s in z-
direction. In reality, a much larger percentage of the scopa
is wetted. In such a configuration, however, it would
be more difficult to recognize the oil distribution along
the scopa hairs which is our primary quantity of inter-
est. The oil absorption takes place due to capillary motion
that is caused by a complex interplay of surface tension
and adhesive forces. Beside these effects, another driving
force of the wetting process is the initial velocity of the oil
droplet.

The importance of surface forces on this length scale
is emphasized by the Bond number Bo. This dimensional
unit measures the importance of surface tension forces
compared to body forces and is defined as

Bo =
ρoil g l2

τ

with g as gravitational acceleration and l as a character-
istic length scale; the other material parameters are listed
in Table 3. We employ the maximum droplet length of
0.51 mm in y-direction as characteristic unit and obtain
Bo ≈ 0.08 as Bond number. In general, scenarios with
Bo smaller than 1 are considered as dominated by surface
tension.

Fig. 17(a) shows the initial state of the simulation with
the oil droplet in the upper part of the simulation do-
main. The droplet then moves downwards and deforms
over time in such a way that its surface area is minimized.
Fig. 17(b) and Fig. 17(c) show intermediate states of the
simulation at t = 0.25 ms and t = 0.5 ms, respectively. We
display the droplet close to its steady state at t = 1.0 ms
in Fig. 17(d).

In Fig. 18 we visualize the magnitude ‖u‖2 of the ve-
locity field and the zero contour of the level set func-
tion ϕ (indicated with a solid white line) on a slice with
unit normal (1, 0, 0) through half of the flow domain in
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Figure 17: Oil droplet within the scopa at four different positions in
time.

x-direction at x = 0.23 mm. In the initial state of the sys-
tem the air phase is at rest and the oil phase possesses an
initial velocity of (0, 0,−0.4)m/s. The simulation shows
that the upper part of the droplet reaches its steady state
quite soon at t ≈ 0.4 ms. The bottom side of the droplet
deforms for a longer period of time until it reaches its
steady state at about t = 1.0 ms. At this point in time, the
velocity magnitude ‖u‖2 is below 0.1 m/s on the lower
droplet side and close to zero nearly everywhere. There-
fore, only minor changes of the droplet occur afterwards.

The droplet’s average velocity component w over time
is shown in Fig. 19. Here, using Ω1(t) to denote the oil
phase at time t, we calculate the medium velocity ū =
(u, v, w) of the droplet as

ū(t) = |Ω1(t)|−1
∫

Ω1(t)
u dx.

At about t ≈ 0.12 ms, its velocity component w has de-
creased by a factor of 0.5 compared to the initial velocity.
In the final stage of the simulation, only a small part of
the droplet deforms while most of it has already reached
a steady state. Then, the average velocity component w is

close to zero at about t ≈ 1.0 ms.
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Figure 18: Magnitude ‖u‖2 of the velocity field and free surface, indi-
cated with a solid white line, on a central slice at four different positions
in time.
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Figure 19: Microscopic oil droplet’s velocity component w over time.

We investigate a further quantity of interest, the
sphericity Ψ ∈ [0, 1] introduced by Wadell [35], which
measures how much the shape of the droplet differs from
a sphere. This quantity is defined as

Ψ(t) = |Γ(t)|−1 π1/3(6|Ω1(t)|)2/3.

Here, the surface area of a sphere with volume |Ω1(t)|
is divided by the surface area |Γ(t)| := meas2 Γ(t) =∫

Γ(t) 1 ds of the actual droplet. A perfect spherical shape
corresponds to Ψ = 1 whereas Ψ becomes smaller the
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more the droplet is deformed. We plot Ψ over time in
Fig. 20. At the beginning of the simulation, Ψ is about 0.73
due to the ellipsoidal initial shape of the droplet. Since
the Bond number Bo is comparatively large, the surface
tension force leads to an increase of Ψ over time. This
increase, however, is not monotone. From t ≈ 0.1 ms to
t ≈ 0.3 ms, Ψ slightly decreases from 0.84 to 0.825 until it
increases again to a final value of about 0.9. The decrease
is partially caused by the movement of the droplet in ver-
tical direction. Due to this movement, the droplet is flat-
tened and extends in the perpendicular x/y-plane. This
effect can be seen by comparing Fig. 17(b) and Fig. 17(c).
At t = 0.25 ms the droplet is more stretched in the direc-
tions x and y than later on at t = 0.5 ms. In the end how-
ever, the droplet’s movement comes to an end and the
surface tension enforces a spherical shape only disturbed
by the scopa geometry.
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Figure 20: Plot of the sphericity Ψ over time.

