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Chapter 1

Introduction

Causality is a crucial concept for understanding the interactions of objects, from mac-
roscopic climate processes down to microscopic molecule behavior. Do anthropogenic
CO4 emissions really have a causal influence on certain environmental catastrophes,
such as the European heat wave in 2003 or the Australian bush fires in 20197 Does
smoking really cause lung cancer, or is the correlation driven by another common
influence, such as a certain gene sequence that causes both lung cancer and an inclin-
ation towards smoking? There are many problems which require causal knowledge.
This information, however, cannot always be obtained by experiments.

There are not only different mathematical definitions of causality, in fact, there is even
a philosophical debate about what causality is that has been going on for centuries
now. Notable contributions have been made by the famous philosophers Hume and
Kant; and to this day there is a scientific debate on whether the conceptions of the
two philosophers differ [PF08]. Thus, it is not surprising that even today there is no
common definition.

Before the era of big data, causal insights could only be obtained via controlled exper-
iments, e.g. to find out whether a certain treatment actually has a positive effect on
the disease. However, controlled experiments are not always feasible or ethical. For
example, it is not possible to perform an experiment on whether the bush fires would
not have happened without human C'O, emissions.

Apart from experiments that cannot possibly be carried out, there are some which
would be unethical. For example, to ascertain whether there is a causal effect from
smoking to lung cancer, one would have to do a randomized controlled trial (RCT)
where participants are selected randomly for a treatment and a control group. Every-
body in the treatment group would be forced to smoke, while the control group is
forbidden from doing so. If the lung cancer rate in the treatment group were now
significantly higher than in the control group, then one would infer a causal effect
from smoking to lung cancer.

These two examples are situations where the desired knowledge can be obtained in a
purely data-driven manner from just observational data.

The lack of causal knowledge in science affects us in our daily lives. Just think of
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the plethora of publications in recent years dispensing contradictory advice on what
is healthy for us and what is not. Some claim that even tiny bits of alcohol are
unhealthy, others assert that a glass of red wine a day actually helps stave off heart
disease. Fillmore et al. point out how selection bias causes this discrepancy [FKST06].

Data is the most valuable currency of the 21st century. Huge datasets are created
and analyzed. Unfortunately, ‘not all data are created equal’ [BP16] which presents
many challenges: data is collected under different experimental conditions, with a non-
random sampling procedure, or with different underlying populations. Even the fam-
ous MNIST dataset is a carefully shuffled version of the original NIST dataset, which
includes data collected from various writers under different conditions [ABGLP19]. A
lot of contemporary research in machine learning and data science tries to ignore and
get rid of this multi-domain setting, failing to realize its potential. Causality provides
the language to formalize it, allowing researchers to exploit this knowledge.

Causal knowledge is especially important as it is one of the few things that still
seperates artificial from human and animal intelligence. The latter learn through ma-
nipulating, transforming, and interacting with their environment [Sch19], while the
former is not yet able to use the knowledge of interventions. For example, algorithms
do object recognition from pixels, while children interact with the objects and are
consequently much better and faster in recognizing them.

One could divide the development of causal inference into three periods. The first has
been shaped by the potential outcome framework of Rubin [Rub74], as well as the
use of Wiener-Granger causality in linear settings in econometrics, and stretches until
the late 1990s. During this time, the research focused on formalizing the experiments
and obtaining knowledge from observational data in very restrictive cases. One of
the central difficulties was the phenomenon known as interference, where the common
assumption that the potential outcomes of a particular person/unit is unaffected by
the treatment of others does not hold. However, algorithms have been developed that
can handle difficulties such as these [HH08, AS17, AEI18, BFT19, RR83a, Imb03].

In the second period, Pearl [Pea09] developed a framework that not only defines caus-
ality via interventions, but also creates a formal language that complements the tra-
ditional concept of conditional probabilities in stochastics. Thanks to this structure,
causal inference began to play a more important role in data-driven sciences, because
many existing problems (e.g. selection bias and multi-domain setting) were rigorously
formalized. Pearl introduced the so-called causal hierarchy, a central concept that
visualizes the different aspects of causality (see Figure 1.1).

In the third period, which started only a few years ago, the connection of causality
and machine learning was built and exploited by Scholkopf and Peters amongst others
[PJS17]. They used the idea of independence of mechanisms as the key to causality
and created the base for many applications of causality in machine learning and data
science [SJPZ11].

Most of the theory in causal inference treats the i.i.d. case, where the model is
not time-dependent and the samples of the data are assumed to be independent and
identically distributed. In this thesis, however, we present significant advancements for
both random and deterministic dynamical systems. We will consider continuous-time
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Level Typical Typical Questions Examples
(Symbol) Activity
Association Seeing What is? What does a symptom
P(y|z) How would seeing X | tell me about a disease?
change my belief in Y? | What does a survey tell
us about the election res-
ults?
Intervention Doing What if? What if I take aspirin,
P(y|do(x), 2) What if I do X7 will my headache be
cured? What if we ban
cigarettes?
Counterfactuals | Imagining, | Why? Was it the aspirin that
P(y:|2',y") retro- Was it X that caused | stopped my headache?
specting Y? Would Kennedy be alive
What if T had acted had Oswald not shot him?
differently?

Table 1.1: Pearl’s hierarchy of causality [Peal9]

dynamical systems with evolutions given by ordinary or stochastic differential equa-
tions. The dynamics of the discrete-time systems are given iteratively by a prescribed
function, which is much easier to handle for standard causal inference theory.

We will see that the definition of causal relationships in the continuous-time case differs
significantly from Pearl’s framework; there are not many results treating continuous-
time dynamical systems yet. The approach of Wiener and Granger [Wie56, Gra69] for
discrete-time systems has been widely adopted in its easiest form of two variables and
linear relationships, but can also be extended to the non-linear and multivariate case
[PJS17]. Wiener and Granger define causality as a form of information contribution
of the past of one variable to the present state of another variable. This information
flow can be measured with information theoretic methods like conditional mutual
information.

Contrary to Pearl’s framework, the notion of local independence, which is closely
related to Granger causality, works for continuous-time dynamical systems [Sch70].
Similar to the other approaches, local independence defines causality as some kind of
dependency of variables. However, there are others who argue that causation in the
real world does not have the form of independence of variables but of mechanisms

[Daw10, PJS17, ABGLP19).

We will see that causal models can be placed in between statistical and physical
models, as they contain more information than statistical ones (causation instead of
correlation), but less information than physical models (which usually contain inform-
ation about the dynamics of systems).

Causal inference has become a very active field of research. Many achievements have
only been made during the past years, such that there is no good overview of the
different notions of causality that have been developed; as well as the methods and
algorithms that use them. This work does not claim to be complete in that regard, but
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aims to give a comprehensive introduction to the topic of causal inference. Especially
for people who have no experience in the field, it is really hard not to lose focus due
to the variety of different approaches that all claim to use causality. By introducing
and evaluating their definitions, frameworks, and algorithms, we hope to facilitate the
entry to the field of causality for researchers of many different fields.

In Chapter 2, we provide four different definitions of causality. Based on these notions
we analyze algorithms that search for causal relationships in i.i.d. data and dynamical
systems (Chapters 3 and 4). Causal inference methods still struggle with time series
data and only in the last three years there has been significant progress in transfer-
ring the knowledge from the non-temporal to the temporal setting. Therefore, it is
especially interesting to survey the progress that has been made.

Apart from searching for the causal structure of data, there are other possible tools of
causal inference, such as the estimation of the strengths of causal effects we discuss in
Chapter 5. Furthermore, we analyze the connection of causality and machine learning.
The goal is to cluster the work that has been done to relate the two concepts into four
concise groups which can be related to different aspects of causal inference (Chapter
6).

In Chapter 7, we take a step back and review the possibilities that causal inference
creates for the analysis of dynamical systems as well as non-temporal models. Fur-
thermore, we talk about the different ways in which causality can bring progress to
data science and research using dynamical systems.



Chapter 2

Defining Causality

We will discuss four of the most-applied notions of causality. As mentioned in the
introduction, defining causality is a difficult topic and there is not one solution that
is perfect for every situation and every kind of data. In Section 2.1, we introduce
Pearl’s framework of causality for i.i.d. data [Pea09], which can also be applied for
discrete-time dynamical systems. However, its graphical approach does not work for
uncountably many random variables, so it cannot be used for continuous-time systems
(treating every time step of the dynamical system as seperate random variable). Other
disadvantages are its various assumptions, which are often not satisfied in applications
[ARGT16, RW99, Grel0, Daw10, MN19].

The second notion we discuss in Section 2.2 is based on the same invariance assumption
of causal relationships that Pearl’s causality uses [PBM16]. In contrast with graphical
causality, it is explicitly meant to be applied in practical situations and can be used for
many machine learning tasks [ABGLP19]. We name this approach invariance-based
causality.

Wiener-Granger causality for time-series data uses different assumptions and is less
elaborate than graphical causality, but also quite practical. It has been widely adopted
in the case of linear relationships. We will see that the non-linear case is far more
difficult for the algorithms (Section 2.3).

Wiener and Granger assume that the dynamical systems are of stochastic nature.
However, many dynamical systems that are used in practice to simulate Earth system,
physical, or mechanical processes are of deterministic nature [SMY*12]. Therefore,
another approach has been developed for deterministic dynamical systems, which we
will refer to as topological causality, see Section 2.4.

2.1 Graphical Causality

The notion of causality which is discussed most in the current research and considered
to be the most advanced framework is Pearl’s graphical causality. Pearl defines causal
relationships with the help of interventions [Pea09]. To illustrate this concept, let us
begin with an example. Consider the room temperature and the reading of a thermo-
meter. If we turn on the heating or air conditioning to change the temperature (to
intervene on the temperature), then we can see that the thermometer shows a different
value than before. If now, we change the programming of our thermometer so that
it shows a specific value, for example 60 degrees Celsius, then we will observe that
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2.1. Graphical Causality

the room temperature does not automatically go up to 60 degrees Celsius. In fact, it
does not change at all (if we leave everything else as it is). Pearl would conclude that
there is a causal relationship from the room temperature to the value shown by the
thermometer, but not the other way around.

This example might seem trivial, but it shows how intuitive Pearl’s concept of causality
is.

Definition 2.1.1. Let X and Y be two random wvariables with a joint probability
distribution P. There is a causal influence from X to Y if and only if there is an
intervention on X that changes the distribution of Y.

The easiest way to represent the causal structure of a dataset is to use a directed
graph. We assume that cause precedes the effect, so that there are no cyclic effects. If
we want to say that X causally influences Y and not the other way around, we simply
write X — Y.

We will use several notations that might not be from standard graph theory, but which
lead to a better visualization. A graph G consists of the tuple G = (V| E) where V is a
set (of vertices or nodes) and £ V' x V is the set of edges. We will consider mostly
directed edges that are usually denoted as (X,Y) for vertices X,Y € V, but we also
have undirected edges {X, Y}, as well as bidirected edges that are denoted by the two
edges (X,Y) and (Y, X). To visualize the three types of edges, we will instead write
X->Y X—-Y and X &Y.

The vertices in V are, in general, random variables. We assume that there exists a
probability space on which the random variables are defined.

2.1.1 Bayesian Networks

Directed graphs have been used in statistics, especially in machine learning and AT for
a long time, particularly in Bayesian networks [Pea85]. They have been used without
explicitly stating (or ensuring) that the relationships in the network are causal; in
fact, this does not need to hold at all. To make sure that Bayesian networks really
show intuitive causal relationships, Pearl introduced causal Bayesian networks [Pea09].

We assume that the reader is familiar with the basic concepts of probability theory. If
not, Schum gives a good introduction to the field [Sch94]. Let us start with the joint
probability distribution P(Xj, ..., X;,) of an ordered set of variables {X7, ..., X,,}. We
use the chain rule to write

n
P(X1,...Xn) = [ [ P(Xil Xy, o0, Xi1). (2.1)
i=1
Assuming that X; depends only on a subset PA; c {X}, ..., X;_1}, we obtain
P(X1,..,X,) = [ [ P(Xi|PA,). (2.2)
i

This form considerably simplifies the joint probability distribution. PA; is the set of
the Markovian parents which are defined as following.
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2.1. Graphical Causality

(%)
(X))
()

Figure 2.1: This is an example for a Bayesian network.

