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Abstract—The logical structure of a forest of octrees can be
used to create scalable algorithms for parallel adaptive mesh
refinement (AMR), which has recently been demonstrated for
several petascale applications. Among various frequently used
octree-based mesh operations, including refinement, coarsen-
ing, partitioning, and enumerating nodes, ensuring a 2:1 size
balance between neighboring elements has historically been
the most expensive in terms of CPU time and communication
volume. The 2:1 balance operation is thus a primary target to
optimize.

One important component of a parallel balance algorithm is
the ability to determine whether any two given octants have a
consistent distance/size relation. Based on new logical concepts
we propose fast algorithms for making this decision for all types
of 2:1 balance conditions in 2D and 3D. Since we are able to
achieve this without constructing any parent nodes in the tree
that would otherwise need to be sorted and communicated, we
can significantly reduce the required memory and communi-
cation volume. In addition, we propose a lightweight collective
algorithm for reversing the asymmetric communication pattern
induced by non-local octant interactions.

We have implemented our improvements as part of the open-
source “p4est” software. Benchmarking this code with both
synthetic and simulation-driven adapted meshes we are able
to demonstrate much reduced runtime and excellent weak and
strong scalability. On our largest benchmark problem with
5.13× 1011 octants the new 2:1 balance algorithm executes in
less than 8 seconds on 112,128 CPU cores of the Jaguar Cray
XT5 supercomputer.

Keywords-Octrees, Adaptive mesh refinement, Parallel algo-
rithms, Scientific computing, High performance computing

I. INTRODUCTION

The accurate numerical solution of partial differential
equations (PDEs) that give rise to multiscale phenomena is
a long-standing subject of active research. A broad range of
adaptive approaches has been developed over the years, for
example using finite elements [1] or volumes [2], wavelets
[3], meshfree methods [4], and many more.

We are concerned with numerical methods that use a
forest-of-octrees computational mesh to cover the spatial
domain of the PDE. Methods that use adaptive element
sizes are often categorized as either block-structured (see
e.g. [5]), where a hierarchy of overlapping and successively

finer uniform grids is used, or unstructured (see e.g. [6]),
where tetrahedra or hexahedra are connected through com-
mon faces into a graph. Parallel implementations have been
developed for both block-AMR (see e.g. [7], [8], [9], [10],
[11], [12]) and unstructured AMR (e.g. [13], [14]), and some
have been evaluated at the petascale [15], [16].

Octree-based methods for adaptive mesh refinement are a
hybrid construction in the sense that meshes are derived from
uniform blocks by hierarchical splits, but do not produce
overlap between elements of different size, see e.g. [17],
[18], [19], [20], [21], [22], [23]. General domain shapes can
be enabled by connecting multiple octrees into a “forest,”
optionally making use of mesh generation software to lay
out the octrees in space. Using space-filling curves for
encoding and partitioning of the mesh at the leaf level then
essentially eliminates shared meta-data and enables very
fast and lightweight load-balancing. This approach naturally
accommodates generic finite elements when suitable interpo-
lation operators are defined at T-intersections [24]. Forest-of-
octrees AMR has been demonstrated on over 220,000 CPU
cores [25] and is thus particularly well-suited for frequent
(dynamic) adaptation at extremely large scales. It has re-
cently been used in global-scale seismic wave propagation
simulation [26] and enabled high-resolution scientific studies
of mantle dynamics and plate tectonics [27].

A central building block for octree-based AMR is the 2:1
balance operation which is usually invoked after refinement
and coarsening to reestablish well-defined size relations
between neighboring elements (see Figure 1 for a schematic
illustration). For highly graded meshes the balance opera-
tion can have long-range effects between non-neighboring
processes which requires a careful design of any parallel
balance algorithm. Experiments have shown that 2:1 balance
is the most expensive octree-related algorithm (much more
so than partitioning for example [25]), and while generally
scaling to large clusters and being cheaper than numerical
finite-element operations, still demands significant memory
and communication resources.

In this paper, it is our objective to remedy this issue by
analyzing and exploiting the logical structure of 2:1 balance



(a) Unbalanced. (b) Face balanced. (c) Corner balanced.

Figure 1. Top: 2:1 balance status for a 2D quadtree mesh. Balance across
faces (b) ensures that T-intersections only occur once per face which is
often required by numerical discretizations. Corner balance (c) produces
a smoother grading of the mesh. Bottom: Part of a forest-of-octrees mesh
of Antarctica, where AMR with 2:1 corner balance is used to achieve the
resolution required for capturing physical processes at the base of the ice.

relations. After introducing the concept of parallel octree-
based AMR and summarizing the current state of research
in Section II, we address three main challenges in providing
a low-cost 2:1 balance algorithm. In Section III we propose
a new subtree balancing algorithm that is optimized for data
structures that represent linear octrees. In Section IV we
introduce new concepts and algorithms to determine whether
two remote octants are balanced, which we use to greatly
reduce the amount of both communication and computation
required. Finally, in Section V we provide a lightweight
divide-and-conquer algorithm for encoding the asymmetric
communication pattern required for balancing that avoids
resorting to Allgather-type collective communication calls.
We evaluate the performance of our new algorithms in Sec-
tion VI. Using our improvements we are able to demonstrate
a 3.5× speedup and improved scalability up to half of the
2.33 petaflop Jaguar Cray XT5 supercomputer at Oak Ridge
National Laboratories. To the best of our knowledge, this is
now the fastest and most scalable 2:1 balance algorithm. We
conclude in Section VII.

