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Abstract. We consider inductive transfer learning for dataset shift, a situation in
which the distributions of two sampled, but closely related, datasets differ. When
the target data to be predicted is scarce, one would like to improve its prediction
by employing data from the other, secondary, dataset. Transfer learning tries to
address this task by suitably compensating such a dataset shift. In this work we
assume that the distributions of the covariates and the dependent variables can
differ arbitrarily between the datasets. We propose two methods for regression
based on importance weighting. Here to each instance of the secondary data a
weight is assigned such that the data contributes positively to the prediction of the
target data. Experiments show that our method yields good results on benchmark
and real world datasets.
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1 Introduction

In a standard machine learning setting one has given dataX ⊂ RN×D and corresponding
labels Y ⊂ RN . It is assumed that the data is distributed according to p(x, y) and that
this distribution never changes; in particular it remains the same for new data. According
to this assumption, a good model learned with the training data will also perform well
when predicting for such new data. However, this assumption might not always be true,
and there are quite often situations in which the underlying distribution changes. In
general these situations are called dataset shift. Mathematically speaking, a dataset shift
is given if two datasets are samples from two different distributions [5,12]. For instance,
suppose one had given the dataset (XP ,YP ), which is distributed according to pP (x, y),
and additionally (XS ,YS), which was sampled according to pS(x, y), called primal
data and secondary (or supplementary) data, respectively. A dataset shift is given if
pP (x, y) 6= pS(x, y). An example for such a dataset shift is the so-called covariate shift
where the functional relationship between the dependent variable y remains the same, i.e.
p(y|xP ) = p(y|xS) if xP = xS , but the distribution of the covariates are not the same,
i.e. p(xP ) 6= p(xS) [5,12,16]. Another example is a situation where the distribution of
the dependent variable y changes but the distribution of the covariates remains the same.
This is referred to as prior probability shift [5].

In this work we will investigate situations where the distribution of the primal (or P)
data differs from the distribution of the secondary (or S) data in both dependent variable
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y and covariate x, i.e. pP (x, y) 6= pS(x, y). For example, consider earthquake data that
has been measured in California. A model learned with this data is suitable for making
predictions for California, but might not be appropriate for making predictions for
earthquakes in Japan due to a shift in the data caused by a change of location. However,
if the data provided for Japan is very small a separate model learned solely on the Japan
data might not provide a good prediction quality. Although the distributions for the
California data and Japan data differ in general, it is reasonable to assume that in some
aspects the distributions are very similar or almost equal. Therefore, it might be helpful
to augment the Japan data with the California data to improve the prediction quality.
This augmentation, also called knowledge borrowing, is commonly known as inductive
transfer learning (ITL). Here, the data for California is the supplementary data and the
Japan data the primal data. Other such data shift situations occur when the distribution
drifts in time. A situation like this occurs, for example, in data that describe the causes of
delays of aircrafts. This shift might be due to new airports that have been opened recently
or a new aircraft model that is more reliable. Therefore, the data can shift from year to
year. Other examples arise in the case of classification of text data where one would like
to transfer knowledge obtained on texts about one topic to texts about a different topic.

Formally speaking, inductive transfer learning (ITL) refers to a situation of at least
two datasets, which are sampled from the distributions pP (x, y) and pS(x, y) with, in
general, pP (x, y) 6= pS(x, y). Furthermore, the number of the P data is typically much
smaller then that of the S data. Additionally, due to the small number of data, a model
learned solely on the P data will usually not provide a good prediction quality. However,
it is assumed that the distribution pP and pS are similar to some degree, which even
could result in some connected sets of (x, y) with pP (x, y) ≈ pS(x, y). In ITL one tries
to achieve a good prediction quality of a model for the P data by employing the S data.

In this work we will, motivated by the concept of importance sampling, investigate
two new approaches for improving regression in the ITL setting by assigning each
instance in the S data a weight. The first one is a supervised and the second an unsuper-
vised method. Although both methods employ labels from the S and P data, we consider
the one approach unsupervised since it does not directly employ a cost function for
estimating an error between actual and predicted labels. The resulting weights are then
used in a modified ridge regression in combination with the S and P data in order to
improve the prediction quality on the P data. Experiments show that both approaches
yield good results.

This work is structured in the following way: section 2 presents an overview of
related work on the topic of ITL while section 3 gives a brief description of ITL in
general. Section 4, 5 and 6 explain our idea and state practical instructions. Finally
section 7 demonstrates the performance of our algorithm on several datasets.

2 Related Work

The task of inductive transfer learning has been tackled in the past by various approaches.
One is the so-called instance based transfer, where each instance in the S domain gets
some weight for indicating how much influence it will get for predicting the target data.
TrAdaBoost [8] and an extension [1] are methods that assign a weight to each datapoint
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such that some S data have an influence on the prediction quality for the P data. [13]
states a similar boosting approach for regression. Other recent work based on instance
transfer has been put forward by [18], [20] and [22] in which they use multiple input
sources to improve the prediction quality of classifiers.

