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Abstract7

The multi-stage decision model, aka multiattribute attention switching model, assumes

a separate sampling process for each attribute and switching attention from one at-

tribute to the next in a sequential fashion during one trial. Here the model is extended

to finite and infinite time horizons and to non-constant boundaries. For a finite time

horizon the model predicts a probability of not deciding within the available time. Two

different families of non-constant boundaries are implemented, one with a nonlinear

decrease, one with a constant boundary at the beginning and a linear decrease toward

the deadline. Furthermore, it is shown how the stochastic process underlying each

attribute of the multi-stage model (Wiener or Ornstein-Uhlenbeck process) can be dis-

cretized by a birth-death chain to implement all the relevant model features and how to

provide speeded calculations. Several numerical examples are provided demonstrating

the effect of the order of attribute processing (order schedule) and boundary proper-

ties. It is shown that, regardless of the time horizon or the non-constant boundaries,

the order schedule is the determinant to predict a consistent choice probability/choice

response time pattern including preference reversals and fast errors.
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1. Introduction13

Sequential sampling models of decision making have become the dominant ap-14

proach to modeling decision processes in cognitive science. These models are de-15

signed to account for all three of the most basic dependent variables of cognitive16

psychology, which include choice, decision time, and confidence. Their application17

includes a variety of psychological tasks, from basic perceptual decision to complex18

preferential choice tasks. From early on, they were applied to identification and dis-19

crimination tasks (e.g. Ashby, 1983; Edwards, 1965; Heath, 1981; Laming, 1968; Link20

and Heath, 1975; Pike, 1973); memory retrieval (e.g. Ratcliff, 1978; Stone, 1960;21

Van Zandt et al., 2000) and classification (e.g., general recognition theory, (Ashby,22

2000); exemplar-based random walk models of classification, (Nosofsky and Palmeri,23

1997)) to account simultaneously for response times and accuracy data.24

They have also been used for preferential decision tasks (e.g. decision field theory,25

Busemeyer and Townsend (1993); and multi-attribute decision field theory, Diederich26

(1997); Diederich and Busemeyer (1999)) and value based decision (Krajbich and27

Rangel, 2011) to account for choice response times and choice probabilities inter-28

preted as preference strength; judgment and confidence ratings (Pleskac and Buse-29

meyer, 2010); and to account for selling prices, certainty equivalents, and preference30

reversal phenomena (Busemeyer and Goldstein, 1992; Johnson and Busemeyer, 2005).31

More recently, they have been applied to combining perceptional decision making32

and preference (e.g. Diederich and Busemeyer, 2006; Diederich, 2008; Rorie et al.,33

2010; Gao et al., 2011). Furthermore, these models have been closely linked to mea-34

sures from neuroscience such as multi-cell electrode recordings, EEG, and fMRI (e.g.35

Churchland et al., 2008; Ditterich, 2006; Gold and Shadlen, 2007; Ratcliff et al., 2007).36

Under fairly general conditions, these models also represent the optimal rule for mak-37

ing sequentially sampled decisions that balance decision accuracy with cost of sam-38

pling (e.g., Edwards, 1965; Rapoport and Burkheimer, 1971; Bogacz et al., 2006). In39
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practical applications, sequential sampling models have been used to estimate param-40

eters representing basic components of the decision process, such as discriminability,41

bias, and threshold criterion. Individual differences in these parameters are used to42

investigate how these parameters differ across age groups, psychopathology, and other43

populations (e.g. Thapar et al., 2003; White et al., 2010; Ratcliff et al., 2010).44

The basic idea of all sequential sampling models is that, when a decision has to45

be made (a) noisy evidence for or against each choice option is sequentially sampled46

across time, (b) this evidence is accumulated across time, and (c) a final choice is made47

as soon as the evidence reaches a threshold, or a deadline has to be met. Choice prob-48

ability is determined by the probability that evidence level crosses a threshold first49

for one option before another, and decision time is determined by the time required50

to reach a threshold. Confidence ratings following a choice can be determined from51

the strength of evidence that accumulates during a post-choice time interval. There52

are many specific versions of sequential models that differ according to precisely how53

evidence is accumulated, how the threshold criteria are set, and how confidence is54

derived. One class of sequential sampling models assumes that evidence for one op-55

tion is at the same time evidence against the alternative option. Within this class,56

random walk models accumulate evidence in discrete time whereas diffusion models57

accumulate evidence in continuous time. The most commonly used version of the dif-58

fusion model is the Wiener diffusion model that linearly accumulates evidence without59

any decay (Ratcliff, 1978), but others include the Ornstein-Uhlenbeck model that lin-60

early accumulates evidence with decay (Busemeyer and Townsend, 1993; Diederich,61

1997), and the leaky competing accumulator (LCA) model (Usher and McClelland,62

2001) that nonlinearly accumulates evidence with decay. Another class of sequential63

sampling models is widespread in psychology: accumulator and counter models. An64

accumulator/counter is established for each choice alternative separately, and evidence65

is accumulated in parallel. A decision is made as soon as one counter wins the race to66

reach one preset criterion. The accumulators/counters may or may not be independent.67

Poisson-counter models are prominent examples but random walk and diffusion mod-68
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els, one process for each alternative with a single criterion (absorbing boundary) for69

each process, can also be employed. Other accumulator models such as LATER (lin-70

ear approach to threshold with ergodic rate) (Carpenter and Williams, 1995) and LBA71

(Linear Ballistic Accumulator) (Brown and Heathcote, 2005) assume a deterministic72

linear increase in evidence for one trial. Randomness in responses occurs by assum-73

ing a normal distribution across the linear accumulation and are not considered here74

further.75

In the following we focus on random walk/diffusion models with one process and76

two decision criteria. For a review of both diffusion models and counter models see77

Ratcliff and Smith (2004).78

Despite the great progress that has been made with the development and empirical79

testing of random walk/diffusion models, there remain some important limitations.80

One important limitation of many applications of random walk/diffusion models is that81

a single integrated source of evidence is assumed to be generating the evidence during82

the deliberation process leading to a decision. In particular, the integrated source may83

be based on multiple features or attributes, but all of these features or attributes are84

assumed to be combined and integrated into a single source of evidence, and this single85

source is used throughout the decision process until a final decision is reached. There86

are exceptions developed for very specific applications (e.g. Smith and Ratcliff, 2009;87

?) but by far, single source models predominate the field.88

Another limitation is that most random walk/diffusion models cannot account for89

anticipatory and time-out responses. Trials with a shorter or longer than predefined90

response time threshold are typically eliminated from the data set.91

Finally, most models assume constant decision criteria across the decision pro-92

cess. In some cases, however, it it possible that with elapsed time the boundaries are93

collapsing, which in neuroscience has been called “urgent signals” (e.g. Churchland94

et al., 2008; Ditterich, 2006) but see (Hawkins et al., 2015). We refer also to Zhang95

et al. (2014) for the inclusion of time-varying boundaries into a single-stage diffusion96

model.97
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In the following we will address these topics. To introduce notation, we begin by98

describing a stochastic process with its relation to psychological concepts. Second, the99

multi-stage decision model (aka multiattribute attention switching (MAAS) model) is100

introduced including time and order schedules, finite and infinite time horizons, and101

non-constant boundaries. Obviously, non-constant boundaries can also be applied to102

single-stage models. Third, to allow for efficient predictions we discretize the diffusion103

process (Wiener or Ornstein-Uhlenbeck) by a Markov chain model. Finally, we show104

the predictions of the model for various scenarios.105

2. Sequential sampling approach106

Sequential sampling models are stochastic processes, that is, a collection of random107

variables, representing the evolution of some system of random values over time. Two108

quantities are of foremost interest to psychologists: (1) the probability that the process109

eventually reaches one of the thresholds or boundaries for the first time (the criterion110

to initiate a response), i.e., first passage or exit probability; (2) the time it takes for111

the process to reach one of the boundaries for the first time, i.e., first passage or exit112

time. The former quantity is related to the observed relative frequencies, the latter113

usually to the observed mean choice response times or the observed choice response114

time distribution.115

Let X(t) denote the random variable representing the numerical value of the ac-116

cumulated evidence at time t (for now we assume that we are in a continuous-time,117

continuous-state situation). For a binary choice between choice options A and B, the118

models assume that the decision process begins with an initial state of evidence X(0).119

This initial state may either favor option A (X(0)> 0) or option B (X(0)< 0) or may be120

neutral with respect to A or B (X(0) = 0), or can be given as a probability distribution.121

Upon presentation of the choice options, the decision maker sequentially samples122

information from the stimulus display over time, retrieves information from memory,123

or forms preferences, depending on the context. The small increments of evidence124
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sampled at any moment in time are such that they either favor option A (dX(t)> 0) or125

option B (dX(t)< 0). The evidence is incremented according to a diffusion process:126

dX(t) = µ(X(t), t)dt +σ(X(t), t)dW (t).

