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Abstract Sampling inequalities play an important role in deriving error estimates
for various reconstruction processes. They provide quantitative estimates on a
Sobolev norm of a function, defined on a bounded domain, in terms of a discrete
norm of the function’s sampled values and a smoothness term which vanishes if
the sampling points become dense. The density measure, which is typically used
to express these estimates, is the mesh norm or Hausdorff distance of the discrete
points to the bounded domain. Such a density measure intrinsically suffers from
the curse of dimension. The curse of dimension can be circumvented, at least
to a certain extend, by considering additional structures. Here, we will focus on
bounded mixed regularity. In this situation sparse grid constructions have been
proven to overcome the curse of dimension to a certain extend

In this paper, we will concentrate on a special construction for such sparse grids,
namely Smolyak’s method and provide sampling inequalities for mixed regularity
functions on such sparse grids in terms of the number of points in the sparse grid.
Finally, we will give some applications of these sampling inequalities.
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1 Introduction

Sampling inequalities provide an efficient, theoretical tool to prove convergence
results for a large class of numerical reconstruction processes, see for example [13,
22,12,1]. They are based on the observation that a sufficiently regular function that
is small on a sufficiently dense discrete set has to be globally small. However, the
derived estimates suffer from the so-called curse of dimension. To make this more
precise, let us consider a typical variant of a sampling inequality for a function
u ∈ W k

p (Ω) on a bounded Lipschitz domain Ω ⊆ Rd. Here, W k
p (Ω) denotes the

usual Sobolev space of smoothness k, where the smoothness is measured in the
Lp(Ω)-norm. A typical sampling inequality provides an estimate of the form

∥u∥L∞(Ω) ≤ Chk−d/p
XN ,Ω |u|W k

p (Ω) + ∥u|XN ∥ℓ∞(XN ), (1)

where the quantity

hXN ,Ω := hX,Ω := sup
x∈Ω

min
xj∈X

∥x− xj∥ℓ2 (2)

is called the fill distance of the discrete set XN = {x1, . . . ,xN} ⊆ Ω. To illustrate
the curse of dimension, we will apply the sampling inequality (1) to a norm-minimal
interpolation process, i.e. we assume that the function u from (1) is of the form
u = f − IXN f , where IXN : W k

2 (Ω) → W k
2 (Ω) satisfies

IXN f |XN = f |XN and ∥IXN f∥Wk
2 (Ω) ≤ c∥f∥W k

2 (Ω)

with c > 0 being a constant. For k > d/2, the existence of such stable interpolation
processes is for example given if interpolation by radial basis functions or other
kernel-based methods is employed, see for example [21].

For quasi-uniform point sets, the number of points N is related to the fill
distance via hXN ,Ω ∼ N− 1

d , see [21, Proposition 14.1]. Thus we can derive

∥f − IXN f∥L∞(Ω) ≤ Chk−d/2
XN ,Ω ∥f∥W k

2 (Ω)

≤ CN− k
d
+ 1

2 ∥f∥Wk
2 (Ω).

Obviously, a large dimension slows the error bound dramatically down. Even worse,
the smoothness k must satisfy k > d/2 to guarantee convergence at all. This is due
to the well-known Sobolev embedding theorem W k

2 (Ω) ⊆ C(Ω), which requires
k > d/2 and is necessary for interpolation. While this assumption is not too
restrictive in moderate dimensions, say 1 ≤ d ≤ 4, it becomes unacceptable for
higher dimensions.

The first step to remedy this problem is to replace the smoothness assump-
tion u ∈ W k

2 (Ω) by something more restricting. In this context, typically tensor
product spaces are considered, i.e. Sobolev spaces of mixed regularity. However,
this approach is then limited to tensor product domains. Typically, one is mainly
concerned with the d dimensional hypercube, i.e.,

Id := I(1) × · · ·× I(d) with I(j) = I = [−1, 1]. (3)
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As smoothness spaces, we will consider tensor product spaces, i.e.,

W k;⊗d

p (Id) :=
d⊗

j=1

W k
p (I) = {f ∈ Lp(I

d) : Dαf ∈ Lp(I
d), ∥α∥∞ ≤ k}, (4)

equipped with the norm

∥f∥p
W k;⊗d

p (Id)
:=

∑

0≤|α|≤k

∥Dαf∥pLp(Id).

Here, k ∈ N0 is an integer and 1 ≤ p < ∞ but we will also allow a fractional order
of smoothness τ > 0 or p = ∞, using, for example interpolation between Sobolev
spaces.

Because of the tensor product structure, obviously the Sobolev embedding
theorem now becomes

W k;⊗d

2 (Id) ⊆ C(Id), for k >
1
2
.

Hence, here the dependence on the spatial dimension is removed.
If applied to residuals of stable reconstruction processes, sampling inequalities

imply error estimates that can cope with noisy data (see [14]). Sampling inequal-
ities have proven useful in various applications, e.g. spline smoothing (see [22]),
support vector regression algorithms (see [15,7]), and integral equations (see [11,
10]).

So far, all these sampling inequlities are built using the above mentioned fill
distance. For higher dimensional spaces this is, because of the reasons outlined
above, not practicable. Hence, in high dimension sampling inequalities will only
make sense if they use the number of points instead of the fill distance. It is the
goal of this paper, to derive such sampling inequalities for specific, so-called sparse
grids, which play a prominent role in numerical methods for high dimensional
problems, see for example [3,8]. For specific interpolation methods on sparse grids
over the torus, error estimates have previously been derived in [19,4].

The paper is organised as follows. In the next section, we will introduce Smo-
lyak’s algorithm to construct high dimensional approximations from one dimen-
sional ones. Intrinsic to this algorithm are sparse grids, which we also introduce
here, particularly, those which we will use. Also in Section 2, we will discuss dif-
ferent methods of polynomial reproductions, in particular those, which use over-
sampling to have a constant Lebesgue function.

Section 3 is devoted to deriving sampling inequalities on sparse grids and
in Section 4 we will give two possible applications: Interpolation and penalised
least-squares approximation with tensor product reproducing kernels in mixed-
derivative Sobolev spaces.