II. OVERVIEW OF OCTREE-BASED MESHING

In this section we provide a brief exposition of some
essential concepts related to parallel octree meshing. For
details we refer the reader to the self-contained presentation
[28]. In general, we rely on a 1-to-1 identification of an
adaptive tree to a computational domain as sketched in
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Figure 2. Identification of a quadtree and a corresponding volume mesh
in 2D space. The octants are numbered left to right which establishes a
total ordering of mesh elements with respect to a space-filling curve (dark
red) that proceeds in a z-shaped recursive pattern. The curve is also used
for equipartitioning the leaf octants, and thus the mesh elements, between
different processes. The extension to octrees in 3D space is analogous.

Table I
COMMON OCTANT RELATIONSHIPS

size(o) the length of o’s sides is 2size(o)

parent(o) the octant containing o that is twice as large
i-child(p) the child of p that touches the ith corner of p
i-sibling(o) i-child(parent(o))
family(o) ∪i i-sibling(o)
child-id(o) i such that i-child(parent(o)) = o
root an octant representing a whole octree

Figure 2. The domain is divided into mesh elements, each of
which corresponds to a leaf octant. By traversing all leaves
of the tree left to right, we obtain a space-filling curve that
establishes a total order among all mesh elements. This order
can be used to partition the elements between processes, and
for binary comparisons and searches of elements within any
given process. In the following we denote the number of
processes by P , and the number of octants per process by
N .

A. Octants and Octrees

In this section we introduce some definitions that are
essential to formulate our algorithms. Let the term octant
denote a d-dimensional cube whose sides have length 2l

for some l ∈ Z and whose corners have coordinates that
are all integer multiples of 2l: we use the shorthand l-
octant to indicate its size. The location of octant corners
at regular intervals organizes octants into a tree structure,
where an l-octant is contained in only one (l + 1)-octant
(its parent). For reference, we provide notation for common
octant relationships is given in Table I.1

Non-overlapping octants can be ordered by a space-filling
curve that traverses the descendants of octant o before the
descendants of its sibling r if and only if child-id(o) <
child-id(r). We use o ≤ r to represent comparison using
this ordering. By specifying o < r if o is an ancestor of
r, we establish that if an ordered array contains overlapping

1One often finds octants referred to by their level in the octree relative
to the root. If the root is an L-octant, then an l-octant has level (L− l).



octants, an octant precedes its descendants (this is equivalent
to preorder traversal, often referred to as Morton order).

Octrees can be stored in different ways: by specifying
pointers between parents and children [19], by compressing
the pointers into index lists [21], or by storing only the
leaves in space-filling curve order. The latter scheme is
called a linear octree [22], which lends itself to formulating
the relations in Table I via bitwise mask and shift operations
on the integer octant coordinates [28].

Geometries that are topologically more complex than a
cube can be mapped by connecting multiple mapped cubes,
where each cube is identified with an individual octree. This
approach allows a-priori representations of primitive shapes,
such as a torus or a hollow sphere. It also permits the
translation of output from tetrahedral or hexahedral mesh
generators into a macro-mesh that connects many thousand
octrees (see Figure 1 for an example). We like to call such
a construction a forest of octrees. Here, a given ordering
between the trees can be used to connect the space-filling
curves in the individual tree, creating a total octant order
throughout the forest that can again be used for parallel
partitioning and search.

To adhere to distributed memory parallelism, each com-
pute core must only store a small fraction of the whole mesh
and the associated numerical data. On an adapted forest of
octrees this raises the issue of how to ensure equal load
balance between the compute cores. To address this issue for
possibly variable octant loads, a fast weighted partitioning
scheme has been developed elsewhere [28] based on appro-
priate subdivisions of the space-filling curve (see Figure 2).

B. Algorithms for 2:1 Balance

Octree balance relates neighboring octants to each other.
The definition of “neighboring” depends on the application,
and each definition is associated with a certain balance
condition, see also Figure 5. Many finite element codes use
octrees whose octants must be balanced if they share a face
or an edge. Methods that work with discontinuous functions,
such as finite volume and discontinuous Galerkin methods,
may only require 2:1 size faces. Balance across face, edges,
and corners is rarely necessitated by numerical methods but
may be useful for mesh smoothing or node-based operations.
As shorthand, we refer to balance conditions by the number
of boundary objects that require a 2:1 condition, e.g., 2-
balance means balance across faces and corners in 2D and
balance across faces and edges in 3D. When all pairs of
neighboring octants in an octree are balanced, the octree is
said to be balanced.

Given an arbitrary octant o and a prescribed balance
condition k, there exists a unique octree Tk(o) that contains
o as a leaf, is k-balanced, and is the coarsest such octree,
i.e., if any leaf octants were replaced with a coarser octant,
the tree would become unbalanced. Tk(o) is illustrated in
Figure 3.