Here, µ(x, t) is called the effective drift rate and describes the instantaneous rate of127

expected increment change at time t and state x = X(t). The factor σ(x, t) in front of128

the instantaneous increments dW (t) of a standard Wiener process W (t) is called the129

diffusion coefficient, and relates to the variance of the increments. This process con-130

tinues until the magnitude of the cumulative evidence exceeds a threshold criterion.131

The process stops and option A is chosen as soon as the accumulated evidence reaches132

a criterion value for choosing A or it stops and chooses option B as soon as the ac-133

cumulated evidence reaches a criterion value for choosing B. The probability pA of134

choosing A over B is determined by the accumulation process reaching the criterion135

value or boundary for A before reaching the boundary for B, similarly for pB.136

The model is specified by making concrete assumptions on drift and diffusion rates,137

the criterion functions (discussed in the following) and the time within which a deci-138

sion has to be made, i.e., decision interval t ∈ [0,Tend], where Tend ∈ (0,∞] is a ran-139

domly or deterministically given final deadline.140

For instance, a stochastic process with drift rate and diffusion coefficient141

µ(x, t) = δ σ(x, t) = σ , (1)

defines a time-homogeneous Wiener process with drift (setting δ = 0 is the standard142

Wiener process). Intuitively, the drift rate δ reflects the tendency to approach one143

choice alternative over the other, and is related to the quality of evidence: The better144

the evidence discriminates between the choice options, the larger the value of δ , which145

determines the direction of the process. In our notation, a positive drift rate, δ > 0,146

indicates that option A is chosen over option B more often, and a negative drift, δ <147

0, that B is chosen more often over A. The diffusion coefficient σ is considered in148

psychological applications a scaling factor and is often set to a constant, i.e. to 1.149

6



Fixing the functional forms for effective drift rate and diffusion coefficient to150

µ(x, t) = δ − γx, σ(x, t) = σ , (2)

defines a time-homogeneous Ornstein-Uhlenbeck process (OUP). Setting γ > 0 models151

evidence accumulation towards one of the choice options at a linearly decaying rate,152

that is, it induces a change of the effective drift rate µ(x, t) = δ − γx depending on the153

current state. The parameter is related to memory processes (e.g., forgetting, primacy154

and recency effects), leakage of information, similarities between choice alternatives,155

and conflict patterns (e.g. Busemeyer and Townsend, 1993; Diederich, 1997; Usher156

and McClelland, 2001). Setting γ = 0 reduces Eq. 2 to a Wiener process with drift157

(Eq. 1).158

2.1. Stopping rules and criterion functions159

A stopping rule constrains when and how the decision is made. Two stopping rules160

are mainly used in psychology. One is a fixed stopping time in which the time to161

make the decision is externally controlled fixed stopping time and the decision maker162

is forced to make a choice at (but not before) the deadline t = Tend , regardless of163

how much evidence has been accumulated towards either of the alternatives. If at164

t = Tend the accumulated evidence X(Tend) is larger than 0, alternative A is chosen; if165

it is smaller than 0, B is chosen. No absorbing boundaries are assumed, and choice166

response times for both alternatives equal Tend , i.e., are deterministic rather than a ran-167

dom variable (Figure 1, A).1 The other rule, which we focus on in this paper, is an168

optional stopping time in which the decision maker selects the time to make the deci-169

sion. In this case, the response time is a random variable (Busemeyer and Diederich,170

2002). The criterion functions θA/B(t) that define the stopping rule (also called deci-171

1Note that accumulator models can be mimicked accordingly: A race between several alternatives

(each trajectory presenting one alternative rather than one trial) occurs and the winner to determine the

response may be the one with the highest value at time Tend . The Multialternative Decision Field Theory

(Roe et al., 2001) and the LCA model (Usher and McClelland, 2001) assume exactly this.
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Figure 1: Stopping rules. (A) Fixed stopping time at Tend . (B) Optional stopping time at t.

sion boundaries) are typically assumed to be constant across the entire decision process172

(θA/B(t) = θA/B) (Figure 1, B).173

The accumulation process continues until the magnitude of the cumulative evi-174

dence reaches a criterion bound. The process stops and an A response is initiated as175

soon as X(t)≥ θA, or it stops and a B response is initiated as soon as X(t)≤ θB. The176

decision criteria (absorbing boundaries in mathematical terms) reflect how much evi-177

dence is needed for the decision maker to come to a decision and are set by the decision178

maker prior to the decision task. They depend, among other things, on the time avail-179

able for making a decision. Specifically, the criterion boundary is assumed to be an180

increasing function of the time limit. That is, with short time limits the boundaries are181

assumed to be narrow, and the time to reach it to initiate a response is short whereas182

with long or no time limits the boundaries are further apart and it takes longer to reach183

them to initiate a response. Assuming symmetric criteria, i.e., θA = −θB, around the184

starting point X(0) = 0, is equivalent to assuming no a priori bias.185

Obviously both criteria to initiate a response are quite different. The latter operates186

on the evidence space, whereas the former is based on the time set. However, both cri-187

teria can also be combined. For instance, under short deadline conditions, the decision188

maker may employ internal fixed deadlines as well as the decision bounds to terminate189

the accumulation process (Diederich and Busemeyer, 2006; Diederich, 2008). This is190
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Figure 2: Non-constant boundaries. The shape is determined by Eq. 3 with θ(0) = 15, Tend = 100, and

a = 0.1,0.5,1,2,3 (from right to left). The special case, a = 0, results in a constant boundary, here the

upper line at θ = 15.

related to the deadline model in which the response time is determined either by the191

time needed to complete, e.g., a discrimination process, or by the arrival of a predeter-192

mined deadline, whichever comes first (e.g. Swensson, 1972; Yellot, 1971; Ruthruff,193

1996, for a test of the model; see also Ratcliff and Rouder, 2000).194

Another way to model the approaching deadline is to bring the decision horizons195

θA/B(t) closer to 0 as t approaches Tend . We present two such families of variable196

decision boundaries. The first family is given by197

θA(t) = θA(0) · (1− t/Tend)
aA , θB(t) = θB(0) · (1− t/Tend)

aB, t ∈ [0,Tend], (3)

where the constants θA(0) > 0 > θB(0) stand for the initial decision horizons, and198

aA/B > 0 characterize the shape of the decision horizons.199

Figure 2 shows the resulting graphs of θ(t) = θA(t) for several values a = aA. A200

possible interpretation is that values a > 1 reflect the tendency of the decision maker201

to come to a decision sooner rather than later, possibly way before the actual deadline202

is approached, whereas values a < 1 indicate hesitation to make a decision too early.203

Finally, in case of a = 1, the decision horizon decreases linearly and steadily.204

A second one-parameter family of decision horizon functions considered here is205
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Figure 3: Non-constant boundaries. The shape is determined by Eq. 4 with θ(0) = 15, Tend = 100, and

b = 0.8,0.6,0.4,0.2,0 (from right to left). The special case, b = 1, results in a constant boundary, here

the upper line at θ = 15 and partly covered the the constant part of the remaining non-constant boundary

examples.

given by206

θA(t) = θA(0)min(1,(1− t/Tend)/(1−b)), t ∈ [0,Tend], (4)

where b∈ [0,1] is a parameter; similarly for θB(t). A possible interpretation is that only207

after a portion of time bTend , the deadline Tend is announced, or the decision maker208

realizes only at this time that there is a deadline, and gradually lowers the decision209

horizon. Figure 3 shows the resulting graphs of θ(t) = θA(t) for several values b.210

3. Multi-stage decision model211

Choice alternatives are often described by multiple features, dimensions, or at-212

tributes. For instance, visual objects may vary in color and size or in width and213

hight; crossmodal tasks involve different modalities, often with inter-stimulus asyn-214

chronies; consumer products are characterized by price and quality; in social priming215

experiments, race might serve as a bias in a perceptual discrimination task, and so on.216

