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Abstract. We perform 3D incompressible two-phase flow simulations of rising droplets.
Based on a similar 2D benchmark, a 3D benchmark configuration with two test cases is
formulated in which we compare the flow solvers DROPS, NaSt3DGPF and OpenFOAM.
All codes adopt different numerical techniques. We define several quantities of interest
and investigate their temporal evolution in both test cases. For most benchmark variables
we obtain a high level of agreement and establish reference data for other flow solvers.

1 INTRODUCTION

The modeling and simulation of three-dimensional two-phase flows is still an area of
active research. Various approaches have been developed to improve conservation of mass,
capturing of the fluid’s interface or computation of interfacial surface tension. For the
validation of these new methods, qualitative benchmark data is required.

We perform 3D incompressible two-phase flow simulations of rising droplets. Based
on a similar 2D benchmark proposed in [1], a 3D benchmark configuration with two test
cases is formulated in which we compare the flow solvers DROPS [2], NaSt3DGPF [3]
and OpenFOAM [4]. All codes adopt different numerical techniques. We list the main
features of each code in Table 1.
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DROPS NaSt3D OpenFOAM

developer IGPM, RWTH Aachen INS, University of Bonn open source

space discretization XFEM finite differences finite volumes

interface capturing level set level set VOF

time discretization implicit θ-scheme Adams-Bashforth 2nd implicit Euler

Table 1: Comparison of the code features and schemes used for the 3D benchmark.

2 MATHEMATICAL FLOW MODEL

Let Ω ⊂ R3 be a polyhedral domain containing two different immiscible incompressible
phases Ω1(t),Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. The interface separating both
phases is denoted by Γ(t) = ∂Ω1(t)∩∂Ω2(t). The standard model for incompressible two-
phase flow consists of the Navier-Stokes equations for pressure p = p(x, t) and velocity
u = u(x, t) in the subdomains Ωi, i = 1, 2, with the coupling conditions

[σn]Γ = τκn, [u]Γ = 0

at the interface Γ, i. e., we assume that surface tension balances the jump of normal
stresses and that u is continuous across the interface. Here, τ and κ denote the surface
tension coefficient and interfacial curvature, respectively, and n is the unit normal on Γ
pointing from Ω2 into Ω1. Furthermore, σ = −pI + µD(u) denotes the stress tensor with
D(u) = ∇u +∇uT the deformation tensor and µ the dynamic viscosity. Combined with
the conservation laws for mass and momentum, we obtain the following standard model

ρi

(
∂

∂t
+ u · ∇

)
u− divσ = ρig in Ωi × [0, T ], i = 1, 2, (1)

div u = 0 in Ωi × [0, T ], i = 1, 2, (2)

[σn]Γ = τκn, [u]Γ = 0 at Γ× [0, T ], (3)

cf. for example [2]. The densities ρi, dynamic viscosities µi, i = 1, 2, and the gravitational
force g are assumed to be constant.

In general, the location of the interface Γ(t) is unknown. Only the position of the
initial interface Γ(0) is assumed to be given, which is then advected by the local velocity
field u. There are different approaches in the literature, where most of them can be
classified as either interface-tracking or interface-capturing techniques. The codes applied
in this benchmark use interface-capturing strategies, either the level set or VOF method,
cf. Table 1. To this end, equations (1)–(3) are augmented by an additional evolution
equation for the respective indicator function, e.g., ∂ϕ

∂t
+ u · ∇ϕ = 0 in Ω× [0, T ] for the

level set function ϕ.
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Figure 1: Initial configuration in both test cases.

test case 1 test case 2

ρ1 1000 1000

µ1 10 10

ρ2 100 1

µ2 1 0.1

τ 24.5 1.96

Table 2: Material properties for test case
1 and 2.

