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Abstract

Compared to conforming P1 finite elements, nonconforming P1 finite element discretiza-
tions are thought to be less sensitive to the appearance of distorted triangulations. E.g.,
optimal-order discrete H1 norm best approximation error estimates for H2 functions hold
for arbitrary triangulations. However, similar estimates for the error of the Galerkin pro-
jection for second-order elliptic problems show a dependence on the maximum angle of
all triangles in the triangulation. We demonstrate on the example of a special family of
distorted triangulations that this dependence is essential, and due to the deterioration
of the consistency error. We also provide examples of sequences of triangulations such
that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial
solution do not converge or converge at arbitrarily low speed. The results complement
analogous findings for conforming P1 finite elements.

Keywords: Nonconforming P1 elements, lowest order Raviart-Thomas elements,
discrete energy norm estimates, divergence of finite element methods, maximum angle
condition, distorted triangulations
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1. Introduction

Convergence estimates for the finite element method (FEM) in two and higher di-
mensions involve some shape regularity assumptions for the underlying partitions. In
two dimensions, to obtain optimal-order convergence estimates in the energy norm for
triangular elements when the maximal element diameter h tends to zero, the maximum
angle condition introduced in [2, 11] is sufficient. The natural question if this condition
is also necessary has attracted less attention, even though mesh generation strategies
for the resolution of boundary and interior layers or discretizations involving moving
meshes may lead to severely distorted triangle shapes. For conforming triangular P1
finite elements and the Poisson equation

−∆u = f, u ∈ H1
0 (Ω), (1)
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in [2, Section 3] it was already shown on a particular example that the optimal-order
O(h) energy norm error estimate for smooth solutions u ∈ H2(Ω) may not hold if the
underlying sequence of triangulations severely violates the maximum angle condition.
However, as was demonstrated in [10], there are many types of distorted triangulations
violating the maximum angle condition but still admitting optimal-order error bounds
for the Galerkin finite element method. In recent work [14, 12], some more precise state-
ments about the necessity of the maximum angle condition for conforming triangular
P1 finite element discretizations have been made. E.g., in [14] for a particular Poisson
problem on a square with polynomial solution, and a family of uniformly distorted trian-
gulations already used in [2] and originating from [16], matching lower and upper bounds
for the Galerkin energy norm error (or, equivalently, the error of best approximation by
conforming P1 elements in the H1 norm) have been obtained. These bounds precisely
quantify the effect of the violation of the maximum angle condition on the convergence
speed, and provide examples of sequences of triangulations where the Galerkin method
does not converge to the solution at all as h→ 0. In [12], a larger class of triangulations
violating the maximum angle condition was investigated.

Figure 1: Babuška-Aziz triangulation T4,8

One may wonder if the effects observed for conforming P1 elements in [2, 10, 14, 12]
also hold for nonconforming and mixed finite element discretizations, where the maxi-
mum angle condition also figures as a sufficient condition, see [1, 4, 7] for a discussion of
the lowest order Crouzeix-Raviart nonconforming P1 element [9] and the closely related
lowest order Raviart-Thomas element [15]. From an approximation-theoretic point of
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view, the triangular nonconforming P1 element spaces generally provide better approx-
imation properties in the discrete H1 norm, independently of the shapes of triangles
[2, 1], and the hope is that this may also extend to the error analysis of the Galerkin
projection. However, since the Galerkin error of a nonconforming method also involves
a consistency error, such an extension is not automatic, and, as it turns out, not possi-
ble. In the present paper, we modify the approach taken in [14], and show for the same
family {Tn,m} of triangulations as in [2, 14] that for the problem (1) with polynomial
solution u(x, y) = x(1− x)y(1− y) and right-hand side f(x, y) = 2(x(1− x) + y(1− y))
the nonconforming P1 Galerkin projections un,m w.r.t. the triangulation Tn,m satisfy

‖u− un,m‖H1,Tn,m
� min(1,m/n2), m ≥ n > 1. (2)

Here, ‖·‖H1,T stands for the discrete (sometimes called broken) H1 norm associated with
the triangulation T . For n = 4, m = 8, the triangulation Tn,m is depicted in Figure 1.
Since for Tn,m the mesh-size parameter h equals 1/n, and the growth of m/n measures
the amount of deterioration of the maximum angle condition, we see that in general a
violation of the maximum angle condition immediately leads to a loss of convergence
speed, and eventually to the loss of convergence, unless m/n2 → 0 as n→∞. However,
examples in the spirit of [10] show that not every sequence of triangulations containing
irregularly shaped triangles share this behavior, and that the family {Tn,m} provides an
extreme test case for the investigation of convergence problems with respect to distorted
triangulations also in the nonconforming P1 element case.

The two-sided estimate (2) looks formally the same as the corresponding result from
[14] for the conforming P1 element case but is different in several aspects. While the
result from [14] is about the error of best approximation w.r.t. the conforming P1
element space on Tn,m for an even simpler Poisson problem with univariate solution
u(x, y) = x(1− x)/2, the statement of (2) is about the consistency error induced by the
nonconforming P1 element space on Tn,m, and requires a truly two-dimensional approach.

The remainder of the paper is organized as follows. Section 2 introduces notation
and reviews the known upper estimates. In Section 3 the main result (2) is proved, some
technical proofs are delayed into appendices. The final Section 4 offers complementary
numerical evidence and contains some further remarks.