(a) T1(o) for k = 1 and two different choices of o.

(b) T2(o) for k = 2 and two different choices of o.

Figure 3. Examples of the coarsest balanced octree Tk(o) for a given
octant o in 2D for (a) k = 1 and (b) k = 2. In each figure o is blue, with
other octants colored by size. Note that size increases outward in a ripple-
like fashion, and that the shape of the ripple depends on the coordinates of
o for each choice of k.

The idea of balance extends from neighboring to arbitrary
octants by declaring two octants to be balanced if they are
both the leaves of some balanced octree. A useful fact about
two octants o and r is that they can be unbalanced only if o
is contained in r’s insulation layer I(r), an envelope of 3d

like-sized octants, or vice versa. For a partitioned octree, the
processes that must share information in order to balance the
octree are determined by comparing insulation layers with
process partitions, see Figure 4a.

If an octant is too coarse to be balanced with another
octant, it can be split—replaced by its children—to bring
the octree closer to being balanced. An algorithm that only
compares neighbors when determining which octants to split
is called a ripple algorithm, due to the fact that splitting one
octant can cause another octant to split and so on. Parallel
ripple algorithms only use communication between pro-
cesses with neighboring partitions, so they generally requires
multiple rounds of communication when an octant ultimately
causes another octant on a remote process’s partition to split.

A one-pass 2:1 balance algorithm can use insulation layer
calculations to group all communication into one round only:
a query and a response. This algorithm has four phases (see
also [22], [28]):

1) Local balance. Each process balances the octants in
its own partition with respect to each other.
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Figure 4. (a) Octant r is in process q’s partition; octant o is in process p’s
partition and is inside r’s insulation layer I(r). Every balance algorithm
directly or indirectly determines if o causes a split of r, so information must
propagate from p to q. (b) Once process q knows of o, q must determine if
its octants are balanced with o. If the balance of remote octants cannot be
determined directly, then auxiliary octants must be constructed in between
(empty squares which in this case cause a split).

2) Query. For each of its octants r, a process determines
which processes have partitions that overlap I(r) and
adds r to a set of query octants sent to those processes.

3) Response. For each octant r received in a query, a
process checks which of its octants might cause r to
split and adds those octants to the response set sent to
the owner of r.

4) Local rebalance. Each process balances its own parti-
tion with respect to the octants it has received, i.e., for
every received octant o, a process q must determine
which of its octants are coarser than the octants in
Tk(o) and thus need to be split.

Below we list three issues affecting the performance of
such a one-pass 2:1 algorithm. We devote a section of this
paper to each issue.

1) Subtree balance. When each process balances its own
partition in the Local balance phase, a serial algorithm
is required that is optimized for balancing arrays of
octants that span a contiguous subset of the octree,
which we call subtrees. In Section III we present an
old algorithm for subtree balance and our new version.

2) Balancing remote octants. The basic operation in the
Local Rebalance phase is for a process q to compute
the portion of Tk(o) that overlaps its partition, where
o is an octant received from another process. Let us
refer to this portion of Tk(o) as S. If the octants in
Tk(o) can only be computed in a ripple-like algorithm
that propagates octants outward from o, then before S
can be computed we must compute auxiliary octants:
octants in Tk(o) that bridge the gap from o to q’s
partition (Figure 4b). Using auxiliary octants, the work
performed by q to compute S depends not only on |S|,
but on the distance between o and q’s partition. In a
worst case scenario, the work required to calculate S

could be equivalent to the work required to calculate
Tk(o). In Section IV, we present a way to compute
S whose performance is independent of the distance
between o and q’s partition.

3) Encoding the communication pattern. If no restrictions
are placed on the way an octree is partitioned, then
two octants in remote partitions may be unbalanced
(Figure 4a). In contrast to the ripple algorithm for
parallel balance, where all communication occurs in
symmetric neighbor-to-neighbor exchanges, the com-
munication pattern of the one-pass algorithm is situa-
tional and asymmetric: each process cannot determine
on its own which other processes will send queries
to it. In Section V, we present an old algorithm for
determining this asymmetric communication pattern
and our new version.

III. SUBTREE BALANCE

A subtree is a sorted array of octants with two additional
properties: the subtree is linear, which means that no octant
in the array is ancestor to any other (thus ruling out overlap-
ping elements), and it is complete, which means that there
are no missing leaves between two successive octants in the
array (and thus no holes in the mesh). The root of an octree
may be divided into multiple subtrees by drawing vertical
separations in the tree diagram (see Figure 2 for a division
of a tree into three subtrees). In this section we discuss our
implementations of an existing 2:1 balance algorithm for
subtrees and propose a new and faster variant.

For simplicity, we present our algorithms in terms of
balancing an entire octree. These can be adapted to a subtree
by treating the least common ancestor of the subtree as the
root and removing octants before and after the subtree’s
octant range as a postprocessing step.

A. Existing Algorithm

Octants must be split to transform an arbitrary octree into
a balanced octree: requiring that an octree remain complete
and linear after each split would require frequent updates to
the sorted array that represents it. In the old algorithm, we
instead collect newly added octants in a hash table until we
are sure that all new octants are present, at which point we
combine and select old and new octants as a postprocessing
step that removes the introduced overlap between elements.