Furthermore, experimental designs may involve several stages in which, for example,217

congruent or incongruent information is delivered sequentially. For those and similar218
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situations a sequential sampling model that represents evidence for the different pro-219

cess stages might be more appropriate than combining and integrating all information220

into a single source of evidence that drives the diffusion process. Diederich (1995;221

1997) and Diederich and Oswald (2014), developed a generalization of the single-222

stage sequential model, assuming that each attribute2 of the stimulus arrangement is223

described by a separate sequential sampling process.224

For each of the k = 1, . . . ,K attributes we assume an Ornstein-Uhlenbeck process225

X(t) defined by226

dX(t) = (δk− γkX(t))dt +σkdW (t). (5)

The information sampling is attribute-by-attribute, i.e., the finitely many attributes227

are considered one-by-one for a certain period of time in some order and possibly with228

repetition. Each attribute appeals differently to the decision maker which is character-229

ized by a set of attribute-dependent constants δk,γk,σk (in principle, these constants230

may also change with time, e.g., in a kind of learning process a later reconsideration231

of a certain attribute may have different appeal to the decision maker than it had at an232

earlier time).233

The decision maker switches attention from one attribute to the next during the234

time course of one trial. For instance, in a crossmodal task (visual, auditory, tactile),235

Diederich (1995) assumed a serial process controlled by stimulus input at given stimu-236

lus onset asynchronies. That is, the order of attributes, here a light, followed by a tone,237

followed by a tactile vibration, as well as the point in time when a new attribute was238

added, here the tone presented at t1 (t1 ms after light onset) and the tactile vibration at239

t2 (t2 ms after light onset) was determined externally by the experimental setup. In the240

following we will call attention switches at predetermined, fixed times, and together241

with a predefined order of attributes, a deterministic time and order schedule. Often,242

however, neither the processing order of attributes nor the point in time when the de-243

2For ease of communication we use ”attribute“ here in a very broad sense. It includes features or

dimensions of the stimulus proper as well as information presented in different stages.
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cision maker switches attention from one attribute to the next one are known or can244

be inferred from the experimental setup. For those cases, Diederich (1997) proposed245

a specific model in which attention switches from one attribute to the next with some246

probability. This model was further developed in Diederich and Oswald (2014) to in-247

clude what we call a random time and order schedule by allowing also for randomly248

chosen attention switching times and attribute orders.249

3.1. Time and order schedules250

The specific order in which attributes are considered (order schedule) as well as at251

which times attention is switched from one attribute to another one (time schedule) is252

part of the model parameters, and may be given deterministically or randomly. For-253

mally, we assume that attention switches from one attribute to the next in a sequence254

of attention switching times255

T0 = Tstart = 0 < T1 < T2 < .. . < TL = Tend, (6)

with Tend representing the maximum duration of the decision process. On a theoretical256

level, it is possible to assume Tend = ∞ (no finite deadline) and L = ∞ (infinite attention257

switching). We denote by ∆Tl = (Tl−1,Tl] the l-th attention time interval. A time and258

order schedule consists of a sequence {Tl}l=1,...,L of attention switching times, and259

a sequence {kl ∈ {1, . . . ,K}}l=1,...,L of attribute indices which specifies that during260

the time interval ∆Tl the kl-th attribute is considered. At attention switching time261

Tl , l = 1, . . . ,L−1, attention switches from attribute kl to attribute kl+1. How random262

time and order schedules can be generated has been discussed in Diederich and Oswald263

(2014).264

Consequently, the process X(t) determined by such a schedule is a piecewise OUP,265

with fixed parameters δkl ,γkl ,σkl in each interval ∆Tl , satisfying the stochastic differ-266

ential equation267

dX(t) = (δkl − γkl X(t))dt +σkl dW (t), t ∈ ∆Tl, l = 1, . . . ,L. (7)
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Figure 4: A piecewise OUP with three different attributes. The attribute order is (1,2,1,3), attribute 1

is considered twice in the sequence of attribute consideration. Switching attention from one attribute

to the next occurs at fixed times t1, t2, and t3. The trajectories reflect the accumulation process for two

different trials. The black solid lines indicate the deterministic trajectory of the process (set σkl = 0 in

Eq. 7).

Figure 4 shows an example with three different attributes (K = 3) and a determin-268

istic time and order schedule of length L = 4 with switching times tl independent of269

the trajectories, and attribute order k1 = 1, k2 = 2, k3 = 1, k4 = 3 (note that the first270

attribute is reconsidered once).271

3.2. Finite and infinite time horizon272

That the process is eventually absorbed at one of the decision boundaries implicitly273

assumes an infinite time horizon. In real life and, in particular, in experimental situa-274

tion the time horizon is rather finite. Even if the experimental setup does not include275

explicitly time limits, a timeout is often installed. That is, a fixed deadline Tend < ∞276

for the decision process is more realistic. When this deadline is not met, the trial is277

counted as a timeout trial. Rather than removing these timeout trials from the data278

set, the multi-stage decision model allows us to account for non-decision situations,279

i.e., to define a non-decision probability pN := 1− pA− pB > 0, by defining a stage280

accounting for the timeout trials.281
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3.3. Decision times and choice probabilities282

The decision process ends with choosing alternative A if X(t) hits the user specified

decision horizons for the first time at θA(t). We assume that θA(t)≥ 0 for t ∈ (0,Tend]

is a non-increasing function of time. Similarly, the process stops with choosing al-

ternative B if X(t) equals for the first time a given non-decreasing function θB(t)≤ 0,

t ∈ (0,Tend]. This leads us to the definition of the following quantities of interest which

are often accessible in experiments: The decision times for A and B are random vari-

ables formally defined by

tA :=

 t∗, if ∃ t∗ ∈ [0,Tend] : X(t∗)≥ θA(t∗), θB(t)< X(t)< θA(t), t ∈ [0, t∗),

+∞, otherwise,

and

tB :=

 t∗, if ∃ t∗ ∈ [0,Tend] : X(t∗)≤ θB(t∗), θB(t)< X(t)< θA(t), t ∈ [0, t∗),

+∞, otherwise,

respectively. Their realizations can be observed from single trials, while their condi-

tional cumulative distribution functions

FtA(t) = P(tA ≤ t|tA < ∞), FtB(t) = P(tB ≤ t|tB < ∞), t ∈ [0,Tend],

and probability density functions can be approximately reconstructed from repeated

trials. The same is true for their moments, in particular, for the choice probabilities

pA = P(tA <+∞), pB = P(tB <+∞),

and the average times for deciding on A or B,

E(tA) =
∫ Tend

0
t dFtA(t), E(tB) =

∫ Tend

0
t dFtB(t),

respectively.283
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3.4. Implementation problems284

Unfortunately, closed-form expressions for the above quantities are available only285

in special cases, e.g., when only one attribute (meaning a single process) is considered,286

and the decision boundaries are constant (Borodin and Salminen, 2002). The general287

situation of many attention intervals L > 1, or even general time-dependent drift and288

dispersion coefficients, and non-constant decision boundaries requires the numerical289

solution of certain partial differential and integral equations. An excellent primer on290

how to determine the first passage time and first passage probabilities for non-constant291

decision boundaries is provided in Smith (2000); see also Buonocore et al. (1987,292

1990); Sacerdote et al. (2014). We are not aware of any general purpose implementa-293

tion of this approach3.294

Instead of going this way, we use a consistent approximation of the above con-295

tinuous model by a discrete-time, discrete-state random walk model (Diederich, 1997;296

Diederich and Busemeyer, 2003; Diederich and Oswald, 2014), which is flexible enough297

to account for nonstationary and nonlinear properties but can also be adapted to the298

situation described above of non-constant time decision horizons θA/B(t). Another299

reason for this choice is the simplicity of implementation and versatility of finite-state300

discrete-time Markov chain models.301

4. Model discretization302

In the following we present a discrete-time, finite-state space Markov chain (MC)303

model that approximates the described continuous, piecewise OUP model. Both time304

and state space are now discrete. The discretization is facilitated by two parameters:305

3After submission we became aware of recent work on software: Drugowitsch (2014), and Verdonck

et al. (2015), whose implementations follow the approach from Smith (2000), and Srivastavaa et al.