2. Notation and Known Facts

Throughout the paper, we consider smooth solutions u ∈ H2(Ω) ∩ H1
0 (Ω) of the

Poisson problem (1) for a bounded polygonal domain Ω ⊂ R2. Consequently, f ∈
L2(Ω). Let T denote an arbitrary finite triangulation of Ω identified with a collection of
closed triangles partitioning Ω with no hanging nodes. I.e., the intersection of any two
triangles in T is either empty or belongs to the vertex set V or to the edge set E of the
triangulation. Two characteristics of T are of interest to us: The mesh-width

hT := max
∆∈T

h∆,
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and the maximum angle
αT := max

∆∈T
α∆,

where h∆ denotes the length of the longest edge and α∆ the largest interior angle in a
triangle ∆ ∈ T , respectively.

The space of nonconforming P1 elements on T associated with homogeneous Dirichlet
boundary conditions is denoted by VT , and consists of all piecewise linear functions that
are continuous across the midpoints of interior edges, and are zero at the midpoints of
boundary edges. I.e., if e ∈ E is an interior edge shared by the triangles ∆+ and ∆−,
then the two functions v± = v|∆± are linear polynomials on ∆±, respectively, and satisfy∫

e

v+ ds =

∫
e

v− ds.

It is well known [6] that the discrete H1 seminorm

‖u‖H1,T :=

(∑
∆∈T

|u|21,∆

)1/2

, |u|1,∆ :=

(∫
∆

|∇u|2 dxdy
)1/2

,

is a norm on VT +H1
0 (Ω) that coincides with the standard H1 norm for u ∈ H1

0 (Ω). Here,
∇u = (ux, uy) is the gradient of u, and ux, uy, uxx, ux,y, uyy, . . . is our notation for the
partial derivatives of u (if properly defined). Thus, the variational problem of finding
uT ∈ VT such that

(uT , v)H1,T = (f, v)L2 ∀ v ∈ VT ,
has a unique solution which we call the Galerkin solution of (1) in VT .

In this paper we are concerned with estimates for the discrete energy norm error
(called Galerkin error for short)

ET (u) := ‖u− uT ‖H1,T =

(∑
∆∈T

|∇(u− uT )|2 dxdy

)1/2

,

if the solution u of (1) is in H2(Ω). The second Strang Lemma implies that

max(EBA,T (u), EC,T (u)) ≤ ET (u) ≤ EBA,T (u) + EC,T (u), (3)

i.e., that estimating the Galerkin error requires estimating both the best approximation
error

EBA,T (u) := inf
v∈VT
‖u− v‖H1,T

of the solution u by elements of VT , and the consistency error

EC,T (u) := sup
w∈VT : ‖w‖H1,T =1

((u,w)H1,T − (f, w)L2).

In contrast to conforming P1 elements [2, 14, 12], in the nonconforming P1 case the
best approximation error EBA,T admits an optimal bound. To formulate it, consider the
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Crouzeix-Raviart interpolation operator PT : VT + H1
0 (Ω) → VT introduced in [9] and

defined by the condition ∫
e

u− PT u ds = 0 ∀ e ∈ E .

The following result is a consequence of, e.g., Lemma 2.2 in [1].

Theorem 1 If u ∈ H2(Ω) ∩H1
0 (Ω) then, with a constant C0 independent of T we have

EBA,T (u) ≤ ‖u− PT u‖H1,T ≤ C0

(∑
∆∈T

h2
∆|u|22,∆

)1/2

≤ C0hT |u|H2 ,

where

|u|2,∆ :=

(∫
∆

|D2u|2 dxdy
)1/2

, |D2u|2 := u2
xx + 2u2

xy + u2
yy,

and |u|H2 := |u|2,Ω stands for the H2 semi-norm of u.

Unfortunately, the consistency error EC,T (u) does not admit a similar estimate with
constants uniform in T . Indeed, the standard estimate of EC,T (u) is based on the
transformation

(u,w)H1,T − (f, w)L2 =
∑
∆∈T

∑
e∈E

∫
e

(∇(u− PT u) · ne,∆)[w] ds

where ne is a fixed unit normal with respect to the edge e, and [w] denotes the (properly
signed) difference of the traces of w from both sides of e (set w = 0 outside Ω). When
each of these edge integrals is bounded by the trace theorem, see [3, 6], a dependence
on the shape of the triangles attached to e enters the constants. Implicitly, this can be
seen from [7, Theorem 6.2] which contains the following estimate for the Galerkin error
(for simplicity, we do not state it with the explicit constants given in [7]):

Theorem 2 If u ∈ H2(Ω) ∩ H1
0 (Ω) then, with constants C1, C2 independent of T , we

have

ET (u) ≤

(∑
∆∈T

h2
∆

{
C2

1

∫
∆

|f − f̄∆|2 dxdy + C2
2 tan2(

α∆

2
)

∫
∆

|D2u|2 dxdy
})1/2

≤ hT (C1‖f‖L2 + C2 tan(
αT
2

)|u|H2),

where f̄∆ := |∆|−1
∫

∆
f dxdy denotes the average value of f on ∆.