3 DEFINITION OF THE BENCHMARK

Consider a cuboid tank Ω = [0, 1]× [0, 2]× [0, 1] and a droplet Ω2 = Ω2(t) ⊂ Ω which
is lighter than the surrounding fluid Ω1 = Ω \ Ω2 (cf. Figure 1). The final time T is
prescribed as T = 3 and T = 3.5 for the test cases 1 and 2, respectively. We assume no-
slip boundary conditions, i. e., u = 0 on ∂Ω. The initial condition for the Navier-Stokes
equations is given by u(0) = 0. The initial droplet is assumed to be spherical with radius
r = 0.25 and center point xc = (0.5, 0.5, 0.5)T, i. e., fluid phase 2 is initially given by

Ω2(0) = {x ∈ Ω | ‖x− xc‖ ≤ r}.

Due to buoyancy effects, the droplet will start to rise and change its shape.
The two test cases are defined according to the material properties given in Table 2

and with a gravitational force g = (0,−0.98, 0)T. These parameters are taken from the
2D two-phase flow benchmark proposed in [1]. For test case 1, the density and viscosity
ratio ρ1/ρ2 = µ1/µ2 = 10 is rather moderate, whereas for the second test case, we have
larger ratios ρ1/ρ2 = 1000 and µ1/µ2 = 100 which are roughly the same as for an air
bubble in water. For test case 1, the droplet becomes ellipsoidal-shaped. In test case 2,
a break-up of the droplet is possible due to the lower surface tension. According to the
classification by Clift et al. [5], test case 1 can be assigned to the ellipsoidal regime and
test case 2 lies somewhere between the skirted and dimpled ellipsoidal-cap regimes.

3.1 Quantities of interest

In the following, we define four time-dependent quantities of interest which are used
to compare the different simulations with each other. The first one is the barycenter x̄ of
the droplet,

x̄(t) = |Ω2|−1

∫
Ω2(t)

x dx,
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with |Ω2| := meas3 Ω2 =
∫

Ω2
1 dx the volume of the droplet. Second, its rise velocity ū is

given by

ū(t) = |Ω2|−1

∫
Ω2(t)

u dx.

The diameter d(t) = (d1(t), d2(t), d3(t))T denotes the droplet’s maximum extension in
each coordinate direction, i.e.,

di(t) = max
x,y∈Ω2(t)

|xi − yi|, i = 1, 2, 3.

The last quantity of interest measures how much the droplet’s shape differs from a
sphere. The sphericity Ψ is defined in [6] as follows,

Ψ(t) = |Γ(t)|−1 π1/3(6|Ω2|)2/3,

which is the surface area of a sphere with volume |Ω2| divided by the surface area |Γ(t)| :=
meas2 Γ(t) =

∫
Γ(t)

1 ds of the droplet. Ψ is equal to 1 if Ω2 is a sphere and decreases the

more the droplet is flattened.

4 NUMERICAL RESULTS

4.1 Simulation parameters

For the DROPS simulations, the tetrahedral grid is adaptively refined near the inter-
face, following the position of the droplet. A regular initial grid with 4× 8× 4 subcubes
each subdivided into 6 tetrahedra is used, which is then 3 times adaptively refined near
the interface, leading to a mesh size of h = 1

32
within the refinement zone. Finite elements

are used for spatial discretization, employing P2-FEM for the velocity, P1-XFEM for the
pressure and P2-FEM for the level set. For temporal discretization, the implicit θ-scheme
with θ = 0.5 and time step size ∆t = 2.5 · 10−4 is applied. The linearized systems are
solved by a preconditioned GCR method using V-cycle multigrid as velocity precondi-
tioner and a Cahouet-Chabard Schur complement preconditioner for the pressure field.
Re-initialization of the level set function ϕ is performed with a fast marching method
whenever ‖∇ϕ‖2 /∈ [ 1

10
, 10] near the interface. The droplet’s mass conservation is enforced

by a simple global volume correction described in [2]. Each of the simulations required
about two weeks computing time on a single processor.

In both test cases, NaSt3DGPF uses an equidistant finite difference grid with 121×
241× 121 grid cells. For temporal discretization, Chorin’s projection method is employed
to decouple the fluid velocities and the pressure field. The velocities are treated explicitly
with a 2nd-order Adams-Bashforth scheme. The pressure field is computed by solving
a Poisson-type equation in each time step. For the solution of the pressure Poisson
problem, NaSt3DGPF uses an AMG-preconditioned BiCGStab solver. The convective
terms in the momentum equations are treated with a 2nd-order SMART scheme which
showed reduced numerical diffusion in previous studies compared to an also implemented
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DROPS NaSt3D OpenFOAM

t = 3.0

t = 2.5

t = 2.0

t = 1.5

Figure 2: Droplet rise in test case 1.