(2015), who use piecewise constant approximations to diffusion-type processes by Wiener processes

with drift, and piecewise constant approximations to time-varying decision boundaries to deal with

problems as discussed in this paper.
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∆ > 0 is the constant step-size for the spatial resolution of the range of evidence val-306

ues, and ξ ≥ 1 is an auxiliary parameter specifying the underlying random walk model.307

Because the size of the resulting finite state space has a major impact on the compu-308

tational complexity, we will choose ∆ as large as possible. It turns out that already309

moderate values for ∆ and state space sizes, as used in the numerical tests below, lead310

to results of sufficient accuracy. Evidence accumulation now happens only at fixed311

time stamps, belonging to a grid that is uniform4 during each attention time interval312

∆Tl . The resulting probability transition matrices are chosen such that at each discrete313

time stamp the actual evidence value is increased or decreased by ∆, or stays the same314

(i.e., we use a trinomial tree random walk model by setting ξ > 1, the binomial case315

ξ = 1 is included as a partial case). The corresponding transition probabilities are316

chosen such that convergence to the continuous model is guaranteed as ∆→ 0. The317

transition matrices are thus tri-diagonal, and all quantities of interest (exit probabili-318

ties, exit time distributions and their expectations) can be computed cheaply, with an319

overall complexity that is roughly of order ∆−3Tend (further savings for the case of320

constant decision criterion values θA/B are possible, see Diederich (1997); Diederich321

and Busemeyer (2003); Diederich and Oswald (2014) and Section 5.1 below).322

It is worth noting that considering such a discrete OUP model may well be war-323

ranted without any reference to a continuous-time, continuous-state limit in mind. For324

instance, attribute-related information may be available only at certain moments in325

time (this is typical for certain laboratory experiments but also in some economics and326

finance scenarios). Also, evidence may be accumulated in discrete numerical units,327

and not on a continuous scale. We will, however, not dwell on this issue further.328

With ∆ > 0, ξ ≥ 1, and a fixed time and order schedule given, the piecewise OUP

4This is because the parameter σ , which may change between attention time intervals, enters the

relation between ∆ and the time step-size τ , necessary to achieve convergence of the discrete MC model

to the continuous one as ∆→ 0
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X(t) defined by (7) is approximated by a discrete time, finite state space Markov chain

Xn ≈ X(tn), n = 1,2, . . . ,N, X0 = X(0) = 0,

taking values in a finite (but time-dependent) state space329

Sn = {xi := i∆ : i ∈In}, In = {−mB,n, . . . ,mA,n} ⊂ Z, (8)

where the limits of the current index set In are defined from the decision horizon

values at tn as follows:

−mB,n∆≤ θB(tn)< (−mB,n +1)∆≤ (mA,n−1)∆ < θA(tn)≤ mA,n∆.

Thus, the largest and smallest xi in Sn are considered absorbing states at tn in our330

MC model, reaching (or exceeding) them means decision for alternative A and B,331

respectively. The set of non-absorbing states at tn is denoted by S∗n, the corresponding332

index set is I ∗n = {−mB,n +1, . . . ,mA,n−1}.333

The discrete time stamps tn are defined according to

tn = Tl−1 +(n−nl−1)τl, n = nl−1, . . . ,nl, l = 1, . . . ,L,

where the constant time-step τl characteristic for each attention time interval ∆Tl is

chosen as the value closest to

τl ≈ ∆
2/(ξ σkl)

2

for which nl := nl−1 +(Tl −Tl−1)/τl is an integer (n0 = 0, N = nL). This choice of334

step-size τl is standard for matching the trinomial tree model to the piecewise OUP335

under consideration.336

For n = nl−1+1, . . . ,nl , corresponding to the l-th attention interval, i.e., when tn ∈337

∆Tl , the transition probabilities pn, j,i := P(Xn = xi|Xn−1 = x j) describing the transition338

from Xn−1 to Xn are defined as339

pn, j,i =



ξ−2(1− (δkl − γkl x j)∆/σ2
l )/2, j = i+1,

ξ−2(1+(δkl − γkl x j)∆/σ2
l )/2, j = i−1,

1− pn,i,i+1− pn,i,i−1, j = i,

0, | j− i|> 1.

(9)
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This corresponds to a random walk where in each small time interval (tn−1, tn] evidence340

towards alternative A is increased by ∆, decreased by ∆, or left unchanged with certain341

(non-negative) probabilities. The formulas ensure convergence of the discrete process342

Xi to the continuous process X(t) if ∆→ 0 (for fixed ξ ≥ 1).5343

The resulting transition matrix is denoted by Pn. Note that, for tn ∈ ∆Tl the entries344

of Pn depend only on kl , the index of the attribute associated with the l-th attention345

interval, however, the size of Pn may change if the decision horizons θA/B(tn) are non-346

constant, forcing the state spaces to shrink. In other words, for tn ∈ ∆Tl , the transition347

matrices are submatrices (depending on Sn ⊂ Sn−1) of a matrix P(kl) solely depending348

on the kl-th attribute associated with the l-th attention time interval, with entries given349

by (9).350

Knowing the transition probability matrices Pn allows us to compute the probabil-351

ity vectors Zn with entries352

Zn,i := P(Xn = xi), i ∈I ∗n , (10)

corresponding to the non-absorbing states at time tn from the previous Zn−1 by matrix-353

vector multiplication354

Z̃′n = Z′n−1P̃n, n = 1, . . . ,N, Zn = Z̃′n|I ′n , (11)

where at start Z0 is a unit column vector with index set I ∗0 and Z0,0 = 1 corresponding355

to our assumption X(0) = 0. The remaining notation is as follows: P̃n stands for the356

submatrix of Pn as defined by Eq. 9 corresponding to the index set I ∗n−1×In−1, and357

Z̃n is an auxiliary column vector with index set In−1. This costs O(|Sn−1|) elementary358

operations per multiply, and overall leads to a computational effort of O(∆−3Tend) flops359

(see the definition of the state spaces Sn and of the step-sizes τl).360

5In order to satisfy the natural requirement that the pn, j,i always belong to [0,1] and sum up to 1 for

fixed j, the discretization parameter ∆ cannot be taken arbitrarily large. The concrete limitations depend

on the process parameters (and decision thresholds), and can be computed from Eq. 9. To ensure

robustness, in the implementation pn, j,i values violating these constraints are appropriately modified. In

the simulations reported below, the value of ∆ was always small enough, and Eq. 9 was used as is.
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Moreover, carrying out the multiplication in Eq. 11 recursively delivers approxima-361

tions to all quantities of interest such as choice probabilities, expected choice response362

times, and exit time distributions. Indeed, define363

pA,n = ∑
i∈In−1:xi≥θA(tn)

Z̃n,i, pB,n = ∑
i∈In−1:xi≤θB(tn)

Z̃n,i. (12)

Note that the values Z̃n,i entering the formulas for pA/B,n correspond to states xi that

are outside the non-absorbing part S∗n of Sn. Also, the probability

P(Xn ∈ S∗n) = P(θB(tn)< Xn < θA(tn)) = ∑
i∈I ∗n

Zn,i

that the random walk does not hit or exceed the decision boundaries during the time364

interval generally decreases if n increases (this also explains why we avoid the term365

”probability distribution vector“ for Zn). With pA/B,n defined, we find that366

pA ≈ p̂A :=
N

∑
n=1

pA,n, pB ≈ p̂B :=
N

∑
n=1

pB,n, (13)

are approximations of the choice probabilities, and367

E(tA)≈ t̂A := p̂−1
A

N

∑
n=1

pA,ntn, E(tB)≈ t̂B := p̂−1
B

N

∑
n=1

pB,ntn, (14)

approximations of the expected choice response times (assuming non-zero values for368

p̂A/B). Moreover, approximations to the cumulative distribution function FtA(t) of the369

choice response time tA for alternative A can be computed by370

FtA(tn)≈ p̂−1
A

n

∑
m=1

pA,m, if p̂A > 0, (15)

similarly approximations for FtB(tn) are available6.371

6In the case of non-constant decision boundaries, some post-processing and smoothing is neces-

sary to produce faithful approximations to the probability density functions since the rough discretiza-

tion of θA/B(t) determining the state spaces Sn in Eq. 8 leads to visible oscillations in the time series

{pA/B,n}n=1,...,N .
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Unless S∗N = /0, we end up with a positive value for the probability

pN := 1− pA− pB = ∑
i∈I ∗N

ZN,i

of not coming to a decision by Tend , since by definition of Sn we have 0 ∈ S∗N and372

generally zN,0 > 0. If θA/B(Tend) = 0 (a case that by default should enforce a decision),373

we have S∗N = /0 and consequently pN = 0.374

5. Choice probabilities and decision times375

In the following we present in more detail how to determine the choice probabili-376

ties, the response time distributions, and the mean response times for choosing alterna-377

tives A and B and provide numerical examples (predictions). Due to limited space we378

focus on a deterministic time and order schedule. For random schedules with constant379

boundaries we refer to Diederich and Oswald (2014).380

5.1. Constant boundaries381

In the case of constant decision boundaries θA/B(t) = θA/B, some simplifications

are possible. In order not to overload the exposition, we only give a brief introduction

to the matrix notation as used in Diederich (1997); Diederich and Busemeyer (2003);

Diederich and Oswald (2014), and refer to these papers for further details. Since the

state space does not depend on tn, the transition probability matrices Pn needed for

the recursion in Eq. 11 will have fixed size and only depend on the current attribute.