Definition 2.1.2. Let V = (X3, ..., X},) be an ordered set of variables with the joint
probability distribution P. A set of variables PA; is called Markovian parents of X;

if PA; is a minimal set of predecessors of X; that renders X; independent of all its
other predecessors. It holds that P(X;|PA;) = P(X;| X1, ..., Xi—1).

Note that causal parents fulfill the criteria of Markovian parents, but Markovian
parents do not have to be causal. The definition depends on the variable ordering and
one can find (different) Markovian parents for any ordering of the variables, whereas
there is only one set of causal parents. A Bayesian network is a directed acyclic graph
(DAG) that corresponds to a certain set of Markovian parents. It can be seen as
carrier of conditional independence relations along the given ordering. For every set
of Markovian parents with respect to P, we can get Equation 2.2 with the help of the
chain rule. The joint probability distribution of the graph shown in Figure 2.1 can be
written as

P(X1)P(X2|X1)P(X3|X1)P(X4| X2, X3)P(X5|X4).

Given a Bayesian network, the structure of the variables might seem interpretable, but
without having any further knowledge, e.g. that the structure is temporal or causal,
it is not. In fact, the directions of the edges in the graph depend solely on the order
of the variables. As we can arbitrarily change this order, there is no explanation of
the structure. To clarify this point, one could construct the Bayesian network that is
shown in Figure 2.1 along the ordering { X5, X1, X3, X2, X4}; it would look completely
different. There is no intuitive understanding of why so different Bayesian networks
should arise from the same set of variables, only by changing the order of the variables.
What we need is a (unique) causal interpretation of the structure.

2.1.2 Causal Models

The reasons for making the step from normal to causal Bayesian networks are the
same as for the increasing popularity of causality in statistics and machine learning:
in contrast to correlations, causal relationships are explainable and unambiguous.
However, causal Bayesian networks are not easy to handle in practice, as they are based
on ‘slippery conditional probabilities’ as Pearl called them [Pea09]. The functional
approach of structural causal models (SCMs) works much better. They have been
used under the name of structural equation models (SEMs) in econometrics [Bol89]
and other fields [Wri21] for decades.



2.1. Graphical Causality

Definition 2.1.3. A structural causal model C := (S, Py) consists of a collection S
of structural assignments

Xj = fj(PAj,Nj), j = 1, ...,d, (23)

as well as a joint probability distribution Py over the mutually independent random
noise variables N;. The functions f; depend on a subset of variables, the parent sets,
and a noise variable and define the value of X;.

One could also define SCMs using endogenous and exogenous variables. The X; would
correspond to the endogenous and the N; to the exogenous variables. Note that the
model is deterministic if one has given certain values for all exogenous (unmeasured)
variables.

In the definition of causal Bayesian networks, we utilize Pearl’s do-operator which
formalizes interventions. For example, do(X := x) means that we fix the variable X
to the value x. In general, interventions just correspond to replacing one assignment
of the SCM by something different. A proper definition will be given in Section 2.1.4.

Definition 2.1.4. Let P be a probability distribution on a set V' of variables, and
let P, denote the distribution resulting from the intervention do(X := x) that sets
a subset X of variables to constants x. Denote by P, the set of all interventional
distributions Px ), X <V, including P, which represents no intervention. A DAG G
is said to be a causal Bayesian network compatible with P, if and only if the following
three conditions hold for every P x ;) € Py:

1. Pixz) admits the factorization of Equation 2.2 relative to G (P is said to be
Markov relative to G);

2. Pixg)(vi) =1 for all Vi € X whenever v; is consistent with X = x;

3. Pixa)(vi | PA;) = P(v; | PA;) for all V; ¢ X whenever PA; is consistent with
X =z

Assuming without loss of generality that X = (V4,...,Vi) c V, then, for 1 < i < k,
V; = v; is consistent with X = z if and only if x; = v;. In the same sense we need
PA,; to be consistent with X =z if X n PA; # .

Let us explain the above. The first point is necessary for the interventional distri-
butions to be well-defined, the second assures that the probability of a variable V; is
a point mass 0y, if we do the intervention do(X := x) and V; € X. The third is a
formalization of the concept of independence of mechanisms, which will be used sev-
eral times in this thesis. The assumption is that the distributions of variables remain
untouched by interventions on others.

To give an example of a causal Bayesian network, the graph in Figure 2.1 is one if and
only if all edges correspond to (direct) causal relationships.
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2.1. Graphical Causality

CRCIORICRIORS

Figure 2.2: The four different possibilities of DAGs mentioned in Definition 2.1.5.

2.1.3 Connecting Graph Theory and Probability Distributions

Before continuing with causality, we need some additional theorems to connect direc-
ted acyclic graphs with probability distributions. Note that the following definitions
are also valid for graphs without causal interpretation. An essential part of Pearl’s
theory of Bayesian networks and later causal inference is the so-called d-separation
[Pea88].

Definition 2.1.5. In a DAG G = (V, E), a path of nodes (X1, ..., Xp) between X and
X, is blocked by a set Z < 'V (not containing X1 or X, ), whenever there is a node Xy,
1 < k < m, such that one of the following two possibilities holds:

(l) X, € Z and either X 1 — Xp — Xk+1, X1 « Xp — Xk-+17
or Xp_1 < Xg < Xgq1;

(ii) neither Xy nor any of its descendants is in Z and Xy 1 — X — Xpi1.

Let A,B and Z be three disjoint subsets of vertices. A and B are called d-separated
by Z if every path between A and B is blocked by Z. We write

AlgB|Z (2.4)

To build up the connection between d-separation and conditional independence, we
need to assume that the distribution satisfies the Markov property and faithfulness.
With these two properties we have an equivalence of the two notions [Pea09].

Definition 2.1.6. Given a DAG G and a distribution P, the distribution is said to
satisfy

(i) the global Markov property with respect to G if for all disjoint vertex sets A, B,Z
AlgB|Z=ALlB|Z,

(ii) the local Markov property with respect to G if each wvariable is independent of
non-descendants given its parents, and

(iii) the Markov factorization property with respect to G if the joint distribution P
has a density p and

p(X1,... X H (X, | PAY). (2.5)

It can be shown that as long as P admits a density, all three notions are equivalent
[Lau96].
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2.1. Graphical Causality

Figure 2.3: Beuchet chair. Source: Peters, Elements of Causal Inference [PJS17]

Example 2.1.7. In Figure 2.1, a distribution Px satisfies (i) and (i) if

X1 L Xy | Xo, X3,
Xo 1L X3 | X,
X1 1L X5 | Xy,
Xo 1L X5 | Xy,
X3 1L X5 | Xy,

and (i) if
P(X1, X5, X3, Xy, X5) = P(X1)P(X2|X1) P(X3]X1) P(X4| X2, X3) P(X5|Xy).
The mathematical definition of faithfulness is the following.

Definition 2.1.8. A distribution P is called faithful to a DAG G if, for disjoint vertex
sets A,B,Z,
ALB|Z=AlgB|Z (2.6)

Note that the concept is more general in reality. Let us visualize faithfulness with an
example, where it is used in its standard form, where null events, i.e. events of zero
measure, are not faithful with respect to the corresponding probability distribution.

The Beuchet chair (Figure 2.3) has one part that is detached from the rest and pushed
a bit to the side, so that it ‘flies’ in the air. From almost every angle one is able to
see both pieces of the chair. However, there are two very specific angles from which
one might think that the chair is whole and the pieces are in reality attached to each
other. These angles are ‘not faithful’ to reality. All other angles are faithful because
we can see the true object. Mathematically speaking we would have a binary random
variable X, indicating with X = 1 that the chair is whole and with X = 0 that it is

12



2.1. Graphical Causality

Figure 2.4: The DAG G of Example 2.1.9.

not. The space on which X is defined is the interval [0, 27| with Lebesgue measure.
We have that X (a) = 0 for almost every « € [0, 27], i.e. P(X =0) = 1. We conclude
that X =1 is not faithful.

In the next example, faithfulness is used in the form that we need in this thesis.

Example 2.1.9. Let Nx, Ny, Nz be mutually independent, standard normal distrib-
uted variables. Let us consider the SCM

X := Ny,
Y :=aX + Ny, (2.7)
Z :=cX +bY + Ny,

which leads to the DAG shown in Figure 2.4. 1t is easy to see, that X 1l Zifa-b+c = 0.
Hence, in this case the distribution is not faithful to the DAG G.

Having established the equivalence of d-separation in graphs and conditional inde-
penence of probability distributions [Pea09], we want to go back to Definition 2.1.5
(73). Conditioning on an X that fulfills these requirements creates a dependency
between two (formerly independent) variables X7 and X,,. This effect is known under
the name of Berkson’s paradox, which is an example for selection bias [Ber46].

Berkson’s paradox appears in reality mostly in variations of the following situation.
Members of a population can have two positive characteristics, but it seems as if the
traits are anticorrelated, i.e. if people have trait a, they are less likely to have b as
well. The reason behind this is not that a and b are indeed dependent, but rather that
the people we observe do not form a representative sample of the general population.
The following example sheds some light on the question "Why are handsome men such
jerks?” [Ell15, PJS17]. We will see that one reason for thinking that handsome men
are less friendly (and vice versa) is that the love-seeker’s dating pool consists only of
men who are not in relationships.

Example 2.1.10. Assume that if a man is in a relationship (R = 1) is only determined
by whether he is handsome (H = 1) and friendly (F' = 1). Further let us assume that
the SCM
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2.1. Graphical Causality

H := Ng,
F .= NF, (28)
R := min(H, F) & Ng,

describes the setting well, where Ny, Np ~ Ber(0.5), Ng ~ Ber(0.1), and @ denotes
the addition modulo two. All three noise variables are mutually independent, which
implies that being handsome has nothing to do with being friendly. The corresponding

DAG is the following.

Assuming that the dating pool of a woman only consists of men who are not in
relationships (R = 0), she observes that men in her dating pool are less likely to be
friendly when they are handsome and vice versa. In mathematical terms, conditioning
on R = 0 lets the variables be anti-correlated.

Structures of the form X — Z « Y are called v-structures. They do not only lead
to counter-intuitive situations in statistics, but will also play a crucial role in learning
causal structures. Unfortunately, we cannot find a unique DAG for every dataset, but
only an equivalence class of graphs.

Definition 2.1.11. Let M(G) denote the set of Markovian distributions with respect
to G:

M(G) := {P: P satisfies the global Markov property with respect to G}

We say that two DAGs G1 and Go are Markov equivalent if M(G1) = M(Gz). The
Markov equivalence class of a DAG G is the set of all DAGs that are Markov equivalent
to G.

It follows directly from the definition that two DAGs are Markov equivalent if and
only if they satisfy the same set of d-separations, i.e. if they entail the same set of con-
ditional independencies. Verma and Pearl [PV91] provide us with a characterization
of Markov equivalence:

Lemma 2.1.12. Two DAGs G1 and Gy are Markov equivalent if and only if they have
the same skeleton and the same v-structures.

The skeleton of a directed graph can be obtained by taking its nodes and an undirected
edge between every two nodes that are adjacent in the directed graph. The Markov
equivalence class can be described by a completed partially DAG (CPDAG). This
class of graphs additionally includes bidirected edges. A bidirected edge indicates
that there exist DAGs in the Markov equivalence class that have the edge oriented in
either direction.
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2.1. Graphical Causality

2.1.4 Intervention Calculus

The key to finding causal relationships in Pearl’s notion of causality are interventions:
X causally influences Y if and only if intervening on X changes Y’s distribution. To
define interventions we use Pearl’s do-operator.

Definition 2.1.13. Consider an SCM C = (S, Py) and its entailed distribution P$.
There are two types of interventions on Xy that we consider in this work: stochastic
and atomic interventions. Either

Xy, == Ni,
or X := x,

where Ny is some random variable following a certain probability distribution and
x € R. Hence, we replace the original assignment with a new one. We call the
entailed distribution of the new SCM C an intervention distribution, denoted by

¢ . pCdo(Xp:=Ny)
PX —-. PX 5

or P§ =: P)C(;dO(X"’::x).

There are more general ways to define interventions, but this is sufficient for our needs.
An intervention breaks all the links to the parent nodes as these do not appear in the
structural equation any longer. Intervening on a variable makes it possible to isolate
the node. Then, we can see its effect on other variables and whether there are parents
that actually influence it.