2 Smolyak’s Method and Polynomial Reproductions

2.1 Smolyak’s Algorithm

In this paper, we will use a general construction, given by Smolyak [18]. Smolyak
provided a construction technique that used univariate operators to build a multi-
variate operator on a sparse grid with approximately the same convergence prop-
erties as the univariate operators.
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To be more precise, suppose we are given a sequence of point sets X(i) :=

{x(i)
1 , . . . , x(i)

mi} ⊆ I(i) for i ∈ N. Suppose further that for each i, we can define an
operator

U(X(i)) = U(i) : C(I(i)) → C(I(i)), f $→
mi∑

j=1

a(i)j (x)f(x(i)
j )

based on X(i) and given by certain functions a(i)j : I(i) → R for j = 1 . . . ,mi.
Following [2,17], these univariate formulas give rise to the tensor product formula

(U(i1) ⊗ · · ·⊗ U(id))(f) =

mi1∑

j1=1

· · ·
mid∑

jd=1

f(x(i1)
j1

, . . . , x(id)
jd

)a(i1)j1
⊗ · · ·⊗ a(id)jd

=:
∑

1≤j≤m

f(x(i)
j )a(i)

j ,

where we used the vector notation j ≤ m for vectors j = (j1, . . . , jd)
T and m =

(m1, . . . ,md)
T , which is defined to mean jk ≤ mk for all 1 ≤ k ≤ d. Moreover, for

a scalar v ∈ R we define v ≤ m to be v ≤ m with v = (v, . . . , v)T . Finally, we
used the notation

a(i)
j := a(i1)j1

⊗ · · ·⊗ a(id)jd

for a tensor product function and

x(i)
j = (x(i1)

j1
, . . . , x(id)

jd
)

for a vector. It should be clear from the context, which one is meant.
These formulas are the main building blocks for Smolyak’s algorithm. For a

given q ∈ N with q ≥ d, Smolyak’s algorithm is given by

A(q, d)(f) :=
∑

q−d+1≤|i|≤q
i∈Nd

(−1)q−|i|

(
d− 1
q − |i|

)
(U(i1) ⊗ · · ·⊗ U(id))(f)

=
∑

q−d+1≤|i|≤q
i∈Nd

(−1)q−|i|

(
d− 1
q − |i|

)
∑

1≤j≤m

f(x(i)
j )a(i)

j .

Here, we used the notation |i| = i1 + · · ·+ id for i ∈ Nd. Note that q ≥ d only
means |i| ≥ 1. Hence, unless q ≥ 2d− 1, some terms in the sum might still be zero
since i ∈ Nd means automatically |i| ≥ d.

To evaluate A(q, d)(f), we only need to know f at the sparse grid

H(q, d) :=
⋃

q−d+1≤|i|≤q
i∈Nd

(X(i1) × · · ·×X(id)).

If the sets are nested, i.e. X(i) ⊆ X(i+1) this reduces to

H(q, d) :=
⋃

|i|=q

(X(i1) × · · ·×X(id)). (5)

In this case, we have the following reproduction result from [2, Lemma 2]:
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Lemma 1 Assume that the formulas U(i) are exact on the linear spaces V(i) ⊆
C(I) with I = [−1, 1] and V(i) ⊆ V(i+1) for i ∈ N. Then Smolyak’s algorithm
A(q, d) is exact on ∑

|i|=q
i∈Nd

(V(i1) ⊗ · · ·⊗ V(id)).

To ensure nestedness we again follow [2] and consider the Clenshaw-Curtis or
Chebyshev point sets.

Definition 1 We define a sequence of numbers m1 = 1 and

mi = 2i−1 + 1, i > 1. (6)

Associated with these numbers we define the Clenshaw-Curtis point sets to be

Xmi := X(i) =

{
x(i)
j = − cos

(
π(j − 1)
mi − 1

)
: 1 ≤ j ≤ mi

}
, i > 1, (7)

and Xm1 = X(1) = {0}.

It is easy to see that for the given choices of mi the sets X
(i) are indeed nested,

i.e. X(i) ⊆ X(i+1) for all i ≥ 1.
In what follows, we are mainly interested in polynomials and polynomial in-

terpolation. Let πk(Rd) denote the set of all d-variate polynomials of degree less
than or equal to k and let πk(Ω) := πk(Rd)|Ω be its restriction to Ω ⊆ Rd.

Let us assume that the operators U(i) are exact on πmi−1(I
(i)), then, Lemma 1

shows that Smolyak’s algorithm A(q, d) is exact on the Smolyak polynomial space

Sq,d(I
d) :=

∑

|i|=q

(
πmi1

−1(I)⊗ · · ·⊗Πmid
−1(I)

)
.

2.2 Polynomial Reproduction

We will heavily rely on the concept of norming sets and polynomial reproductions.
The following description is essentially taken from [21, Section 3.2], but originates
from [9].

Let V be a finite dimensional vector space with norm ∥ · ∥V and dual V ∗. Let
Z = {z1, . . . , zN} ⊆ V ∗ be a finite set of linearly independent functionals. These
functionals define the sampling operator

T : V → T (V ) ⊆ RN , T (v) = (z1(v), . . . , zN (v))T .

If the sampling operator T is injective, then the set of functionals Z is called a
norming set for V . If Z ⊆ V ∗ is a norming set for V , then ∥ · ∥V and ∥T (·)∥RN

are equivalent norms on the finite dimensional space V . We will use the following
result (see [21, Theorem 3.4]).

Theorem 1 Suppose V is a finite dimensional normed linear space and Z =
{z1, . . . , zN} is a norming set for V with associated sampling operator T . For
every ψ ∈ V ∗ there exists a vector u ∈ RN such that
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– ψ(v) =
∑N

j=1 ujzj(v) for every v ∈ V ,

– ∥u∥RN∗ ≤ ∥ψ∥V ∗∥T−1∥T (V )→V .

The number ∥T−1∥T (V )→V is called the norming constant of the set Z.

We will apply this result to polynomials and point evaluations in the uni-
variate setting, i.e. we will use V = πk(I) = πk(R)|I with I = [−1, 1] and
Z = {δx1 , . . . , δxn}, where δx for x ∈ I denotes the point evaluation functional,
i.e. δx(p) = p(x).

In what follows we will particularly be interested in studying the relationship
between the number n of data points and the degree k of the polynomials.

We will start with the well-known case of k = n− 1, which gives rise to unique
interpolation.

2.3 Univariate Polynomial Reproduction without Oversampling

For a given set X = {x1, . . . , xk} ⊆ I = [−1, 1] we can write an interpolation
operator IX : C(I) → πk−1(I) as

IXf(x) =
k∑

j=1

f(xj)Lj(x), x ∈ I,

using the Lagrange functions

Lj(x) =
k∏

i=1
i ̸=j

x− xi

xj − xi
, x ∈ I.

Since this operator is exact on πk−1(I) and has norm

Λk−1(X) := max
x∈I

k∑

j=1

|Lj(x)|,

we have the first example of a polynomial reproduction.

Theorem 2 A set X = Xk = {x1, . . . , xk} ⊂ I = [−1, 1] defines a polynomial
reproduction for πk−1(I), i.e. there are functions aj : [−1, 1] → R for 1 ≤ j ≤ k
such that

k∑

j=1

aj(x)p(xj) = p(x)

for all p ∈ πk−1(I) and x ∈ I. Furthermore, we have

k∑

j=1

|aj(x)| ≤ Λk−1(Xk) := max
x∈I

k∑

j=1

|Lj(x)|.