Therefore, we will drop the subscript n, introduce the fixed index sets

I ∗ := {i =−mB +1, . . . ,mA−1}, I := {i =−mB, . . . ,mA}

related to the sets of non-absorbing states and to the state space S, respectively (com-

pare Eq. 8). The integers mA/B are given by the condition

−mB∆≤ θB < (−mB +1)∆≤ (mA−1)∆ < θA ≤ mA∆.
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If the k-th attribute is considered during the time interval (tn−1, tn] then the part of the382

transition probability matrix needed in Eq. 11 depends only on the parameters of this383

attribute. It will be denoted by P̃(k), and is given by384

P̃(k) =
[

RB,k Qk RA,k

]
, (16)

where the square submatrix385

Qk =



p(k)−mB+1,−mB+1 p(k)−mB+1,−mB+2 0 · · · 0 0

p(k)−mB+2,−mB+1 p(k)−mB+2,−mB+2 p(k)−mB+2,−mB+3 · · · 0 0

0 p(k)−mB+3,−mB+2 p(k)−mB+3,−mB+3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · p(k)mA−2,mA−2 p(k)mA−2,mA−1

0 0 0 · · · p(k)mA−1,mA−2 p(k)mA−1,mA−1


,

(17)

with entries p(k)i, j = pn,i, j from Eq. 9 for k = kl , corresponds to the non-absorbing states

θB < xi < θA with index set I ∗. Its dimension is

Nθ := mA +mB−1≈ (θA−θB)/∆.

The vectors RA,k and RB,k contain the transition probabilities to the absorbing states386

x−mB ≤ θB and xmA ≥ θA, respectively. They are used for computing the exit proba-387

bilities, whereas multiplying the probability vector at tn−1 by Qk yields the vector Zn388

containing the probabilities for being in one of the non-absorbing states at time tn.389

A particular path {Xn}n≥0 with X0 ∈ S is absorbed at mA∆ (decision for A) if there

is an integer nA > 0 (the decision time index) such that XnA = mA∆ but Xn ∈ S∗ for all

n < nA. If it is never absorbed at mA∆, we set nA = ∞. The decision time index nB is

similarly defined. Then, by definition,

p̂A := P(nA < ∞) =
L

∑
l=1

pA,l, pA,l := P(nl−1 < nA ≤ nl), l = 1, . . . ,L,

similarly for p̂B. Note that we do not exclude the case of an infinite time horizon390

Tend = TL = ∞, in which case we silently assume n < nL = ∞ in the definition of pA,L.391
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Let the Nθ×1 column vectors Zn, n≥ 0, contain the probabilities Zn,i =P(Xn = xi),

i ∈ I ∗ (the initial distribution Z0 must be provided). With the nl and kl given by the

time and order schedule, we have

Z′n =



Z′0Qn
k1
, 0 = n0 < n≤ n1,

Z′0Qn1
k1

Qn−n1
k2

, n1 < n≤ n2,

. . .

Z′0Qn1
k1
. . .QnL−1−nL−2

k2
Qn−nL−1

kL−1
, nL−1 < n < ∞.

Moreover, the probability of choosing alternative A at time tn ∈ ∆Tl , l = 1, . . . ,L, is392

P(nA = n) = P(Xn−1 = xmA−1)P(Xn = xmA|Xn−1 = xmA−1)

= Zn−1,mA−1 p(kl)
mA−1,mA

= Z′n−1RA,kl ,

where RA,k is the Nθ×1 column vector with the last entry rmA−1 = p(k)mA−1,mA
, and ri = 0393

for the remaining i =−mB +1, . . . ,mA−2.394

With these formulas at hand, we get expressions for pA,l and p̂A in a more compact395

form, as shown in (Diederich, 1997). Denote ∆nl = nl − nl−1, l = 1, . . . ,L. Then for396

these l397

pA,l = Z′nl−1

(
∆nl−1

∑
r=0

Qr
kl

)
RA,kl , Z′nl

= Z′nl−1
Q∆nl

kl
, (18)

whereas in the case nL = ∞ (infinite time horizon), the formulas for l = L are replaced398

by399

pA,L = Z′nL−1

(
∞

∑
r=0

Qr
kL

)
RA,kL = Z′nL−1

(I−QkL)
−1RA,kL , Z′nL

= 0. (19)

Because

Z′nl−1

(
∆nl−1

∑
r=0

Qr
kl

)
= Z′nl−1

(I−Q∆nl
kl

)(I−Qkl)
−1 = (Z′nl−1

−Z′nl
)(I−Qkl)

−1,

a recursive evaluation of the Znl , pA.l , and eventually of p̂A can be orchestrated by a400

linear algebra operations involving a few tridiagonal matrices. We note that a direct401

evaluation of pA,l using Eq. 18 might be even faster (or at least feasible) for reasonable402

Nθ and ∆nl .403

22



Similar formulas also hold for pB (just replace RA,k by the corresponding RB,k), and404

for the conditional expected decision times405

t̂A = E(tnA|nA < ∞) =
L

∑
l=1

nl

∑
n=nl−1+1

tnP(nA = n)/p̂A,

t̂B = E(tnB|nB < ∞) =
L

∑
l=1

nl

∑
n=nl−1+1

tnP(nB = n)/p̂B,

where tn = Tl−1 +(n−nl−1)τkl for n = nl−1 +1, . . . ,nl , l = 1, . . . ,L. Substituting this406

together with the formulas for P(nA = n) and the recursion for Zn, we obtain407

nl

∑
n=nl−1+1

tnZ′nl−1
Qn−1−nl−1

kl
RA,kl

= Tl−1 pA,l + τkl Z
′
nl−1

(
∆nl

∑
r=1

rQr−1
kl

)
RA,kl

= Tl−1 pA,l + τkl Z
′
nl−1

[(I−Q∆nl
kl

)(I−Qkl)
−2−∆nlQ

∆nl
kl

(I−Qkl)
−1]RA,kl

= Tl−1 pA,l + τkl [(Z
′
nl−1
−Z′nl

)(I−Qkl)
−1−∆nlZ′nl

](I−Qkl)
−1)RA,kl .

If nL = ∞ and l = L, the above formula has to be replaced by408

∞

∑
n=nL−1+1

tnZ′nL−1
Qn−1−nL−1

kL
RA,kL = TL−1 pA,L + τkLZ′nL−1

(
∞

∑
r=1

rQr−1
kL

)
RA,kL

= TL−1 pA,L + τkLZ′nL−1
(I−QkL)

−2RA,kL .

Therefore, for Tend < ∞, we arrive at

t̂A = p̂−1
A

(
L

∑
l=1

Tl−1 pA,l +
L

∑
l=1

τkl [(Z
′
nl−1
−ZT

nl
)(I−Qkl)

−1−∆nlZ′nl
](I−Qkl)

−1RA,kl

)
.