Other existing work that implement instance based reweighting methods focus
primarily on the covariate shift setting. Important work on this topic has been put
forward by [7,10,17], see also [5,16]. It is possible to apply these methods to inductive
transfer learning setting. However, the major drawback of these methods in the ITL
setting is that they do not take the information about the target labels from the P data into
account. This can lead to situations where a S datapoint still gets a high weight assigned
due to the similarity to the covariates of the P data although the label, which eventually
is what one wants, is fundamentally different from the ones in the P data. To compensate
this shortcoming our second approach (explained in section 6.3) is inspired by [17] such
that it takes also the labels of the P data into account.

Kernel based ideas have been presented by [15,6], where a special kernel matrix is
learned that reflects the similarities between the S and P data. A further method is given
in [14], in which an informative prior is constructed from the S data in order to improve
a model on the P data. An additional advance is feature representation transfer [3]. This
method learns a projection of the S and P data onto a lower dimensional subspace such
that the common or shared information of both data can be used for the model on the P
data. Learning feature representation is in particular common in the domain of natural
language processing (NLP). Since due to differences in vocabulary and writing style
learning approaches tend to perform worse in different domains. In this area, [9] proposed
a simple, but often well performing, kernel-mapping function for NLP problems, which
maps the data from both source and target domains to a high-dimensional feature space,
where standard discriminative learning methods are used.

Model transfer or hypothesis transfer learning comprise another class of approaches
for treating ITL. In the model transfer setting a model parameter θS is learned on the
S data. Assuming that the models should be similar, the idea is to regularize the model
parameter for the P data θP with the help of the parameter θS . Recent work on this topic
is given by [11] and [19].

Note that, in contrast to multi-task learning [3], inductive transfer learning is not
concerned with the prediction quality on both the S and P data, but concentrates only on
the prediction of the P data; the S data is exclusively used as data that helps to improve
the prediction quality for the P data.

3 Problem Formulation

For inductive transfer learning we now assume a situation where the two datasets
(XS ,YS), the S data, and (XP ,YP ), the P data, are given by:

(XS ,YS) ∼ pS(x, y) and (XP ,YP ) ∼ pP (x, y).

Further, the number M of P data is assumed to be much smaller than the number N of S
data, i.e. |XP | � |XS |, and the two distributions from which the data was sampled are
not equal, i.e. pP (x, y) 6= pS(x, y). Nevertheless, it is assumed that the two datasets are



4 Jochen Garcke and Thomas Vanck

somehow related to each other, so that in some parts of the domain the distributions are
similar (or even equal), i.e.:

pS(x̃, ỹ) ≈ pP (x̃, ỹ) for some (x̃, ỹ).

Therefore, one can employ the S data to improve the prediction on the P data. By
assumption, we have pP (x, y) 6= pS(x, y), and consequently we cannot simply combine
the S and P data. The crucial part is to determine points from the S data that contribute
positively to the P data prediction and neglect points that have a negative influence. A
solution to this problem is based on a measure of similarity between the two distributions.
A common way to achieve this is importance sampling, a technique that reweights a
given distribution p such that the reweighted p equals another distribution q. Defining
the importance weight function as w(x, y) := pP (x,y)

pS(x,y)
one could reweight the S data

distribution by:

pP (x, y) = w(x, y)pS(x, y) =
pP (x, y)

pS(x, y)
pS(x, y). (1)

With the help of the function w(x, y) it becomes possible to assign each S datapoint
(xS , yS) an individual and appropriate weight. A weight close to one indicates a prefer-
able point, while a weight far from one indicates the opposite. Hence this approach
seems suitable for tackling the induction transfer learning setting. However, this defini-
tion of the importance function requires knowledge of both distributions, which is not
available. Therefore, an approximation of the importance function w(x, y) is needed
instead. By employing an appropriate approximation, the idea of importance sampling
offers a guideline for solving the task of ITL.

4 New Instance Based Approach

4.1 Reweighting of the Prediction Function

We start by assuming that the given data (X ,Y) is distributed according to an (unknown)
distribution p(x, y). This distribution can be expressed by:

p(x, y) = p(y|x)p(x) or p(x, y) = p(x|y)p(y).

Although our suggested method can be applied to both cases, the discriminative and
the generative one, we will concentrate in the following on the first equation for the
discriminative approach. Predictions are obtained by:

ŷ∗ = argmaxy (p(y|x∗)p(x∗)) . (2)

By assumption, the new data x∗ and its corresponding (unknown) label y∗ is distributed
according to p(x, y), and therefore one can make a prediction by applying (2).