Example 2.1.14. Suppose we have three binary variables where R = 1 means rain,
S = 1 means the sprinkler is running, and L = 1 means the lawn is wet. Intervening
on L = 1 by pouring a bucket of water over the lawn disconnects the node from the
influence of its parents. It does not matter any more if it is raining or if the sprinkler
is turned on, because neither can change (or influence) the status of the lawn, as it is
wet anyway. The two graphs are the following.

OWS6 OBNO
@) @

(a) The original DAG (b) The DAG after the intervention

There is an important difference between conditioning on a term with and without
the do-operator. We continue with the example above. Let us assume that in half of
the cases rain is responsible for the wet lawn. We have P(R = 1| L = 1) = 0.5 and
P(L=1|R=1)=1. If we now condition on the do-operator, the second probability
does not change and P(L = 1| do(R := 1)) = 1. Even if we actually make it rain
instead of just observing it, the lawn is going to be wet. The first probability, on the
other hand, is different than with normal conditioning. An intervention on L does not
affect R at all, so that P(R =1|do(L:=1)) = P(R=1).
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2.1. Graphical Causality

An important observation regarding interventions in SCMs is that intervening on one
variable does not affect the distributions of the others. This is consistent with the
definition of causal Bayesian networks, where this independence of mechanisms is even
a requirement. Let C be the SCM that is constructed from C by intervening on some
variables, but not on X;. To facilitate the notion, write pa(j) := PA;. We have

pC(Xj | Xpa(j)) = pC(Xj | Xpa(j))' (2'9)

Pearl deduced therefrom a formula that he called truncated factorization [Pea93]. It
allows us to compute interventions without actually having interventional data. The
concept of establishing whether we can identify a certain intervention with observa-
tional data is called identifiability.

Definition 2.1.15. Let X and Y be two variables and C an SCM. An intervention
distribution PCdo(X:=) (y) is called identifiable if it can be computed from the obser-
vational distribution and the graph structure.

This definition is sufficient for most of our needs. However, one can define the concept
in a more general way, which has also been done by Pearl.

Definition 2.1.16. Let M be a causal model (e.g. an SCM) and Q(M) be any com-
putable quantity. We say that Q) is identifiable in a class M of models, if for all pairs
of models My, Ms € M

Pry = Puy = Q(M) = Q(Ma). (2.10)

Consider the structural causal model C and let the computable quantity Q(C) be the
intervention distribution PS4(X:=2) (3} Let M be the class of models that induce
the same causal graph as C and positive distributions on the observed variables. For
My, My € M it holds that PMido(X:=2)(y) = pM2ido(X:=2) (1)) Hence, Q(C) can be
computed uniquely and the intervention distribution is identifiable.

Let us go back to the truncated factorization formula. Consider an SCM C with
density p and assignments

Xj = fj(Xpa(j)aNj)v ] = 1,...,Cl.

Let C be the SCM that evolves from C after the intervention do(X}, := Ni). Let p be
its density. The truncated factorization formula follows from the Markov assumption
and the property that an intervention on one of the variables does not affect the others.

pC;do(Xk:=Nk)(x1’ ...,.Td) _ HpC;dO(Xk:=Nk)(xj | xpa(j)) _pC;do(Xk:=Nk)(xk)
j#k

= [ [ 75 | 2pap)Blan). (2.11)
Jj#k

For atomic interventions, we have

. C . . .f =
pCidoX=a) (g, ) = [LjenP™ (5 [ pagy)) i .a’ (2.12)
0 otherwise.
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2.1. Graphical Causality

The Equations (2.11) and (2.12) give us a method to calculate interventions without
actually having interventional data. However, they are not easy to use and there is
a more practical alternative: the do-calculus [Pea09]. It consists of three rules that
are complete in a sense that all identifiable interventions can be computed with them
[SP06, HVO06]. Here, the term computation refers to writing out the interventional
distribution in terms of standard probability theory.

Theorem 2.1.17. Let G be a graph and let X, Y,Z, and W be disjoint subsets of
vertices. The three rules of do-calculus are the following:

(i) Consider a graph in which incoming edges in X are removed. If Y and Z are
d-separated by X and W, then

C;do(X:zw)( pC;do(stw)(

p ylzw) = Y| 2).
(ii) Consider a graph in which incoming edges in X and outgoing edges from Z are

removed. If Y and Z are d-separated by X and W, then

C;do(X:::z;,Z::z)( pC;do(X::w)(

p y|w) = Y|z w).

(iii) Consider a graph in which incoming edges in X and in Z(W) have been removed.
Z(W) c Z is the subset of nodes that are not ancestors of any node in W in a
graph that is obtained from G after removing all edges into X. If Y and Z are
d-separated by X and W, then

C;do(X::a:,Z::z)( pC;do(X::w)(

p Y| w) = y| w).

With the help of these three rules, we can prove two important formulas: the back-door
and the front-door adjustment.

Definition 2.1.18. Let X,Y and Z be three disjoint subsets of vertices. Z is said to
satisfy the

(a) back-door criterion relative to (X,Y) if

(i) no node in Z is a descendant of any node in X; and
(ii) Z blocks all the paths between nodes in X and Y that contain an edge into
a node in X.

(b) the front-door criterion relative to (X,Y) if

(i) Z intercepts all directed paths from nodes in X to nodes in Y;
(ii) there is no back-door path from nodes in X to nodes in Z; and

(iii) all back-door paths from nodes in Z to nodes in Y are blocked by nodes in
X.

We define a back-door path as a path from node X to node Y, which is not the edge
(X,Y) itself and which ends with a directed edge into Y.
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2.1. Graphical Causality

Theorem 2.1.19. (a) If a set of variables Z satisfies the back-door criterion relative
to (X,Y), then the causal effect of X on Y is identifiable and is given by the
formula

P(Y | do(X := 2)) = ), P(Y | ,2) P(2). (2.13)

(b) If a set of variables Z satisfies the front-door criterion relative to (X,Y) and if
P(X,Z) > 0, then the causal effect of X on Y is identifiable and is given by the
formula

P(Y |2) =) P(z| )Y P(Y | o,2)P(Z). (2.14)
z z

The back-door adjustment can be proved using the more general second rule in The-
orem 2.1.17. First write P(Y | do(X)) = >, P(Y | do(X),z)P(z). In order to apply
the second rule of Pearl, we redefine Z := X and W := Z. The proof of the front-door
adjustment is not much harder and can be found in [JV18].

Example 2.1.20. Consider the pair (X,Y) in the following two graphs. We want to
calculate P(Y | do(X)).

AN
G080 )

(a) DAG G, (b) DAG G,

There are actually two possibilities: we can use the back-door and the front-door
adjustment. The node W satisfies the back-door criterion in both G; and G, as it
blocks all back-door paths from X to Y. The front-door criterion is slightly more
complicated, but it is fairly easy to see that in G, it is satisfied by Z. Z obviously
intercepts all directed paths from X to Y, there are no back-door paths from X to Z,
and the back-door path from Z to Y is blocked by X.

Trying to use the front-door criterion in Go shows us that Pearl’s conditions in Defini-
tion 2.1.18 (b) are too restrictive. There are some back-door paths from Z to Y which
do not have to be blocked by nodes in X because they are blocked anyway by colliders.
This is actually the case in Go. Therefore, even though it does not, strictly speaking,
fulfill the conditions, Z is still enough to apply the front-door adjustment.

We will now talk about algorithms that learn causal structures. Unfortunately, the
algorithms are only able to learn Markov equivalence classes and they thus cannot
distinguish two graphs of the same Markov equivalence class. Given a probability
distribution P which is Markovian and faithful with respect to a DAG G, the Markov
equivalence class of G is identifiable, while G itself is not. Only additional domain
knowledge might help with finding the true underlying graph.
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2.2. Invariance-Based Causality

The good news is that there are several types of models for which it is easier to find
identifiability statements for individual graphs. However, these model classes are quite
restrictive, such as additive noise models (ANMs) of the form X := f;(PA;)+N; with
nonlinear f; and linear Gaussian models with equal error variance [PMJS14, PJS17].

2.1.5 Critique

Confounding variables are one of the main difficulties in causal inference applications.
Cole et al. give an example of a medical study where confounders lead to false conclu-
sions of whether a treatment effect is mediated or not [CH02]. However, the problem
with confounders goes beyond the practical problem of finding causal relationships in
models with (hidden) confounding variables. In fact, there is a quite philosophical
debate on whether it makes sense to make causal conclusions in a way that Pearl pro-
poses, knowing that there are quite likely millions of (possibly very small) potential
confounders in real-world applications, which can never be included in the analysis
[RW99].

Apart from that, there is a lively ongoing discussion between followers of Rubin’s
potential outcome framework and Pearl’s graphical causality on whether Pearl’s ap-
proach is useful or not. All arguments are wrapped up in the recent paper of Imbens
[Imb19]. He also argues in favor of the potential outcome framework, as it has been
widely adopted in fields like econometrics. According to him, graphical causality still
needs to find its way into the mainstream of statistics and data science.

Maclaren et al. criticize the definition of identifiability of Pearl which is used as ‘can be
estimated from data’ [MN19]. Instead, they define identifiability in a more general way
and analyze it with methods of algebra and category theory. Essentially, identifiability
is equivalent to the injectivity of a certain function (see Definition 2.1.16) and can be
seen as an inverse problem. They argue that the problem is ill-posed because it does
not fulfill the conditions of Hadamard [Had02] that are commonly thought of as the
basis for well-posed inverse problems in statistics. Maclaren et al. claim that what
they call estimability is equivalent to the continuity of the inverse of the function, so
that it is a different concept. They conclude that identifiability is widely misused in
practice. Note that in this work we also used identifiability in the sense of Pearl.
Greenland argues that more realism is needed when thinking about the possibilities of
causal inference [Grel0]. He stresses the amount of hypotheses needed to do inference
and to find causal structures. There will always be many confounders, measurement
errors, and few actual independences. Dawid criticizes Pearl’s assumptions as too
strong [Daw10]. He concentrates on the connection of conditional independence and
what he calls probabilistic causality and argues that it is unlikely to be fully true.
Furthermore, he says that invariance of mechanisms, a central assumption in graphical
causality, will not hold across all regimes. Instead, he proposes another notion of
causality. It is not as elaborate, but uses fewer assumptions.

2.2 Invariance-Based Causality
We will follow the approach that was first developed by Schélkopf et al. [SJPZ11] and

extended by Peters et al. [PBM16] for the linear case as well as by Heinze-Deml et al.
[HDMP18] for non-linear models. Another line of work has been started by Zhang et

19



2.2. Invariance-Based Causality

al. [ZHZ717] who further generalize the approach of Peters et al. We will see whether
or not it is able to give new insights to causal inference.

Let X = (Xj,..,X,) be the multivariate predictor, ¥ the target variable, E the
environmental variables, and let us assume that we are given an SCM over (Y, X, E).
Environmental variables are the variables that are neither descendants nor parents
of Y in the causal graph and are allowed to be non-random. Note that conditional
independence relations can be generalized to non-random variables. Let S* c {1, ..., p}
be the indices of X that correspond to the causal parents PAy of Y. We can write
the assignment of the SCM as

Y = f(Xgx) + e (2.15)

The definition of environmental variables and the Markov property imply that

Y ILE| Xgs. (2.16)

Our goal is to find the set 5™, which we will achieve by exploiting the above relation.
Assuming to be able to test for the null hypothesis

Hys: Y IE|Xg, (2.17)

for all sets S < {1,...,p}, Peters et al. [PBM16] propose to define an estimate S for
the parental set S* by setting

S = N S, (2.18)

S:Hy, 5 not rejected

where the intersection runs over all sets S with Xg n E = (. By definition S < S*.
In the linear case, the hypothesis can be tested via linear regression. In the non-linear
case, it can be tested with non-linear conditional independence tests.

A similar approach to test for invariance across environments has been proposed re-
cently by Arjovsky et al. [ABGLP19]. They consider a very similar setup and assume
to have training environments e € &, and related but unseen environments E,;; O E.
The idea is to minimize

ROOP(f) = max R°(f), (2.19)
ee€qn

where R¥(f) := Exe ye[l(f(X EYF)] is the risk under environment E. Formally,
this is done with the help of a constrained optimization problem which can be solved
using gradient descent techniques. The notion of causality that is used here differs
slightly from the invariance-based causality of Peters et al., as the goal is not to get
information about causal structures in data that can be represented in form of DAGs.
Instead, it tries to find invariant mechanisms which do not have to have the form of
a causal relation from X to Y.

