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Abstract
Frequently, one aims at the co-registration of geometries described implicitly by images as level sets. This pa-
per proposes a novel shape sensitive approach for the matching of such implicit surfaces. Motivated by physical
models of elastic shells a variational approach is proposed, which distinguishes two different types of energy con-
tributions: a membrane energy measuring the rate of tangential distortion when deforming the reference surface
into the template surface, and a bending energy reflecting the required amount of bending. The variational model is
formulated via a narrow band approach. The built in tangential distortion energy leads to a suitable equidistribu-
tion of deformed length and area elements, under the optimal matching deformation, whereas the minimization of
the bending energy fosters a proper matching of shape features such as crests, valleys or bumps. In the implemen-
tation, a spatial discretization via finite elements, a nonlinear conjugate gradient scheme with a Sobolev metric,
and a cascadic multilevel optimization strategy are used. The features of the proposed method are discussed via
applications both for synthetic and realistic examples.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Boundary representations
I.4.3 [Image Processing and Computer Vision]: Enhancement—Registration

1. Introduction and motivation

We address the problem of matching closed surfaces or
curves, which are given as the zero level sets of functions
defined in a volume or a planar domain. In vision many ge-
ometric objects are actually extracted from images as level
sets. Furthermore, formulating geometric problems in terms
of level sets often simplifies their numerical implementation,
since regular grids can be used. As a consequence, we look
for deformations of the whole computational domain which
closely match a template surface to a reference surface, are
invertible both on the surfaces and globally, and match geo-
metric features (e.g. curvatures) of the surfaces while having
low tangential distortion. For the mathematical modeling,
we think of the reference surface as a layer of an elastic ma-
terial (for example, rubber) embedded in a block of another
much softer isotropic elastic material (foam, say), subject to
a matching force that forces it onto the template surface.

With this in mind we derive a variational formulation mo-

tivated from the standard mathematical theories of nonlin-
ear elasticity. However, our model is different from them
in some aspects, to better exploit the specific advantages of
our matching scenario, not present in physical situations. We
will point out both the similarities and differences as we in-
troduce and motivate the different parts of our energy.

2. Related work

In recent years, theories of nonlinear elasticity have found
use in many problems of computer vision and graphics.
Some applications are deformation of meshes [CPSS10],
shape averages and geodesics between shapes [RW09,
WBRS11], and registration of medical images [BMR13]. In
the last work, the efficient discretization and numerical so-
lution of hyperelastic regularization energies is studied. The
chosen approach is a cascadic minimization scheme involv-
ing a Gauss-Newton method on each level.

Linear elasticity is also used for image registration
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Figure 1: Result obtained with our method, when used for
curves in a 2D domain. We look for a global and invert-
ible deformation, which closely matches two input shapes,
in a way that balances being as isometric as possible on the
shapes, and matching their curvatures. On the left the refer-
ence shape is shown on the undeformed grid, whereas on the
right the deformed reference shape matching the given tem-
plate shape is rendered together with the deformed mesh.
Undeformed and deformed points are colored identically.

[Mod04] and shape modeling [FJSY09], but the advantage
of nonlinear models is that they allow for intuitive deforma-
tions when the displacements are large.

In this paper, the focus is on nonlinear elastic matching
of thin shells. A finite element method for the discretiza-
tion of bending energies of thin shell type biological in-
terfaces has been studied in [BNP10]. Their approach uses
quadratic isoparametric finite elements to handle the inter-
face on which an elastic energy of Helfrich type is approxi-
mated. In [SSJD09], face matching based on a matching of
corresponding level set curves on the facial surfaces is in-
vestigated. To match pairs of curves an optimal deformation
between them is computed using an elastic shape analysis
of curves. Compared to our approach, this model does not
take into account dissipation along deformation paths caused
by a bending of the curves. The paper [BPW12] discusses
a new concept for the treatment of higher order variational
problems on surfaces described as jump sets of functions of
bounded variation type. This approach in particular enables
the analytical rigorous treatment of elastic energies on such
surfaces. The matching of surfaces with elastic energies has
recently been studied in [WSSC11]. Their energy splits into
a membrane energy depending on the Cauchy-Green strain
tensor and a bending energy, comparing only the mean cur-
vatures on the surfaces. The matching problem is phrased
in terms of a binary linear program in the product space
of sets of surface patches. A relaxation approach is used to
render it computationally feasible. An approach related to
ours is presented in [LDRS05], where nonlinear elastic en-
ergies are proposed for matching of open, parametrized sur-
face patches. Here, we propose a method for closed surfaces
that does not require a parametrization.