Proof We simply set aj = Lj .

The number Λk−1(X) is called the Lebesgue constant of this interpolation pro-
cess. It is well studied in univariate polynomial interpolation. In case of the points
defined in (7), the Lebesgue constant is known [2, Equation 8] to satisfy

Λk−1(Xk) ≤
2
π
log(k − 1) + 1. (8)
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2.4 Univariate Reproduction with Oversampling

From now on, we will concentrate mainly on the sets X = X(i), introduced in (7).
Our focus will, however, be on oversampling, i.e. we will use more points k = mi

than usually required for an exact reproduction of polynomials of degree n.
In this section we will concentrate on the sets X(i) because they allow for the

smallest amount of oversampling. Similar arguments concerning the oversampling
in the spherical distance can be found in [16].

Definition 2 The spherical fill distance for a point set X ⊆ I = [−1, 1] on I is
defined by

dX,I := max
x∈I

min
xj∈X

| arccos(x)− arccos(xj)|.

With this spherical fill distance we can formulate and prove the following the-
orem.

Theorem 3 A set X = {x1, . . . , xk} ⊆ I = [−1, 1] defines a norming set ∆(X) :=
{δxj : xj ∈ X} ⊆ C(I)∗ for πn(I), if the oversampling condition C∆ := ndX,I < 1
is satisfied. In this case, the norming constant is given by CX := 1

1−C∆
.

Proof We consider the sampling operator T : πn(I) → Rk defined by Tp =
(p(x1), . . . , p(xk))

T .
According to Lemma 3 (ii) in Section 7 of Chapter 3 of [5] we immediately

have
∥Tp∥ℓ∞(Rk)

∥p∥L∞(I)

≥ 1− ndXk,I = 1− C∆ > 0

for all p ∈ πn(I). Hence, we have for the norm of the sampling operator T the
estimate

∥T∥ ≥ 1− C∆ > 0.

This obviously means that T is injective and that we have an inverse T−1 :
T (πn(I)) ⊆ Rk → πn(I) with

∥T−1∥ ≤ 1
1− C∆

.

Next, we will check when the Clenshaw-Curtis points satisfy the oversampling
condition ndX,I < 1. We will do this first for slightly more general points.

Lemma 2 Let k ∈ N with k ≥ 2. On I = [−1, 1], the point set

Xk :=

{
xj = − cos

(
π
j − 1
k − 1

)
: 1 ≤ j ≤ k

}

has a spherical fill distance

dXk,I := max
x∈I

min
xj∈Xk

| arccos(x)− arccos(xj)| =
π

2(k − 1)
.

Moreover, the points are uniformly distributed with respect to the distance d.
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Proof We consider arccos : [−1, 1] → [−π, 0]. With this notation we can compute

arccos(xj) = arccos

(
− cos

(
π
j − 1
k − 1

))
= arccos

(
cos

(
−π + π

j − 1
k − 1

))

= arccos

(
cos

(
π
j − k
k − 1

))
= π

j − k
k − 1

,

since π(j − k)/(k − 1) ∈ [−π, 0]. Hence we see that

X̃k := arccos(Xk) = {arccos(xj) : xj ∈ Xk} =

{
π
j − k
k − 1

: 1 ≤ j ≤ k

}
⊆ [−π, 0]

is an equidistant grid in [−π, 0] having an Euclidean fill distance hX̃k,[−π,0] =
dXk,I . Thus, we can compute

dXk,I = hX̃k,[−π,0] = max
x∈[−π,0]

min
xj∈X̃k

=
1
2
|x1 − x2|

=
1
2

∣∣∣∣−π − π
2− k
k − 1

∣∣∣∣ =
π
2

∣∣∣∣1 +
2− k
k − 1

∣∣∣∣ =
π
2

∣∣∣∣
1

k − 1

∣∣∣∣ =
π

2(k − 1)
,

which is the stated equality.

We are now going to apply this result to the previously defined meshes X(i) =
Xmi from Definition 1. To be more precise, let ℓ > 0 and consider X = X(i+ℓ).
Following Lemma 2, this set has a spherical fill distance

dX(i+ℓ),I =
π

2(mi+ℓ − 1)
=

π
2(2i+ℓ−1 + 1− 1)

= π2−(i+ℓ).

According to Theorem 3, the associated functionals ∆(X(i+ℓ)) := {δx : x ∈
X(i+ℓ)} form a norming set for πn(I) with n = mi− 1 provided that C∆(X(i+ℓ)) =
ndX(i+ℓ),I < 1. Since we have

C∆(X(i+ℓ)) = ndX(i+ℓ),I =
(mi − 1)π

2i+ℓ
= π2i−1−i−ℓ = π2−ℓ−1,

which is less than one for every ℓ ≥ 1, we have indeed a norming set with norming
constant

CX(i+ℓ) =
1

1− C∆(X(i+ℓ))
=

1
1− π

2ℓ+1

=
2ℓ+1

2ℓ+1 − π

= 1 +
π

2ℓ+1

1
1− π

2ℓ+1

≤ 1 +
π

2ℓ+1

4
4− π

≤ 1 +
5π
2ℓ+1

.

In the last step we used that 4/(4− π) ≈ 4.659792368 ≤ 5.
This, together with Theorem 1, immediately gives the following result.
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Theorem 4 Let X(i+ℓ) be the set defined in (7) with i ∈ {1, . . . , d} and ℓ ∈ N.
Then, the associated functionals ∆(X(i+ℓ)) form a norming set for πmi−1(I). In

particular, there are functions a(i+ℓ)
j : I → R for 1 ≤ j ≤ mi+ℓ such that

mi+ℓ∑

j=1

a(i+ℓ)
j (x)p(x(i+ℓ)

j ) = p(x)

for all p ∈ πmi−1(I) and x ∈ I. Moreover, we have

mi+ℓ∑

j=1

|a(i+ℓ)
j (x)| ≤ 2ℓ+1

2ℓ+1 − π
≤ 1 +

5π
2ℓ+1

.

Note that the norm of the interpolation operator can become arbitrarily close
to 1, if we let ℓ tend to infinity. However, this means that we will use an increasing
number of data sites, while we keep the polynomial degree fixed.

2.5 Analysis of Smolyak’s Algorithm with and without Oversampling

We can combine Lemma 1 with Theorem 3 and Theorem 4, respectively, to derive
the following Theorem on Smolyak’s algorithm. Note that now Smolyak’s algo-
rithm also depends on ℓ ≥ 0 since we will use the univariate grids X(i+ℓ) and
the associated functions a(i+ℓ) to build A(q, d). However, we will not change the
notation to indicate this dependence on ℓ.