The term with l = L in the last sum has to be replaced by τkLZT
nL−1

(I−QkL)
−2RA,kL409

if Tend = ∞. A similar formula holds for t̂B, by replacing RA,kl with RB,kl , and p̂A by410

p̂B. Compared to the evaluation of choice probabilities, the computation of t̂A/B only411

requires the solution of one additional tridiagonal linear per attribute switch system412

corresponding to a matrix vector multiplication by (I−Qkl)
−1.413
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5.2. Numerical examples: Constant boundaries414

In the following we present predictions of the model for choice alternatives with415

K = 2 attributes and with finite and infinite time horizon Tend .416

Throughout this section we fix the following parameters: σ = 1, ξ = 1, ∆ = 1
4 ,417

θA =−θB = 15; and the process always starts at the neutral position X(0) = 0 between418

choice alternatives A and B. For simplicity, we set γ1 = γ2 = 0, i.e. we assume a Wiener419

process instead of an OUP. Furthermore, the two attributes are considered only once420

(i.e., L = 2).421

Figure 5 shows the choice probabilities and mean choice response times as a func-422

tion of the attention switching time T1 for the attribute considered first with finite and423

infinite time horizon for the second attribute for two order schedules. In case of an424

infinite time horizon (lines and dashed lines), the first attribute is considered until time425

t = T1 time units, and the second attribute T2 = Tend = ∞. In case of a finite time426

horizon (dotted lines), the time is set to T2 = Tend = 500. That is, attribute k1 is consid-427

ered first for T1 time units, after which attribute k2 is considered during the remaining428

T2−T1 = 500−T1 time units. In this case there is a positive probability that none of429

the alternatives have been chosen in the given time frame. The drift parameters for430

attributes 1 and 2 are δ1 = 0.1 and δ2 = 0.01, respectively. The left panels show the431

predictions of the order schedule k1 = 1, k2 = 2; the right panels the predictions of the432

order schedule k1 = 2, k2 = 1.433

Consider the order schedule k1 = 1,k2 = 2 with δ1 = 0.1 and δ2 = 0.01 for at-434

tribute 1 and 2, respectively, first (left panels). Regardless of the time horizon, the435

model predicts for both scenarios faster response times for the more frequently chosen436

alternative, here A. Compared to an infinite time horizon the probabilities for choos-437

ing A and B in a finite time horizon are reduced (almost by a constant amount) and438

a no-decision (time-out) is predicted in about 10 percent of the cases (probability for439

choosing none of the alternatives) for small T1. The mean choice response times for A440

(the more frequently chosen alternative) are slightly longer for the infinite time hori-441

zon than for the finite time horizon but similar in shape as a function of T1. The mean442
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Figure 5: Choice probabilities and mean choice response times as a function of attention switching

time T1 for two order schedules (k1,k2) with infinite (T2 = Tend = ∞) and finite (T2 = Tend = 500) time

horizon. Solid (red) and dashed (blue) lines show the predictions with infinite time horizon for choosing

option A and B, respectively. Dotted lines (red and blue) show the predictions with finite time horizon

for A and B, respectively. The (black) dot-dashed lines in the upper panels indicate the probability for

choosing none of the options. The drift parameters for attributes 1 and 2 are δ1 = 0.1 and δ2 = 0.01,

respectively.
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choice response times for B (the less frequently chosen alternative) differ substantially443

more for both time horizons. The overall shapes are, however, similar.444

Reversing the order schedule (k1 = 2,k2 = 1) (right panels) the model predicts445

faster response times for the less frequently chosen alternative. This is a consistent446

pattern for particular drift rate constellations and represents a very important charac-447

teristic of the multi-stage model. If both drift rates point into the same directions and448

the drift rate of the attribute considered first is larger (in absolute value, i.e. more evi-449

dence) than the drift rate of the attribute considered second, then the multi-stage model450

always predicts faster mean response time to the more frequently chosen alternative.451

If, however, the drift rate of the attribute considers first is smaller (in absolute value,452

i.e., less evidence) than the drift rate of the attribute considered second, then the multi-453

stage model always predicts faster mean response times to the less frequently chosen454

alternative, B. The psychological interpretation of the pattern is that if alternative B455

(often the incorrect one) is chosen, the answer tends to be fast before later on, new456

information gives even more evidence in favor of alternative A. These patterns hold,457

regardless of the underlying distribution of T (Diederich and Oswald, 2014) and, as458

shown here, regardless of the time horizon. The finite time horizon has only a small459

effect on the choices for A for larger T1.460

The choice probability/choice response patterns for an alternative with conflicting461

attributes, i.e. one is in favor of alternative A and the other in favor of choosing alter-462

native B, is a bit more complex but also shows a consistent pattern. For demonstration,463

consider Figure 6 with δ1 = −0.1 and δ2 = 0.03. The left panels correspond to the464

predictions for order schedule k1 = 1,k2 = 2, the right ones of a finite time horizon465

for order schedule k1 = 2,k2 = 1. Regardless of the time horizon and order sched-466

ule, a preference reversal as a function of the attention switching time T1 is predicted.467

That is, the probabilities for choosing one alternative over the other change from be-468

low (above) 0.5 to above (below) 0.5 as attention time for the attribute considered first469

increases. The larger |δ | is of the attribute considered first, the sooner the reversal470

occurs as a function of the attention time (Diederich, 2015). The model predicts slow471
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response times for the more frequently chosen alternative before the preference rever-472

sal and faster responses for the more frequently chosen alternative after the preference473

reversal (e.g. in Figure 6, left panel, alternative B).474
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Figure 6: Choice probabilities and mean choice response times as a function of attention switching

time T1 for two order schedules (k1,k2) with infinite (T2 = Tend = ∞) and finite (T2 = Tend = 500) time

horizon. Solid (red) and dashed (blue) lines show the predictions with infinite time horizon for choosing

option A and B, respectively. Dotted lines (red and blue) show the predictions with finite time horizon

for A and B, respectively. The (black) dot-dashed lines in the upper panels indicate the probability for

choosing none of the options. The drift parameters for attributes 1 and 2 are δ1 =−0.1 and δ2 = 0.03,

respectively.

Finally we present the probability density functions (pdf) and cumulative density475

functions (cdf) for δ1 = 0.1 and δ2 = 0.01 with three different switching times T1 =476
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30,50, and 100 (Figure 5.2 from top to bottom) for order schedule (k1 = 1,k2 = 2)477

(left panels) and order schedule (k1 = 2,k2 = 1) (right panels) and infinite time horizon478

(compare to Figure 5). The distributions are skewed as found in many experimental479

response time data; the switching times from the first attribute to the second attribute,480

however, are clearly reflected in the distributions.481
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Figure 7: Probability density functions and cumulative density functions for choossing options A ((red)

lines) and B ((blue) dashed line) with δ1 = 0.1 and δ2 = 0.01 with three different switching times

T1 = 30,50, and 100 (from top to bottom) for order schedule (k1 = 1,k2 = 2) (left panels) and order

schedule (k1 = 2,k2 = 1) (right panels) and infinite time horizon.

5.3. Non-constant boundaries482

Similar to the case of constant decision boundaries situation we can determine483

choice probabilities and choice response times for infinite and finite time horizons,484

the latter with allowing for a no-decision option with probability pN = 1− pA− pB.485

In addition, we can also implement another decision rule: When at a given deadline486

the accumulated evidence is larger than a criterion value θA(Tend) decide for A, when487

the accumulated evidence is smaller than a criterion value θB(Tend) decide for B. If488
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evidence at that time is between these criterion values choose A or B with probability489

0.5. That is,490

p+A,N := ∑
i:θA(Tend)≤xi∈SN

ZN,i +
1
2 ∑

i:xi∈SN ,θB(Tend)<xi<θA(Tend)

ZN,i,

p+B,N := ∑
i:θB(Tend)≥xi∈SN

ZN,i +
1
2 ∑

i:xi∈SN θB(Tend)<xi<θA(Tend)

ZN,i,

added to the choice probabilities pA and pB computed by the Eqs. 13 and 14. The491

constants θB(Tend)≤ 0≤ θA(Tend) may reflect last-minute decision making (if such is492

observed in measured data) or may be relevant for modeling decision processes with493

externally controlled stopping procedures.494

In contrast to the case of constant boundaries θA/B, where we relied on the shortcuts495

presented in Section 5.1, the implementation of the model for non-constant decision496

boundaries is directly based on the recursion in Eq. 11 for the probability vectors Zn497

defined in Eq. 10. Choice probabilities, mean choice response times, and conditional498

cumulative distribution functions (cdfs) of exit times are determined from Eqs. 12499

to 15. With non-constant decision boundaries, the state space shrinks according to500

the specific boundary assumed for the process which is reflected in the size of state501

probability vector.502

There is one drawback of our discretization scheme if it comes to the approxima-503

tion of conditional probability density functions (pdfs) for exit times using the formulas504

ftA(tn)≈ pA,n/p̂A (if p̂A > 0), ftB(tn)≈ pB,n/p̂B (if p̂B > 0), (20)

in the case of non-constant decision boundaries: Each time one of the threshold func-505

tions θ(A/B)(t) crosses a spatial grid value xi during a time interval (tn−1, tn], the state506

space shrinks at tn, creating at least one additional absorbing state at tn, and an addi-507

tional entry of the probability vector Z̃n enters the summation for determining pA/B,n508

in Eq. 12. This leads to relatively large, visible spikes and oscillations in the graphical509

display of approximate pdfs.510

To reduce the observed oscillations in the time series of exit probabilities pA,n and511

pB,n, we have implemented an ad hoc modification of the exit boundary rule. The new512
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formula for pA,n we use is513

pA,n = ∑
i:xi>θA(tn)

zn,i +
xi∗+1−θA(tn)

∆
zn,i∗ , (21)

where i∗ is the largest integer i such that xi ≤ θA(tn). The rationale of this modification

is to already assign a significant part of the probability of the state closest to the exit

boundary to the current exit probability. To keep the probability balance, afterwards

the value of zn,i∗ is reduced to

zn,i∗ :=
θA(tn)− xi∗

∆
zn,i∗.