An easy example of Arjovsky et al. is an image classification problem, where the goal
is to distinguish cows from camels. Of course, most pictures of cows are taken in green

pastures and the pictures of camels are taken in the desert. Hence, there is a selection
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bias in the data. Assume that we have data from different environments, say different
countries, where the percentages of pictures of cows with green background differ.
Then, the proposed method realizes that the mechanism ‘green pasture means cow’
is not invariant and thus cannot be generalized. Instead, the output is a conditional
distribution which is able to generalize across the environments, e.g. some features
of the animals’ bodies that differentiate them. This task cannot be solved with a
graphical approach, as pixels do not qualify as vertices of a causal graphical model.
One pixel does not causally relate to the image label, at least not in a robust model.

In her dissertation, Li [Lil8] considered the case of invariance-based causality for time
series. She developed a method, MINT-T, to estimate causal effects. Unfortunately,
there is no implementation of this algorithm yet, and it remains open whether it can
actually enter the mainstream of time series analyses. Thus, we are only able to rate
algorithms for the i.i.d. case that use the invariance-based approach.

2.3 Wiener-Granger Causality

Wiener-Granger causality is a notion of causality for dynamical systems. We will
only be able to treat the case of discrete-time dynamical systems extensively. The
continuous-time case is much harder to treat and has not been adopted for practical
purposes yet. We will give a continuous-time version of the definition of Granger
causality without discussing it further. Dynamical systems can be divided into two
types: stochastic and deterministic. In this section, we will treat the stochastic case.
Discrete-time dynamical systems that are random can be seen as stochastic processes,
which justifies the usage of terms like stationarity from probability theory.

Even if it sounds promising, we cannot just transfer all of Pearl’s theory from the i.i.d.
case to time series. Even though the time structure gives us the causal ordering, there
are other difficulties that occur. For example, we usually have only one repetition of
the time series. This is fundamentally different from the i.i.d. case, where we usually
have many samples of one variable. Therefore, it is necessary to assume stationarity
of the dynamical system.

Another problem might be the sampling rate, which can be too low to capture the true
causal relationships. Especially when it is reasonable to assume that the underlying
process has contiuous time, the sampling rate causes trouble [ARG"16].

An additional nuance is that there are different ways to define causality for dynamical
systems. An overview, which also includes some less known approaches of defining
causality for dynamical systems, can be found in [Eic12]. We focus mainly on Granger
causality, which is applied most in practice as it has an empirical counterpart. In-
formation theory is predominantly used to test for Granger causality, as we will see
later.

2.3.1 Preliminaries

Let (X¢)en, Xi = (X}, ..., X?) be a d-variate time series. Assume that the X} are
stationary stochastic processes. The graph G := (V x Z, E), where V = {X!, ..., X%}
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EEe

Figure 2.7: This is an example for a full time graph of a time series.

() —(x)

Figure 2.8: This is the summary graph of the full time graph in Figure 2.7.

and E < (V x Z) x (V x Z) is the set of edges, is called full time graph [PJS17]. It
consists of the nodes X7 for (j,t) € {1, ...,d} x Z and of edges that cannot go backward
in time. If there exists an edge from th to Xf for some te Nand 1 < k,j < d, then
we say that there are instantaneous effects. Not all algorithms can cope with instant-
aneous effects, and most of the ones that can, are not able to orient these edges. The
reason is that they usually test for undirected measures, so that they have to exploit
the time structure to infer (directed) causation.

Following Schélkopf [PJS17], we also define the summary graph. It is the directed
graph G := (V,E) where V = {X1,..., X9} is the set of nodes. It holds that e =
(X7,X%) € E if and only if there exists an edge from Xj to X for some t < s € Z.
Note that if there is a causal relation from Xj to X ® then stationarity implies that
there is also one from Xg+t' to X§+t’ for all ¢’ € Z, see Figure 2.7. We assume that the
full time graph is acyclic, but the summary graph may contain cycles.

2.3.2 Granger and Other Notions of Causality

Eichler [Eic13] used interventions to define causal effects, just as Pearl did in the i.i.d.
case. Let o = {ag, terTc N/1<j<d} be a set of indicators denoting interventions
in X; at time points t € 7. If 0 = ¢, then no intervention is performed and we
call the corresponding probability distribution P := P,_g the observational regime.
Just like in the i.i.d. case, we consider atomic interventions where oz = x9, and
stochastic interventions where o7 = p for some probability distribution p. For atomic

interventions, we obtain

P (X] =2|Xi 1) = 04 (). (2.20)

e

For stochastic interventions the distribution P ; _p(Xg | X;_1) is the same as p. Note
I=
that both types of interventions break all the links to the parent nodes. There are
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some independence assumptions to assure that the distribution of other nodes is not
affected by the intervention on one node, see [Eic13] for details. Similar to the static
case, we say that there is a causal effect from node Xg to X¥ if the distribution of X¥*
is not the same under the observational regime P as it is under at least one interven-
tional regime Ppr_, or P,r_,  for some p or z( respectively.

The second possibility to define causal effects is to use structural equations of the form
XZ = fi(Xll’Xl27"'7Xtd:11)Xtdfl)7 (221)

where X; is a function of the whole past of the stochastic process. We assume
that discrete-time dynamical processes are given by these structural equations, while
continuous-time dynamical processes are defined via ODEs. According to White and
Lu there is a causal effect from X} to X¥ for ¢ < s if and only if the function of X¥
is constant in Xg [WL10]. Alternatively, one could also define causal effects using
interventions on the structural equations, similar to Pearl’s graphical causality in the
ii.d. case.

Granger [Gra69] and Sims causality [Sim72] are two probabilistic approaches to define
causality that originate from econometrics. In contrast to Granger causality, Sims
causality takes into account not only direct but also indirect causal relations. However,
they are quite similar and Granger is the one usually used in practice [Eicl3]. As
mentionend in [HSPVBO07], the inspiration that the Nobel prize winner Clive W.J.
Granger needed for his work [Gra69] came from Norbert Wiener [Wie56]. Based on
his assertion that ‘for two simultaneously measured signals, if we can predict the first
signal better by using the past information from the second one than by using the
information without it, then we call the second signal causal to the first one’; Granger
identified two fundamental principles for his definition of causality:

e The cause occurs before the effect; and

e the cause contains unique information about the effect that is not available
otherwise.

The first principle is commonly accepted, the second one is more delicate. Let
(Xt,Y:, Z¢)eny be a d-dimensional time series where we assume that Z contains all
observed variables apart from X and Y. Granger defines two information sets:

e 7Z(t) is the set of all information in the universe up to time ¢;
o 7T x(t) is the set of all information up to time t except for the process X.

If X causes Y, we expect the conditional distributions P(Y;11 | Z(t)) and
P(Yi41 | Z-x(t)) to differ from each other. Granger used this observation to define
his notion of causality.

Definition 2.3.1. The series X does not cause series Y if for allt € N
Yirr LZ(8) | T x () (2.22)

otherwise, X 1is said to cause Y.
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The definition states that there is no causal influence from X to Y if the past of
X does not provide additional information for predicting Y. As the set Z(t) is of a
very abstract nature and there are measure-theoretic subtleties, we cannot use this
definition in practice. For example, it is unclear whether Z_x(¢) contains truly less
information than Z(t), since this would imply that we can discretize the universe in
time and space. To avoid this problem (to which we will return in Section 2.4), we sub-
stitute the information sets with the o-algebras o({ X<, Y<t, Z<}) and o({Y<t, Z<t})
generated by the observed stochastic processes, where X<; = (X5, s < t) denotes the
past of variable X up to time . We obtain the following modified version of Granger’s
definition.

Definition 2.3.2. Let (X,Y,Z). The process X is Granger-noncausal for the process
Y with respect to (X,Y,Z) if

Yigr L X<t | Y, Z<t. (2.23)
Otherwise we say that X Granger-causes Y .

Using the same independence assumptions as before, we can connect the concept of
Granger causality to interventions [ED10].

Corollary 2.3.3. Consider a multivariate time series (X,Y,Z) and an intervention
of = s on the process X satisfying some independence assumptions. If X is Granger
non-causal for Y, then there is no causal effect on Y1 of intervening in X;.

Granger’s concept of causality is non-parametric. However, he applied it himself
only on the class of linear models, as this is the easiest one to treat. In fact, many
researchers in fields like econometrics only know Granger causality for this reduced
set of models. For example, they use linear regression to test for Granger causality
and compare

k
Y, = Z a;Yn—i + Ny,
i=1
k k ~
and Yo = ) ai¥uoi + ) biXnoi + Ny,
i=1 i=1

where (V;);en and (N;);en are assumed to be i.i.d. time series. X Granger-causes Y if
the noise terms N; have significantly smaller variance than N;. There are several other
test statistics for the linear case [HSPVBO7], but to use the concept for non-parametric
model classes, one needs different methods to test for Granger causality.

2.3.3 Testing for Granger Causality - Information Theory

Information theoretical methods are mostly used as a non-parametric counterpart for
linear Granger causality. Let X and Y be two absolutely continuous random variables
with the joint distribution p(x y, marginal densities px and py, and the conditional
distribution function py|y which is defined for all z. Note that if px > 0, we can

write py | x (y|z) = %)(S»y)' All definitions will be given for the case of absolutely
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continuous variables. The discrete case follows by integration with respect to the
counting measure. We set

H(X):= —fpx(a?) log(z)dx (2.24)

to be the Shannon entropy of X. The conditional entropy Y given X can be defined
as

H(Y | X) = = [ pc(e.0) s vfo)dla ). (2.25)
Define the mutual information I(X;Y) of X and Y via

I(X;Y):= H(X) - H(Y | X)
= Dkr(pxy) | pxpy) (2.26)

where Dgr(P | Q) = {p(z) log(%)daj for p << ¢ denotes the Kullback-Leibler

divergence. We assume here that 0 - log(0) = 0. Although the Kullback-Leibler
divergence is inherently asymmetric, the mutual information is not. Let Z be another
random variable and p(x yy 7z the conditional joint probability density. We can define
the conditional mutual information

I(X;Y | Z2):=H(X | Z)-H(X|Y,Z2)

= JDKL(P(X,YNZ | Pxz ® Py|z)dPyz (2.27)

- J (Jlog( Pxy)z (% y[2) >p(X,Y)|Z(:n,y|z)d(;p,y)) pz(2)dz.

pX\Z($|z)PY\Z(y|Z)

It is easy to see that I(X;Y|Z) = 0 if and only if X 1l Y | Z. Therefore, we can
use it as a measure to test for Granger causality [CT06]. As the CMI is symmetric,
it does not help us with finding any directionality. Thus, the information about the
time structure of our stochastic processes is absolutely vital to find causal relations.

We therefore go back to time series and assume to have given a multivariate time
series (X,Y,Z). If we find that the conditional mutual information of, say X;_; and
Y}, is high, we can infer that there is a causal influence from the one variable to the
other. Note that additional precautions have to be taken in order to avoid false con-
clusions in data with confounding variables, i.e. where there is another variable, say
Zi_o, which causes both X; ; and Y;. We will see later how the algorithms handle
the multivariate case where this can be a problem.

Conditional mutual information is not the only measure that can be used to find causal
structures. Next to be discussed is the so-called transfer entropy [Sch00], which follows
the two principles of Granger and hence is closely related to his definition of causality.
It is based on mutual information, but is additionally able to measure dynamical
and directional information. Instead of using static probabilities, transfer entropy
uses transition probabilities. Therefore, it is supposed to be better in quantifying the
information flow from one variable to another.

Assume that we have two discrete-time stochastic processes X and Y with joint prob-
ability distribution P that are absolutely continuous, such that P admits a density p
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and all conditional densities exist. Further, assume that X is of order 7x and Y of
order Ty, i.e. the processes depend only on the 7x or 7y preceding time steps. We
define

Tx—y = HVps1 | Y — H(V, 1 | XX v () (2.28)
(ry) _(7x)
- [ [ v (o B ) s
P(Yns1]zn *7)

where X7(1TX) = (X, Xn—1,...; Xn—r4+1)- Note that transfer entropy does nothing else

than calculating the mutual information of Y, and x ) given Y™ In other
words, we measure the mutual information of the present state of Y and the past of
X given the past of Y. Since information flow cannot go back in time, it is obvious
that, if the mutual information is greater than zero, there is an information flow from
X to Y. In practice, the definition is often used with 7x = 7y = 1, which makes it
considerably easier to handle.