5th-order WENO scheme. During the simulation, the droplet’s mass was conserved with a
local volume correction method according to [7]. All simulations with NaSt3DGPF were
performed on 32 processors of the HPC cluster Siebengebirge featuring 160 Intel Xeon
X7560 2.226 GHz CPU cores and a main memory of 2560 GB in total. The system has
a Linpack performance of 1349 GFlops/s with a parallel efficiency of 93%. Both parallel
simulations required about one week of computing time. A typical time step width of the
adaptive temporal scheme lies in the order of O(10−4).

In OpenFOAM, we use an equidistant grid with 128 × 256 × 128 cuboid cells and
employ the interFoam solver version 2.2.2 for two incompressible fluids capturing the
interface with a VOF method [4]. Finite volumes are used as spatial discretization and
the implicit Euler method as temporal discretization with time step size ∆t = 10−4.
For the convective terms in the momentum and phase equations, we use a limited linear
and a van Leer scheme, respectively, and a specialized interface compression scheme to
gain smoother interfaces. As pressure and phase corrector, a merged PISO/SIMPLE
algorithm is implemented with three correction steps for pressure and two sub-cycles for
the correction of the interface. The solvers are a preconditioned BiCG with diagonal
incomplete-LU preconditioner for the velocity and a Cholesky-preconditioned CG for the
pressure. Both test cases were performed on 32 processors of the HPC cluster Siebengebirge
and required about 2.5 days of computing time each.

4.2 Test case 1

Figure 2 illustrates the droplet’s evolution in test case 1 over time. As illustrated,
the spherical droplet is extended in directions x and z perpendicular to the flow and
compressed in the flow direction y. At t ≈ 2.0, the droplet reaches a stable ellipsoidal
shape up to the final state of the simulation.
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t = 3.0t = 2.5t = 2.0t = 1.5

Figure 3: Contour comparison of DROPS (blue), NaSt3D (red), OpenFOAM (olive) for test case 1.

For a better comparison of the actual droplet shape, Figure 3 plots the two-dimensional
contour on the x/y-plane with normal n = (0, 0, 1)T through the droplet’s center. The
contour lines of DROPS (blue) and NaSt3DGPF (red) closely resemble each other. The
contour line of OpenFOAM (olive), although similar in its shape, is shifted in the vertical
direction y compared to the other two flow solvers.

Figure 4 shows the y-component of the droplet’s barycenter position x̄ over time. In
the early state of the simulation up to t ≈ 1, the position x̄ is nearly identical in all
simulations. The vertical position of the droplet in OpenFOAM is lower than for DROPS
and NaSt3DGPF as indicated in the contour plots in Figure 3. The final state of the
simulation is visualized in a zoomed extract on the RHS of Figure 4. The position of
this extract is indicated with a black rectangle on the LHS of Figure 4. Note that all
subsequent plots of quantities of interest also have a zoomed part on the RHS of the
corresponding figure.

The droplet’s rise velocity is visualized in Figure 5. In the early state of the simulation,
the velocity component v of ū increases from its initial value zero up to a maximum value
in the order of 0.35–0.36 at about t ≈ 0.9. The maximum velocity is roughly 0.357 in
DROPS, 0.358 in NaSt3DGPF and 0.352 in OpenFOAM. The rise velocity in DROPS
then decreases to v ≈ 0.347, to v ≈ 0.35 in NaSt3DGPF and to v ≈ 0.33 in OpenFOAM.
Due to the differences in the rise velocity in the final part of the simulation, the droplet
positions are shifted in Figure 3 and Figure 4.