A method for matching and blending represented by level
sets has been presented in [MR12]. A level set evolution gen-
erates an interpolating family of curves, where the associated
propagation speed of the level sets depends on differences of
level set curvatures. In this class of approaches, geometric
evolution problems are formulated, whereas here we focus
on variational models for matching deformations. Registra-
tion of implicit surfaces was considered in [LL08], but only
through volumetric terms, in contrast to our tangential dis-
tortion and bending terms.

Let us mention that our approach is inspired by the works
[DZ94, DZ95] in which partial differential equations for
shell models are derived in terms of distance functions.
Shape warping based on the framework of [DZ94] from a
less physical perspective has been discussed in [CFK04].

3. A thin shell matching model

Our model for the shape sensitive matching of surfaces is
based on physical models for the elastic deformation of a
thin shell [Cia00]. Thereby, a shellM is considered as the
d−1 dimensional mid-surface of a layer of material of thick-
ness δ << 1 in Rd .

To match two shell surfacesM1 andM2 via a deforma-
tion φ, we take into account the elastic energy of a deforma-
tion φ :M1→ R3 under the constraint φ(M1) =M2. The
energy can be decomposed into a membrane energy (penal-
izing stretching and compression strain) and a bending en-
ergy (penalizing strain caused by bending). Under this con-
straint the energy actually depends only on the Jacobian of
the deformation φ and not on second derivatives of φ, since
curvatures for the bending term can be evaluated onM2.

Membrane energy. The rate of tangential distortion at each
point is described by the tangential Cauchy-Green strain ten-
sor (cf. Figure 2)

Atg[φ] = Dtgφ
T Dtgφ.

Here, the tangential Jacobian of the deformation is defined
by Dtgφ = Dφ

extP for an extension φ
ext of φ onto a neighbor-

hood ofM1, P = Id−N1⊗N1 being the projection onto the
tangent space ofM1 with normal N1. Then, the associated
membrane energy is given by

Emem[φ] = δ

∫
M1

Wmem(Atg[φ])da , (1)

where we choose as the requisite energy density

Wmem(A) =
µ
2

trA+
λ−2µ

8
detA+

2µ+λ

8
(detA)−1. (2)

Here, λ and µ are the Lamé constants of a St. Venant–
Kirchhoff material [Cia88] with trA and detA denoting the
trace and the determinant of A considered as an endomor-
phism on the tangent bundle of M1. Notice that detA de-
scribes area distortion, while trA measures length distortion.
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The polyconvex function Wmem is rigid body motion invari-
ant, and it can be verified, using the invariance, that the iden-
tity is its only minimizer. Furthermore, the second order Tay-
lor expansion at the identity reveals the classical quadratic
energy of linearized, isotropic elasticity.

A simplification of the functional in (1) corresponds to
the known Γ-limit of volume elasticity models for vanishing
thickness parameter δ [LDR96]. This limit does not account
for compression resistance [FJM06]. In our case, the energy
density (2) does reflect compression resistance through the
term involving (detA)−1, which also avoids self interpene-
tration, thus giving a more precise physical model.

Figure 2: A sketch of the two different modes of deformation
of a thin shell: tangential distortion (left) and bending (right)

Bending energy. The bending energy measures the local
rate of bending described by the change of curvature under
the deformation (cf. Figure 2). The shape operator of Mi
is defined as the tangential Jacobian DtgNi of the normal Ni.
From the fact that 0= ∂k‖Ni‖2 = 2∂kNi ·Ni, one deduces that
(DtgNi)(x) is an endomorphism of the tangent space TxMi.
Aiming at a comparison of DtgN1 at some point x ∈ M1
and DtgN2 at the deformed position φ(x), we have to use a
corresponding pullback under the deformation φ and with it
define the relative shape operator

Srel [φ](x) := Dtgφ
T (DtgN2)(φ(x))Dtgφ− (DtgN1)(x).