The basic idea of the old algorithm is for each l-octant
to attempt to add to the octree its family and the (l + 1)-
octants that neighbor its parent. We call the latter set the
coarse neighborhood N of an octant, which depends on the
type of 2:1 balance condition being enforced, as illustrated in
Figure 5. Each octant that is added because it is a sibling or
coarse neighbor of an existing octant also adds its siblings
and coarse neighbors, and so on for every octant smaller
than the root. At the conclusion of this procedure, every
octant that will be in the balanced octree is present, in



(a) 2D, 1-balance. (b) 2D, 2-balance. (c) 3D, 1-balance. (d) 3D, 2-balance. (e) 3D, 3-balance.

Figure 5. The coarse neighborhoods N(o) (red) around an octant o (blue) and its family (light blue) for all balance conditions in 2D and 3D (exploded
view). If some or all octants of N(o) extend beyond the boundaries of the root octree, they may influence a neighboring tree in the forest instead. In
the old subtree balance algorithm, each octant o adds family(o) and N(o) to the octree; in our new subtree balance algorithm, each octant o only adds
0-sibling(r) for each r ∈ N(o).

Input: sorted array of octants S
1: Snew ← ∅
2: for all o ∈ S ∪ Snew do
3: for all s ∈ family(o) ∪N(o) do
4: if s 6∈ S ∪ Snew then
5: Snew ← Snew ∪ {s}
6: end if
7: end for
8: end for
9: Sfinal ← S ∪ Snew {merge and sort}

10: return Linearize(Sfinal)

Figure 6. High-level description of the old algorithm for balancing
subtrees. This algorithm takes a sorted array of octants and produces the
coarsest balanced octree for that set. Each octant iteratively adds its coarsest
allowable neighborhood to the octree, resulting in many overlapping octants
that will not be leaves in the final linear octree. These overlapping ancestor
octants are removed by Linearize, an O(n) algorithm for removing
coarse overlapping octants from a sorted array.

addition to many ancestors of these final octants, generally
producing a large overlap between leaves and parent octants.
In postprocessing, the new octants are merged with the input
octants and sorted, and the set is linearized to retain only the
leaves. Pseudocode for the old algorithm is given in Figure 6.

Because we use hash tables, determining if an octant is
already among the newly added octants is anO(1) operation.
Failing that, determining if an octant is in the original sorted
set of octants is an O(logN ) operation.

The most costly part of postprocessing the algorithm is
combining the old and new octants into a sorted array. In
our implementation, this requires sorting a set the size of
the output octree.

B. Octant Preclusion and New Algorithm

Our new variant of the previous algorithm is based on an
octant relationship that we call preclusion, which captures
a property essential for 2:1 balance. We say o precludes r,

Input: sorted array of octants S
1: R← Reduce(S) {smaller equivalent set}
2: Rnew ← ∅; Rprec ← ∅
3: for all o ∈ R do
4: for all s ∈ N(o) do
5: s← 0-sibling(s) {equivalent to s}
6: if s 6∈ R ∪Rnew then
7: Rnew ← Rnew ∪ {s}
8: end if
9: if s ≺ o then

10: Rprec ← Rprec ∪ {s} {tag precluded}
11: else if there is t ∈ R such that t ≺ s then
12: Rprec ← Rprec ∪ {t} {tag precluded}
13: end if
14: end for
15: end for
16: R← R\Rprec;Rnew ← Rnew\Rprec {remove precluded}
17: Rfinal ← R ∪Rnew {merge and sort}
18: return Complete(Rfinal)

Figure 7. High-level description of our new algorithm for balancing
subtrees. This algorithm first reduces the input set to a compressed
equivalent, and then has octants iteratively add a sparse set of octants that
is equivalent under preclusion to their coarse neighborhoods. Complete
is an O(n) algorithm for filling in the gaps in a sorted array. In our
implementation, we use a hash table for Rnew; our octant datatype has
space for a tag that we use to mark inclusion in Rprec.

r ≺ o (or r � o), if and only if parent(r) is ancestor (or
equal) to parent(o). Preclusion defines a partial ordering of
octants whose equivalence classes are families. Preclusion
is a useful concept for compressing an octree: precluded
octants can be removed from an octree, and the octree
can be quickly recovered from the remaining octants by
a completion algorithm that fills in the gaps between leaf
octants in the coarsest possible way.