We will use the notation m+ ℓ := (m1 + ℓ, . . .md + ℓ)T .

Theorem 5 Define Smolyak’s algorithm A(q, d) using the functions a(i+ℓ)
j from

Theorem 2 or Theorem 4. Then, the algorithm is exact on Sq,d(I
d), i.e. we have

p(x) = A(q, d)p(x) =
∑

q−d+1≤|i|≤q
i∈Nd

(−1)q−|i|

(
d− 1
q − |i|

)
∑

j≤m+ℓ

p(x(i+ℓ)
j )a(i+ℓ)

j (x)

for all p ∈ Sq,d(I
d) and x ∈ Id. Moreover, in the case of Theorem 2, i.e. ℓ = 0

(no oversampling), we have the bound

∥A(q, d)∥ ≤ c(q, d)

(
2
π
log(n(q, d)− 1) + 1

)d

,

where n(q, d) equals the number of points in the sparse grid H(q, d) and

c(q, d) = 2d−1

(
q − 1
d− 1

)
.

Moreover, in the case of Theorem 4, i.e. ℓ ≥ 1 (oversampling) we have

∥A(q, d)∥ ≤ c(q, d)

(
1 +

5π
2ℓ+1

)d

.
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Proof The first part is a direct consequence of Lemma 1 combined with Theorem
2 and Theorem 4, respectively. We apply them with ℓ ≥ 0 and

V(i) = πmi−1(I),

U(i) : p "→
mi+ℓ∑

j=1

a(i+ℓ)
j (x)p(x(i+ℓ)

j ).

Then, we know by Theorem 2 and Theorem 4, respectively, that U(i) is exact on
πmi−1(I), i.e. U(i)(p) = p for all p ∈ πmi−1(I). Hence, Lemma 1 yields the first
claim. For bounding the norm of the operator, we use

∥A(q, d)∥

= sup
∥f∥L∞(Id)=1

max
x∈Id

∣∣∣∣∣∣∣∣

∑

q−d+1≤|i|≤q
i∈Nd

(−1)q−|i|

(
d− 1
q − |i|

)
∑

j≤m+ℓ

f(x(i+ℓ)
j )a(i+ℓ)

j (x)

∣∣∣∣∣∣∣∣

≤ max
x∈Id

∑

q−d+1≤|i|≤q
i∈Nd

(
d− 1
q − |i|

)
∑

1≤j≤m+ℓ

|a(i+ℓ)
j (x)|.

Next, using A.2 from [17] and the fact that j "→
(j−1
d−1

)
is non-decreasing, yields

∑

q−d+1≤|i|≤q
i∈Nd

(
d− 1
q − |i|

)
=

q∑

j=q−d+1

∑

|i|=j
i∈Nd

(
d− 1
q − j

)
=

q∑

j=q−d+1

(
d− 1
q − j

)
∑

|i|=j
i∈Nd

1

=
q∑

j=q−d+1

(
d− 1
q − j

)(
j − 1
d− 1

)
≤

q∑

j=q−d+1

(
d− 1
q − j

)(
q − 1
d− 1

)

=
d−1∑

k=0

(
d− 1
k

)(
q − 1
d− 1

)
= 2d−1

(
q − 1
d− 1

)

=: c(q, d).

With this, we can derive the estimate

∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
∑

j≤m+ℓ

|a(i+ℓ)
j (x)|

=
∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
∑

j≤m+ℓ

|a(i1+ℓ)
j1

⊗ · · ·⊗ a(id+ℓ)
jd

(x)|

≤
∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
d∏

k=1

mik+ℓ∑

jk=1

|a(ik+ℓ)
jk

(xk)|.

In the case of ℓ = 0 we can use (8) to continue
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∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
d∏

k=1

mik+ℓ∑

jk=1

|a(ik+ℓ)
jk

(xk)|

≤
∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
d∏

k=1

(
2
π
log(mk − 1) + 1

)

≤ c(q, d)

(
2
π
log(n(q, d)− 1) + 1

)d

.

In the case of ℓ ≥ 1 we can use Theorem 4 to derive

∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
d∏

k=1

mik+ℓ∑

jk=1

|a(ik+ℓ)
jk

(xk)|

≤
(
1 +

5π
2ℓ+1

)d ∑

q−d+1≤|i|≤q

(
d− 1
q − |i|

)
≤ c(q, d)

(
1 +

5π
2ℓ+1

)d

.

2.6 Cardinality of Sparse Grids

The remarkable point of the last theorem is that in the case of ℓ ≥ 1, the Lebesgue
constant is independent of the number of points. However, this comes at the cost
of a larger number of points in our sparse grid.

We now want to estimate this number of points in the Smolyak type sparse
grid, where we use the univariate point set X(i+ℓ) for an integer offset ℓ ≥ 0. To
achieve this, We will use a more general lemma from [17, Lemma 3.23] to bound
the final number of points n(q, d):

Lemma 3 If the number of points mj in the univariate point sets X(j) satisfies
the bound

mj ≤ F0

(
F j − 1

)
(9)

for all j ≥ 1 and some F0, F ∈ N then the cardinality n(q, d) of the Smolyak points
H(q, d) can be bounded from above by

n(q, d) ≤ F d
0 (F − 1)d

q−d∑

k=0

F k(k+d−1
d−1

)
≤ F d

0

(
F − 1
F

)d

F q(q−1
d−1

)
min

(
F

F − 1
,
q
d

)

(10)
for q ≥ d.

In order to apply this result, we have #X(i+ℓ) = 2i+ℓ−1 + 1 = mi+ℓ. Obviously,
we have for i ≥ 1

mi+ℓ = 2i+ℓ−1 + 1 ≤ 2ℓ
(
2i − 1

)
(11)

and by definition m1 = 1. Hence, we can choose F0 = 2ℓ and F = 2. This yields

n (q, d) ≤ 2ℓd−d+q(q−1
d−1

)
min

(
2,

q
d

)
. (12)

In order to also obtain a lower bound, we can use another result from [17, Korollar
3.28]:



12 Christian Rieger, Holger Wendland

Lemma 4 If the number of points mj in the univariate point sets X(j) satisfies
the bound

mj −mj−1 ≥ F0 (F − 1)F j−1 (13)

for all j ≥ 1 and some F0, F ∈ N, then the cardinality n(q, d) of the Smolyak points
Hq,d has the lower bound

n (q, d) ≥ F d
0 (F − 1)d max

(
min (1, F )q−d (F − 1)

(q
d

)
, F q−d+1 − 1

)
(14)

for q ≥ d.