The primary quantity of interest is the oil distribu-
tion along the scopa hairs. For this purpose, we examine
the upper part of the droplet in detail. Fig. 21 shows a
zoomed view from two different perspectives. The oil is
spread along the lateral scopa hairs. Furthermore, the oil
droplet has a concave shape in the spacing between two
scopa hairs. In Fig. 16 we have analyzed the influence of
the slip length ls on a test simulation. In contrast to the
results in Fig. 17 to Fig. 20, the choice of ls will affect the
wetting that is shown here in detail. From the previous
results we expect a slightly larger wetting of the lateral
hairs with oil if ls is decreased.

Next, we compare the simulated oil distribution shown
in Fig. 21 with the process as it takes place in nature.
In Fig. 22 a scopa wetted with fatty floral oil is shown
in a microscopic photography. The oil encloses a large
part of the structure. Unfortunately, a direct compar-
ison of Fig. 22 with the experiment is not possible as
the magnification is not sufficient to closely analyze the
contact line. For this reason, a CT data measurement
of an oil wetted scopa from the species Epicharis dejeanii
was performed at ITV Denkendorf. First, a large oil
droplet was placed in the center of the scopa. The oil
then spread in all directions along the scopa. After reach-
ing its steady state, a measurement was taken with the
micro-CT nanotom m. Since the measurement was primar-
ily performed to allow for comparisons with the simula-

Figure 21: Two different perspectives on the upper part of the oil droplet
at steady state.

tions, the scanning resolution was lower than for the CT
model used for the simulations. The scanning resolution
used here was ∆x ≈ 5.7 µm, the number of voxel cells
was 1169× 1283× 2242 and the resulting size of the mea-
surement was 6.75× 7.41× 12.95 mm3. Consequently, the
mesh obtained in this case is coarser than the mesh de-
scribed in Section 2 which is the basis for the numerical
simulations.

Table 4: Wetting of lateral hairs with floral oil in the CT scan and in the
simulation.

CT data simulation
wetting height 7− 20 µm 5− 12 µm
number of
investigated hairs 10 7

The full CT-measurement data of the oil filled scopa is
shown in Fig. 23(a). Here, the oil is colored in yellow anal-
ogously to the coloring used for the simulations. Due to
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Figure 22: Floral oil within bee scopa. Photo was taken at the Institute
of Crop Science and Resource Conservation (INRES).

the setup for the micro-CT, the arrangement in Fig. 23(a)
is upside down. Fig. 23(b) and Fig. 23(c) zoom into the
boundary layer of the spread oil. In Fig. 23(c) a zoomed
detail is shown that is comparable in size to the simula-
tion domain in Fig. 21. In both cases, a similar oil distri-
bution along the scopa’s hairs and a concave shape of the
oil’s surface can be observed. This qualitative agreement
shows that our simulation is able to capture the relevant
features of the system at steady state.

For a quantitative comparison of the steady state re-
sults, we have measured the oil distribution along the
small lateral hairs above the surrounding oil surface as
shown in Fig. 23(c) and Fig. 21. The results are listed in Ta-
ble 4. Since the wetting of the lateral hairs strongly varies,
the table gives a range that covers all considered hairs.
For the measurement of the CT data we used the soft-
ware VG-Studio MAX 2.2. The simulation results were
processed with the program ParaView 4.1.0. The sec-
ond row in Table 4 states the number of lateral hairs on
which the oil coverage was investigated. The wetting oc-
curs along 7 lateral hairs in the simulation. The CT scan
contains hundreds of lateral hairs wetted with oil so that
only a subset could be used to measure the stated range
of 7− 20 µm for the lateral hair wetting. This subset con-
sists of 10 randomly chosen hairs. These hairs were mea-
sured on zoomed extracts as in Fig. 23(c). A larger sub-
set would lead to more precise results for the CT data
but, on the other hand, this would not increase the ac-
curacy of the simulation results. Nevertheless, the results
in Table 4 indicate that the simulation underestimates the
wetting along the lateral scopa hairs. One reason for this
could be the simplified numerical treatment of the dy-
namic contact angle as discussed in Section 3.3. Further-
more, the wetting height would slightly increase for sim-
ulations with slip lengths smaller than 1 µm. Moreover,
there is a large overlap of the data ranges which shows
that the general trend can indeed be reproduced in the

(a) Full scopa geometry (CT data).