Transfer entropy works perfectly in the bivariate case, but as soon as we are in the
multivariate case, things get more difficult. If we have a causal chain X - Z — Y for
stochastic processes X,Y and Z, then transfer entropy does not consider the inter-
mediate variable Z, so that we cannot distinguish between direct and indirect effects.
Causation entropy [SB14] gives us the solution to this problem with generalizing trans-
fer entropy:

CX*)YKX,Z) = H(Yn+1 | Ya, Zn) - H(Yn+1 | Xn, Yo, Zn) (2'29)

With this measure, one is able to not only condition on the past of Y, but also on the
past of as many other measured processes as needed. In the case of the causal chain
described above, we would have Cx_,y|(x,z) = 0, but Tx,y > 0. Transfer entropy,
on the other hand, does not help us to find out whether the information flow from X
to Y is direct, or whether all the information flows through the intermediate variable
Z.

2.3.4 Limitations of Granger Causality

It is important to know the situations where it makes sense to apply Granger causality
and where it does not. Peters et al. [PJS17] give examples where Granger causality
fails to detect the right causal relationships. However, the examples are quite specific,
e.g. purely deterministic relations. Janzig et al. [JBGWS13] argue that information
theoretical measures, such as transfer entropy, sometimes fail to quantify the amount
of information flow correctly. They show that the measures are able to detect without
quantifying them correctly. One reason is described in the following.

Assume that we want to calculate the information flow from time series X to time
series Y. It has been shown that transfer entropy adds up the information that comes
from the past of X with the information that comes from X and Y together, pretend-
ing that all this information comes solely from X [JBC16]. In this way, the real flow of
information from X to Y can be overestimated, because some of the information only
comes from both time series combined, e.g. when Y; = min(X;_1,Y;_1). If there are
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joint influences of two variables on a third, transfer entropy can also underestimate
the information flow of each variable to the target.

A problem emphasized by Granger himself is that his notion of causality cannot handle
hidden variables. In Definition 2.3.1, we assume to have all information in the universe;
in Definition 2.3.2, all information about the other variables. If we do not have the
necessary information, then Granger causality cannot be applied.

Of course, there are other aspects that can be criticized. Friston et al. [FBO™14] point
out several of them in their evaluation of Granger causality and show its limitations
on biological time series data.

2.4 Topological Causality

Topological causality is an answer to some of the problematic assumptions that Granger
causality is built on, such as the separability of the space. Deterministic dynam-
ical systems are inherently non-separable as a direct consequence of Takens’ the-
orem [SBDH97]. For other dynamical systems that describe real-world physical,
mechanical, or Earth system processes it is not known whether seperability holds
[HLSP17, RBB™19, SMY*12].

There is no notion of causality yet that does not assume separability and can be used
for any kind of dynamical system. Using Takens’ theorem, however, other methods
that are based on delay embeddings have been developed for (non-linear) deterministic
systems. We call this approach topological causality. As it is not related to Pearl’s
graphical approach, a full discussion would be outside the scope of this thesis. We
will give a brief summary and present an algorithm that uses the ideas of topological
causality, but we will not go deeper into the topological details.

According to Stark et al. [SBDH97], Takens’ theorem can be informally described as
follows. Let ¢ be a scalar observable of a state x of a deterministic dynamical system.
Then, we can typically reconstruct a copy of the original system by considering blocks
(d(xt), ¢(Tt17), P(T127); o, DTy (m—1)7) Of m successive observations of ¢, for m
sufficiently large and a sampling interval 7 > 0. Note that in practice, x; is unknown
while ¢(x;) is measured.

What follows from this theorem is that we might be able to use a delay embedding
of one of the variables, say X°, to reconstruct the system’s dynamics entirely. In
other words, all the information of the dynamical system might be stored in just one
variable, which makes a separation of the information impossible.

With topological causality one can create an asymmetric measure of dependency for
systems having the following setup. Assume that there are two system parts X' and
X? and that the dynamics are governed by

X1 = f1(X1,w12u(X2)),
X2 = fo( X2, wap(X1)), (2.30)

where p1;(X?) denote fixed scalar functions and w;; coupling constants, for i = 1,2 and
j = 3—1i. We assume that the trajectories (X}, X?) form an invariant manifold in the
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phase space of the joint dynamical system. The two manifolds of the state space of
the delay embedding i = (¢(X}), ..., ¢(XZ+(m—1)T)) are both topologically equivalent
to the manifold of the trajectories as long as w;; # 0 and wj; # 0, respectively. By
transitivity, a unique mapping M,_,; from r’ to r/ exists if and only if w;; # 0 [CGS15].

2.5 Difficulties with Defining Causality for Dynamical
Systems

There are several difficulties that occur when defining causality for dynamical systems,
but even more when applying these definitions in practice. We will point out a few
that may have been shortly mentioned already and others that have not been talked
about yet.

The first problem encountered by many researchers is that the given data does not
fulfill the assumptions that are usually made in causal inference. Let (Xf)ieI,teT be
the repetitions i € I of stochastic processes that are measured in time points t € T. A
sample (or a repetition) of a stochastic process has the form of a time series. Assuming
we have only a small number of repetitions, as is usually the case in practice, we cannot
compute conditional independence or conditional mutual information, since this would
require many samples. Thus, there is only one possibility to get enough data points:
we have to assume that the time series is stationary, or at least that the effects from
X; to Yiir (e.g. in form of a functional relationship) do not change for different ¢.
Then, we can obtain the required data points not by taking different samples X7 for a
fixed ¢, but rather by sampling over time. We use the ordered sets {X; |t e T,t > 7}
and {Y;4, | t € T} to compute conditional independence of processes X and Y with a
time lag of 7. All of the algorithms that work with conditional independence testing
use this idea.

This approach makes sense if the stochastic process consists in reality of i.i.d. random
variables, so that there is no time structure. If the stochastic process is non-stationary,
however, so that the distribution of the process in one time point ¢ and in another
time point ' differs fundamentally, then the data in the two sets will be very chaotic
and no algorithm will be able to find the true causal structure. To avoid this issue,
we have to assume stationarity, conceding that this will greatly reduce the number of
possible applications.

The second problem that is considered in research is called subsampling. If we sample
from a discrete-time stochastic process, then it is not clear whether the sampling rate
is small enough to capture the causal relationships. One can think of many easy ex-
amples where the resulting causal graph can be completely wrong if, say, every second
time step is not measured. There has been research on how to handle subsampling
[HPJ*16, GZS™15], but no general solution has been presented yet.

The biggest difficulty of the algorithms and the theory of causal inference in general
is that most of the time, it is assumed to have a discrete-time process, even though
the world works in continuous time. For example, Aalen et al. criticize the ignorance
of this problem and argue that the use of directed acyclic graphs does not make sense
in a real-world setting [ARG™16]. They argue for a different notion of causality that
works for continuous-time systems: the concept of local independence [Sch70]. It has

28



2.5. Difficulties with Defining Causality for Dynamical Systems

been developed by Schweder during the same time where Granger has been working on
his approach, and the two concepts are closely related. Local independence requires
stochastic independence of two variables on an infinitesimal level, i.e. a condition
imposed on the generator of the stochastic process.

Unfortunately, there has not been much research following the concept of local inde-
pendence, even Aalen et al. merely criticize existing research. Didelez is one of the
few who extended the work of Schweder, applying it to multivariate marked point
processes [Did08]. However, her work is rather theoretic, so that there is no algorithm
yet which uses local independence to find causal relationships. One other publication
should be mentioned here, as it uses local independence to generate causal knowledge,
even though it is not about finding causal relationships, but to get counterfactual
knowledge: Roysland used local independence graphs to identify consistent estimat-
ors for counterfactual parameters, connecting tools of stochastic analysis and causal
inference [Roy12].

We have only defined Granger causality for discrete-time processes, but the definition
can be extended to continuous time. The following is not supposed to be a precise
definition and we will not think about the measure theoretic details, but it gives an
intuition of how this can be done. Let (F(X)¢)r., be the filtration of the process
X which contains all its information and let F(X),- be the o-algebra that contains
all information of X before t. The difference between F(X);- and F(X); is that the
latter contains the information of X;, while the former does not. One could say that
X is Granger non-causal to Y if

Yi L F(X), | FOYV),  F(2), (2.31)

i.e. if the past of process X contributes information to Y;, given all information about
the past of Y and Z.

Publications that apply Granger causality to continuous-time dynamical systems treat
rather special cases. Barnett et al. [BS17], for example, analyzed neuro-physiological
problems in continuous time with Granger causality using analytic solutions of stochastic
models.
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Chapter 3

Finding Causal Relationships -
IID Case

Two of the notions of causality from Chapter 2 were developed for i.i.d. data: Pearl’s
graphical causality and invariance-based causality of Peters, Scholkopf, and others.
The latter approach is quite new and there are not many algorithms yet. The one
that we analyze here is called nonlinearICP (nonlinear invariant causal prediction).
On the other hand, many algorithms have been developed which use graphical caus-
ality. They can be divided into two groups: the constraint-based and the score-based
algorithms.

In this chapter, we start with the algorithms based on Pearl’s causality (Sections 3.1
and 3.2), then discuss some difficulties that usually appear in practice (Section 3.3),
and finish with analyzing the methods in an empirical way using different experiments
(Section 3.4). As a contrast to the other algorithms, nonlinearICP is discussed at the
end of this chapter in Section 3.5.

3.1 Constraint-Based Algorithms

The most basic algorithm to find causal structures is Pearl’s inductive causation (IC)
algorithm [Pea09]. It belongs to the class of the constraint-based methods. They
assume that the distribution is Markovian and faithful to the underlying DAG, so
that the Markov equivalence class is identifiable. Constraint-based algorithms search
for d-separation statements which can be tested via conditional independence tests.
The following lemma simplifies the search process [PV91]:

Lemma 3.1.1. Let X,Y be two vertices in a DAG G = (V, E). The following two
statements hold.

(i) X and Y are adjacent if and only if they cannot be d-separated by any disjoint
subset W c V.

(ii) If X andY are not adjacent, then they are d-separated by either PAx or PAy .

Let us, for now, assume that we have an oracle giving us the right answers to all
questions concerning conditional independence. This will allow us to focus on the
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algorithms themselves. Later, we will talk about the difficulties to test for conditional
independence.

The first step of the IC and SGS (Spirtes, Glymour, and Scheines) [SGS00] algorithm
is to find the skeleton of the underlying DAG. To that end, they use Lemma 3.1.1
(7) and search through all possible subsets of nodes W < V' to check whether nodes
X and Y are d-separated given W. The nodes are adjacent if and only if no such
set can be found. The PC algorithm [SGS00], named after Peter Spirtes and Clark
Glymour, works like the IC algorithm but has a more efficient way of searching for
the conditioning set using Lemma 3.1.1 (7). The PC algorithm starts with an empty
set and increases the size of the set in each iteration. It makes use of the fact that it
is sufficient to iterate over the subsets of neighbors of X or Y.

The second step consists of orienting the edges. Assume that the skeleton contains
the structure X — Z —Y where X and Y are not adjacent, such that there is a set W
that d-separates X and Y. Looking again at Figure 2.2 and all possible orientations
of the undirected structure, we observe that in all but one case Z has to be in W and
W automatically blocks the path between X and Y. The one case where Z is not in
W, the three nodes form a v-structure and 7 is is called a collider. As conditioning
on a collider renders the two independent nodes dependent, the collider cannot be in
the set W. Thus, Z ¢ W implies that the orientation of the above structure has to
be X - Z « Y. If Z € W, we cannot orient the edges, as there are several possible
orientations we cannot distinguish.

Using this observation we can start orienting the edges of the skeleton. Having ori-
ented all edges using v-structures in the data, we might be able to additionally orient
some edges, e.g. to avoid directed cycles. In fact, there is a set of orientation rules
proven to be complete, known as Meek’s orientation rules [Mee95]. The aforemen-
tioned algorithms use Meek’s rules to find the Markov equivalence class.