Our new algorithm (Figure 7) has much in common



Input: sorted array of octants S
1: R[0]← 0-sibling(S[0]); i← 1
2: for 0 ≤ j < |S| do
3: s← 0-sibling(S[j]) {equivalent to S[j]}
4: r ← R[i− 1] {last octant added}
5: if r ≺ s then
6: R[i− 1]← s {replace r}
7: else if s 6� r then
8: R[i]← s; i← i+ 1 {append s}
9: end if

10: end for

Figure 8. Top: the sets R = Reduce(S) (blue) and S\R (light blue).
This figure illustrates the fact that R is the smallest subset of leaves that can
be used to reconstruct a linear octree using a completion algorithm. Bottom:
pseudocode for Reduce, which takes a sorted array representation of S
and returns a sorted array representation of R.

with the old algorithm: new octants are kept in a hash
table, and new and possibly overlapping octants are added
iteratively. The new algorithm, however, first uses preclusion
to compress the octree, and then each octant o adds a
smaller set that is equivalent under preclusion to the coarse
neighborhood N(o) (the set of 0-siblings of octants in
N(o) is smaller than N(o) because some of them are
siblings themselves). The result of this process is still a
reduced octree with gaps between leaves, so the result is
then completed. Where the old algorithm tests for equality
between new octants and input octants to avoid duplicates
with a binary search of the input set, our new algorithm can
determine whether a new octant precludes or is precluded by
an octant in the reduced input with a single equivalent binary
search. The benefit of working with the reduced octree is that
the costliest step, namely sorting the union of old and new
octants, is performed on the smallest possible set that can
be completed to create the final balanced octree.
Reduce is our algorithm for removing precluded oc-

tants from a sorted array, for details see Figure 8. R =
Reduce(S) is sorted and if S is a complete octree then
|R| ≤ |S|/2d. Most important for our new balancing
algorithm is the fact that only one binary search is needed
to determine if there is t ∈ R such that t ≺ s.

Our new algorithm is a drop-in replacement for the old
algorithm and requires roughly 3 times fewer hash queries,

Figure 9. Seed octants (red) can reproduce the coarsest balanced octree
Tk(o) of a remote octant o (blue) within a specified query octant r (dark
outline), when a balancing algorithm is run using the seed octants as inputs
and the query octant as the root. The overlap of Tk(o) and the octant r is
the subtree S contained in the dark outline, and can be created from the
seed octants only.

smaller binary searches, and a reduction of the set that is
sorted in postprocessing by the factor 2d. In our tests in
Section VI, we find that the savings in these operations
more than offset the additional cost of reducing the input
and completing the output.

IV. BALANCING REMOTE OCTANTS

Recall from Section II-B that in the Response phase of the
one-pass balance algorithm each process determines a subset
of its octants which might cause a query octant to split, and
sends those octants as a response to the query. At the end of
that section we describe how the distance between a response
octant o and a querying process q’s partition can increase the
work used by q in the old one-pass algorithm. This increase
in work is a result of the fact that the old algorithm could not
compute the overlap of o’s coarsest balanced octree Tk(o)
and a remote partition without constructing auxiliary octants
outside of that partition to bridge the gap (see Figure 4 for
an illustration).

First, let us simplify this problem to the problem of
computing the overlap of Tk(o) with a single remote octant
r, and let us call this overlapping set S. S itself is a subtree
that has r as its root. The motivation for this section is that
we would like for the querying process to perform work
proportional to |S| in computing S, in a way independent
of the distance between o and r.

If we treat r as the root octant, then a subtree balancing
algorithm can be adapted to reconstruct S from a subset S̃
of S (both the old and new algorithms for subtree balance in
Section III also work efficiently on incomplete input sets).
We call S̃ seed octants for S (Figure 9). If process q receives
S̃ as a response instead of o, then it can perform work
proportional to |S| in computing S.

The problem then becomes the computation of seeds S̃ to
stand in for o as a response to r. The old one-pass algorithm
requires no such computation: once it is determined that o
is within the insulation layer I(r), it is sent as a response.
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Figure 10. This figure illustrates the problem of determining a, the closest
descendant of r that is in Tk(o) and balanced with o. It involves the closest
contained same-size octant õ. The correct size of a can be computed based
on the integers δx, δ̄x, δy , and δ̄y which measure coordinate distances
between octants.

Therefore the computation of S̃ should be O(1) for this
replacement to maintain the same algorithmic efficiency.

It can be shown that for every o and r there is a set of seed
octants S̃ such that |S̃| ≤ 3d−1. Although we do not include
a proof here, the sketch of a constructive proof follows.

1) Because Tk(o) can be created in ripple-like propaga-
tion outward from o, S̃ can be limited to octants inside
of r that touch the boundary of r closest to o.

2) Because octants in Tk(o) grow larger away from o,
the closest octant to o in S will be the smallest. Let
us call this octant a. We use a balancing algorithm to
construct S from S̃, and balancing algorithms do not
create octants smaller than their inputs, so a (or one
of a’s siblings) must be in S̃.

3) If an octant s is in S but is smaller then the overlap-
ping octant in Tk(a), then it (or one of its siblings)
must be added to S̃. We can show that this only occurs
if s is adjacent to family(a).

4) Starting with S̃ = {a}, we take each octant s that is in
Tk(a), is adjacent to family(a), and touches the same
portion of r’s boundary as a and we test s against o.
If s is unbalanced with o, we can compute the closest
octant t in Tk(o) that overlaps s in the same way that
we compute a, and then add t to S̃. There are at most
(3d−1 − 1) octants that match the description of s,
hence the limit on the size of S.