The appearance of the factor tan(αT /2) is troublesome, as it indicates a deterio-
ration of the error bound if αT → π. Moreover, for sequences of triangulations with
hT tan(αT /2)→∞ even boundedness of the Galerkin error is not guaranteed! Whether
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ET (u) → ∞ may happen for some u ∈ H2(Ω) ∩ H1
0 (Ω) is doubtful but currently not

disproved. This question is equivalent to the possible deterioration of the constant in
the discrete Friedrichs inequality

‖w‖L2 ≤ CΩ,T ‖w‖H1,T ∀ w ∈ VT , (4)

namely, if, for fixed polygonal Ω, the supremum of the optimal constants CΩ,T in (4)
over all possible T may become infinity. There is some ambiguity on the dependence of
CΩ,T on the shape regularity properties of T in the literature, see e.g. [6, 17], which we
could not sort out yet.

The family of triangulations Tn,m of the unit square we concentrate on in this paper
does not exhibit such an extreme divergence behavior, however, it shows that the de-
pendency on αT present in the estimate of Theorem 2 is essential, and that (bounded)
divergence of the nonconforming P1 method is possible. Let us introduce the notation
used in Section 3. We consider the solution u(x, y) = x(1 − x)y(1 − y) of the Poisson
problem

−∆u(x, y) = 2(x(1− x) + y(1− y)), (x, y) ∈ [0, 1]2, (5)

equipped with homogeneous Dirichlet boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0, x, y ∈ [0, 1],

and the associated sequence of nonconforming P1 element Galerkin solutions

un,m := uTn,m ∈ Vn,m := VTn,m , m ≥ n ≥ 1.

Even though Figure 1 is self-explaining we give the formal definition of the triangulation
Tn,m. It is generated by the intersection of three line systems with [0, 1]2, namely

{(x, y) : y =
j

2m
, x ∈ [0, 1]}j=1,...,2m−1,

{(x, y) : y =
n

m
x+

j

m
, x ∈ [0, 1]}j=1−m,...,m−1,

{(x, y) : y = − n
m
x+

j

m
, x ∈ [0, 1]}j=1,...,2m−1.

Its vertex set consists of all points Pi,j = ( i
2n
, j

2m
) with indices i = 0, 2, . . . , 2n if j =

0, 2, . . . , 2m is even, and indices i = 0, 1, 3, . . . , 2n− 1, 2n if j = 1, 3, . . . , 2m− 1 is odd.
The typical triangle ∆ in Tn,m has its longest edge of length 1/n located parallel to the x-
axis, an associated height of length 1/(2m), area |∆| = 1/(4nm), and two remaining sides
of equal length. It becomes severely distorted, with the maximum angle α∆ satisfying
tan(α∆/2) = m/n, if m/n→∞ (the exceptional triangles along the vertical sides of the
square are right-angled, have shorter longest edges, and area 1/(8nm)). Thus, we have

hTn,m =
1

n
, tan(αTn,m/2) = m/n, m ≥ n ≥ 1.

6



The triangulations Tn,m have been used in [2, 14] for studying H1 best approximation
with conforming P1 elements but seem to have appeared for the first time in H. Schwarz’
seminal note [16] on the definition of the surface area by triangular approximation.

We denote by En,m = ‖u − un,m‖H1,Tn,m
the Galerkin error of our model problem

with respect to Tn,m. Then Theorem 2 gives the upper bound

En,m ≤ C3
m

n2
, m ≥ n ≥ 1. (6)

where the constant C3 is independent of n and m. Our main result given in the next
section shows that the upper estimate (6) is essentially sharp.

We conclude this section with some technical results that will be used in the next
section. First of all, since nonconforming P1 element functions w ∈ VT are piecewise
linear, and can be parametrized by their edge midpoint values w(Me), e ∈ E , we can
explicitly estimate their discrete H1 and L2 norm:∑

∆∈T

|∆|(
∑
e⊂∆

|De,∆w|2) ≤ 3‖w‖2
H1,T , (7)

where the constant directional derivative De,∆w of the linear function w|∆ along the
edge e equals 2(w(Me′)−w(Me′′))/|e|, where e′, e′′ are the other two edges of ∆. In the
opposite direction, the inequality holds only with a constant depending on αT . Moreover,

‖w‖2
L2

=
1

3

∑
∆∈T

|∆|(
∑
e⊂∆

|w(Me)|2). (8)

Another auxiliary result we need is a two-sided Poincaré inequality

inf
c∈R
‖v − c‖2

L2(∆) = ‖v − v̄∆‖2
L2(∆) ≈

∫
∆

(
1

n2
v2
x +

1

m2
v2
y) dxdy, v ∈ H1(∆), (9)

for the best approximation by constants, valid for any triangle ∆ ∈ Tn,m. To see (9), just
use the coordinate transform x′ = x, y′ = m

n
y, apply the equivalence of H1 semi-norm

and L2 norm on the subspace of H1(∆′) consisting of functions with zero average which
holds, with uniform constants, for the transformed, undistorted triangle ∆′, and then
transform back. If one applies (9) separately to the partial derivatives ux and uy of any
function u ∈ H1

0 (Ω) ∩H2(Ω), and adds the results for all ∆ ∈ Tn,m, then

EBA,Tn,m(u)2 ≥
∑

∆∈Tn,m

inf
c,c′∈R

(‖ux − c‖2
L2(∆) + ‖uy − c′‖2

L2(∆))