The decision boundary for B is treated similarly. This should reduce the spikes and os-514

cillations in the time series of exit probabilities. We refer to the Section 6 for numerical515

evidence, and further postprocessing steps.516

5.4. Numerical examples: Non-constant boundaries517

In the following we consider only situations in which the decision maker makes the518

decision within the given time frame Tend = 500 by assuming θA(Tend) = θB(Tend) =519

0. Consequently, pN = 0. As for the examples with constant boundary we fix the520

following parameters: ξ = 1, ∆ = 1
4 , σ = 1, θA = −θB = 15. The process always521

starts at the neutral position X(0) = 0 between choice alternatives A and B. We show522

the predictions of the model with non-constant boundaries according to Eq. 3 with523

parameter values a = 0,0.1,0.5,1,2,3 (cf. Figure 2) and predictions according to Eq.524

4 with parameter values b = 1,0.8,0.6,0.4,0.2,0 (cf. Figure 3). For comparison we525

use two δ parameter value sets from the previous examples. Figures 8 and 9 show526

choice probabilities and mean choice response times with δ1 = 0.1,δ2 = 0.01 and527

order schedule k1 = 2,k2 = 1 as a function of the switching time T1 for the above a and528

b parameter values, respectively. The color code is the same as for Figures 2 and 3. For529

both types of non-constant decision boundaries the choice probabilities for A decrease530

as a increases (b decreases); likewise, the predicted mean response times decrease as531

a increases (b decreases). The cases a = 0 in Figure 8 and b = 1 in Figure 9 should be532
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Figure 8: Choice probabilities and mean choice response times for options A (left) and B (right) as a

function of the switching time T1 with δ1 = 0.1,δ2 = 0.01 and order schedule k1 = 2,k2 = 1 for non-

constant boundaries with a = 0,0.1,0.5,1,2,3. The probability for choosing A decreases as a increases;

the mean choice response time for A and B decreases as a increases.

compared also with Figures 5, right panels, for constant boundaries with infinite and533

finite time horizon.534

Figures 10 and 11 show the predicted choice probabilities and mean choice re-535

sponse times with δ1 = −0.1,δ2 = 0.03 and order schedule k1 = 1,k2 = 2 as a func-536

tion of the switching time T1 for the above a and b parameter values, respectively. The537

color code is the same as for Figures 2 and 3. For both non-constant boundary models538

the choice probabilities change little as a function of a respectively b. The predicted539

mean response times, however, decrease as a increases (b decreases). Compare the540
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Figure 9: Choice probabilities and mean choice response times for options A (left) and B (right) as

a function of the switching time T1 with δ1 = 0.1,δ2 = 0.01 and order schedule k1 = 2,k2 = 1 for

non-constant boundaries with b = 1,0.8,0.6,0.4,0.2,0. The probability for choosing A decreases as a

decreases; the mean choice response time for A and B decreases as a decreases.
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Figure 10: Choice probabilities and mean choice response times for options A (left) and B (right) as

a function of the switching time T1 with δ1 = −0.1,δ2 = 0.03 and order schedule k1 = 1,k2 = 2 for

non-constant boundaries with a = 0,0.1,0.5,1,2,3. The probabilities are only slightly affected by a;

the mean choice response time for A and B decreases as a increases.

cases a = 0 in Figure 10 and b = 1 in Figure 11 also with Figures 6, right panels, for541

constant boundaries with infinite and finite time horizon.542

Figure 12 presents the probability density functions and cumulative density func-543

tions for δ1 = 0.1 and δ2 = 0.01 with three different switching times T1 = 30,50, and544

100 (from top to bottom) for order schedule (k1 = 1,k2 = 2) (left panels) and order545

schedule (k1 = 2,k2 = 1) (right panels) with finite time horizon Tend = 300 and non-546

constant boundaries θA(t) =−θB(t) = 15(300− t).547
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Figure 11: Choice probabilities and mean choice response times for options A (left) and B (right) as

a function of the switching time T1 with δ1 = −0.1,δ2 = 0.03 and order schedule k1 = 1,k2 = 2 for

non-constant boundaries with b = 1,0.8,0.6,0.4,0.2,0. The probability for choosing A decreases as a

decreases and then increases for larger T1; the mean choice response time for A and B decreases as a

decreases.
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Figure 12: Probability density functions and cumulative density functions for choossing options A

((red) lines) and B ((blue) dashed line) with δ1 = 0.1 and δ2 = 0.01 with three different switching times

T1 = 30,50, and 100 (from top to bottom) for order schedule (k1 = 1,k2 = 2) (left panels) and order

schedule (k1 = 2,k2 = 1) (right panels) with finite time horizon and non-constant boundary.

6. Approximation quality548

To demonstrate the convergence of our discrete approach to the continuous model549

we consider two numerical examples. We furthermore discuss the influence of the550

parameter ξ .551

The first example includes a single standard Wiener process (δ = γ = 0, σ = 1),552

finite time horizon Tend = 4, and constant decision boundaries: θA = 1.2, θB = 0.8.553

For this model, all quantities of interest can be expressed analytically (Borodin and554

Salminen, 2002), even though their evaluation still involves numerical effort (we have555

used the series representations for exit time pdfs from Sacerdote et al. (2014, Equation556

(6)) but conditioned on tA ≤ Tend resp. tB ≤ Tend to compute values for choice prob-557

abilities pA/B and mean choice response times E(tA/B) within double precision). The558

example shows that the Markov chain approximation delivers highly accurate approx-559
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Figure 13: Conditional pdfs for mean choice response times t̂A for a Wiener process with drift and

constant decision horizons for different spatial resolutions (A: binomial model ξ = 1, B: trinomial

model ξ = 1.3).

imations to the conditional pdfs for relatively small state space sizes Nθ (naturally, ∆560

is chosen such that the values θA/B are among the grid points, i.e., the grid matches the561

decision thresholds exactly). The approximations, shown for Nθ = 10,20,40,80,160,562

are slightly better when using the trinomial model (ξ = 1.3, Figure 13, B) than the bi-563

nomial model (ξ = 1, Figure 13, A) (see also Table 1). To avoid oscillations inherent564

to the binomial model, the time series pA/B,n, n = 1, . . . ,N, have been smoothed by565

simply averaging neighboring values (this explains the visible stair-casing effect for566

small Nθ which disappears in the trinomial case). Table 1 lists the deviation of the567

computed approximations p̂A/B and t̂A/B from the ”true” choice probabilities pA/B and568

mean choice response times E(tA/B) as a function of Nθ . The observed convergence569

is of order 2, i.e., doubling the value of Nθ results in an error reduction by roughly a570

factor 4. The errors in the trinomial case are smaller than in the binomial case (by a571

factor of about 3), at the cost of slightly increasing the number of discrete time steps.572

We conclude that already very rough discretizations with less than 50 discretization573

points deliver good fits to the continuous model. Further increasing Nθ is probably574

warranted only in special applications. Note, however, that very complicated models575

and rapidly changing decision horizons may necessitate larger Nθ , not so much for576

probabilities and expected choice response times but for probability density function.577
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ξ Nθ p̂A− pA p̂B− pB t̂A−E(tA) t̂B−E(tB)

10 0.000171111 0.000171111 0.001542179 0.001097739

20 0.000043095 0.000043096 0.000388195 0.000276308

1.3 40 0.000010794 0.000010794 0.000097214 0.000069194

80 0.000002700 0.000002700 0.000024314 0.000017306

160 0.000000675 0.000000675 0.000006079 0.000004327

10 0.000481003 0.000481004 0.004264672 0.003039619

20 0.000123197 0.000123197 0.001089836 0.000776705

1.0 40 0.000030984 0.000030984 0.000273938 0.000195225

80 0.000007757 0.000007757 0.000068577 0.000048872

160 0.000001940 0.000001940 0.000017150 0.000012222

Table 1: Error decay for choice probabilities and mean choice response times with respect to doubling

state space size Nθ .