(b) Zoom into system of branched hairs (CT
data).

(c) Oil distribution in one single hair (CT data).

Figure 23: Oil distribution within the bee’s scopa. The model results
from a micro CT measurement at ITV Denkendorf.
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simulations.
As the CT measurement data gives details on the

steady state only, a comparison of the dynamics of the
oil filling with the simulation is not possible. For the cor-
rect description of the dynamics of the system, the influ-
ence of the dynamic contact angle becomes more impor-
tant than in the steady state case. For this reason, the error
in the dynamic case, shown in Figure 17 to Figure 20, is
presumably larger than for steady state, see Figure 21 and
Table 4. We note that capturing of the dynamics of such
systems on a micrometer length scale is difficult and still
an area of active research.

5. Conclusions

We reported on our numerical flow simulations in the
scopa of a specialized bee which are, at least to our knowl-
edge, the first ones in this area. First, we discussed the
postprocessing of a CT measured geometry and gave spe-
cific details on noise reduction and geometry optimiza-
tion to allow for simulations with a Cartesian grid based
flow solver. Our approach to fill the interior part of the
hollow hairs is, as far as we know, not reported in liter-
ature yet. Then, we simulated the airflow through a CT
measured geometry of the scopa. Furthermore, we repro-
duced the deformation of an oil droplet in a complex hair
geometry on a microscopic length scale.

This work provides the following new insights into
the process of oil transport in the microscopic scopa:

• As the vortex intensity in the simulation in Sec-
tion 4.1 was largest directly behind the hairs of the
scopa, the forces that act on a partially filled scopa
are largest there as well. This is the region in which
floral oil is most likely to get lost during transport.

• The influence of the slip length ls on the wetting of
the lateral hairs was investigated. For slip lengths
below 1 µm differences in the scopa wetting only
occurred at the contact line but the general oil dis-
tribution was identical.

• The oil distribution is substantially influenced by
the side hairs of the scopa. Table 4 gives a qualita-
tive estimate of the lateral hair wetting. Although,
this effect was slightly underestimated in the simu-
lation, the general shape of the oil wetting along the
lateral hairs could be reproduced.

Our results clearly indicate the potential of simula-
tions of complex biological systems for which direct ex-
perimental measurements are not possible.

Future simulations might remove the restrictions that
were necessary to obtain results for such an enormously
complex system within a reasonable amount of time:

• The simulations of the one and two-phase systems
were restricted to resolutions with 439× 330× 833

and with 200× 330× 389 cells, respectively. There-
fore, the simulations could only deal with eight
scopa hairs. A long-term goal is the simulation of
the process in the full scopa. For the performed CT
measurements, this would lead to a simulation with
3072× 3072× 2400 cells in total.

• The full process in nature takes place on different
time scales. This was the reason to separately con-
sider the process of oil absorption in Section 4.2 and
the process of transportation at the bee’s flight in
Section 4.1. Ideally, this process would have to be
simulated on its complete time scale.

• The simulation of the full problem requires the solu-
tion of the involved dynamic contact angle problem.
We employed here a model which is based on the
slip length ls. Improved models exist, see [22], but
their numerical verification needs still to be done.

Apart from the third problem, the restrictions can be
overcome with massively parallel simulations on larger
parallel systems. This emphasizes the importance of ad-
equately scaling multi-CPU and multi-GPU flow solvers
for the simulation of complex biological systems in the
future.

Let us finally mention that the simulation with one
specific scopa is not sufficient for a general statement on
the oil storage properties of the bee’s scopa. Bazilevs et
al. [36], for instance, perform fluid-structure simulations
on four patient-specific models of cerebral aneurysm that
vary in shape and size. Therefore, many different scopae
need to be measured and simulations need to be carried
out in the spirit of uncertainty quantification, see, e.g., Le
Maı̂tre and Knio [37] or Xiu [38].
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