≥ C ′0
n2

∫
Ω

(u2
xx + u2

xy +
n2

m2
u2
yy) dxdy

with some C ′0 > 0. Thus, for our particular model problem (5), the above argument and
Theorem 1 result in an optimal two-sided estimate for the discreteH1 best approximation
error:

EBA,Tn,m(u)2 ≈ 1

n
, m ≥ n ≥ 1. (10)
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3. Main Result

Theorem 3 For the model problem and the family of triangulations Tn,m we have

C ′4 min(1,
m

n2
) ≤ En,m ≤ C4 min(1,

m

n2
), m ≥ n ≥ 1. (11)

with constants C4, C
′
4 independent of n and m. In particular, to achieve convergence in

the discrete H1 norm for a certain sequence of triangulations Tn,m with n → ∞, one
needs to satisfy m/n2 → 0.

Proof. We first deal with the upper bound in (11). Due to (6) all we need is to
establish an upper bound for En,m, uniformly in n and m. Since

En,m ≤ EBA,Tn,m(u) + EC,Tn,m(u) ≤ ‖u‖H1 + EC,Tn,m(u),

and
|(u,w)H1,Tn,m

− (f, w)L2| ≤ ‖u‖H1‖w‖H1,Tn,m
+ ‖f‖L2‖w‖L2 ,

the upper bound in (11) holds with constant C4 = max(C3, 2‖u‖H1 + 1
2
‖f‖L2) since for

the triangulations Tn,m we have the discrete Friedrichs inequality

‖w‖L2 ≤
1

2
‖w‖H1,Tn,m

, w ∈ Vn,m, m ≥ n ≥ 1, (12)

Since we could not find a reference for (12) in the literature, we give the elementary
argument in Section 5.1.

The rest of the proof is concerned with proving the matching lower bound in (11).
As was pointed out before, this is equivalent to establishing the appropriate lower bound
for

EC,Tn,m(u) = sup
06=w∈Vn,m

(u,w)H1,Tn,m
− (f, w)L2

‖w‖H1,Tm,n

.

To this end, it is enough to pick a suitable w̃ ∈ Vn,m, estimate its discrete H1 norm from
above, the consistency term (u, w̃)H1,Tn,m

− (f, w̃)L2 from below, and check the quotient
of these estimates. We arrived at a good guess for a such a candidate w̃ after performing
some numerical experiments, see Section 4. We define the nodal values w̃(Me) as follows:
For all edges e in the lower left subsquare Ω′ := [0, 1

2
]2 of Ω, we set

w̃(Me) =


0, e on the boundary, or parallel to the x-axis,
1

2n
ψ(Me), e has slope n/m,
− 1

2n
ψ(Me), e has slope −n/m,

(13)

where ψ(x, y) = 2xuxy(x, y) = 2x(1−2x)(1−2y). Nodal values for the remaining part of
Ω are obtained by symmetry, i.e., such that w̃(1−x, y) = w̃(x, 1−y) = w̃(1−x, 1−y) =
w̃(x, y) for all (x, y) ∈ Ω′. Note that this w̃ is highly oscillating, and related to the mixed
derivative uxy = (1 − 2x)(1 − 2y), with values damped towards the vertical edges of Ω
by the factor min(2x, 2(1− x)).
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By symmetry, we need to evaluate the integrals defining (u, w̃)H1,Tn,m
− (f, w̃)L2 and

‖w̃‖2
H1,Tn,m

only on the subsquare Ω′. Thus, estimates will be conducted for the triangles

depicted in Figure 2 that intersect with Ω′. We use the notation introduced by Figure
2, with P = (x, y) the origin of a local coordinate system (t, s), and h := 1/(2n),
k := 1/(2m) the typical lengths in t- and s-direction, respectively. We also denote
κ := h2k−1.

Figure 2: Triangle pairs in the interior (on the left), and attached to the boundary (on the right)

Formulas for the piecewise constant gradient ∇w̃|∆± =: (w̃±x , w̃
±
y ) for all triangles

intersecting with Ω′ follow from the definition of w̃ by elementary calculus, and imme-
diately lead to an estimate for the discrete H1 norm of w̃. The result is collected into
the following lemma, see Section 5.2 for its derivation.

Lemma 1 Let w̃ ∈ Vn,m be given by (13).
a) For the triangles ∆± ⊂ Ω′ with center P = (0, y) (see Figure 2 on the right), we have

w̃±x = 2h(1− h)(∓(2y − 1) + k), w̃±y = −2κ(1− h)((1− 2y)∓ k), (14)

For the triangles ∆± ⊂ Ω′ with center P = (x, y), 0 < x < 1/2 (see Figure 2 on the
left), we have

w̃±x = (4x(1− 2x)− 2h2)(∓(1− 2y) + k), w̃±y = κ(4x− 1)(1− 2y ± k). (15)

Finally, for the triangles ∆± with center P = (x, y) on the symmetry line x = 1/2, we
have

w̃±x = 0, w̃±y = 2κ(1− h)(1− 2y ∓ k). (16)
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b) The discrete H1 norm of w̃ satisfies

‖w̃‖H1,Tn,m
= O(1 + κ), m ≥ n ≥ 1. (17)

We come to the lower estimate for the consistency term evaluated at w̃. As it turns
out, the dominating contributions to the consistency term come from the integrals∫

∆±
uyw̃y dtds

for interior triangle pairs ∆± ⊂ Ω′, as depicted in Figure 2 on the left, and are of the
order m/n2. Other terms are negligible compared to them. In particular, we have the
following lemma whose proof is given in Section 5.3.