If φ is an isometric deformation of the shell M1, i.e.
Atg[φ](x) = IdTxM1 , then we recover the definition of the
relative shape operator used in the rigorous analysis in
Friesecke et al. [FJMM03]. In this case, the leading order
term of the bending energy as the Γ-limit of 3D elasticity is
cubic in the thickness δ and given by

Ebend[φ] = δ
3
∫
M1

Wbend(Srel [φ])da . (3)

Although other choices are conceivable, we consider
Wbend(S) = ‖S‖2

F , where ‖S(x)‖F denotes the Frobenius
norm of the corresponding linear operator S(x) : TxM→
TxM. Notice that different from bending energies consid-
ered in graphics elsewhere, Srel [φ] takes into account the full
change of the shape operators onM1 andM2, not only the
change of their traces (i.e. mean curvatures), so that changes
of bending directions get accounted for appropriately.

Deformation energy. Combining membrane (1) and bend-
ing (3) contributions, we obtain the total elastic shell energy

Esh[φ] = αbendEbend[φ]+αmemEmem[φ] . (4)

A fundamental insight arising from the analysis of shell
models [Cia00] and the recent advances in a rigorous limit
theory [LDR96, FJMM03] is that pure membrane terms and
pure bending terms cannot coexist in the limit of zero thick-
ness, since the scaling of these terms with respect to it is gov-
erned by a different power of the width of the shell δ. How-
ever, because of their distinct properties, in shape matching
applications it is beneficial to use both, in particular con-
sidering the bending energy of non-isometric deformations.
This formulation is the basis for our level set method for sur-
face matching discussed in the next section.

4. Level set framework

Now we derive the actual variational approach for the match-
ing of implicit surfaces. To this end, we suppose that the
geometriesM1 andM2 are implicitly described hypersur-
faces on a computational domain Ω⊂ Rd (curves for d = 2
and surfaces for d = 3). Explicitly, we assumeMi to be de-
scribed by its signed distance function di, which constitute
our input data (cf. Figure 3). For closed surfaces our con-
vention is that di is positive outsideMi. If the input is not
a distance function but any other regular level set function,
one can obtain a distance function via the application of the
fast marching method [Set99]. For any c, we denote the c-
offsets to these surfaces by Mc

i = {x ∈ D |di(x) = c}. In
what follows, we consider a deformation φ : D 7→ R3, which
approximately maps M1 onto M2. Since the di are dis-

Figure 3: A sketch of the level set framework with the nar-
row band around the surfaceM1 marked in light blue. The
dashed lines on the left indicate different level sets of d1 (left)
and there deformed images (right).

tance functions, we have |∇di| = 1, so that ∇di(x) is the
unit normal toMdi(x)

i at a point x. Then, the tangent space

toMdi(x)
i at x, denoted by TxMdi(x)

i , consists of all vectors
orthogonal to∇di(x). Projection matrices onto these tangent
spaces can be computed by Pi(x) = Id−∇di(x)⊗∇di(x),
which induce, on the whole domain, the tangential deriva-
tive Dtgφ(x) = Dφ(x)P1(x) of the deformation and the tan-
gential Cauchy-Green strain tensor Atg[φ] = Dtgφ

T Dtgφ to
each level set. Analogously, we can also compute the shape
operators of Md1(x)

1 at x and Md2(φ(x))
2 at φ(x) through

S1(x) = D2di(x) and S2(x) = D2d2(φ(x)) . We can then use
these level set expressions in the energies (1) and (3), to
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rewrite the components of the shell energies on a single level
set in terms of the deformation and the two signed distance
functions d1 and d2. In what follows, we will combine this
with a narrow band approach focusing on a small neighbor-
hood of the actual surfaces of interest.

Narrow band formulation of shell energies. As is custom-
ary in level set methods [Set99], we introduce a narrow band
aroundM1, whose deformation we want to capture (cf. Fig-
ure 3). This is done by a smooth and even cutoff function ησ

such that ησ(0) = 1 and ησ(s) = 0 if |s|> σ. The support of
the composition ησ ◦d1 then identifies the narrow band.

To formulate a level set variational method, we measure
the distortion created by the deformation φ on each level
set Mc

1 through the shell energy (4), obtaining Ec
sh[φ] =∫

Mc
1
Wsh[φ]da . Here, the energy density Wsh[φ] expressed in

terms of d1, d2 and φ is given by

Wsh[φ] = αmemδWmem(Atg[φ])+αbendδ
3 Wbend(Srel [φ]),

where Atg[φ] = Dtgφ
T Dtgφ is the tangential Cauchy-Green

strain tensor, with Dtgφ = Dφ(Id−∇di ⊗∇di) denoting
the tangential derivative of the deformation, and Srel [φ] =
Dtgφ

T (D2d2 ◦φ)Dtgφ−D2d1 is the relative shape operator
expressed in terms of the distance functions and the defor-
mation. Now, we weight this energy by ησ(c) and use the
coarea formula [EG92] (using once again that |∇d1|= 1) to
integrate the resulting weighted energy over all level sets of
interest and obtain

Esh[φ] =
∫ +∞

−∞
Ec

sh[φ]dc =
∫

Ω

ησ(d1)Wsh[φ]dx . (5)

In this manner we are able to define a global energy, defined
as a volume integral over the computational domain, consis-
tent with the surface energy defined on each of the offsets
Mc

1 which fill up the narrow band.