However, in the setting of inductive transfer learning we have two different distribu-
tions, which gives the following two expressions for the prediction of yP :

yPP = argmaxy
(
pP (y|xP )pP (xP )

)
yPS = argmaxy

(
pS(y|xP )pS(xP )

)
.
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In general the prediction of yP based on pS for the S data, namely yPS , can differ
arbitrarily from the prediction yPP based on the P distribution. Therefore, in order to
make better predictions for the P data using the distribution of the S data, we will now
reweight the S distribution as suggested in (1):

yP = argmaxy
(
pP (y|xP )pP (xP )

)
= argmaxy

(
pP (y|xP )pP (xP )

pS(xP , y)
pS(y|xP )pS(xP )

)
= argmaxy

(
w(xP , y)pS(y|xP )pS(xP )

)
. (3)

From this derivation one can see that this also is an unbiased estimator for the P data.
Due to the lack of knowledge about the true distributions pP and pS one cannot obtain

the correct importance function. Instead we will aim for an approximation ŵ(x, y). To
determine suitable weights ŵ we will now introduce two approaches for their estimation.

4.2 Model Based Estimation of the Weight Function

The first approach will be referred to as the direct method or DITL (Direct ITL) because
it will directly rely on the prediction performance of a model learned on the S data. The
goal of our model is to minimize the prediction error, i.e.

min ||Y P − Ŷ P ||2

where Y P is the vector of the real labels {yi}i=1,...,M and Ŷ P the vector of the model
predictions. Therefore, by following this approach, and with the help of expression (3),
an optimization problem for the estimation of a weight function can be stated as:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)p

S(y|xPi )pS(xPi )
))2

.

The idea behind this approach is that the computation of the weights ŵ is performed with
respect to the known labels Y P . Therefore this approach provides a supervised method
for adjusting the weights ŵ. Since for a given point xP the argmax does not depend on
pS(xP ) that term can be omitted, which leads to:

min
ŵ

M∑
i=1

(
yPi − argmaxy

(
ŵ(xPi , y)p

S(y|xPi )
))2

. (4)

4.3 Distribution Based Estimation of the Weight Function

Additionally, we propose a method which does not depend directly on prediction models
and can be regarded as an unsupervised approach. Following the idea of [17] we will min-
imize the Kullback-Leibler divergence between two distributions and straightforwardly
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extend the approach [17] for covariate shift by also taking the labels into account:

argminŵKL(pP (x, y)||ŵ(x, y)pS(x, y))

= argminŵ

(∫
pP (x, y) log

(
pP (x, y)

ŵ(x, y)pS(x, y)

)
dxdy

)
= argminŵ

(
−
∫
pP (x, y) log (ŵ(x, y)) dxdy

)
.

The last expression can be approximated by the empirical mean:

⇒ min
ŵ

M∑
i=1

− log
(
ŵ(xPi , y

P
i )
)
. (5)

Additionally, one obtains the following constraint for normalization [17]:

pP (x, y) = w(x, y)pS(x, y)

⇒ 1 =

∫
pP (x, y)dxdy =

∫
w(x, y)pS(x, y)dxdy

⇒ N =

N∑
j=1

ŵ(xSj , y
S
j ), (6)

it enforces that the reweighted distribution w · pS still has measure one. We will refer to
this approach as the indirect method or KLITL (Kullback-Leibler ITL).

5 Weighted Kernel Ridge Regression for ITL

Assuming one has obtained suitable weights, their application in regression requires
adjusted models for prediction. We will propose a weighted kernel ridge regression
model, which we will call ITL-KRR. The modified ridge regression model is given by:

JW (θ) =
1

2

 M∑
i=1

(θtφ(xPi )− yPi )2 +
N∑
j=1

wj(θ
tφ(xSj )− ySj )2

+
λ

2

D∑
d=1

θ2d (7)

where θ ∈ RD denotes the model parameter, λ the regularization parameter, φ the feature
map that maps the input x into the feature space (see e.g. [4]), and wj := ŵ(xSj , y

S
j )

denotes the weight for each supplementary datapoint from
(
XS ,YS

)
. Somewhat surpris-

ingly, such a natural extension of a regression approach for applying importance weights
has, to our knowledge, not been stated and used in the context of ITL so far. Dualization
is given straightforwardly by defining the diagonal matrix W ∈ R(M+N)×(M+N):

W :=

[
IM 0
0 diag

(
w(xS1 , y

S
1 ), . . . , w(x

S
N , y

S
N )
)]
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with IM the identity matrix for M dimensions and appending the S data to the P data (’|’
denotes vertical concatenation):

XPS =
(
XP |XS

)
and Y PS =

(
Y P |Y S

)
K = φ(XPS)tφ(XPS) the kernel matrix,

with the data matrices XP ∈ RM×D, XS ∈ RN×D and label vectors Y P ∈ RM , Y S ∈
RN . As the dual optimization problem one obtains:

1

2
atKWKa− atKWY PS +

1

2
Y PSWY PS +

λ

2
atKa.

We apply Gaussian kernels, with the bandwidth denoted by σ, in our experiments.

6 Determination of Individual Weights

We will now specify how the weights can be obtained computationally for both ap-
proaches.

6.1 Weight Function

Until now we have not been specific in the concrete representation of the weight func-
tion ŵ(x, y). We employ in this work the common approach of linear combination of
Gaussian kernels for an approximation of the importance function, i.e.:

ŵα(x, y) =

N∑
l=1

αl exp

(
−||(x, y)− (x′l, y

′
l)||2

2η2

)
.