To summarize, the IC algorithm has three steps. First, we compute the skeleton us-
ing various conditional independence tests, second, we search for v-structures in all
triples X — Z —Y, and third, we use Meek’s orientation rules to further orient edges of
the graph. The outcome of the algorithm is the Markov equivalence class of the true
underlying graph. The PC algorithm applies the same steps, but has a more efficient
method to compute the skeleton with fewer conditional independence tests.

Latent variables pose a particularly common and difficult problem for causal inference
algorithms. If there are hidden variables in a dataset, we want to be able to distinguish
between an association of two variables that is caused by a latent confounder and one
that is due to a direct causal relationship. The Fast Causal Inference (FCI) algorithm
[SGS00] has a third type of edge in its output to mark confounded variables. For a
triple X « U — Y, where U is a latent confounder, FCI draws a bidirected edge
X o Y indicating that there is no direct causal influence from X to Y or the other
way around, but another hidden variable that influences both of them. Thus, there
are three different possibilities for every undirected edge: it can be oriented in one of
the two directions, or it can be bidirected.
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The PC and FCI algorithms use different types of graphs. Recall that the PC al-
gorithm uses DAGs and outputs a CPDAG (defined in Section 2.1.3), describing the
Markov equivalence class of the true underlying structure. The FCI algorithm, on
the other hand, requires different types of edges to indicate hidden variables and uses
the so-called mazimal ancestral graphs (MAGs), which include bidirected edges. The
Markov equivalence classes are described by partial ancestral graphs (PAGs). PAGs
can contain edges with circles on one or both ends. A circle means that there has
to be at least one graph in the Markov equivalence class where the edgemark is an
arrowhead and one graph where it is a tail.

We assumed above to have an oracle answering all questions of the form ”Are nodes
X and Y conditionally independent given W?”. These questions, however, are not at
all easy to answer in most cases. Statistical significance tests have to be used to find
out how likely an independence is, but finite sample sizes and statistical errors may
lead to wrong and contradictory results. There are non-parametric, kernel-based tests
like the Kernel Conditional Independence Test (KCIT) [ZPJS11] and approximations
of kernel-based tests such as the Randomized Conditional Independence Test (RCIT)
and Randomized Conditional Correlation Test (RCoT) [SVZ19, Str20]. However, ad-
ditional domain knowledge makes the results less prone to error and it makes sense to
restrict ourselves to a subclass of possible causal models, e.g. for (joint) Gaussian dis-
tributions. For these subclasses, easier and more reliable statistical testing is possible;
e.g. for Gaussian distributions it is sufficient to test for vanishing partial correlations.

3.2 Score-Based Algorithms

The second class of algorithms consists of score-based methods. The idea is to test
the ability of different graph structures to fit the data. Given data D containing i.i.d.
samples of a set of variables V', the space B of possible DAGs G = (V, E) for some
edge set F, and the scoring function S(D, G), we search for the DAG with the highest
score.

G := argmax S(D, G) (3.1)
geB

There are many different possibilities for chosing the scoring function, the space of
possible DAGs, as well as the method for searching the space for the DAG with the
highest score. As the number of DAGs scales exponentially in the number of vertices,
one has to find an efficient way of searching through the space [HGC94, HMC99]. A
known score-based algorithm is the Greedy Equivalence Search (GES) [Chi02]. How-
ever, the score function of GES only works for Gaussian data.

Recently, Huang et al. [HZL*18] proposed a method for generalized score functions.
It is based on defining suitable scores for a particular regression problem in the Re-
producing Kernel Hilbert Space (RKHS). The framework can be used for nonlinear
causal relationships as well as linear ones and for both continuous and discrete data.
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3.3 Hidden Variables and Other Difficulties

There are many improvements of the aforementioned constraint-based and score-based
algorithms. Some are faster in practice or theory, some are more accurate, and some
only work for a restricted class of functions. The basic algorithms such as the PC
algorithm have exponential run time in the worst-case, but work reasonably fast for
smaller graphs in practice.

Learning causal structures is a very difficult task due to the many potential pitfalls:
conditional independence tests can give false results, or the method for searching the
space of possible DAGs might not be efficient for the true underlying DAG. Perhaps
the biggest challenge for causal inference is to not observe all variables. If a variable
is hidden, a true causal relation can actually be reversed. This is what happens in the
famous Simpson’s paradox, which we will look at in the following example.

Example 3.3.1. The dataset from kidney stone recovery [CWPWS86] shows the suc-
cess of two possible treatments of kidney stones a and b. There are two categories of
patients: group A with small and group B with large kidney stones. In the follow-
ing table, we see that treatment b has the higher overall success rate, even though
treatment a works better for both categories of patients.

Overall Group A Group B
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

This is the so-called Simpson’s paradox. The two groups of patients have very different
sizes and both treatments perform better on one group than on the other. Treatment
b seems to be, overall, the better one, even though it is neither for group A, nor for
group B. Here, the importance of observing all variables is evident. Without the in-
formation about the two patient groups, it would not be possible to see that treatment
b is worse, in fact.

We can wrap this experiment up in the language of causal inference. Let R = 1 be the

event of full recovery, T' the treatment and Z the patient group. The true underlying
DAG is the following.

The computations in [PJS17] show that

PS(R=1|T=a)<P°(R=1|T =0), but
PC;do(T:=a) (R _ 1) > PC;do(T:=b)(R _ 1)’ (3.2)
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as both

PC;do(T::a)(R =1 | 7 = A) > PC§dO(T::b)(R =1 | Z = A), and
PC;do(T:=a)(R —1|Z=B)> Pc§d0(T5=b)(R =1|Z=B). (3.3)

Let us for the purpose of demonstration ignore that there are different patient groups
and assume that recovery solely depends on the treatment (and not on the size of the
kidney stones), i.e. we assume T' — R is the correct graph. Denote the causal model
that can be built on this false assumption by C. We can rewrite Equation 3.2 as

Pé;do(T:=a) (R _ 1) < Pé;do(T:=b) (R _

PC;do(T::a) (R — 1) > PC;dO(Tizb) (R = )7 (3.4)

using the fact that in a model of the form X — Y conditioning and intervening on
X have the same effect on the distribution of Y. We see, that the causal statement
gets reversed because of model misspecification. We ignored the relevance of patient
groups for the recovery and came to a wrong conclusion.

When using causal inference algorithms, Simpson’s paradox has to be kept in mind,
as the algorithms would also draw false conclusions if not all relevant variables are
measured. However, there are algorithms that can handle situations with hidden (un-
observed) variables, e.g. the FCI algorithm [SGS00]. It can not only decide whether
an influence between two variables is directed in some way, but also whether it stems
from a hidden confounding variable.

Assume that we have X « U — Y and U is not observed. Then, U is called a hidden
variable and works as a confounder for X and Y. The FCI algorithm is able to dis-
cover that the association between X and Y does not come from a causal relationship
but from a hidden confounder. The PC algorithm, on the other hand, cannot handle
hidden variables. As it is not able to find a set that renders X and Y conditionally
independent, it will connect them in the graph and conclude that there is a causal
relationship.

Constraint-based algorithms using a similar approach as the IC algorithm tend to
amplify mistakes they made, such that a single falsely oriented edge causes multiple
mistakes in the output. The orientation procedure with Meek’s orientation rules it-
eratively uses the edges that have been oriented before, so one mistake may cause
several other edges to be oriented in the wrong direction.

Finding a balance between taking decisions and averting making wrong ones is very
delicate. The data scientist’s knowledge of the data continues to play an important
role in discovering wrong edges and orientations and most algorithms allow the use of
some prior knowledge, e.g. that a certain relation needs to appear in every possible
output.
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3.4 Comparison of the Algorithms

In the following, we will show some results of experiments that should clarify the
opportunities and limitations of Pearl’s causal inference in practice. We use different
datasets generated randomly with the R package pcalg [KHM™20]. To generate the
datasets, one only has to define the structure of the underlying DAG, the number of
samples, as well as the distribution of the data. Given these three parameters, the
function generates the dataset following the causal structure given by the respective
graph. The different graphs that we use are shown in the respective figures. The
datasets have the number of samples T' = 5000. The data follows either a multivariate
Gaussian (with or without latent variables), Cauchy, or t-distribution. As conditional
independence tests, we use Fisher’s z-transformation [Fis15] for Gaussian data and
RCIT or RCoT [SVZ19] for non-parametric datasets.

All algorithms are implemented in pcalg. The package includes not only the original
versions of the PC, FCI and GES algorithms, but also a few variations and advance-
ments. Recall that the PC is based on the IC algorithm, the most basic constraint-
based algorithm of Pearl. FCI is also constraint-based but works differently and can
handle latent variables, while GES is a score-based algorithm.

Even though it is not the best choice for outputting the graphs, pcalg has different
meanings for bidirected edges in the output of the PC and the output of the FCI
algorithm. Another difficulty with interpreting the output is that it can happen that
edges remain undirected through the whole algorithm. In the output of the PC and
the GES algorithms, undirected edges are shown as bidirected, in the output of the
FCT algorithm this is not the case.

Variations of the PC algorithm include conservative PC [RSZ06] and PC with majority
rule [CM14], which both try to avoid making mistakes during the process of orienting
edges. After the skeleton is computed, they take every triple A — B — C in the
undirected graph and check all subsets of the adjacent nodes to see whether A and C
are independent given the subset. If B is in some sets that render A and C' independent
but not in others, it is a contradiction to the theory we have seen above. B should be
either in none of these sets (so that the triple forms a v-structure) or in all of them.
Conservative PC marks all triples with contradicting test results as ambiguous. As
mistakes happen easily since we rely on statistical testing, this rule is very strict.
Majority rule handles ambiguous edges in a different, less strict manner, by simply
following the opinion of the majority. For example, if B is in less than half of all
subsets of neighbors of A and C' that render them independent, the majority rule con-
cludes that the triple is a v-structure. There are similar versions of FCI (conservative
and with majority rule), as well as FCI+ [CMH13] and RFCI [CMKR12], which use
different techniques to make the original algorithm much faster.

3.4.1 Data with Latent Confounders

Hidden variables make the task of orienting the edges harder because of two different
reasons. The first one lies at hand: there is one more possibility to orient an edge.
The second reason is that the algorithm is more likely to make mistakes with the
skeleton when the correlations in the data are less obvious. A wrongly detected edge
in the skeleton can lead to subsequent mistakes. As between the basic algorithms,
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(a) True DAG (b) Estimated PAG by FCI  (c) Estimated CPDAG by
GES

Figure 3.1: A model with five variables and multivariate Gaussian data where the first
variable has been deleted, so that it is hidden for FCI and GES.

FCI is the only one that can handle latent variables in theory, we are going to use it in
the following experiments. As a comparison, we try the GES algorithm, although it
is not meant to be used on data like this, as it assumes that all variables are measured.

Figure 3.1 shows the result of one of the experiments, where the data of the true DAG
has been manipulated in such a way, that the algorithms did not get the data of the
first node. Hence, there is a latent confounder for nodes 3 and 4, for nodes 4 and 5
and nodes 3 and 5. These nodes should be connected in the output of FCI with a
bidirected edge. We can see that they are indeed connected, but not with bidirected
edges. Apparently, there are some MAGs with directed edges so that the edge of the
PAG has circles. Not even the skeleton is correct, as there is an edge from node 2 to
node 5. The output of GES has the same skeleton as the one of FCI algorithm and
the latter is only slightly better.

The second set of experiments we carried out confirms the doubts about the reliability
of the FCI algorithm, see Figure 3.2. The overall structure can be mostly trusted, but
not the individual edgemarks. GES algorithm appears to perform reasonably well if
the goal is simply to find a skeleton.

3.4.2 Data with Different Distributions

To find out whether different distributions have an impact on the results of the con-
ditional independence tests, we will evaluate the tests on Gaussian, Cauchy, and t-
distributed data. For Gaussian data there exists a parametric test using Fisher’s
z-transformation, for the other two distribution only non-parametric tests can be ap-
plied. Note that all datasets in this chapter have 5000 samples.
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(a) True DAG (b) Estimated PAG by FCI  (c) Estimated CPDAG by
GES

Figure 3.2: A model with four variables and multivariate Gaussian data where the
first variable has been deleted, so that it is hidden for FCI and GES.