Handling the constraint. In our shell model, we have as-
sumed that φ(Mc

1) = Mc
2. This allows us to formulate

the bending energy in terms of the shape operators of the
given surfaces Mc

1 and Mc
2 for |c| ≤ σ. In practice, we

use a quadratic penalty on the surface Mc
1 measuring the

difference between the deformed distance function d2 ◦ φ

and the desired distance value c, leading to the functional
1
ε

∫
Mc

1
|d2 ◦φ−c|2 da for some small ε > 0. Again using the

coarea formula we obtain the global mismatch penalty

Emismatch[φ] =
1
ε

∫
Ω

ησ(d1)|d2 ◦φ−d1|2 dx, (6)

which amounts to the squared L2 distance of the pullback of
d2 under the deformation φ and d1, weighted at each level
set by ησ.

Volumetric hyperelastic regularization. So far the result-
ing energy does not impose any restriction on the deforma-
tion outside the narrow band of thickness 2σ around M1.
Thus, to obtain a well-posed variational model on the whole

computational domain, we have to take into account some
regularization functional outside the narrow band. To this
end, we add an additional volumetric elastic energy evalu-
ated on the deformation φ. Following the usual paradigms of
nonlinear elasticity, we choose

Evol[φ] = ξ

∫
Ω

Wvol(A[φ])dx (7)

for ξ > 0 small, where A[φ] = Dφ
T Dφ is the usual Cauchy-

Green strain tensor. The requisite energy density is given by

Wvol(A) =
µ̃
2

trA+
λ̃−2µ̃

8
detA+

2µ̃+ λ̃

8
(detA)−1 (8)

for the Lamé constants λ̃ and µ̃ of a St. Venant–Kirchhoff
material. Notice that the difference with respect to the mem-
brane energy (1) is the use of the three-dimensional strain
tensor A, instead of Atg. Physically, the resulting energy cor-
responds to a soft elastic material outside the narrow band
in which the comparatively rigid surfaces inside the band
are embedded. The addition of this term ensures that the ob-
tained transformations are invertible on the whole domain,
and this in turn implies that the deformed surfaces will not
collapse and intersect themselves, a problem that can not be
prevented with a tangential energy density alone.

We can alternatively consider the surfaces M1 and M2
as boundaries of volumetric objects, i.e. modelling elastic
bodies those contours are themselves elastic shells, through

Evol[φ] =
∫

Ω

(
ζ+(1−ζ)χ{d1<0}

)
Wvol[φ]dx . (9)

The registration energy. Combining the above energy
terms we obtain the total thin shell registration energy for
implicit surfaces

Etotal[φ] = Esh[φ]+Emismatch[φ]+Evol[φ] .

The numerical method for the minimization of this energy
will be discussed in the following section.

5. Discretization and minimization

In the level set framework investigated here, we can use a
straightforward space discretization to solve the problem nu-
merically. Since the problem only includes first order deriva-
tives of φ in the energy, we take into account multi-linear
finite elements for the spatial discretization of the involved
energy and run an optimization method on the coefficients
of the solution in this finite element basis.

Computation of the curvatures. However, we also need
to compute curvatures from the distance functions di given
as data, i.e. we have to robustly compute a suitable approx-
imation of D2di to evaluate the shape operators. Further-
more, first derivatives of these functions have to computed
when the gradient of the energy is needed in the descent
method. Our approach, similar to the one used in [PR02],

submitted to Vision, Modeling, and Visualization (2013)



J. A. Iglesias, B. Berkels, M. Rumpf, O. Scherzer / Thin Shell Implicit Surface Registration 5

is to compute these derivative matrices by projection onto
quadratic polynomials spanned in a local neighborhood of
each point. In explicit, for each node xk we consider the set
of nodes x j in the r neighborhood Br(xk) of xk and compute
the quadratic polynomial x 7→ pk(x) which minimizes

∑
x j∈Br(xk)

(
pk(x j)−d j

i

)2
.