The centerpoints (x′l, y
′
l)
N
l=1 will be set to the S datapoints. We use the S data instead

of the P data since in (14) we optimize over the P data; using the P data as centerpoints
would exhibit a higher risk of overfitting. Hence each ŵl in (13) becomes

ŵαj (x
∗, y) = αj exp

(
−
||(x∗, y)− (xSj , y

S
j )||2

2η2

)
. (8)

Other function representations are possible as well, but out of the scope of this work.

6.2 Direct Approach (DITL)

To derive the direct approach, let us remind the abstract modeling of a prediction function
in a standard machine learning setting for the discriminative case:

ŷ∗ = argmaxyp(y|x∗). (9)
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Here, x∗ denotes a data point to be predicted on, and ŷ∗ the prediction. As a concrete
model f(x) for the S data following (9) we again employ kernel ridge regression, which
can be stated as:

argmaxyp(y|x∗) ≈ f(x∗) = atk(x∗), (10)

where k(x∗) := (k(x1, x
∗), . . . , k(xN , x

∗))
t is the kernel map of the new datapoint

x∗ and the data X ⊂ RN×D on which the model has been learned, with k(xl, x∗) :=
φ(xl)

tφ(x∗), and a is the vector of coefficients for the linear combination in the feature
space. Hence for (4) one needs a different mathematical approximation:

argmaxy (ŵ(x
∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x

∗) (11)

where the model f now also depends on the weight function ŵ.
We now suggest a weighted prediction model derived from the kernel ridge regression

approximation and consider a weighted formulation:

JW (θ) =
1

2

N∑
l=1

ŵl
(
yl − θtφ(xl)

)2
+
λ

2
||θ||2 (12)

where θ again denotes the model parameter, φ is the feature map and ŵl is a weight
coefficient for each datapoint xl. By the process of dualization of the ridge regression
[4], one gets the weighted prediction function as:

0 = ∇JW (θ)⇔ θ =

N∑
l=1

ŵl

(
− 1

λ
(yl − θtφ(xl))

)
︸ ︷︷ ︸

=:âl

φ(xl).

Here, âl = alŵl are the coefficients for the linear combination in the feature space.
Analogously to (10), this prediction function can be taken as an approximation for the
weighted prediction, i.e.:

argmaxy (ŵ(x
∗, y)p(y|x∗)) ≈ fŵ(x∗,y)(x

∗) = atŴ (x∗, y)k(x∗) (13)

where Ŵ denotes a N × N diagonal matrix where each entry is a weight ŵl that
corresponds to the kernel function kl(·) := k(xl, ·) and coefficient al of the lth-data
point of S. Obviously this prediction function contains the label that is to be predicted.
Therefore, label prediction for new data points is not possible with (13). However, we
are not actually interested in making predictions using this model; rather we would
like to estimate appropriate weights ŵ for the subsequent step, in which we apply the
weights to learn a model on the P data combined with the weighted S data. (4) provides
a framework for getting the best possible weights by conditioning the expression to the
labels of the P data. Inserting (13) into (4) we get:

min
ŵ

M∑
i=1

(
yPi − atŴ (xPi , y

P
i )k(x

P
i )
)2
. (14)
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By making the approximation (8) we get a weight function that is defined by a given set
of αs, which can now be estimated by (14).

Note that in early experiments we saw that a direct application of (14) sometimes
returns αs where only one or very few elements dominate. In order to avoid such
an overfitting we additionally add a regularization term to (14) which penalizes large
coefficients:

min
α≥0

M∑
i=1

(
yPi − atŴα(xPi , y

P
i )k(x

P
i )
)2

+ γ||α||2. (15)

The estimated αs define the weight function ŵ which will then be subsequently used
during the actual ITL-KRR.

Learning the weights and a better model jointly from the P data and weighted S data
requires a three step procedure for the direct approach. Problem (15) depends on a model
of the S data for adjusting the αs. Therefore the first step requires the inference of a
kernel ridge regression model solely on the S data, which returns the coefficients a for
the prediction function (13). With these a a solution to (15) has to be found which yields
proper αs. These αs are then used in (7) for calculating the weight for each S datapoint.
The procedure can be stated as:
1. Learn a model a for the normal kernel ridge regression using solely the S data and

ignore any P data.
2. Use the coefficients vector a from step 1 to determine appropriate αs for the weight

function (8) by using the weighted prediction model (13) and solve (15).
3. After having determined the αs in step 2, use these to calculate the weight for the

application of the ITL-KRR (7). Use the resulting model to make predictions for
new P data.
The optimization in step 2 is convex and therefore guarantees a single optimal

solution. Good parameters in each step are estimated by performing standard cross-
validation on the P data. We employ Gaussian kernels in the kernel ridge regression,
therefore we need to estimate σ and λ in step 1 and 3 similarly to the two parameters γ
and η in step 2.