In the following, we concentrate on an analysis of the droplet’s shape. For this purpose,
Figure 6 shows the different components of the droplet’s diameter d over time. During
the simulation, d1 and d3 increase up to a final value of about 0.58 in all three simulations.
On the other hand, the extension d2 in y-direction is 0.37 for DROPS and NaSt3DGPF
and about 0.355 for OpenFOAM as indicated on the RHS of Figure 6. These results
suggest that the droplet in the DROPS and NaSt3DGPF simulations has a slightly more
spherical shape than in the case of OpenFOAM.

A measure of the droplet’s similarity with its initial spherical form is given by the
sphericity Ψ. Figure 7 displays Ψ over time. Due to the droplet’s compression in vertical
direction, the sphericity decreases from 1 to about 0.96 for DROPS and NaSt3DGPF
and to Ψ ≈ 0.955 for OpenFOAM (cf. RHS of Figure 7). The slightly lower sphericity
in OpenFOAM primarily results from a stronger compression in vertical direction as
indicated in Figure 6. DROPS and NaSt3DGPF predict similar sphericity values at the
end of the simulation but with non-smooth jumps in the case of DROPS. This results
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0 0.5 1 1.5 2 2.5 3
0.5

0.7

0.9

1.1

1.3

1.5

time t

y
-c
en
te
r
of

m
as
s

Drops
NaSt3D

OpenFOAM

2.5 2.6 2.7 2.8 2.9 3

1.3

1.35

1.4

1.45

time t

Figure 4: Center of mass x̄ in y-direction for test case 1.
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Figure 5: Rise velocity component v for test case 1.
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Figure 6: Droplet diameter d for test case 1.
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Figure 7: Sphericity Ψ for test case 1.
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from the reinitialization of the level set function in DROPS which is performed only
when an error threshold of the distance function at the surface is violated. The less
frequent reinitialization slightly affects Ψ which is noticeable in Figure 7 but not the
other quantities of interest such as x̄ and the rise velocity ū. All in all, the sphericity
results in test case 1 are in high agreement as the differences at steady state are below
0.5% at most.

4.3 Test case 2

Figure 8 shows snapshots of the droplet’s temporal evolution in test case 2. In this
case, the lower surface tension allows for a stronger droplet deformation as in test case 1.
Since test case 2 is located between the skirted and the dimpled ellipsoidal-cap regimes,
satellite droplets might occur. All flow solvers do not predict satellite droplets up to a
simulated time of t = 3.5. However, ongoing simulations show that OpenFOAM predicts
8 satellite droplets at t ≈ 3.9 that occur pairwise in the direction of each of the lateral
four boundary faces.

The differences for the three simulations are most noticeable on the bottom edge of the
droplet where the droplet’s curvature is largest which is highlighted in Figure 9. Although
the droplet shapes in Figure 8 strongly differ at the bottom edge, this is not visible in the
two-dimensional contour plot on the plane with normal n = (0, 0, 1)T through the droplet’s
center as shown on the LHS of Figure 9. The results are identical on an orthogonal plane
with normal n = (1, 0, 0)T so that the corresponding contour plot has been omitted.
Larger differences can be seen on a further plane with normal n = (1, 0, 1)T that is shown
on the RHS of Figure 9. The contour lines on this plane primarily differ at the bottom
edge of the droplet at t ≈ 2.5. As illustrated in a zoomed extract on the RHS of Figure 9,
the contour line in NaSt3DGPF (red) on the left/right droplet side is more extended
than in DROPS and OpenFOAM. Furthermore, NaSt3DGPF shows a higher contour line
at the central part of the bottom side than the other flow solvers. The top edge of all
droplets, however, is similar.

The droplet’s position over time is visualized in Figure 10. All three flow solvers show
a high agreement of the droplet’s barycenter position for the whole simulation. Thus,
the differences in the contour plot in Figure 9 only slightly affect the droplet’s barycenter
position. Consequently, x̄ is relatively insensitive with respect to minor variances in the
droplet’s shape.

The rise velocity plot of the droplet in Figure 11 is also in high agreement for all
considered flow solvers. All solvers obtain maximum velocities in the order of 0.37 at
t ≈ 0.54. The droplets’ velocity decreases with ongoing time so that a final velocity
of v ≈ 0.3 at t = 3.5 is obtained. Here, the results of DROPS and OpenFOAM more
resemble each other than the final result of NaSt3DGPF.