Experiments with Gaussian Distribution

In Figure 3.3, one can see that GES works better than FCI with Fisher’s z-transformation
on Gaussian data, as it orients some of the edges which are not oriented by FCI al-
gorithm. The skeleton is correct in both cases. In Figure 3.4, we used FCI with the
non-parametric tests RCIT and RCoT. The skeletons are both correct and the edge-
marks differ only slightly. The experiments shown in Figures A.2 - A.5 indicate as
well that it is preferable to use Fisher’s z-transformation instead of non-parametric
tests for the FCI algorithm.

Experiments with Cauchy Distribution

Figure 3.5 shows that FCI with the conditional independence test RCoT infers the
right skeleton, while FCI with RCIT makes two mistakes. Also, the other two ex-
periments, see Figures A.6 and A.7, indicate that RCoT works (slightly) better than
RCIT, both for the task of finding the skeleton and for orienting the edges.

Experiments with t-Distribution

The t-distribution apparently causes more difficulties than the Gaussian or Cauchy
distribution, as can be seen in Figure 3.6. FCI was not able to infer the right skeleton,
neither with RCIT nor with RCoT. However, Figures A.8 and fig:exdiffdistrt3 show
that with other data the skeletons can be estimated correctly.

To summarize, the algorithms are mostly able to infer the true skeleton of the causal
causal. Depending on the distribution of the data, there are more mistakes (t-
distribution) or less (Gaussian distribution). Both RCIT and RCoT work well lead to
similar results. However, the algorithms only orient few edges, so that one can differ-
entiate between direct and indirect relations, but the directions are mostly unknown.
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(a) True DAG (b) Estimated PAG by FCI  (c) Estimated CPDAG by
GES

Figure 3.3: Multivariate Gaussian data, the FCI algorithm uses Fisher’s z-

transformation as conditional independence test. Note that bidirected edges (e.g.
between the nodes 1 and 2) in the CPDAG can be undirected in reality.
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Figure 3.4: Multivariate Gaussian data. FCI uses the conditional independence tests
RCIT and RCoT.
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Figure 3.5: Cauchy distributed data. FCI outputs different skeletons using RCIT and
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Figure 3.6: t(df=4)-distributed data. FCI with RCIT and RCoT both made mistakes
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3.4. Comparison of the Algorithms

3.4.3 Complexity Analysis

The complexity of these algorithms is quite high. For independence-based algorithms,
it is given by the complexity of conditional independence test as well as the numbers
of tests that have to be performed. For score-based methods, it depends on the size of
the space of possible graphs and the method used to search the space. In this thesis,
we will only do an exemplary complexity analysis for the PC algorithm.

The first driver of complexity is the number of conditional independence tests that
have to be carried out in the worst case. It depends on the graph structure, namely the
number of nodes and adjacent edges. The second step is to consider the complexity
of the conditional independence test itself, which depends on the number of samples.
If n is the number of nodes and k the largest degree of a node (the degree is the

number of adjacent nodes), then the PC algorithm uses at most 2(5) Z?:o ("Z_l) con-

2 k—
ditional independence tests, which is bounded by n(&:ill)),l In practice, we usually

work with sparse graphs, whose degree k is bounded by a constant, and therefore
achieve a polynomial run time bounded by O(n¥*!1A), where A is the complexity of
the conditional independence test. FCI algorithm, although faster in practice, also
needs exponentially (with respect to the number of nodes) many independence tests
in the worst case. RFCI can be used to get a better run time with polynomially many
conditional independence tests.

The complexity of the conditional independence tests varies a lot. Fisher’s z-transformation
is used to test for the partial correlations in multivariate Gaussian data. It only needs
basic mathematical operations such as summation, division, as well as calculating the
logarithm, and thus scales linearly in sample size. The chi-squared test is a known
method to test for conditional independence in the discrete setting and has a linear
run time as well. There are also different methods to test for independence in the case
of linear models.

General models, on the other hand, are naturally much harder to treat. One approach
could be to discretize the space, but this suffers strongly from the curse of dimension-
ality, as we need small bins to get good results [Hual0O]. Reproducing kernel-based
methods are known to work well in high-dimensional settings, but they usually scale
at least quadratically in sample size, since the computation of the kernel matrix itself
scales quadratically. KCIT even has cubic scaling [ZPJS11]. To find a balance between
accuracy and functionality, RCIT and RCoT try to approximate kernel-based tests
using random Fourier features [SVZ19]. The tests scale roughly linear in sample size,
but are much slower in practice than a chi-squared test, for example.

Empirical Results

As the usability of algorithms not only depends on their performance, but also on their
run time, we will analyze the latter for the causal inference algorithms considered. We
perform the experiments for one constraint-based algorithm (FCI) and one score-based
algorithm (GES). We used the same three different conditional independence tests for
FCI as before: the non-parametric tests RCIT and RCoT, and Fisher’s z-transform
for Gaussian data. Because of the difficulty of developing a general score function, the
implementation of GES we use works only for Gaussian data. The run time of both
algorithms depends on the sample size of the data and on the number of variables.
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Figure 3.7: The run time of GES algorithm and FCI with respect to the number of
nodes. Both graphs use a log-scale.
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Figure 3.8: The run time of FCI with respect to the sample size.

To compare the algorithms, we generate different graphs and datasets with a mul-
tivariate Gaussian distribution using pcalg. To test the run time with respect to the
number of nodes, we generate a random DAG where edges are included with a prob-
ability of 0.3 in every step. For the second line of experiments that have the goal to
evaluate the run time with respect to sample size, we use a random graph with 5 nodes.

Figure 3.7 shows that FCI, using the non-parametric tests RCIT and RCoT, is sig-
nificantly slower than with using Fisher’s z-transform. The GES algorithm does not
perform conditional independence tests and is faster than any version of FCI. The
log-scale shows that FCI scales exponentially in the number of variables. This makes
sense, as the number of conditional independence tests scales exponentially as well.
Strobl et al. [SVZ19] claimed that both RCIT and RCoT are approximately linear in
sample size. Our experiments verify this, see Figure 3.8.

3.5 NonlinearICP

The setup of nonlinearICP is a bit different to that of the FCI and GES algorithms,
as it uses invariance-based causality. For our experiments, we define the environment
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3.5. NonlinearICP

variable E € {1,2}. The different experimental setups either use E as an additive or
multiplicative factor. Our models consist of two source variables X° and X1, as well
as a target variable Y. The source variables of experiment one are additive

X% = FE+0.1-Ny,
X' =E+X°+01-Ny, (3.5)

and the ones of experiment two have a multiplicative term

X°=0.1-E-Ny,
X'=FE-X"+01-N;. (3.6)

In both cases, Y is of the form Y = f3(X?) - f1(X') + 0.1Ny. The noise variables
No, N1, and Ny are Gaussian distributed. We try different f© and f! from the set of
functions {sin(x), sin(x?),1/x, 22 23}. While nonlinearICP has different options for
conditional independence tests, most of them gave similar results so that we only took
the kernel-based test KCI and the default Residual Prediction Test. The datasets
consist of T' = 1000 samples.

The experiments showed that KCI led to the best results. In fact, they were correct
every single time. This is remarkable, as it is the only algorithm that we tried with
such good results. The results of nonlinearICP with the default option were also quite
good, but not all non-linearities, namely sin(x?) and 1/x, were found.

The reason for KCI not being the best option in every application is that its run
time is much slower than that of the other conditional independence tests. In our run
time experiments, we used a similar setup as in Equations 3.5 and 3.6. Figure 3.9
shows that the algorithm scales exponentially in the number of variables and less than
exponentially in the number of samples. According to Heinze-Diemel et al. has cubic
scaling in sample size [HDMP18|.
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Chapter 4

Finding Causal Relationships -
Dynamical Systems

We will consider four algorithms for multivariate dynamical systems following the
principles of the different notions of causality, as well as algorithms that treat sim-
pler cases such as bivariate systems. The algorithm PCMCI [RNK*19, Run20] uses
graphical causality and combines it with an information theoretic measure to test for
associations (Section 4.2). Multivariate transfer entropy applies the idea of Granger
to a multivariate and non-linear setting, see Section 4.3. In Section 4.4, we dis-
cuss CausalKinetiX which exploits data from a multi-domain setting to find invariant
models. Lastly, convergent-cross mapping uses a topological approach to find causal
relationships in deterministic systems (Section 4.5).

The starting point of causal analyses of dynamical systems was Granger’s linear regres-
sion technique for vector autoregressive models. Apart from econometrics (Granger
himself was an economist), it has been widely adopted in various domains, such as
environmental science [Stel6], neuroscience [BS16], political science [Fre83], as well
as all other fields where time series are analyzed. A popular approach to test for
causality proposed by Granger himself is to use linear regression [Gra69], but there
are many other methods that can be employed [HSPVBO07]. The implementations of
linear Granger causality work well and reliably, and there are many options available
for bivariate and multivariate data, e.g. in the R package MTS [TW20]). We shortly
discuss the bivariate and non-linear case in Section 4.1, before coming to the four
algorithms which can be used on multivariate data. In Section 4.6, we will test them
on different datasets.

4.1 Bivariate Dynamical Systems

The bivariate case is easier than the multivariate as there are no indirect effects.
We test the implementation RTransferEntropy [BZDP20] which calculates transfer
entropy in bivariate and non-linear data. Continuous data gets discretized with a
finite number of bins on which an estimator for the Shannon entropy is used. Transfer
entropy is then approximated by an unbiased estimator using the empirical probability
densities that have been calculated using the bins.
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We use different time series (X¢, Y;)en given by a structural causal model of the form
X; = N,
Vi = f(Xi—r) + NV, (4.1)

where NX and NY are ii.d. noise variables with standard Gaussian distribution.
The algorithm is tested with a time lag 7 € {1,2,3} and non-linear functions f(z) €
{sin(z),1/z, 22, 1/sin(x), 1/sin(x)?}.

The experiments show that this implementation of transfer entropy is only able to
output good results for 7 = 1, where the causal direction is found for all functions
f. Somehow, it does not find any relation having a time lag of 7 > 1. The p-values
of the tests, which indicate how confident the algorithm is with its decision, is zero
for all experiments, implying absolute certainty. Hence, the results are promising to
a certain degree, but questions remain why the implementation is not able to handle
a time lag greater than one. It is advisable to take great care when using bivariate
transfer entropy in practice.

4.2 PCMCI

PCMCI [RNK*19, Run18b, Run18a, RPD*15, Runl5] is an algorithm which is im-
plemented in the Tigramite package for Python, published by Jakob Runge [Run20].
It uses two main steps. In the first one, a version of the PC algorithm is used that
has been slightly adapted for time series to compute estimates of the parent sets of
each variable.

In the second step we compute the information theoretical measure momentary in-
formation contribution (MCI) for each pair of variables and condition on the estimated
parent sets from step one. In this way, only the true direct effects are computed. Note
that the definition of MCI is given in Equation 4.4.

PCMCI uses the following setup. Assume that we have a stationary, multivariate time
series (X¢)sen, X¢ = (X}, ..., X{1), with a maximum time lag Tiuax € N. We will refer to
X" as a (stochastic) process and X/ as a (random) variable. Recall that stationarity
implies that if X; — XJ for some ¢ < s, then also X/, , — X7, for all ¢’ > 0.
Instead of searching for causal relations between processes, PCMCI tries to find for
causal relations between random variables. The difference to the i.i.d. case is that it
is enough to find a relation between X; and X7, . for some time lag 7 > 0 and ¢t € N,

to get causal information about the whole processes.

One can transfer a lot of Pearl’s graphical causality to the time series case, such
as the connection between edges in the graph and conditional dependencies in the
distribution of the data.

(X, = X)) ¢ E & (X L X)) | X \(X[_) (4.2)

Here, X; = {X; 1, ..., Xy 710y} is the (relevant) past of the multivariate process. The
parent set of node X7 is defined as

PX]) = {X]_|1<i<d1<7< Tmax, Xi, — X7} (4.3)
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4.2. PCMCI

As MCI is a symmetric measure, it is not possible to find the direction of a causation
between two variables from the same time step, i.e. for instantaneous effects with
7 = 0. We use a minimum time lag of 7 = 1 and will not treat instantaneous effects.