Lemma 2 For the w̃ under consideration and the right-hand side f of (5), we have

|(f, w̃)L2| = O(kh2), m ≥ n ≥ 1. (18)

The crucial part of the proof is a lower bound for (u, w̃)H1,Tn,m
. We first deal with

the contributions to (u,w)H1,Tn,m
from the triangles ∆± ⊂ Ω′ depicted in Figure 2 on the

left. Have in mind that in local coordinates we have ux(s, t) = (1− 2x− 2t)(y(1− y) +
(1− 2y)s− s2), analogously for uy(s, t), while w̃±x , w̃±y are constant on ∆±, respectively.
Using the simplifications based on symmetry arguments and integration over triangles
as detailed in Section 5.3, we have∫

∆±
ux dxdy = (1− 2x)

∫
∆±

y(1− y) + (1− 2y)s− s2 dtds

= hk(1− 2x)(y(1− y)± 1

3
(1− 2y)k − 1

6
k2)

= hk(1− 2x)(y(1− y) + O(k)),

and ∫
∆±

uy dxdy =

∫
∆±

(x(1− x)− t2)(1− 2y − 2s) dtds

= hk((x(1− x)− 1

6
h2)(1− 2y)∓ 2

3
kx(1− x)± 1

15
h2k)

= hk((1− 2y)x(1− x) + O(k + h2)).

Substituting the values

w̃±x = ∓4x(1− 2x)(1− 2y) + O(h2 + k), w̃±y = κ((4x− 1)(1− 2y) + O(k)),

obtained from (15), we get∫
∆±
∇u · ∇w̃ dxdy = w̃±x

∫
∆±

ux dxdy + w̃±y

∫
∆±

uy dxdy

= ∓4hk(x(1− 2x)2y(1− y)(1− 2y) + O(h2 + k))

+hkκ((4x− 1)x(1− x)(1− 2y)2 + O(h2 + k)).
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If we sum with respect to the O(nm) triangles in Ω′ considered so far (call the result
Σ′), we see that

Σ′ = κ(I ′ + O(h+ k2/h2)), (19)

with a constant I ′ > 0 given below. Indeed, for the terms in the sum Σ′ related to
the gradient in x-direction, the leading parts ∓4hkx(1− 2x)2y(1− y)(1− 2y) cancel for
triangle pairs ∆± ⊂ Ω′ with the same center P = (x, y), and vanish for triangles ∆+

with center at y = 0 and ∆− with center at y = 1/2, respectively. Therefore, only the
subdominant part O(hk(h2 + k)) needs to be taken into account which gives an overall
O(h2 +k) = O(κ(k+k2/h2)) contribution to Σ′. Moreover, for the terms in Σ′ related to
the gradient in y-direction, the sum of the leading factors hk((4x− 1)x(1− x)(1− 2y)2)
to be multiplied with κ tends to the integral

I ′ :=

∫
Ω′

(4x− 1)x(1− x)(1− 2y)2 dxdy =
1

384
, h, k → 0,

at speed at least O(h). Altogether, this gives (19) if one takes the common factor
κ = h2/k out, and uses k = O(h). We can silently include into Σ′ the contributions from
the O(m) triangles ∆± crossing the symmetry line x = 1/2, as the estimation steps are
identical, with the only change that (15) is replaced by (16).

The contribution of the remaining triangles ∆± with P = (0, y), depicted in Figure
2 on the right and attached to the left boundary of Ω′, is negligible compared to the
leading part in the lower estimate (19). Indeed, we again expand in local coordinates
(t, s) as

ux = −2t(y(1− y) + (1− 2y)s− s2), uy = (t− t2)(1− 2y − 2s),

where 0 ≤ t ≤ h(1 − |s|/k), 0 ≤ s ≤ k for ∆+, and −k ≤ s ≤ 0 for ∆−, respectively,
and compute with (25) the integrals∫

∆±
ux dtds = −h

2k

3
(y(1− y)± k

2
(1− 2y)− k2

5
) = O(h2k),

and, similarly,∫
∆±

uy dtds =
h2k

6
((1− 2y)(1− h

2
)∓ k(

1

2
− h

5
)) = O(h2k).