To solve this quadratic minimization problem, we have to
solve a small linear system for every node xk. The associ-
ated system matrix is independent of the node xk on the reg-
ular grid lattice. Thus, we can precompute the LR decom-
position of the matrix. Once the polynomial coefficients are
computed, we replace the Hessian of di at every node xk in
our matching model by the Hessian of the polynomial pk.

Cascadic multilevel descent. Because we are solving a
highly nonlinear and non convex registration problem, we
apply the standard paradigm of a coarse-to-fine cascadic
minimization. Let us suppose that a dyadic scale of a reg-
ular mesh is given, where the grid is is divided by two on
each level of the hierarchy. For the minimization at each
level, we used a Fletcher-Reeves nonlinear conjugate gra-
dient method (see [NW06], section 5.2), in which the gra-
dients are computed with respect to a Sobolev metric by

gradH1 E[φ] = (1− β
2

2 ∆)−1gradL2 E[φ], where gradL2 E[φ] is
the usual L2 gradient appearing in the Euler-Lagrange equa-
tion. This amounts to smoothing the descent directions by
an approximation of a Gaussian with filter width β. As indi-
cated in Algorithm 1, the smoothing is reduced gradually to
be able to capture details of the deformation.

Algorithm 1 Coarse-to-fine Sobolev descent
1: φ← Id
2: for l← lmin to lmax do
3: h← 1/(2l +1)
4: β← βmax
5: while α > βmin do
6: φ← Sobolev-CG-descent (β, φ)
7: β← β/2
8: end while
9: end for

10: return φ

Parameter choices. Despite the many parameters present
in the energy, the underlying physical intuition of the model
allows to make judicious choices without much effort. We
indicate some example ranges, which were used in all the
applications presented. The material properties αmem,αbend
of the shell in (4) were the ‘reference parameters’, and were
taken to be ≈ 1. One can choose then λ ≈ 2,µ ≈ 0.25. In
comparison ε

−1 in (6) should be large, and was taken to be
≈ 103. The outside parameters should correspond to a com-
parably soft material, so picking λ̃ = λ, µ̃ = µ and ξ≈ 10−3

for (7) was sufficient. The bending energy (3) turned out to
have enough influence to induce correct matchings with a
shell width parameter δ = 0.5. Additionally, we varied the
parameters ε and δ when changing from a coarser to the next
finer level by a factor 0.5, the above values being used on the
coarsest grid level. This proved to be a very suitable strategy
to ensure thatM1 andM2 are appropriately matched at all
scales, and that geometric details are actually resolved under
the deformation on the finest grid level.

6. Results

We demonstrate the properties of our method with some nu-
merical results. First, we depict some interesting qualitative
properties of our models. Afterwards, we show some real
applications for the matching of two dimensional surfaces.

Redistribution of tangential distortion. Here we aim to
experimentally confirm that the membrane term (1) redis-
tributes the tangential strain which necessarily occurs when
shapes of different length or area are matched. This corre-
sponds to the strict convexity of the integrand (2) in a neigh-
borhood of the identity. For demonstrating this, we use the
simple 2D shapes of Figure 4 and compare the matching
of a circle with an ellipse, once solely using the volumet-
ric elastic energy from (9) and once using our model en-
ergy (5) with membrane energy but without bending energy
(αmem = 1, αbend = 0). The resulting tangential distortion
measures are presented in Table 1. In Figure 4, we show the
resulting matching for our model.

Figure 4: Matching problem to explore the redistribution
of tangential strain induced by the membrane term. Upper
row: Reference and template shapes (colors are the same at
the undeformed position on the circle and the deformed posi-
tion on the ellipse). Lower row: detail of the deformed grid,
drawn over the template shape. On the left side, only the vol-
umetric elastic energy has been used, whereas in the right
side we have used our model without bending energy (Ta-
ble 1). Observe the localized deformations in the tangential
direction to ensure the equidistribution of tangential strain.

submitted to Vision, Modeling, and Visualization (2013)



6 J. A. Iglesias, B. Berkels, M. Rumpf, O. Scherzer / Thin Shell Implicit Surface Registration

Level (h−1) Evol only Esh with αbend = 0
5 (33) 0.8541 0.1758
6 (65) 0.7949 0.0875
7 (129) 0.8053 0.0440
8 (257) 0.7953 0.0234
9 (513) 0.7978 0.0143

Table 1: Standard deviation of the tangential strain on the
narrow band 2−

1
2 ‖D1φ

TD1φχ{|d1|<h}‖F around the ref-
erence curve. The ratio between length of the ellipse and
length of the circle is ≈ 2.38. When using only a volumet-
ric elasticity term, the deformation is basically a stretching
in horizontal direction with large variation of the tangen-
tial strain, whereas in our model the strain is asymptotically
equidistributed with decreasing grid size.