The second example includes three stages with a fixed order schedule and time

schedule

0 < T1 = 40 < T2 = 70 < T3 = Tend = 100 (L = 3),

and parameters

δ1 = δ3 = 0.2, δ2 =−0.4, σl = 1, γl = 0, l = 1,2,3.

That is, the continuous model consists of three Wiener processes with drift rates 0.2

(favoring A) for the first 40 and last 30 time units, and drift rate −0.4 (more strongly

favoring B) for the second 30 time units. The decision horizon is given by

θA(t) =−θB(t) = 15(100− t),

i.e., the boundaries decay linearly towards Tend leading to pN = 0. Table 2 shows578

computed approximate values for choice probabilities p̂A and expected choice response579

times t̂A and t̂B as a function of the initial state size Nθ = 50 ·2−m, m = 0, . . . ,6. Note580

that this is equivalent to decreasing ∆ = 0.6 · 2−m. We utilized the trinomial model581
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(ξ = 1.3); the numerical results for the binomial model (ξ = 1, not shown here) are582

qualitatively the same.583

The values in the left half of Table 2 (computed without boundary modification)584

show that expected response times are overestimated, and converge monotonically585

with order one (i.e., more slowly than in the case of constant decision boundaries).586

The values shown in the right half of Table 2 are computed with the ad hoc boundary587

modification described earlier (Eq. 21) and the expected response times are underes-588

timated, and converge in an increasing fashion (the empirical order of convergence is589

also one, but the errors are much smaller in absolute value). This show that already for590

small state space sizes very good approximations can be computed if one uses the pro-591

posed boundary modification in Eq. 21, and that further improvements can be expected592

from incorporating extrapolation ideas.593

Boundary modification

without with

Nθ p̂A t̂A t̂B p̂A t̂A t̂B

50 0.602763 34.3505 58.7283 0.616360 33.1365 57.8138

100 0.607392 33.9082 58.3315 0.614780 33.2832 57.8468

200 0.609986 33.6782 58.1362 0.613827 33.3598 57.8862

400 0.611367 33.5628 58.0423 0.613332 33.4010 57.9145

800 0.612052 33.5058 57.9960 0.613049 33.4239 57.9312

1600 0.612403 33.4768 57.9728 0.612907 33.4355 57.9401

3200 0.612582 33.4621 57.9611 0.612836 33.4413 57.9447

Table 2: Convergence of choice probabilities and expected choice response times with respect to in-

creasing state space size Nθ .

Figure 14 shows plots of the obtained pdfs (first three rows) and pdfs (last row) for594

Nθ = 50,200,800 (from left to right). The first row shows the pdfs obtained without595

boundary modification, the second row the ones obtained with boundary modification596

according to Eq. 21. As can be seen, the application of the modified boundary rule597

38



greatly reduced oscillations but did not remove them completely. However, a sim-598

ple post-processing can be further applied to remedy these discretization artifacts, as599

shown in the third row. In order to produce these pdfs, we approximated the time series600

of the exit probabilities pA/B,n by a constant value in each time interval during which601

the size of the current state space Sn remained constant. These constant values were602

chosen such that the cumulative exit probability was preserved in each such interval. In603

a second step, to obtain more pleasant displays, this piecewise constant function was in604

turn approximated by a non-negative piecewise linear function. The cdfs, shown in the605

fourth row of Figure 14 do not vary too much with or without boundary modification606

or post-processing, and cannot be distinguished for m≥ 3. This is important for appli-607

cations because parameters are often estimated from cdfs (or quantiles or percentiles)608

rather than from pdfs.609

7. Conclusion610

The multi-stage decision aka multiattribute attention switching (MAAS) model611

assumes that attributes are processed sequentially and each attribute process is char-612

acterized by a separate stochastic sequential sampling process. It extends single-stage613

models which assume that all information is collapsed prior to the accumulation pro-614

cess regardless of whether it stems from a single source or from different sources. By615

defining attributes in this context very broadly, ranging from dimensions of the stimuli616

to experimental designs such as information given piecewise, time-out period, or cues,617

the model presented here provides a framework for many applications. Moreover, the618

model is extended here to incorporate various time horizon and boundary conditions.619

Absorption in the end at one decision boundary and initiating a response for A or B im-620

plicitly assumes an infinite time horizon. In real life and, in particular, in experimental621

situation a finite time horizon for the decision process is more realistic. Time limits622

are often installed either explicitly, for instance, by invoking time constraints as experi-623

mental conditions and trials not meeting the deadline are not counted, or implicitly, for624

instance, by removing trials with longer response times from the data set afterwards.625
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The multi-stage decision model allows us to account for non-decision situations by626

defining a non-decision probability. Furthermore, decision boundaries are almost al-627

ways assumed to be constant throughout the decision process. However, research in628

neuroscience suggests that with elapsed time the boundaries might be collapsing (e.g.629

Churchland et al., 2008; Ditterich, 2006). Note that Hawkins et al. (2015) concluded630

that it is not necessary to assume collapsing boundaries in perceptual decision making631

because the diffusion model with constant boundaries performs as well as several al-632

ternatives with non-constant boundaries. This might be true for choice probabilities.633

However, it seems to depend very much on the specific parameters. In the multi-stage634

model behavior depends, again, on the absolute drift rate value for the attribute con-635

sidered first and second. If more evidence is provided later in the process (the attribute636

considered second) the non-constant boundaries have a profound effect on the choice637

probabilities as well. Furthermore, constant boundaries might exist for relatively fast638

responses, for instance, in perception. But the situation will be different for preferen-639

tial choice situations in which the decision maker contemplates about the alternatives640

longer and eventually wants to come to an end. Or a deadline is announced during the641

deliberation process of which the decision maker was not aware of. Here we showed642

that non-constant boundaries, also related to experimental designs, can be invoked in643

the model framework.644

One reviewer was concerned with model identifiability. Apparently most choice re-645

sponse time models do not use time varying decision bounds because the distributions646

can be perfectly mimicked with a fixed decision bound and other varying parameters.647

This seems in line with Hawkins et al. (2015). The primary pursue of the present paper648

is not on the model’s parameter identification but rather to provide a comprehensive649

mathematical model (framework) that can be reduced to adapt to particular modelling650

tasks if a practical situation provides information on what aspects to concentrate on.651

Such reduced models would then be used for identification tasks. Furthermore, pursu-652

ing sensitivity analysis can enable us to select those parameters which have measurable653

impact on observable quantities. But this will be future work. Furthermore, varying654
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parameters to mimic non-constant boundaries leads to the same problem. Those pa-655

rameters might not even be related to experimental condition such as time constraints656

or psychological concepts such as satisficing but merely improve the quantitative fit.657

Regardless of what the conditions are, the multi-stage model predicts a very com-658

plex but consistent pattern of choice probability and mean choice response times. A659

large range of different parameter values showed the following patterns: If two at-660

tributes both favor alternative A, and the first attribute that is considered provides more661

evidence for choosing A than the second (δ1 > δ2), then the model predicts always662

shorter response times for the more frequently chosen alternative A, regardless of the663

assumed underlying attention time distribution, the time horizon (infinite or finite), or664

boundary conditions (constant or non-constant). If the order of processing these at-665

tributes is reversed, i.e., the attribute that favors alternative A less is considered first666

(δ2 > δ1), then the model always predicts faster responses for the less frequently cho-667

sen alternative B, again regardless of the assumed underlying attention time distribu-668

tion, time horizon, or boundary condition.7 As Jones and Dzhafarov (2014) pointed669

out, the predictions of various sequential sampling models rest upon the specific as-670

sumptions made about the assumed probability distributions. Notably, the model pre-671

sented here is falsifiable without assuming specific distributions. Rather than relying672

on statistical assumptions to ensure an observed response pattern we rely on assump-673

tions about cognitive processes such as attention switching and salience.674

7A formal proof is not provided but we are convinced that the statement holds for all parameters

values.
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Figure 14: Approximations to pdfs and cdfs of choice response times. The columns show results for

different state space magnitudes Nθ . The first three rows show pdfs obtained without and with boundary

modification and after post-processing, respectively. The last row shows the cdfs which are not signifi-

cantly affected by neither the state space magnitude nor by the boundary treatment or post-processing.
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