Combining this with

w̃±x = ±2h(1− 2y + O(h)), w̃±y = −2κ(1− 2y + O(h)),

see (14), we obtain the rough estimates

w̃±x

∫
∆±

ux dtds = O(h3k) = O(κhk2), w̃±y

∫
∆±

uy dtds = O(κh2k).
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Summing the contributions with respect to all O(m) triangles attached to the boundary
x = 0 of Ω′ (call the result Σ′′), we get

Σ′′ = O(κh2). (20)

Combining (19), (20), and (18), we see that

(u, w̃)H1,Tn,m
− (f, w̃)L2 = 4(Σ′ + Σ′′)− (f, w̃)L2 = κ(I ′ + O(h+ k2/h2)). (21)

Eventually, by (21) and (17), we get, with an absolute constant C ′5 > 0,

EC,Tn,m(u) ≥
(u, w̃)H1,Tn,m

− (f, w̃)L2

‖w̃‖H1,Tn,m

≥ C ′5
κ

1 + κ
≥ C ′5

3
min(1,m/n2),

if m ≥ n ≥ n0 with n0 large enough, and n/m ≤ ε0 with ε0 small enough. This proves
(11) in the asymptotic range. For the remaining values m ≥ n, note that for them
tan(αTn,m/2) = m/n ≤ C6 for some absolute C6 depending on n0, and ε0, i.e., these
remaining triangulations Tn,m uniformly satisfy the maximum angle condition. Thus, in
this case 1/n ≤ m/(C6n

2), and the lower bound in (11) is taken care of by the lower
bound (10) for the best discrete H1 approximation error of our u. With the constant C ′4
in (11) defined from C ′5, C6, and from the constant in (10) in a proper way, Theorem 3
is now fully proved.

4. Numerical Examples and Further Remarks

We have conducted a couple of numerical experiments in the pre-asymptotic range
(with relatively small values n, m), for exactly the model problem described in the
previous sections. We have used the standard nodal basis {φe} for nonconforming P1
elements associated with the interior edges of Tn,m, and computed integrals, defining the
entries of the stiffness matrix A and right-hand side vector b, as well as error measures
exactly (within machine accuracy). First we confirmed the result of Theorem 3 by
running simulations for values m = n, m ≈ n3/2, m = n2, and m ≈ n5/2, respectively,
for a suitable range of values n. The first two cases shown in Figure 3 illustrate optimal
O(n−1) and slowed O(n−1/2) convergence, in agreement with (11). The latter two cases
demonstrate the failure of convergence if m/n2 does not converge to 0, see Figure 4.
Blue lines represent the Galerkin error, red lines the consistency error.

We also needed some intuition on how an appropriate candidate w̃ for maximizing
the consistency error should look like. Since the constrained problem

(u, w̃)H1,Tn,m
− (f, w̃)L2 → max subject to ‖w̃‖H1,Tn,m

= 1

is easy to solve, the coefficient vector of the maximizer w̃ and the value of EC,Tn,m(u)
can be found from the formulas

x̃ = ±A−1(c− b)/
√

(c− b)TA−1(c− b), EC,Tn,m(u) =
√

(c− b)TA−1(c− b),

12



Figure 3: Behavior of En,m for m = n (optimal order convergence, on the left) and for m ≈ n3/2 (slowed
convergence, on the right)

Figure 4: Failure of convergence for m = n2 (on the left) and for m ≈ n5/2 (on the right)

13



Figure 5: Solutions (upper row) and maximizers for the consistency error (lower row) for n = 10 and
m = n (on the left) and m = n2 (on the right)

where c has entries ce = (u, φe)H1,Tn,m
. The result is visualized in Figure 5 by depicting

the nodal values of the Galerkin solution un,m given by x = A−1b (upper row), and
of the maximizer of the consistency error given by x̃ (lower row) at the midpoints of
edges with slope ±n/m. We show two cases: n = 10 = m (on the left), and n = 10,
m = n2 = 100 (on the right). The graphs suggested a distinct oscillation behavior for
w̃ which we slightly simplified to the choice for w̃ used in the proofs of the previous
section (it took as a while to realize that for the deterioration of the consistency error
the non-oscillating part of w̃ visible in Figure 5 is not essential). It also looks as if un,m is
still close to u in L2 and L∞ distance, even in cases when the discrete H1 error does not
converge to zero. This is in contrast to the counterexamples for conforming P1 elements
used in [14].

Our example automatically provides similar matching lower bounds for lowest-order
Raviart-Thomas elements [15] if the mixed formulation of (1) is used. Indeed, due to

14



[13], on each triangle ∆ ∈ Tn,m, the discrete flux σn,m of the mixed method belonging to
the lowest-order Raviart-Thomas space on Tn,m and the gradient of the nonconforming
P1 Galerkin solution un,m are related by

∇un,m(x, y)− σn,m(x, y) =
1

2
f̄∆((x, y)−M∆), (x, y) ∈ ∆,

where M∆ is the barycenter of ∆, and f̄∆ the average value of f on ∆ as defined before.
See also [4, 7, 8], where the connections between energy norm errors for conforming and
nonconforming P1 elements as well as lowest-order Raviart-Thomas elements have been
examined in order to obtain sharp a posteriori estimates for the Poisson problem. Thus,
under our assumptions, the discrete H1 norm of u − un,m and the L2 vector norm of
∇u− σn,m differ only by the term

1

2

 ∑
∆∈Tn,m

f̄ 2
∆

∫
∆

|(x, y)−M∆|2 dxdy

1/2

= O(hTm,n‖f‖L2) = O(
1

n
|u|H2),

and from (11) we conclude that

C ′7 min(1,
m

n2
) ≤ ‖∇u− σn,m‖L2 ≤ C7 min(1,

m

n2
) (22)

with some positive constant C ′7, C7, where the lower bound is guaranteed to hold if n/m
is small enough, i.e., when the maximum angle condition fails.