Crumpling when minimizing only the membrane energy.
One of the main limitations of using nonlinear membrane
terms of the type (1), that strongly penalize compression, is
that when trying to force a deformation from one shape to
a thin neighborhood of a much smaller one, crumpling be-
comes unavoidable. Rather than a problem with our particu-
lar model, this is an issue with any realistic physical formula-
tion, as crumpling occurs when crushing a sheet of paper, for
example. If a very strong compression is required to match
the reference to the template, oscillations are created to ac-
commodate the excess of length. In this case, the continuous
energy has no minimizer. We present a numerical example in

Figure 5: Numerical crumpling on a coarse grid (332

points). Left column, top to bottom: Template curve, refer-
ence curve, and pullback of the template curve under the
deformation φ. Right: Grid deformed through φ.

which crumpling appeared in Figure 5. In fact, in this case
the penalty parameter ε is not small enough to prevent the
crumpling from being visible. This phenomenon was also
observed in [HRWW12], for very small bending resistance.

Shape sensitive matching using the bending energy. We
present two examples to underline the importance of the
curvature matching term in Figure 6. In the first exam-
ple, we aim at matching two rotated versions of a rounded
l1 ball. Without incorporating the curvature matching term
Ebend (αbend = 0), the corners are squashed in one position
and grown in another via the deformation. When Ebend is
activated, the method finds the right rotation, because the
rounded edges have to be mapped onto each other to reduce
the norm of the relative shape operator.

The second example shows the matching of two different
sections of an unduloid. Unduloids are surfaces of constant
mean curvature first derived by Delaunay [Del41]. We at-
tempt this both with the proposed bending energy (3), and a
simpler mean curvature comparison term of the form

Esimple
bend =

∫
Ω

ησ(d1)|H2 ◦φ−H1|2 dx, (10)

as in [LDRS05], where Hi is the mean curvature of the sur-
faceMdi

i . Clearly, taking into account just a comparison of
mean curvatures with the above energy is not appropriate,
whereas the proposed shape operator alignment (3) matches
the surfaces correctly.

Applications for shape matching. As a further proof of
concept, we investigate a couple of matching problems in
the context of more complicated shapes in Figures 7, 8 and
9. In particular, we investigate the performance of the cas-
cadic descent and depict matching results on different grid
levels in Figures 7 and 9. In all these applications, we have
used the full variational model presented above (in Figure
8 and 9 in comparison with the results for a pure volume
matching energy).

7. Conclusions and future work

We have presented a variational method for the matching of
implicit surfaces represented as level sets. The proposed en-
ergies penalize both stretching / compression and bending
of the surfaces via physically realistic elastic energies. The
level set approach allows a formulation with only first or-
der derivatives, and computation on regular grids. We have
demonstrated qualitative properties for a set of simple test
cases and show the applicability of the chosen approach for
more complex surfaces. In particular, we have shown correct
matches in cases where simpler elastic approaches fail.

A future research direction is to define shape spaces of
such implicit shells (cf. [HRWW12] for the case of triangu-
lated shell surfaces). Furthermore, a rigorous mathematical
analysis of the model has to be developed, with criteria for
the existence of minimizing deformations. Moreover, adap-
tive meshes would allow to treat much more detailed sur-
faces as they appear for instance in biological and medical
applications.
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Figure 6: Upper row: Effect of the bending energy Ebend. From left to right: Textured template shape, reference shape, deformed
template (with a push forward of the template texture) based on a matching with αbend = 0, deformed template with αbend =
1. Lower row: Matching of constant mean curvature surfaces. From left to right: Textured template shape, reference shape,
deformed template using the energy Esimple

bend , deformed template using a direct comparison of the shape operators via Ebend.

Figure 7: From left to right: Textured template shape, and resulting deformed template after different stages of the cascadic
minimization scheme (on 173, 333, 653, 1293 grids, respectively).
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