For our specific data sets X(j+ℓ) we have

mj −mj−1 = 2j+ℓ−1 − 2j+ℓ−2 = 2ℓ−1 (2− 1) 2j−1.

Hence we can apply this result with F0 = 2ℓ−1 and F = 2 and obtain

n (q, d) ≥ 2dℓ−d max
((q

d

)
, 2q−d+1 − 1

)
. (15)

Together with the upper bound (12), this yields

2dℓ−d max
((q

d

)
, 2q−d+1 − 1

)
≤ n (q, d) ≤ 2ℓd−d+q(q−1

d−1

)
min

(
2,

q
d

)
.

Using the estimate
(q−1
d−1

)
≤ qd−1

(d−1)! , we can simply this as follows.

Corollary 1 Let X(i+ℓ) be the the points from (7) with 1 ≤ i ≤ d and ℓ ≥ 0.
Then, the number of points in the associated Smolyiak sparse grid H(q, d), q ≥ d,
can be bounded from below and above by

2ℓd−2d+q+1 ≤ n (q, d) ≤ 2ℓd−d+q+1 qd−1

(d− 1)!
.

3 Sampling Inequalities based on Smolyak’s Method

The basic idea of proving sampling inequalities is based upon the following argu-
ment (see [21]).

Suppose a function f ∈ C(Id), a polynomial p ∈ Sq,d(I
d) and a point x ∈ Id

are given. Define the coefficients

ci := (−1)q−|i|

(
d− 1
q − |i|

)
,

so that Smolyiak’s algorithm can be written as

A(q, d)f(x) =
∑

q−d+1≤|i|≤q

ci
∑

j≤m

f(x(i+ℓ)
j )a(i+ℓ)

j (x).
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Then, we can estimate

|f(x)| ≤ |f(x)− p(x)|+ |p(x)| = |f(x)− p(x)|+ |A(q, d)p(x)|
≤ |f(x)− p(x)|+ |A(q, d)(p− f)(x)|+ |A(q, d)f(x)|

≤ (1 + ∥A(q, d)∥)∥f − p∥L∞(Id) +

∣∣∣∣∣∣

∑

q−d+1≤|i|≤q

ci
∑

j≤m

f(x(i)
j )a(i)

j (x)

∣∣∣∣∣∣

≤ (1 + ∥A(q, d)∥)∥f − p∥L∞(Id) + ∥A(q, d)∥∥f∥ℓ∞(X)

Since this holds for all x ∈ Id, we actually have a bound on the L∞(Id)-norm
of f . Moreover, p ∈ Sq,d can be chosen arbitrarily and hence we can replace the
expression ∥f − p∥L∞(Id) by the best approximation error.

Definition 3 Let V ⊆ C(Id) be a subspace and 1 ≤ p ≤ ∞. Then the best
approximation error for a given f ∈ C(Id) from V measured in the Lp-norm is
defined as

E(f ;V )Lp := inf
p∈V

∥f − p∥Lp(Id).

Hence, we can summarise our findings so far. Again, we deal with the case of
no oversampling (ℓ = 0) and oversampling (ℓ ≥ 1) together.

Theorem 6 Let f ∈ C(Id) with Id = [−1, 1]d be given. Assume that q ≥ d and
ℓ ≥ 0 are integers. Then f satisfies the sampling inequality

∥f∥L∞(Id) ≤ (1 + ∥A(q, d)∥)E(f ;Sq,d)L∞ + ∥A(q, d)∥∥f∥ℓ∞(H(q,d)).

Here, H(q, d) is the sparse grid defined by

H(q, d) :=
⋃

|i|=q

(X(i1+ℓ) × · · ·×X(id+ℓ)),

where X(j) is the univariate set defined in (7).
In the case of ℓ = 0 we have

∥A(q, d)∥ ≤ 2d−1

(
q − 1
d− 1

)(
2
π
log(n(q, d)− 1) + 1

)d

and in the case of ℓ ≥ 1 we have

∥A(q, d)∥ ≤ c(q, d, ℓ) = 2d−1

(
q − 1
d− 1

)(
1 +

5π
2ℓ+1

)d

. (16)

We are left with estimating the quantity E(f ;Sq,d(I
d))Lp . Here, we can invoke

results from [2, Theorem 8 & Equation 13] to reduce the problem to univariate
estimates. To be more precise, the results of [2] can be summarised as follows.
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Lemma 5 Suppose the univariate operators U(i), 1 ≤ i ≤ d, satisfy

∥f − U(i)f∥L∞(I(i)) ≤ c1,k(logmi)m
−k
i ∥f∥W k

∞(I(i)), f ∈ W k
∞(I(i)), (17)

for 1 ≤ i ≤ d, where mi is the number of points on which the operator U(i) is
based. Suppose further that the total number of points n = n(q, d) in the sparse
grid H(q, d) is bounded by

n ≤ cdq
d−12q.

Then, for every f ∈ W k;⊗d

∞ (Id) we have

E(f ;Sq,d(I
d))L∞ ≤ ∥f −A(q, d)f∥L∞(Id)

≤ cd,kn
−k(log n)(k+2)(d−1)+1∥f∥

W k;⊗d
∞ (Id)

(18)

with n = n(q, d).
If the univariate operators U(i), 1 ≤ i ≤ d, satisfy instead of (17) even

∥f − U(i)f∥L∞(I(i)) ≤ c1,km
−k
i ∥f∥

W k;⊗d
∞ (Id)

then (18) improves to

E(f ;Sq,d(I
d))L∞ ≤ ∥f −A(q, d)f∥L∞(Id)

≤ cd,kn
−k(log n)(k+1)(d−1)∥f∥

W k;⊗d
∞ (Id)

The following univariate result is well known, see for example [6, Chapter 7,
§6, Theorem 6.2].

Lemma 6 For f ∈ W r
p (I) with I = [−1, 1], 1 ≤ p ≤ ∞, and m ∈ N with m ≥ r,

we have

E(f ;πm(I))Lp ≤ Cm−rω(f (r),
1
m

)Lp ≤ Cm−r∥f∥W r
p (I), (19)

where ω is the modulus of continuity (see [6] for details).

We can apply this lemma to our situation in the two cases of no oversampling
and with oversampling. We start with the case of no oversampling. This means
that we look at the univariate grids X(i), i.e. we set ℓ = 0.