The core component of this method is determining a, the
closest octant to o in S, in O(1) time. In the remainder
of this section we show how this problem can be solved
analytically using arithmetic and intrinsic binary operations

Table II
FUNCTION λ(δ̄) SUCH THAT size(a) = blog2 λc

k 1D 2D 3D
1 δ̄ δ̄x + δ̄y Carry3(δ̄y + δ̄z , δ̄z + δ̄x, δ̄x + δ̄y)

2 max{δ̄x, δ̄y} Carry3(δ̄x, δ̄y , δ̄z)

3 max{δ̄x, δ̄y , δ̄z}

on octant coordinates and sizes.
Let us assume that size(r) > size(o). There exists a

descendant õ of r that is closest to o and is the same size as
o. The octant a we seek is the coarsest ancestor of õ that is
balanced with o: once we know size(a), õ’s coordinates can
be masked to create a’s. See an illustration in Figure 10.

Define δ ∈ Zd to be the distance vector from o to õ.
We can assume δx, δy, δz ≥ 0. Our goal is to determine
size(a) from δ. If o were replaced with a sibling s, size(a)
would not change because Tk(o) = Tk(s): this shows that
the important vector is not δ but δ̄ that maps parent(o) to
parent(õ). We can show that if l = size(o) then the ith
component of this vector is δ̄i = 2l+1dδi/2l+1e. Vectors δ
and δ̄ are also illustrated in Figure 10.

With these prerequisites we can propose a function λ(δ̄)
such that size(a) = blog2 λc. Table II gives formulas for λ
for 1 ≤ d ≤ 3 for each k-balance condition (the function
Carry3 is described shortly).

The 1D result in Table II is fairly intuitive: as we move in
one direction outward from o, the octants in Tk(o) double in
width as they double in distance from o, so size(a) should
be roughly proportional to the logarithm of distance.

When k = d the coarse neighborhood around an octant
is cubic in shape (Figure 5), so that the sets of same-sized
octants in Tk(o) maintain concentric rectangular profiles (see
Figure 3b). The octant a appears where one of these almost-
cubic profiles first intersects r, which depends only on the
largest component of δ̄.

When k < d, the profiles of the sets of same-sized
octants that make up Tk(o) are not so easily described
(see Figure 3a), hence the more complicated expressions in
Table II. The function Carry3 in that table is a form of
adding three binary numbers that only carries a “1” to the
next bit when there are at least three “1”s in the current bit.
We only need the most significant bit of this procedure, so
we can formulate it using bitwise OR by

Carry3(α, β, γ) ≡ max{α, β, γ, α+β+γ−(α|β|γ)}. (1)

One can prove the correctness of the k < d expressions
inductively on the number of significant bits in the compo-
nents in of δ̄, but these proofs are too technical for inclusion
here. We refer to the depictions in Figure 11 which we hope
are illuminating nevertheless.

To summarize, the formulas in Table II help to determine
a, the closest descendant of r that is in Tk(o). In the same
way that a was determined, a small set of octants around a



(a) 2D, 1-balance. (b) 2D, 2-balance.

(c) 3D, 1-balance.

(d) 3D, 2-balance.

Figure 11. This figure illustrates the process of iteratively adding fine
balanced neighbors to a set, starting with a single octant: (a) and (b) show
five layers of this process for 1- and 2-balance in 2D; (c) and (d) show the
same in 3D. 3-balance in 3D is analogous to (b). The octants in each layer
are as close as they can be to the central octant without causing it to split. In
this sense the layers are like contours of λ(δ̄): their coordinates represent
values of δ̄ such that if any component is reduced, the value of λ(δ̄) in
Table II decreases. In 2D these layers resemble the intersection of affine
constraints, which is reflected in the values of the table. The cross sections
in 3D show that if one component of δ̄ is zero then λ(δ̄) behaves like
th 2D function of the remaining components for the same value of k. The
Sierpinski-type fractal patterns in 3D imply that in the corner regions where
all components of δ̄ are nonzero, λ(δ̄) cannot be calculated by intersecting
affine functions, hence the bitwise operations in Carry3 (1).

Input: receiver list R for process p
1: N [0, . . . ,P − 1]← Allgather(|R|) {counts}
2: O[q]←

∑
q′=0,...,q−1N [q′] {offsets for all q}

3: R[0, . . . ,P − 1]← Allgatherv(R,N,O)
4: for all processes q, q 6= p do
5: add q to sender list if p ∈ R[q]
6: end for

Figure 12. Naive implementation of pattern reversal. It determines a
list of sending processes from a list of local receivers. The MPI routines
correspond to those introduced in the standard [29]. The Allgatherv
operation requires arrays of counts N and offsets O for all processes.

can be tested to see if they are also in Tk(o). In a new version
of the one-pass algorithm, these seed octants can then be sent
as a response to r in the place of o. In the Local rebalance
phase each process matches seed octants it has received
to their respective query octants and balances each group
separately, rather than rebalancing the whole partition and
relying on external auxiliary octants. This change enables
the most significant reduction in run time (see the timings
in Section VI).

V. ENCODING THE COMMUNICATION PATTERN

At the beginning of the Query stage in the one-pass
balance algorithm described in Section II-B every process
can determine from its local octant partition which processes
it will send messages to. Due to the locality of the space-
filling curve this set is of size O(1) in the average case. The
local process is however unable to infer which processes it
will receive messages from. This dilemma must be addressed
by a scheme to reverse the asymmetric communication
pattern: given a list of receivers, determine a correspond-
ing list of senders. Any such scheme necessarily involves
communication, and we dedicate this section to describing
a parallel algorithm that performs the reversal efficiently.