One could look into extensions along the lines of [12] where it was observed that
long chains of distorted triangles are the reason for convergence deterioration in the
conforming P1 case. For higher-order elements, similar effects are to be expected, even
though there are differences (e.g., the critical exponent β for which m/nβ 6→ 0 implies
convergence failure grows with the polynomial degree).
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[2] I. Babuška, A. K. Aziz, On the angle condition in the finite element method,
SIAM J. Numer. Anal. 13 (1976), 214–226.

[3] D. Braess, Finite Elements, 3rd ed. (online), Cambridge Univ. Press, 2007.

[4] D. Braess, An a posteriori error estimate and a comparison theorem for the
nonconforming P1 element, Calcolo 46 (2009), 149–156.
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5. Appendix

5.1. Proof of (12)

Consider all 2n+ 1 triangles in the strip Ωj = [0, 1]× [ j−1
2m
, j

2m
], and enumerate them

consecutively starting from the left. Each ∆i ∈ Ωj, i = 0, . . . , 2n, has exactly one edge
(denoted ei) parallel to the x-axis, and two edge midpoints (denoted by Mi and Mi+1)
on the line y = 2j−1

4m
. Obviously, for i = 1, . . . , 2n− 1, we have

|w(Mei)| ≤
1

2
|w(Mi+1) + w(Mi)|+ |w(Mei)−

1

2
(w(Mi+1) + w(Mi)|

≤ 1

2
(|w(Mi+1)|+ |w(Mi)|) +

1

4m
|(w|∆i

)y|,

with the obvious modification

|w(Me0)| ≤ |w(M0)|+ |w(Me0)− w(M0)| = |w(M0)|+ 1

4m
|(w|∆0)y|,

for i = 0, and similarly for i = 2n. Thus, taking squares and using the inequality
(a+ b)2 ≤ 2(a2 + b2), we get

2n∑
i=0

|∆i||w(Mei)|2 ≤
1

2nm

2n∑
i=1

|w(Mi)|2 +
1

8m2

2n∑
i=0

|∆i||(w|∆i
)y|2,

and substitution gives

1

3

∑
∆⊂Ωj

|∆|(
∑
e⊂∆

|w(Me)|2) ≤ 1

8m2

∑
∆⊂Ωj

|w|21,∆ +
1

3nm

2n∑
i=1

|w(Mi)|2. (23)

It remains to estimate the second term in (23). Since w(M0) = 0, we have

n∑
i=1

|w(Mi)|2 =
n∑
i=1

∣∣∣∣∣
i∑
l=1

(w(Ml)− w(Ml−1)

∣∣∣∣∣
2

≤
n∑
i=1

i
i∑
l=1

|w(Ml)− w(Ml−1)|2

≤ n(n+ 1)

2

n∑
l=1

|w(Ml)− w(Ml−1)|2.

17



Now, take into account that

|w(Ml)− w(Ml−1)|2 =
1

4n2
|(w|∆l−1

)x|2 ≤
m

n
|w|21,∆l−1

, l = 2, . . . , n,

and

|w(M1)− w(M0)|2 =
1

16n2
|(w|∆l−1

)x|2 ≤
m

2n
|w|21,∆0

,

we see that
n∑
i=1

|w(Mi)|2 ≤
m(n+ 1)

2

n−1∑
l=0

|w|21,∆l
.

In a similar fashion we also obtain
2n∑

i=n+1

|w(Mi)|2 ≤
m(n+ 1)

2

2n∑
l=n+1

|w|21,∆l
.

Substitution into (23) gives

1

3

∑
∆⊂Ωj

|∆|(
∑
e⊂∆

|w(Me)|2) ≤ (
1

8m2
+
n+ 1

6n
)
∑

∆⊂Ωj

|w|21,∆ <
1

2

∑
∆⊂Ωj

|w|21,∆

and, after summing up with respect to Ωj, j = 1, . . . , 2m, according to (7) and (8) we
arrive at (12).

5.2. Proof of Lemma 1

We start with establishing (15) for all triangles interior to Ω′ depicted in Figure 2 on
the left. By definition of the nodal values of w̃, and the fact that uxy is the product of
two univariate linear polynomials, we compute

w̃+
x = −h−1(

2x+ h

2n
)uxy(x+

h

2
, y +

k

2
) + (

2x− h
2n

)uxy(x−
h

2
, y +

k

2
))

= −4xuxy(x, y +
k

2
)− h(uxy(x+

h

2
, y +

k

2
)− uxy(x−

h

2
, y +

k

2
))

= −4xuxy(x, y +
k

2
)− h2uxxy(x, y +

k

2
)

= −(4x(1− 2x)− 2h2)(1− 2y − k),

and, similarly,

w̃−x = 4xuxy(x, y −
k

2
) + h2uxxy(x, y −

k

2
) = (4x(1− 2x)− 2h2)(1− 2y + k).

Moreover,

w̃+
y = −k−1(

2x+ h

2n
uxy(x+

h

2
, y +

k

2
)− 2x− h

2n
uxy(x−

h

2
, y +

k

2
))

= −hk−1(2x(uxy(x+
h

2
, y +

k

2
)− uxy(x+

h

2
, y +

k

2
)) + 2huxy(x, y +

k

2
))

= −2h2k(uxy(x, y +
k

2
) + xuxxy(x, y +

k

2
)) = κ(4x− 1)(1− 2y − k),

18



and

w̃−y = −2h2k(uxy(x, y −
k

2
) + xuxxy(x, y −

k

2
)) = κ(4x− 1)(1− 2y + k).