Theorem 7 Let X(i) be the univariate grids from (7) and let H(q, d) with q ≥ d
be the corresponding sparse grid with n = n(q, d) points. Then, for every f ∈
W r;⊗d

∞ (Id) we have

∥f∥L∞(Id)

≤ cd,rc(q, d)

(
2
π
log(n− 1) + 1

)d

n−r(log n)(r+2)(d−1)+1∥f∥
W r;⊗d

∞ (Id)

+ c(q, d)

(
2
π
log(n− 1) + 1

)d

∥f∥ℓ∞(H(q,d)),

where c(q, d) = 2d−1
(q−1
d−1

)
.
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Proof Corollary 1 yields in this situation n ≤ 21−d

(d−1)!q
d−12q =: cdq

d−12q. Moreover,
we have

∥f − U(i)f∥L∞(I) ≤ c(logmi) · E(f ;πmi−1(I))L∞

≤ c(logmi) ·m−r
i ∥f∥W r

∞(I),

using (8) and (19). Hence, (17) is also satisfied and we can invoke Lemma 5 to
derive

∥f∥L∞(Id) ≤ c(q, d)

(
2
π
log(n− 1) + 1

)d

E(f ;Sq,d(I
d))L∞

+ c(q, d)(
2
π
log(n− 1) + 1)d∥f∥ℓ∞(H(q,d))

≤ c(q, d)

(
2
π
log(n− 1) + 1

)d

cd,rn
−r(log n)(r+2)(d−1)+1∥f∥

W k;⊗d
∞ (Id)

+ c(q, d)(
2
π
log(n− 1) + 1)d∥f∥ℓ∞(H(q,d)).

Next, we come to the situation of oversampling, i.e. we look at the sparse grid
H(q, d) generated using the univariate grids X(i+ℓ) with ℓ ≥ 1. In this situation,
the result improves significantly in two ways. First of all, the term in front of the
Sobolev norm of f has now a lower power of the log n term, though the behaviour
is still mainly dominated by the n−r term. Secondly, there is now a constant in
front of the discrete norm instead of a (logn)d term.

Theorem 8 Let X(i+ℓ) be the univariate grids from (7) with 1 ≤ i ≤ d and ℓ ≥ 1
and let H(q, d) with q ≥ d be the corresponding sparse grid with n = n(q, d) points.

Then, for every f ∈ W r;⊗d

∞ (Id) we have

∥f∥L∞(Id) ≤ (1 + c(q, d, ℓ))cd,r,ℓn
−r(log n)(r+1)(d−1)∥f∥

W r;⊗d
∞ (Id)

+ c(q, d, ℓ)∥f∥ℓ∞(H(q,d)).

where c(q, d, ℓ) is the constant from (16).

Proof Corollary 1 yields this time n ≤ 2ℓd−d+1

(d−1)! q
d−12q =: cd,ℓq

d−12q. Moreover, we
have

∥f − U(i)f∥L∞(I) ≤ cℓ · E(f ;πmi−1(I))L∞

≤ cℓ ·m−r
i ∥f∥W r

∞(I)

with cℓ = 1+ 5π
2ℓ+1 from Theorem 4, using the same standard approximation result

for univariate polynomials as in the proof of Theorem 7. Thus, Lemma 5 yields
this time

∥f∥L∞(Id) ≤ (1 + c(q, d, ℓ))E(f ;Sq,d(I
d))L∞ + c(q, d, ℓ)∥f∥ℓ∞(H(q,d))

≤ (1 + c(q, d, ℓ))cd,r,ℓn
−r(logn)(r+1)(d−1)∥f∥

W r;⊗d
∞ (Id)

+ c(q, d, ℓ)∥f∥ℓ∞(H(q,d)).
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It is possible to use other norms than the L∞ norm on either side of the
derived inequalities. Here, we will give only one example, where we replace the

mixed order Sobolev space W r;⊗d

∞ (Id) by W r;⊗d

2 (Id) since we want to demonstrate
how the results derived so far can be used to give error estimates for kernel-based
interpolation and smoothing approximation in the next section.

To derive this result, we start again with (19) for p = ∞,

E(f ;πm(I))L∞ ≤ Cm−rω

(
f (r),

1
m

)

L∞

(20)

but instead of bounding the modulus of continuity

ω

(
f,

1
m

)

L∞
= sup

|x−y|≤ 1
m

x,y∈[−1,1]

|f(x)− f(y)|

by the L∞ norm, we use

|f(x)− f(y)| =
∣∣∣∣
∫ y

x
f ′(t)dt

∣∣∣∣ ≤
√
|x− y|∥f ′∥L2(I).

Inserting this into (20) with r replaced by r − 1, we see that

E(f ;πm(I))L∞ ≤ Cm−r+1/2∥f (r)∥L2(I),

for all f ∈ W r
2 (I) and m ≥ r.

We can now proceed exactly as in the proof of Theorems 7 and 8, respectively.
However, since we use Lemma 5, which states all results only using the L∞-norm,
it is important to note that the proof in [2, Theorem 8] remains true in the current
situation and, for example, (18) now becomes

E(f ;Sq,d(I
d))L∞ ≤ ∥f −A(q, d)f∥L∞(Id)

≤ cd,rn
−r+ 1

2 (log n)(r+3/2)(d−1)+1∥f∥
W k;⊗d

2 (Id)
(21)

Theorem 9 Let X(i+ℓ) be the univariate grids from (7) with 1 ≤ i ≤ d and ℓ ≥ 0
and let H(q, d) with q ≥ d be the corresponding sparse grid with n = n(q, d) points.

Then, for every f ∈ W r;⊗d

2 (Id) we have in the case of ℓ = 0 (no oversampling)

∥f∥L∞(Id)

≤ cd,rc(q, d)

(
2
π
log(n− 1) + 1

)d

n−r+1/2(log n)(r+3/2)(d−1)+1∥f∥
W r;⊗d

2 (Id)

+ c(q, d)

(
2
π
log(n− 1) + 1

)d

∥f∥ℓ∞(H(q,d)),

and in the case of ℓ ≥ 1 (oversampling)

∥f∥L∞(Id) ≤ (1 + c(q, d, ℓ))cd,r,ℓn
−r+1/2(logn)(r+1/2)(d−1)∥f∥

W r;⊗d

2 (Id)

+ c(q, d, ℓ)∥f∥ℓ∞(H(q,d)).

where c(q, d, ℓ) is the constant from (16).
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4 Interpolation and Smoothing in Mixed-order Sobolev Spaces

Already in the introduction we mentioned that typical applications of sampling
inequalities are stable reconstruction processes. We want to show how the newly
derived sampling inequalities can be used in this context. To this end, Suppose we
are given a sparse grid H(q, d) as constructed and used in the previous sections.
Suppose we are given function values f(ξ) for ξ ∈ H(q, d) and know that the

generating function f belongs to W r;⊗d

2 (Rd) with r > 1/2.
Then, a typical way of reconstructing the unknown function f is to solve either

the norm-minimal interpolation problem

min
{
∥s∥

W r;⊗d

2

: s ∈ W r;⊗d

2 (Rd) with s(ξ) = f(ξ), ξ ∈ H(q, d)
}

(22)

or the penalised least-squares problem

min
s∈W r;⊗d

2 (Rd)

⎧
⎨

⎩
∑

ξ∈H(d,q)

|f(ξ)− s(ξ)|2 + λ∥s∥2
W r;⊗d

2

⎫
⎬

⎭ . (23)

Here λ ≥ 0 is a smoothing parameter. For λ = 0 finding the solution to this
problem is equivalent to finding the norm-minimal interpolant to f .