In Figure 12, we plot the diameter of the droplet for a better analysis of the droplet’s
shape. The droplet diameters d1 and d3 are in high agreement for all three flow solvers
similar to test case 1. There are minor differences in y-direction up to t ≈ 1.6. The
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DROPS NaSt3D OpenFOAM

t = 3.5
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Figure 8: Rising droplet simulation results for test case 2.
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Figure 9: Contour plot of DROPS (blue), NaSt3D (red), OpenFOAM (olive) for test case 2.
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Figure 10: Center of mass x̄ for test case 2.
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Figure 11: Rise velocity for test case 2.
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Figure 12: Droplet diameter d for test case 2.
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Figure 13: Sphericity Ψ for test case 2.
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strong droplet deformation at the left/right edges in NaSt3DGPF then leads to a new rise
in the droplet diameter d2 from its minimum value of about 0.39 up to 0.44 in the final
state of the simulation. DROPS and OpenFOAM do not predict a similar new rise in d2.
OpenFOAM shows the largest droplet compression in vertical direction with a minimum
value for d2 of about 0.37.

Finally, Figure 13 shows the sphericity Ψ over time. The results in the early simulation
state are similar up to t ≈ 1.6. DROPS then predicts a more spherical droplet shape which
leads to an increase in Ψ at about t ≈ 2.7. Due to the strong deformation of the droplet
in NaSt3DGPF, the flow solver computes an ongoing decrease of Ψ until it reaches a final
value of about 0.7. The result for OpenFOAM lies between these two regimes with a final
value of about 0.74.

5 CONCLUSIONS

We conducted numerical studies for two different test cases. While the droplet in the
first test case experiences only slight deformations, it undergoes strong deformations in
test case 2. In general, DROPS and NaSt3DGPF show a high agreement in test case 1 for
the defined quantities of interest and for the contour plots. The situation differs for the
OpenFOAM results. The general droplet shape is similar to the results of the other flow
solvers. This can be seen in the sphericity plot (cf. Figure 7) in which the results differ by
0.5% at most. But, in contrast to DROPS and NaSt3DGPF, OpenFOAM obtains a lower
rise velocity in the late state of the simulation so that the droplet’s position is shifted in
the vertical direction. Although the general shape of the droplet is in high agreement, its
position and velocity is controversial. One explanation for these differences might be the
different front capturing techniques. DROPS and NaSt3DGPF use the level set technique
while OpenFOAM employs the VOF method.

Interestingly, the quantities of interest that were controversial in test case 1 are in
relatively high agreement in test case 2 and vice versa. The rise velocity and the droplet’s
barycenter position resemble each other for the complete simulation period. As the droplet
undergoes a strong deformation, it is not surprising that the results for the droplet’s
diameter and sphericity differ at the end of the simulation. Similar differences occurred
in the 2D benchmark experiment by Hysing et al. [1] for test case 2. The actual droplet
shape in flow fields with high density and viscosity ratios is a matter of ongoing research.
Since the correct droplet shape for the second test case is not even clear in two-dimensional
computations, the differences reported in this article are not surprising. In general, the
results of DROPS and OpenFOAM show a higher level of agreement than the results
of NaSt3DGPF (cf. 3D droplet in Figure 8). These differences might be caused by the
usage of different volume correction approaches. While DROPS employs a global volume
correction method, NaSt3DGPF uses a local interface preserving algorithm. OpenFOAM
makes use of the VOF method so that it is not necessary to enforce an artificial volume
correction in this case.

In prospective simulations, we want to perform both simulations on finer meshes to
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obtain results that can be used as reference benchmark data for other flow solver. It is
also planned to perform simulations using a coupled level set/VOF (CLSVOF) simulation
technique. This might deliver further insights into test case 1 in which both front capturing
techniques differed in their predictions. Furthermore, it is our aim to encourage other
groups to participate in these benchmark simulations so that valid reference data for
three-dimensional two-phase flow solvers can be established. For this purpose, we make
the data of all quantities of interest available on the website http://wissrech.ins.

uni-bonn.de/research/projects/risingbubblebenchmark.
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