A naive procedure is sketched in Figure 12. It uses
two collective communication calls, the latter of which
operates on a variable buffer size. This approach makes
use of standard collective MPI routines and is thus easy
to implement. However, due to transporting large amounts
of unnecessary information it is suboptimal in terms of both
message number and volume. It is thus desirable to improve
this scheme.

A first improvement has originally been implemented as
follows: the senders are encoded in a given maximum num-
ber R of ranges by using one Allgather call operating on
2R integers. Ranges still has some drawbacks: the limited
number of ranges may lead to the inclusion of processes
that are not sending anything, thus creating zero-length
messages, and the optimal data volume of the Allgather
call may not be small (even though it is a fixed number of
bytes per process).

We have thus devised a new scheme for pattern reversal
based on the divide-and-conquer paradigm, using exclusively
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Figure 13. Example of executing the Notify algorithm for reversing
a communication pattern. It proceeds bottom-up starting at l = 0 by
crosswise exchange of messages (red arrows) between neighboring process
groups (a group is indicated by the blue connecting line). The blue
boxes represent processes where the numbers within denote receivers, each
subscripted by the respective original senders. To ensure the invariant (2),
each process p sends a message to its peer p xor 2l. The end result of all
senders to a process is available with the subscripts on the highest l.

point-to-point communication (shown in Figure 13). This
Notify algorithm proceeds bottom-up to aggregate knowl-
edge about senders in process groups of growing powers of
two. The principal invariant is the following: at level l, each
process p knows about messages addressed to processes qi
with

qi mod 2l = p mod 2l. (2)

Initially, l = 0 conforms to process p knowing all of its
receivers. The invariant is then maintained by proceeding
from l = 0 to the maximum l with P = 2l (we extend
the algorithm to non-powers of two below). At each level,
every process exchanges a message with the corresponding
process in the neighboring group, which leads to O(P logP)
messages. The messages themselves are of variable size
(including zero), but their order and sender/receiver pairs
are deterministic and computable.

One way to generalize this algorithm to odd process
counts would be to have the highest ranked process perform
the part of the missing ones that range to the next largest
power of two. However, this would introduce an obvious
bottleneck in the highest process which in the worst case
forces it to process a data size proportional to O(P) instead
of O(1). Instead, we send to process p − 2l whenever the
original peer does not exist, i.e., p xor 2l ≥ P . This
balances the duplicate messages across peers on all levels
while satisfying the invariant (2). We naturally demonstrate
this feature in the numerical experiments below, given that
the nodes of Jaguar XT5 contain 12 CPU cores each.

VI. PERFORMANCE EVALUATION

We have combined the algorithms proposed in the pre-
ceding three sections into a new version of the one-pass
2:1 balance function outlined in Section II-B. We have
implemented it within p4est, a software library for parallel
forest-of-octrees AMR that is publicly available [30]. The
code to reproduce our results is included in the tagged

Figure 14. The forest of six octrees used in the weak scaling study,
where colors indicate process partitions (the refinement used here is purely
illustrative, see the exact refinement rule in the caption of Figure 15).

revision ipdps12-submission and can be invoked by
the timings example. All timings presented in this section
are obtained on the Jaguar XT5 supercomputer at Oak Ridge
National Laboratory using up to 112,128 compute cores.

We compare the performance of the new 2:1 balance algo-
rithm to the previous implementation for both isograngular
(“weak”) scaling on a synthetic example problem with mesh
refinement prescribed by a recursive rule, and a fixed-size
(“strong”) scaling on a mesh of the Antarctic ice sheet
with refinement driven by the physics of a finite-element
simulation. In both sets of experiments the balance condition
used is full corner balance. Both studies show that the new
algorithm is faster than the old, often by a wide margin, and
that its scalability is as good or better as well.

A. Weak scalability

We use a six-octree forest (Figure 14) to study weak
scalability for a fractal-type recursive refinement. Using the
observation that an increase in the refinement level yields 8
times as many octants, we multiply the core count by 8 for
each increment in level. This results in a problem size of
approximately 1.3 million octants per core. The exception
is the largest problem, which has 5.13× 1011 octants but is
tested on 112,128 cores (4.6 million octants per core). We
display the measured runtimes of the full one-pass algorithm
and of the component steps in Figure 15. The runtimes
rise mildly from roughly 1 second per million octants for
12 cores to 1.7 seconds per million octants for 112,128
cores. Thus the parallel efficiency of the new algorithm is
63% for a 9,344-fold increase in core count. The total time
taken for the largest problem is less than 8 seconds. The
previously published benchmark for the exact same mesh
was 21 seconds using almost twice as many cores [28], thus
we achieve a speedup of over 5 on this largest test problem.

B. Strong scalability

The mesh for the strong scaling study comes from a
simulation of ice sheet dynamics. Due to its non-Newtonian
properties the creeping flow of glaciers and ice sheets is
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(a) Full one-pass algorithm.
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(b) Local balance.
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(c) Query and Response.
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(d) Local rebalance.
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(e) Notify.