6.3 Indirect Approach (KLITL)

In addition to the direct approach we state a procedure for the indirect approach. Follow-
ing the derivation in section 4.3, using expression (5) as the objective and expression (6)
as the constraint, we proceed as follows:
1. Optimize the following with a standard solver for constrained problems:

max
α

1

M

M∑
i=1

log
(
ŵα(xPi , y

P
i )
)

s.t. N =

N∑
j=1

ŵα(xSj , y
S
j ) and α ≥ 0. (16)

2. Use the αs from step 1 to compute the weights ŵ of each S datapoint for the
optimization of the ITL-KRR (7). Use the resulting model to make predictions for
new P data.
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We employ here the same representation of the weight function (8) as for the direct
approach. For the estimation of a good η in (16) we will apply a modified version of
cross-validation that is explained in the experimental section 7.1 of this work.

6.4 Comparison of the Direct and Indirect Approach

Comparing the two approaches, an advantage for the indirect approach is that it does not
require the estimation of a model on the S data. This might be advantageous in case when
a lot of S data is available. Additionally, the method requires the estimation of just one
parameter η for the kernel width used in the weight function. However, on the downside
is the fact that this is an unsupervised method. By this we mean a method that does
not consider an objective cost function for the parameter inference. Therefore it is less
likely to obtain robust or reliable estimations for α. On the other hand DITL applies a
supervised optimization problem that takes a subset of the target labels in order to assess
the quality of parameter inference. As mentioned further in section 6.2 the additional
regularization term allows a higher control of the fitting process. As a consequence the
DITL method is much more robust in compensating the dataset shift. The experimental
section shows the conditions under which this becomes advantageous. The disadvantage
is a higher calculation cost since it requires the calculation of an additional model on the
S data and the parameters η and γ.

7 Experiments

In the experimental section we will compare the performance of the direct (DITL) and
indirect (KLITL) approaches versus the boosting for transfer learning (TLB) method,
another instance-weighted approach, described in [13]. Further we applied the ”Frus-
tratingly Easy Domain Adaptation” by [9], a simple, but often well performing feature
learning approach, in combination with kernel ridge regression (in the following referred
to as FS-KRR). As the final approach for dataset shift, we compare with ATL [6], which
is based on Gaussian process (GP) regression and calculates a special correlation matrix
for the GP. As a natural baseline, we provide the performance of a normal kernel ridge
regression for regression problems learned from the three dataset combinations: P data,
S data, and P & S data. As a weighted baseline we also take KLIEP [17] in a normal
covariate shift setting for determining instance weights into account, i.e. this approach
does not see the labels of the data during weight estimation, only their distribution in x.
As an alternative we also employ Kernel Mean Matching (KMM) [10].

7.1 Parameter Selection

DITL applies a kernel ridge regression (KRR), a weight estimation procedure and the
ITL-KRR. In each of the three steps we will perform 5-fold standard cross-validation for
the parameter estimation. For the KRR and the ITL-KRR we used RBF kernel functions
for the calculation of the kernel matrix K. Denoting the bandwidth parameter of the RBF
kernels with σ we have to estimate two parameters σ and the regularization parameter λ
in step 1 (KRR) on the S data, and step 3 (ITL-KRR) on the S and P data. In the second



Importance Weighted Inductive Transfer Learning for Regression 11

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1 #P data = 5

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1 #P data = 10

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

 

 #P data = 20
S data (weighted)
S data
Real function

ITL result
KRR result
P data

Fig. 1. Illustrative toy example for DITL. From left to right the number of P data is: 5, 10 and 20
datapoints. The location of an S datapoint is marked by a red cross ’×’. The round purple points
indicate how much weight an S datapoint gets assigned. The thicker the point the more weight it
has. As can be seen from the example, in one dimension 20 datapoints are already dense enough
to learn a reliable kernel ridge regression.

step DITL requires the estimation of the parameters η (the bandwidth for the importance
function approximation) and γ (the regularization parameter for the α vector). Since all
problems are quadratic, one can use standard algorithms for quadratic programming.

KLITL is different in the parameter estimation from the DITL method. KLITL
requires just two steps. In the first step we solve problem (16); i.e. we simply maximize
the sum under the normalization constraint. In order to get a good estimate for η
we propose a selection criteria that will choose the η from all the proposed η values
that maximizes (16). Since KLITL in the first step is unsupervised, we use a similar
method to cross-validation to get a more stable selection result. Given the original S
dataset,

(
XS ,YS

)
, we split the dataset into five disjoint parts,

(
XS ,YS

)5
k=1

. Each split(
XS ,YS

)
k

should contain enough samples of the S data but due to our assumption this
is not a problem. Now for a fixed parameter η we will maximize expressions (16) for
each dataset combination {

(
XS ,YS

)
k
,
(
XP ,YP

)
}. We pick the parameter with the

highest mean of these five maximas. Therefore we obtain a more robust method for
estimating an adequate parameter.