Note that W r;⊗d

2 (Rd) is, because of the Sobolev embedding theorem, a repro-
ducing kernel Hilbert space provided that r > 1/2. Even more, the reproducing

kernel of W r;⊗d

2 (Rd) is easily determined as the tensor product of the reproducing
kernel of W r

2 (R). To see this, we let

f̂(ω) = (2π)−d/2
∫

Rd

f(x)e−ixTωdx, ω ∈ Rd,

be the usual Fourier transform of f ∈ L1(Rd), which is extended in the usual way
to L2(Rd). Then (see [21]), a function φ : R → R is a reproducing kernel of W r

2 (R)
if there are c1, c2 > 0 such that

c1(1 + |t|2)−r ≤ φ̂(t) ≤ c2(1 + |t|2)−r, t ∈ R.

Proposition 1 Let φ : R → R be a reproducing kernel of W r
2 (R) with r > 1/2.

Then, the reproducing kernel of W r;⊗d

2 (Rd) is given by the tensor product Φ : Rd →
R with

Φ(x) :=
d∏

j=1

φj(xj), x = (x1, . . . , xd)
T .

Proof The Fourier transform of Φ is given by

Φ̂(ω) = (2π)−d/2
∫

Rd

Φ(x)e−ixTωdx =
d∏

j=1

(
(2π)−1/2

∫

R
φ(xj)e

−ixjωjdxj

)

=
d∏

j=1

φ̂(ωj)
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and hence behaves like
d∏

j=1

(1 + |ωj |2)r,

i.e. Φ is a reproducing kernel of W r;⊗d

2 (Rd).

Note that different reproducing kernels of W r;⊗d

2 (Rd) lead to different but

equivalent norms on W r;⊗d

2 (Rd). Because of this, we fix the norm in (22) and in
(23) as the one generated by a given kernel Φ. Having done this, it is well-known
that the solutions to (22) and (23) are a linear combination of the kernel. To be
more precise:

Proposition 2 Let r > 1/2 and let Φ : Rd → R be a reproducing kernel of

W r;⊗d

2 (Rd). Then, the solution sλ of (22) and (23), respectively, is given by

sλ(x) =
∑

ξ∈H(q,d)

αξΦ(x, ξ), x ∈ Rd,

where the coefficients α ∈ Rn(q,d) are determined by the linear system

(A+ λI)α = f .

Here, A = Φ(ξ,η)x,η∈H(q,d) and f = (f(ξ))ξ∈H(q,d).

To apply our sampling inequality to derive error estimates for the first recon-
struction process, i.e. the norm minimal interpolant, we note that we have on the
one hand s0(ξ) = f(ξ) for all ξ ∈ H(q, d) and on the other hand ∥s0∥

W r;⊗d

2 (Rd)
≤

∥f∥
W r;⊗d

2

. This gives:

Corollary 2 Let r > 1/2 and Φ : Rd → R be a reproducing kernel of W r;⊗d

2 (Rd).
Let s0 be the norm-minimal interpolant (22) on the sparse grid H(q, d). Then, in
the case of ℓ = 0 (no oversampling), we have

∥f − s0∥L∞(Id) ≤ Cn−r+1/2(log n)(r+3/2)(d−1)+d+1∥f∥
W r;⊗d

2 (Rd)

and in the case of ℓ ≥ 1 (oversampling), we have

∥f − s0∥L∞(Id) ≤ Cn−r+1/2(log n)(r+1/2)(d−1)∥f∥
W r;⊗d

2 (Rd)

Moreover, s0 coincides with the interpolant generated by Smolyak’s algorithm when
using univariate RBF interpolation with the kernel φ.

Proof The error estimates immediately follow from Theorem 9. Since the norm-
minimal interpolant is the unique function from V := span{Φ(·, ξ) : ξ ∈ H(q, d)}
and since Smolyak’s algorithm produces an interpolant from V both must coincide.

To derive error estimates for the second reconstruction process, i.e. the pe-
nalised least-squares problem, we follow [22] and note that we have this time
∥sλ∥W r;⊗d

2 (Rd)
≤ ∥f∥

W r;⊗d

2 (Rd)
and

|sλ(ξ)− f(ξ)| ≤
√
λ∥f∥

W r;⊗d

2 (Rd)
, ξ ∈ H(q, d).
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Corollary 3 Let r > 1/2 and Φ : Rd → R be a reproducing kernel of W r;⊗d

2 (Rd).
Let sλ be the penalised least-squares solution of (23) on the sparse grid H(q, d).
Then, in the case of ℓ ≥ 0 (no oversampling), we have

∥f − sλ∥L∞(Id) ≤ C
(
n−r+1/2(log n)(r+3/2)(d−1)+d+1 +

√
λ(log n)d

)
∥f∥

W r;⊗d

2 (Rd)

and in the case of ℓ ≥ 1 (oversampling), we have

∥f − s0∥L∞(Id) ≤ C
(
n−r+1/2(log n)(r+1/2)(d−1) +

√
λ
)
∥f∥

W r;⊗d

2 (Rd)

Usually, the parameter λ is determined using statistical methods like cross valida-
tion, see [20], but the error estimates derived here can also be used to determine
λ in a deterministic way.

5 Numerical Example

For the numerical validation of the convergence results, we first need to discuss
the sparse grids H(q, d) in more details. Hence, we have calculated the sparse grids
for various combinations of q and d. Note that using formula (5) for our nested
point sets from Definition 1 leads to a significant number of multiple points, which
is problematic for interpolation and also for the computational cost. Disregarding
these multiple points, the cardinality n = n(q, d) of H(q, d) is given in Table 1.

Since the condition number of the interpolation matrix mainly depends on the
so-called separation distance, defined by mink ̸=j ∥xk − xj∥2, Table 2 shows the
separation distance for those sparse grids from Table 1. A closer look at that table
shows that the separation distance depends actually only on i := q − d + 1 and
not on q and d separately. This is not surprising at all. As a matter of fact, the
separation distance can be computed analytically. It is given by the two closest
points in the finest univariate grid employed and this grid is given for those multi-
indices i ∈ Nd with |i| = q of the form i = (1, . . . , 1, q − d + 1). Obviously, it
does not matter in which positition the number i = q − d + 1 appears. Hence,
the separation distance of H(q, d) is determined by the separation distance of the
univariate set X(i) = Xmi and is simply given by

|x(i)
1 − x(i)

2 | = 1− cos(21−iπ) = 1− cos(2d−qπ), i = q − d+ 1.