Figure 15. Weak scaling results up to 112,128 cores on Jaguar. The
refinement is defined by choosing the forest in Figure 14, and recursively
splitting octants with child identifiers 0, 3, 5 and 6 while not exceeding
four levels of size difference in the forest. This leads to a fractal mesh
structure. To scale from 12 to 112,258 cores the maximum refinement
level is incremented by one while the number of cores is multiplied by
8 (except between 49,152 and 112,128). In each figure the performance of
the old and new one-pass algorithms is assessed by normalizing the time
spent by the number of octants per core (ideal scaling would result in bars
of constant height). For all core counts the speedup for the full one-pass
algorithm (a) is between 3.4 and 3.9. Roughly half of this speedup comes
from the Local balance (b), Query and Response phases (c); the rest is
mostly due to the dramatic 16x speedup in the Local rebalance phase, which
no longer requires that full partitions be rebalanced. The smaller volume
of communication in Notify (e) in comparison to Ranges (Section V)
results in greatly improved scalability when encoding the communication
pattern.

characterized by large regions of low velocity and localized
streams of high velocity. The high velocity regions near
the exterior of the ice sheet require greater resolution from
numerical simulations than does the majority of the ice sheet.
Localized stresses that can fracture the ice also develop at
or near the boundary between grounded and floating ice.
The location of this grounding line and the locations of
ice streams shift over time. For ice sheet simulations mesh
adaptivity is not a significant portion of computational time

(a) Antarctic ice sheet mesh.

(b) Detail of refinement. (c) After 2:1 balance.

Figure 16. (a) Mesh of the Antarctic ice sheet used for the strong
scaling study. The mesh is made up of more than 28,000 octrees. The
mesh is refined until all octants that touch the boundary between floating
and grounded ice are smaller than a given threshold size. Timings are all
for the same initial refinement, which has 55 million octants and grows to
85 million octants once the mesh has been balanced. (b) A detail of the
underside of the mesh, where the grounding line reaches the boundary. (c)
The same region after the octrees have been balanced.

compared to floating point operations, but this highly graded
mesh is a demanding test for the one-pass 2:1 balance
algorithm.

In the strong scaling study conducted on Jaguar, this mesh
is balanced first on 12 cores, which results in 7 million
octants per core, and then for core counts that increase by
multiples of 2 until 6,144 cores, which results in 14,000
octants per core. The runtimes of the new and old versions
of the full one-pass algorithm and its components are given
in Figure 17. At 6,144 cores, the new algorithm balances
the mesh in 0.12 seconds, where the old one requires 4.2
seconds. In comparison to the smallest number of cores on
which both algorithms could run, the new algorithm scales
with twice the parallel efficiency over a 64-fold increase in
the number of cores.

VII. CONCLUSION

Motivated by the need for large-scale high-resolution
simulations of ice sheet dynamics and other geophysical
phenomena, we examine a key component of octree-based
parallel adaptive mesh refinement (AMR), namely the 2:1
balance algorithm which has a history of being a notorious
bottleneck.
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(a) Full one-pass algorithm.
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(c) Query and Response.
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(d) Local rebalance.
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Figure 17. Strong scaling results up to 6,144 cores on Jaguar, comparing
the old and new one-pass algorithms on the Antarctic ice sheet mesh
(described in Figure 16). The red line in each plot indicates ideal parallel
scalability, where the runtime is inversely related to the number of cores
(note the logarithmic scale: lower bars are better). All balance phases exhibit
excellent strong scalability, and the new algorithms are predictably faster
than the old. In the timings for the Query and Response phases and for
the Notify algorithm, we observe that the old algorithm exceeds the
16 GB memory per node and crashes at small core counts, whereas the
new algorithm still works. The new Local rebalance phase shows the large
speedup (nearly two orders of magnitude) versus the old algorithm that we
obtained in the weak scaling study.

An analysis of the logical relations between octants sug-
gests several concepts that relate to the performance of
the general algorithm. We introduce the notion of octant
preclusion and use it to eliminate redundancy and thus to
reduce time spent in sorting and searching; we propose O(1)
bitwise functions to exploit size relations between remote
octants for fast rebalance; and we add algorithms to decrease
the communication message count and volume.

We put the proposed algorithms to the test on the Jaguar
XT5 supercomputer at Oak Ridge National Laboratories. To
this end we use a synthetic mesh setup for weak scaling
studies with up to 5.11 × 1011 octants on 112,128 cores,
and a simulation-driven 85-million-octant Antarctica mesh

for strong scaling experiments on up to 6,144 cores. We
find that weak scaling times improve by a factor between
3 and 4, and that strong scaling improves by one to two
orders of magnitude while at the same time requiring much
less memory.

Beyond the immediate benefit of increased speed and
robustness of the proposed 2:1 balance algorithm, which
we make available as free software, we hope to illuminate
further concepts behind octree-based AMR, and to provide
algorithms (such as Reduce and Notify) that may be
generally useful. Considering the current state of research,
we believe that there is still a lot of structure to be found and
exploited to reinforce the forest of octrees as a supremely
scalable AMR technology.
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