7.2 Datasets

First, for illustration purposes, we show by using a toy example how the proposed DITL
algorithm learns weights, and how these weights influence the model prediction. The
performance of our methods is then verified on some standard benchmark datasets that
have been slightly modified. Finally, we apply our methods to three real world datasets,
a dataset describing earthquakes, a second describing delays of aircrafts and a third
describing radio signal strengths from WiFi access points for indoor location estimation.

Toy Examples The toy example mainly serves as an illustrative demonstration of how
and where the DITL algorithm learns weights for the S data, and shows the consequences
for the prediction of the P data when taking additional S data into account. Similar results
can be obtained by applying KLITL, which we omit for space reasons.

The dataset is generated by sampling datapoints from two functions that are - as we
assume for our methods - partially almost identical. The S data is sampled as:

fs(x) = sin(2πx) + σSN (0, 1), (17)
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where σS is a factor for controlling the influence of the variance (in our experiments we
used σS = 0.1). The P data is sampled according to:

fp(x) =

{
0 + σPN (0, 1) 0 ≤ x ≤ 1/2
sin(2πx) + σPN (0, 1) 1/2 < x ≤ 1

(18)

where σP , as in the case for the S data, is the sample variance (in our experiments
σP = 0.4). Parameter selection is performed as described in the previous section 7.1.
The experiments in Fig. 1 only apply a very small number of P datapoints (just 5,10 and
20). The reason for this is that, for our example, the performance of a standard KRR is
already very good at 20 datapoints. This is due to the fact that in one dimension we get a
non-sparse dataset very quickly. Since we want to illustrate that the lack of datapoints (as
by our assumption), and hence sparseness of data, leads to models that perform poorly
on predicting new data, this setting for our toy example is reasonable. However, in high
dimensions the situation is different and the number of P datapoints can be much larger,
in parts due to the empty space phenomenon.

Benchmark Datasets We now apply DITL, KLITL, ATL, FS-KRR, KMM, KLIEP
and TLB to standard benchmark datasets. The experimental setup is as follows: We
took the following standard benchmark datasets for evaluation: abalone, elevators1, and
the kin family datasets2. From the kin dataset we took the n datasets (n for nonlinear)
with 8 dimensions. We used the nm (non linear medium variance) as the S data and
nh (non linear high variance) data as the P data. Since abalone and elevators do not
necessarily comprise a dataset shift we will determine the S and P data according to a
special selection criteria. The selection process is performed up front and independently
of the ITL method. In the first step we normalized the covariates X to [0, 1] for each
dimension. Then the following three values are calculated randomly; First, a dimension
d ∈ {1, . . . , D} is selected randomly. In the same way we choose a threshold value
ϑ ∈ [0, 1] randomly and finally we sample a selection probability pselect ∈ [0, 1]. All
values are selected according to a uniform distribution on the corresponding domain.
After that we fix these three values for the actual data generation process. For the dataset
generation we select a datapoint (x, y) from the set (X ,Y), take the x ∈ X and then
consider the value for dimension d, i.e. xd. If xd is larger than the threshold ϑ we will
add this (x, y) combination with probability pselect to the S data (XS ,YS), and to the P
dataset (XP ,YP) otherwise. That way we randomly generate 50 instances of the data
sets for each individual experiment with a drift, i.e. a covariate shift, in the distribution.
In order to get also a shift in the labels we apply the function

f(y) = y + ν sin (2πy) , ν ∈ [0, 1] (19)

to the labels of the P data only. For instance ν = 0 means no shift in the labels. This
way we generate datasets that account for the ITL setting and, due to the ν parameter,
gives control about the strength of the shift such that S and P data still have something in
common.

1 abalone and elevators can be found on mldata.org
2 kin datasets are part of the delve dataset repository
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Table 1. Results on different benchmark datasets for mean square error. Sampling of the S and
P data is explained in the text. Each experiment has been performed 50 times and the results
have been normalized by the error on the P data. Therefore, each number in the other columns
denotes the proportion in percent. Further comments on the results can be found in the text. Error
calculation has been performed on a randomly sampled Peval for each trial. (KRR∗ = KRR on
S ∪ P ). Best results are marked as bold text.

KRR (on P) KRR (S) KRR∗ FS-KRR KMM ATL TLB KLIEP KLITL DITL

Abalone ν = 0 (no additional label shift), error on |Peval| = 1000 and |S| = 1000
#P 50 0.0017 / 1.00 0.88 0.72 0.87 0.91 0.85 0.83 0.90 0.84 0.78
#P 100 0.0016 / 1.00 0.94 0.77 0.94 0.95 0.92 0.90 0.94 0.89 0.85
#P 200 0.0014 / 1.00 0.98 0.85 0.97 0.96 0.96 0.98 0.98 0.96 0.89
#P 300 0.0012 / 1.00 1.03 0.99 1.02 1.00 1.00 1.00 1.00 1.01 0.99