Obviously, a similar relation holds in the case of oversampling, i.e. for ℓ ≥ 1.
In our example, we have used a kernel which is a tensor product of univariate

Wendland kernels, i.e.,

K(x,y) =
3∏

j=1

K1(xj , yj), x,y ∈ Rd

with K1 given by

K1(x, y) = (1− |x− y|)3+(3|x− y|+ 1), x, y ∈ R.
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q|d 2 3 4 5 6 7 8
2 1
3 5 1
4 13 7 1
5 29 25 9 1
6 65 69 41 11 1
7 145 177 137 61 13 1
8 321 441 401 241 85 15 1
9 705 1073 1105 801 389 113 17

10 1537 2561 2929 2433 1457 589 145
11 3329 6017 7537 6993 4865 2465 849
12 7169 13953 18945 19313 15121 9017 3937
13 15361 32001 46721 51713 44689 30241 15713
14 32769 72705 113409 135073 127105 95441 56737
15 69633 163841 271617 345665 350657 287745 190881

Table 1 Number of points n(q, d) of the grid H(q, d) for various space dimensions d and q ≥ d.

q|d 2 3 4 5 6 7 8
3 1
4 2.93e-01 1
5 7.61e-02 2.93e-01 1
6 1.92e-02 7.61e-02 2.93e-01 1
7 4.82e-03 1.92e-02 7.61e-02 2.93e-01 1
8 1.20e-03 4.82e-03 1.92e-02 7.61e-02 2.93e-01 1
9 3.01e-04 1.20e-03 4.82e-03 1.92e-02 7.61e-02 2.93e-01 1

10 7.53e-05 3.01e-04 1.20e-03 4.82e-03 1.92e-02 7.61e-02 2.93e-01
11 1.88e-05 7.53e-05 3.01e-04 1.20e-03 4.82e-03 1.92e-03 7.61e-02
12 4.71e-06 1.88e-05 7.53e-05 3.01e-04 1.20e-03 4.82e-03 1.92e-03
13 1.18e-06 4.71e-06 1.88e-05 7.53e-05 3.01e-04 1.20e-03 4.82e-03
14 2.94e-07 1.18e-06 4.71e-06 1.88e-05 7.53e-05 3.01e-04 1.20e-03
15 7.35e-08 2.94e-07 1.18e-06 4.71e-06 1.88e-05 7.53e-05 3.01e-04

Table 2 Separation distance for the sparse gridsH(q, d) for various dimensions d and q ≥ d+1.

It is known (see [21]) that K1 is the reproducing kernel of W 2
2 (R). This means

that, according to Corollaries 2 and 3, we can expect an error of the form

∥f−s0∥L∞(I3) ≤ C
(
n−1.5(log n)4.5d−2.5 +

√
λ(log n)3.5(d−1)

)
∥f∥

W 2;⊗3

2 (R3)
(24)

in the case of ℓ = 0 (no oversampling) and an error of the form

∥f − sλ∥L∞(I3) ≤ C
(
n−1.5(log n)2.5(d−1) +

√
λ
)
∥f∥

W 2;⊗3

2 (R3)
(25)

in the case of ℓ ≥ 1, both with λ ≥ 0 and for target functions f ∈ W 2;⊗d

2 (Rd). The
target function we have used here is given by

f(x) =
d∏

j=1

|xj |1.6, x ∈ Rd, (26)

which obviously belongs to W 2;⊗d

2 (Rd) but not to W 3;⊗d

2 (Rd). To calculate the
error, we used a full grid of univariate step-size h = 0.01, which restricts our test
cases to d = 2 and d = 3.
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q N L∞ order N L∞ order
ℓ = 0 ℓ = 1

4 13 0.198646 49 0.0235198
5 29 0.124942 0.577896 113 0.0159142 0.467505
6 65 0.0235198 2.06917 257 0.00323925 1.93731
7 145 0.0159142 0.486862 577 0.000624243 2.03589
8 321 0.00323926 2.00309 1281 0.000144757 1.83245
9 705 0.000624255 2.09282 2817 4.55627e-05 1.46691

10 1537 0.000144753 1.87523 6145 1.44712e-05 1.47048
11 3329 4.54492e-05 1.49893 13313 4.4915e-06 1.51335
12 7169 1.44186e-05 1.49665 28673 1.06589e-06 1.8748
13 15361 4.51259e-06 1.52434 61441

Table 3 d = 2, λ = 10−8, test function (26).

q N L∞ order N L∞ order
ℓ = 0 ℓ = 1

5 25 1 225 0.0453241
6 69 0.254733 1.34702 593 0.0159435 1.07811
7 177 0.159975 0.493818 1505 0.00351793 1.62256
8 441 0.0453241 1.38152 3713 0.00211576 0.563045
9 1073 0.0159435 1.17501 8961 0.000410079 1.86236

10 2561 0.00351792 1.73711 21247 8.94666e-05 1.7633
11 6017 0.00211579 0.595235 49665 1.87446e-05 1.84096
12 13953 0.000410097 1.95075
13 32001 8.95064e-05 1.83367

Table 4 d = 3, λ = 10−8, test function (26).

As mentioned above, we have to expect a conditioning problem with a sep-
aration distance too small. Since it is also well-known that the

√
λ term in (24)

and (25) is a rather pessimistic estimate, we have used λ = 10−8 for all of our
computations without significantly compromising the interpolation error, as long
as the number of data sites does not become too large.

The results on the L∞-error and the estimated approximation order can be
seen in Tables 3 and 4. In the case of d = 2 (Table 3), we see that the predicted
rates are asymptotically sharp, regarding the n−1.5 term since the log n term is
hard to track. In the case of d = 3 (Table 4) the numerical approximation order
varies more but eventually also confirms the order, see also Figure 1.

6 Conclusion

In this paper we have, for the first time, derived rigorous sampling inequalities
for functions from mixed regularity Sobolev spaces on certain sparse grids. We
have done this for classical sparse grids built from Chebyshev points with and
without oversampling. Such sampling inequalities play a crucial role for deriving
error estimates for stable reconstruction processes. As examples, we have shown
how these sampling inequalties can be applied for norm-minimal, kernel-based
interpolation and penalised least-squares approximation. The derived bounds are
explicit with respect to the oversampling and the penalisation parameter.
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Fig. 1 Error plots for the test function (26).
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