This shows (15). The contribution of these triangles to the value of ‖w̃‖2
H1,Tn,m

(see (7)

for the formula) is bounded by O(1 + κ2).
For the triangles shown in Figure 2 on the right, we have w̃(Me) = 0 for the horizontal

and vertical edges, which immediately leads to (14) if one substitutes the value for the
remaining edge midpoint from (13). This yields an O(h2 +κ2) contribution to ‖w̃‖2

H1,Tn,m

from all triangles with sides on the vertical boundaries of Ω.
It remains to check the triangles crossing the symmetry line x = 1/2. Obviously, by

the extension rule w̃±x = 0 for all those triangles while

w̃±y = 2hk−1(1− h)uxy(
1

2
− h

2
, y ± k

2
) = 2κ(1− h)(1− 2y ∓ k).

This gives (16). Consequently, we have to add another O(κ2) term to ‖w̃‖2
H1,Tn,m

which

altogether yields the desired estimate (17) for the discrete H1 norm of w̃. Lemma 1 is
proved.

5.3. Proof of Lemma 2

We give a bit more detail on the computations of the integrals involved than abso-
lutely necessary. For all triangles ∆± but the ones depicted in Figure 2 on the right, in
local coordinates, the linear function w̃± := w̃|∆± equals

w̃±(t, s) = w̃±x t+ w̃±y s, −h(1− k−1|s|) ≤ t ≤ h(1− k−1|s|),

where 0 ≤ s ≤ k for ∆+, and −k ≤ s ≤ 0 for ∆−. Therefore we can use symmetries for
triangle pairs ∆± when evaluating their contributions to (f, w̃)L2 . To do the calculations,
we will use the following elementary formulas. For integers α, β ≥ 0 and the triangles
∆± depicted in Figure 2 on the left, we have

∫
∆±

tαsβ dtds =


0, α odd,

(±1)β 2α!β!
(α+β+2)!

hα+1kβ+1, α even.
(24)

while for the triangles ∆± depicted in Figure 2 on the right it holds∫
∆±

tαsβ dtds = (±1)β
α!β!

(α + β + 2)!
hα+1kβ+1. (25)

Since, in local coordinates,

f(t, s) = 2(x(1− x) + y(1− y)) + 2(1− 2x)t+ 2(1− 2y)s− 2t2 − 2s2,
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using (24) we compute∫
∆±

fw̃ dxdy = w̃±x

∫
∆±

2(1− 2x)t2 dtds

+w̃±y

∫
∆±

(2(x(1− x) + y(1− y))− 2t2)s+ 2(1− 2y)s2 − 2s3) dtds,

=
h3k

6
w̃±x + (±k2h(

2

3
(x(1− x) + y(1− y))− 1

15
h2) +

1

3
(1− 2y)k ∓ 1

15
k2)w̃±y .

Thus, using (15) for w̃±x and w̃±y , the integral over ∆+ ∪∆− equals∫
∆+∪∆−

fw̃ dxdy = hk

(
h2

6
(w̃+

x + w̃−x ) +
k2

3
(1− 2y)(w̃+

y + w̃−y )

+(
2k

3
(x(1− x) + y(1− y))− 1

15
h2)− k3

15
)(w̃+

y − w̃−y )

)
= hk(

h2k

3
(4x(1− 2x)− h2) +

2h2k

3
(4x− 1)(1− 2y)2

+(
4h2k

3
(x(1− x+ y(1− y))− 1

15
h2)− 2h2k3

15
).

Consequently, the contribution of all such triangle pairs contained in Ω′ to (f, w̃)L2 is
of order O(h2k). It is not hard to see that similar estimates hold for all triangles having
an edge on one of the vertical sides y = 0, y = 1/2 of Ω′, or crossing the symmetry
line x = 1/2. For the triangles with P = (0, y) depicted in Figure 2 on the right, using
f(t, s) = 2y(1− y) + 2t+ 2(1− 2y)s− 2t2 − 2s2 and (25), we obtain∫

∆±
fw̃ dxdy = w̃±x h

2k(
1

3
y(1− y) +

1

6
h± 1

12
(1− 2y)k − 1

30
(3h2 + k2))

+w̃±y hk
2(±1

3
y(1− y)± 1

12
h+

1

6
(1− 2y)k ∓ 1

30
(h2 + 3k2)).

Substitution of (14) yields∫
∆+∪∆−

fw̃ dxdy = hk

(
h

3
(y(1− y) +

h

2
− 1

10
(3h2 + k2))(w̃+

x + w̃−x )

+
k

12
(1− 2y)(w̃−x + w̃−x ) +

k2

6
(1− 2y)(w̃+

y + w̃−y )

+
k

3
(y(1− y) +

h

4
− 1

10
(h2 + 3k2))(w̃+

y − w̃−y )

)
≤ Chk(h2k + hk + κk2) ≤ Ch2k2.

Summation with respect to all triangles of this type gives another term of order O(h2k).
All in all we arrive at the statement of Lemma 2.
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