Abalone (ν = 1/2), error on |Peval| = 1000 and |S| = 1000
#P 50 0.0024 / 1.00 1.53 1.46 0.92 0.93 0.89 0.81 1.48 0.80 0.76
#P 100 0.0019 / 1.00 1.41 1.38 0.93 0.96 0.91 0.85 1.38 0.87 0.80
#P 200 0.0016 / 1.00 1.42 1.27 0.96 1.01 0.94 0.93 1.25 0.92 0.89
#P 300 0.0013 / 1.00 1.45 1.20 1.01 1.00 0.99 0.99 1.21 1.00 0.97

Elevators (ν = 1.0), error on |Peval| = 1000 and |S| = 2000
#P 50 6.5e-6 / 1.00 1.61 1.51 0.91 0.89 0.88 0.74 1.53 0.76 0.68
#P 100 5.7e-6 / 1.00 1.51 1.40 0.97 0.95 0.91 0.78 1.45 0.79 0.71
#P 200 4.1e-6 / 1.00 1.42 1.38 0.99 0.98 0.97 0.94 1.35 0.90 0.89
#P 300 3.6e-6 / 1.00 1.49 1.29 1.01 1.02 1.01 1.00 1.30 1.01 0.99

kin dataset (ν = 1/4), error on |Peval| = 1000 and |S| = 2000
#P 50 0.065 / 1.00 1.30 1.28 0.88 0.90 0.87 0.83 1.27 0.84 0.79
#P 100 0.056 / 1.00 1.34 1.23 0.91 0.93 0.89 0.88 1.24 0.88 0.84
#P 150 0.050 / 1.00 1.32 1.19 0.95 0.95 0.94 0.92 1.18 0.91 0.91
#P 200 0.044 / 1.00 1.30 1.15 1.03 1.00 1.00 1.00 1.12 1.00 1.00

Table 1 shows the results for each method for a different number of P data. For
illustration we give one result with ν = 0, i.e. with only a covariate shift. As one would
expect, a standard KRR using both S and P data performs best, since for ν = 0 the
datasets only contain a covariate shift. Nevertheless, this experiment verifies that the
introduced ITL methods learn proper weights in order to employ the right S datapoints
for improving prediction of the P data. Their prediction performance is best over all
approaches which aim to take a shift into account, both the covariate shift procedures
and the full dataset shift procedures. Experimental results are qualitatively the same for
the other datasets, therefore we omit them.

When adding a shift to the labels with ν > 0 to have a full dataset shift setting the
situation is as expected differently. The KRR learned exclusively on the S data does
not show any performance gain by adding P data. This is to be expected since the P
data has no influence on the learning procedure but only serves as an evaluation dataset.
On the other hand, if learned on P ∪ S the results improve slightly but they are still
biased by the S data. Over all approaches, as the proportion of the P data grows the error
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gets reduced. FS-KRR and ATL show comparable errors, this can be explained by the
similarity in these approaches, by construction both do not use weights for each instance
but one weight for the correlation of P and S data. Consequently, each S datapoint has
an equal influence. For KMM we considered the pP (x,y)

pS(x,y)
for the ratio calculation since

that better fits the ITL setting. Note that KMM does not provide a method for parameter
selection, and it is unsupervised since it does not use a subset of the target labels to adjust
the parameters, which overall makes it less robust and shows moderate performance.
KLIEP used as a baseline covariate shift approach shows a poor performance, which is
reasonable since it is not adapted to the ITL setting. The performance differences to the
other methods show that it makes sense to treat ITL and covariate shift as two separate
problem classes. Note that we also considered other (related) methods for covariate
shift [16] in our experiments, their performance was similar to KLIEP and we therefore
do not report their detailed results. TLB and KLITL show a similar performance. DITL
performs best, we assume that this is due to the supervised way for estimating the weights.
Nearly all methods eventually converge to a value of 1.00 because, as demonstrated
by the toy example in section 7.2, with some data set size the P data provides enough
information about its structure to allow a good prediction performance.

Real World Datasets We now investigate the more interesting situation of real data
that very likely contains a distribution shift. The first dataset [2] decribes measurements
taken during earthquakes in Japan and California. The features describe values such
as magnitude or distance to the center. A categorical feature describes the type of the
earthquake. We augmented the dataset and assigned a separate dimension for each
category, which turns one dimension into three. It seems natural to assume that the shift
within this data is due to the different locations. The label to predict is the so-called PGA
(Peak Ground Acceleration) value.

The second real world dataset describes the flight arrival and departure details for
all commercial flights within the USA3. The complete dataset contains records from
October 1987 to April 2008. We took the data from 2007 as the S data and the 2008 data
as the P data. Also here one can argue that the measurement taken in 2008 are different
to 2007 due to a shift in time. The predicted value is the delay of a particular flight.

The third dataset [21] comprises data for indoor location estimation from radio signal
strengths received by a user device (like a PDA) from various WiFi Access Points. The
measurements are taken at different locations and therefore contain a dataset shift.

The results are shown in table 2. Besides FS-KRR and ATL all approaches which
take a shift into account consistently improve the result in comparison to the baseline
approach of KRR on P (and/or S). Adjusting for a covariate shift with KLIEP only slightly
improves the result, whereas approaches which also adjust with weights stemming from
a dataset shift view achieve much better performance. The supervised approach DITL
consistently performs best, with KLITL and TLB as second.

In a final experiment we added additional distortion to the labels with (19) and
thereby increased the shift in the labels artificially. The purpose of this additional shift
is to investigate the robustness of the methods, assuming that with a stronger shift the

3 Flight dataset available at http://stat-computing.org/dataexpo/2009/
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Table 2. Results for the mean square error on the real world datasets. Since these datasets
exhibit real dataset shifts the advantage of applying weighted S data becomes obvious. Further the
robustness of the methods become apparent when the shift is artificially intensified (i.e. (19) with
ν > 0). Best results are marked as bold text.

KRR (on P) KRR (S) KRR∗ FS-KRR KMM ATL TLB KLIEP KLITL DITL

Earthquake ν = 0, error on |Peval| = 1000 and |S| = 841
#P 20 0.0138 / 1.00 1.13 1.12 1.13 0.91 1.04 0.64 0.97 0.60 0.51
#P 30 0.0106 / 1.00 1.15 1.07 1.14 0.95 1.09 0.88 0.99 0.83 0.78
#P 50 0.0076 / 1.00 1.20 1.04 1.19 0.98 1.13 0.96 1.00 0.95 0.93
#P 70 0.0064 / 1.00 1.23 1.04 1.24 1.02 1.16 0.99 1.01 1.02 1.00

Flight Data ν = 0, error on |Peval| = 1000 and |S| = 2000
#P 50 898.01 / 1.00 0.96 0.95 1.01 0.88 0.92 0.53 0.92 0.55 0.51
#P 200 611.39 / 1.00 1.02 0.99 1.04 0.92 0.99 0.78 0.96 0.76 0.71
#P 400 265.97 / 1.00 1.36 1.23 1.35 0.99 1.10 0.89 0.97 0.90 0.86
#P 800 211.12 / 1.00 1.41 1.36 1.42 1.01 1.14 1.01 1.02 1.00 0.99

Wireless ν = 0, error on |Peval| = 1000 and |S| = 2000
#P 50 256.83 / 1.00 1.02 0.96 0.99 0.91 0.93 0.74 0.95 0.71 0.69
#P 100 230.74 / 1.00 0.98 1.00 1.01 0.95 0.97 0.82 0.97 0.78 0.79
#P 200 197.23 / 1.00 1.10 1.12 1.05 0.97 1.02 0.93 0.99 0.89 0.87
#P 400 153.21 / 1.00 1.13 1.15 1.10 1.03 1.08 0.99 1.01 0.98 0.96

Wireless ν = 1 (with additional label shift), error on |Peval| = 1000 and |S| = 2000
#P 50 431.23 / 1.00 1.78 1.17 1.20 1.10 1.18 0.86 1.34 0.84 0.74
#P 100 398.19 / 1.00 1.65 1.13 1.14 1.05 1.12 0.90 1.38 0.88 0.83
#P 200 354.21 / 1.00 1.77 1.10 1.09 1.07 1.10 0.97 1.40 0.94 0.92
#P 400 299.85 / 1.00 1.59 1.07 1.04 1.02 1.05 1.01 1.45 0.99 1.00

methods become more sensitive in the weight calculation, which might lead to a higher
error rate. The results confirm this expectation, but also show that it is reasonable to
assume that DITL provides a better robustness to stronger shifts than other methods. We
only give results for one dataset, the results for other datasets are qualitatively similar.

8 Conclusions

In this paper we suggest two new approaches for tackling the problem of inductive
transfer learning. The first one DITL, a supervised method, is motivated by a reweighted
and unbiased prediction function of the S data. The second method uses an approximation
of the Kullback-Leibler divergence to measure the difference in the distributions of the
S and P data. The results indicate that both methods are suitable to account for dataset
shifts while the supervised method performs better.

Due to its unsupervised nature, future work on the robustness of KLITL will be an
interesting topic. Furthermore, we will investigate the application of the methods in a
classification setting. Here, the direct method will need a different optimization than the
current formulation (4), which is not suited for classification. Of interest would also be
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the case of a small number of labeled P data, but large number of unlabeled P data, here
one might want to combine covariate shift adaptation with inductive transfer learning.

References
1. Al-Stouhi, S., Reddy, C.K.: Adaptive boosting for transfer learning using dynamic updates. In:

Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML/PKDD (1). Lecture
Notes in Computer Science, vol. 6911, pp. 60–75. Springer (2011)

2. Allen, T., Wald, D.: Evaluation of ground-motion modeling techniques for use in global
shakemap—a critique of instrumental ground-motion prediction equations, peak ground
motion to macroseismic intensity conversions, and macroseismic intensity predictions in
different tectonic settings. U.S. Geological Survey Open-File Report 2009—1047 (2009)

3. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning
73(3), 243–272 (2008)

4. Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)
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