The process of finding causal parents has to be adapted to time series. In the i.i.d.
case, we said that for X, Y € V, if we assume faithfulness and the Markov property,
an edge X —Y exists if and only if there is no Z < VA\{X,Y} such that X 1L Y | Z. In
Equation 4.2, we use Z as the set of all other possible variables. In the i.i.d. case, it
would simply be wrong to condition on a set which is too large, as we never know if this
could introduce additional dependencies (see v-structures in Section 2.1.3). However,
in the time series case, this does not pose a problem, as the only nodes that can render
X} _and X} dependent are common children. As such, they come after time point ¢
and we can condition on everything that comes before ¢ without having the problem
of creating additional dependencies.

Algorithm 1 First step of PCMCI: condition selection

Require: Time series dataset X = (X!, ..., X9), selected variable X7, maximum time
lag Tmax € N, significance threshold « € (0, 1), and maximum condition dimension
Pmax € N.

1: Initialize preliminary set of parents 73(th) ={X} vi=1,..,d,7=1,..., Tmax}
2: Initialize dictionary of test statistic values I™1(X7 _ — X7} := o0 VX{__ e P(X7)
3: function COMPUTEPARENTESTIMATE (X, X7 Tinax, @ Pmax)
4: for p =0, ..., pmax do
5: if [P(X/)| —1 < p then
6: Break for-loop
7: end if
8: for all X] e 73(th) do
9: Define the set S < ﬁ(Xf)\{XtZ_T} of the p elements with strongest
association
10: (p-value, test statistic value I) « Conlndep(X{ ., X7,S)
11: if [I| < I™»(X! _— X/) then
12: i xi o X7y = |1
13: end if
14: if p-value > a then
15: Mark X?__ for removal from P(X})
16: Break from inner for-loop
17: end if
18: end for .
19: Remove non-signicant parents from 73(Xg )
20: Sort parents in P(X}) by I™®™(X! _ — X7) from largest to smallest.
21: end for ‘
22: return P(X7)

23: end function

Algorithm 1 is the first step of PCMCI. It is similar to the PC algorithm, but adapted
to the time series case. The default value for the maximum size of conditioning sets is
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Algorithm 2 Second step of PCMCI: causal discovery

Require: Time series dataset X = (X1, .., X%), for all variables X7 the sets 73(th )
computed in the first step as well as the maximum number of parents p; € N,
maximum time lag 7., € N.
function TESTMCI(X, (PXDY:5 =1, d}, Tomas {pj 1§ = 1, .., d})

for all (X! _, X{) withi=1,...d and 7 = 0, ..., Tamax, excluding (X7, X7) do

1:
2
3: Remove X!, from P(X7}) if it is in the set
4
5

Define 73;)1- (X7 ) as the first p; parents from P(X} )
: Run MCI test to obtain (p-value, I) « Conlndep(X;
(P(X), By (XE_)})
6: end for
T: return All p-values and MCI test statistic values
8: end function

XtJ,Z =

t—7>

Pmax = ATmax- Lhe algorithm uses PC; to reduce the computation time, where only
the set with the p elements with strongest association is chosen, instead of all sets of
size p. Otherwise there would be another for-loop in the ninth line of Algorithm 1.
The goal is to find supersets of the parent sets that can be used as conditioning sets
in Algorithm 2. There we test again for all pairs (X7, X{ ) whether X/ — X/ € E.
For this we use momentary conditional independence (MCI) defined by

MCE: X{_, L X7 | PO} Po(Xi,), (4.4)

where 73(Xg) denotes the estimate of the parent set and 73%. (X} ) c 73(X§;T) is the
set of the p; parents with the biggest information contribution. Note that indeed all
combinations of variables are checked again, even if the PC algorithm in the first step
indicated that some variables are conditionally independent. This increases the run
time, but leads to more stable results in theory.

PCMCI can be used with different conditional independence tests. There are options
for a multivariate Gaussian (partial correlation test) as well as for non-parametric
data. We concentrate on the latter case and focus on the k-nearest-neighbor-based
test CMIknn [Runl8b, Run20]. As an alternative, the test RCIT [SVZ19, Str20],
which we have seen in Section 3.1, is also available.

Our experiments show that the algorithm’s output strongly depends on the paramet-
ers. The user has to define the minimum and maximum time lag, the conditional
independence tests, and the significance level a. This requires knowledge about the
structure of the data, especially the choice of the maximum time lag is delicate and
usually even domain knowledge is not sufficient for estimating it well. If it is chosen
too large, the algorithm can find all correct relationships, but the risk of making mis-
takes is much higher, the result less interpretable, and the run time slower. On the
other hand, with a small maximum time lag it might not be possible to capture all
causal relations.

The significance level can also lead to very different results. If it is chosen too large,
we include too many or even all potential nodes in the conditioning set (see line 14
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Figure 4.1: This graph shows a summary graph of six-dimensional dynamical system
with n = 4 intermediate processes. In this graph the effect of Xy to Y gets mediated
through all other variables. For the algorithms the indirect effect might seem stronger
than the direct ones.

Process Time Lag p-value Strength of causal
relation

Xo 2 0.0 0.279

X4 1 0.0 0.150

X5 1 0.0 0.161

X3 1 0.0 0.218

Table 4.1: Parents of variable Y

in Algorithm 1). Then, Algorithm 2 gets really slow as the conditional independ-
ence tests scale with the number of conditioning variables. The significance level can
also be too small, so that we might not include all parents in the conditioning set.
If the conditioning sets are empty, then Algorithm 2 reduces to a standard test of MCI.

The two-step procedure of PCMCI aims to minimize the chance of mistakes. However,
if a mistake does happen in the first step and one of the sets found is not a superset
of the respective parent set, PCMCI runs into trouble with distinguishing direct from
indirect effects. To show this, we use the setup shown in Figure 4.1 with different
numbers n of intermediate processes and artificially limit the size of the conditioning
set of Y to only one element.

The result for n = 3 can be seen in Table 4.1. Recall that a p-value of zero implies
absolute certainty of the decision. The information flow from X to Y is the strongest,
even though it is mediated through other variables, so that it should not even appear
in this list. If the conditioning set of Y consisted of all intermediate processes, then
no mistake with confusing direct and indirect effects would have happened.

Of course, in this example PCMCI is purposely deceived to conclude that Xj is a
direct parent of Y. But in practice, too, the algorithm might not always make correct
choices during the first step. Thus, we argue that one has to be careful with the
output of PCMCI and keep in mind that some of the effects shown might be indirect.

The computational complexity of PCMCI can be calculated with multiplying the
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Figure 4.2: The run time of PCMCI with respect to the three parameters number of
variables, number of samples and maximum time lag.

complexity of the conditional independence test (used in line ten of Algorithm 1 and
line five in Algorithm 2) with the number of tests that have to be carried out in the
worst case, i.e. when the network is fully connected. The number of tests of step one
amounts to

dTmax—1
3.2
d D dTmax = Py
p=0

The second step involves d?Timax conditional independence tests with a dimensionality
of 24 |P(X7)|+|P(X{_.)|. The complexity of conditional independence tests typically
scales in dimensionality and the length T of the time series, amongst others. As there
are several tests that can be used for PCMCI, we will not give a detailed run time
analysis of every test that is mentioned in this thesis and refer to the respective papers.

The experiments we carried out were done with 500 samples, four variables, and a
maximum time lag of Tax = 2 in the minimal setting. In Figure 4.2, one can see
that the algorithm scales not much slower than linear in all three cases. It is possible
that conducting experiments with longer time series and more variables would lead to
more interesting results. However, such experiments were not feasible, due to limited
computational power.

The version of PCMCI that was used for the experiments did not yet support parallel-
ization. However, this is a planned feature, so given sufficient computing resources, it
may be able to treat systems with many variables better in the future. Without par-
allelization all target variables are treated one after another to compute the respective
parent sets, so that one can expect a significant speed-up with this feature.

4.3 Multivariate Transfer Entropy

The algorithm multivariate transfer entropy (multivariate TE), implemented in the R
package ID Tzl [Woll8, Wol20a], is based on the ideas of Wiener and Granger and uses
conditional mutual information, an information theoretic measure defined in Section
2.3, to test for Granger causality [NWM™19]. Multivariate TE is a heuristic approach,
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defining those variables as parents that contribute a significant amount of information
to the target. A true causal parent that contributes only little information is not
considered as such. However, as most of the algorithms that try to infer a causal
structure from data have to rely on some kind of statistical testing, this heuristic does
not mean that there is a big difference between multivariate TE and other algorithms.

The algorithm gets a target process Y = (Y})sen as input and tries to find the source
processes in a set X = {X1, ..., X9} where X’ = (X})jen. Multivariate TE quantifies
the amount of information that flows from the past of X* to Y; when taking into ac-
count the information that is provided by the past of Y and of X\ X*. As conditioning
on the entire past of a process is intractable, the set we condition on in practice needs
to be significantly smaller.

Algorithm 3 Multivariate transfer entropy

Require: Time series source processes X = (X!, ..., X d), target process Y, maximum
time lags 7v € N and 7x € N for target and source processes, and significance level
ae (0,1).

1: Define Y, := {Y; 1,... Vi ny }, XG = {Xe 1,00, Xory }
2: Initialize X2, Y5, := .

3: repeat > Step 1
Compute CMI contribution I(C;Y;|Y2,) for all C e YS,
5: Select C'* maximizing the CMI contribution. Use maximum statistic to test

for significance. If it is, add C* to Y2, and remove it from Y.
6: until maximum CMI contribution is not significant or Y<Ct is empty

7: repeat > Step 2
8: Compute CMI contribution I(C;Y;|Y2,, X2,) for all C e X¢,
: Select C* maximizing the CMI contribution. Use maximum statistic to test
for significance. If it is, add C* to X2, and remove it from X¢,.
10: until maximum CMI contribution is not significant or th is empty

11: repeat > Step 3
12: Compute CMI contribution I(C;Y;|Y.3, XS \{C}) for all C € X7,
13: Select C'* minimizing the CMI contribution. Use minimum statistic to test for

significance. If it is, remove C* from X Et-
14: until minimum CMI contribution is not significant or X2, is empty

15: Perform omnibus test to test whether the CMI contribution of X%, is significant.
If not, set X2, = (. > Step 4

With an abuse of notation we define X¢, ¢ X and Y5 < Y as the sets of pos-
sible candidates. Here, X and Y are used as collections of random variables, i.e.
Y ={Y,:neN}and X = {X! : 1 <i < k,n € N}. The goal is to find the sets of
relevant sources X2, ¢ X% and Y2, U YS,.

In order to better handle auto-correlation, we compute the conditional mutual inform-
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ation I(C;Y;|Z) for all C € Y5, in step one (recall the definition of CMI in Section
2.3.3). For the C* with the maximum information contribution, we perform a signific-
ance test against a distribution estimated from surrogate data. This surrogate data is
obtained by permuting the time series. The p-value denotes the fraction of surrogate
estimates where the test statistic has a more extreme value than the original estimate
of information contribution [Woll8]. If the p-value is below a significance threshold,
we say that the result is significant, i.e. a high enough information contribution in
our case.

The test statistic used here is the maximum statistic. We compute the information
contribution of all surrogates of C € Yg and take the maximum. This is repeated
many times to get the distribution of the maximum values. Then, we can calculate
the p-value with taking the fraction of maximum values bigger than I(C*;Y;|Z) and
compare it to the significance level . If the information contribution of C'* is indeed
significant, we add C* to Y3, and remove it from the candidate set. This procedure
is repeated until Yg is empty or C'* is not significant. In the second step the same
process is done for X¢,.

After adding all variables with significant information contribution to X2,, we per-
form a pruning step to see whether some variables are no longer relevant (step three).
This can easily happen as we condition on a small X ﬁt in the beginning. We compute
I(C; Yy | (X5, 0YZ)\O) for all C € X2, and choose C* with the minimal information
contribution. The minimum statistic is computed analogously to the maximum stat-
istic and is used to test whether the information contribution of C* is still significant.
If not, we remove it and iterate until the information contribution of every single vari-
able in X2, is significant.

The remaining task is to test whether the total information transfer from all source
variables X2, is significant. In the fourth step, we permute the realizations of Y; to
obtain Y} and calculate I(X2,;Y/|Y5). Repeating this procedure many times, we
can calculate the p-value and decide whether the source variables X2, contribute a
significant amount of information. If not, all variables are removed and the set of
relevant sources is returned empty. As a last step, the multivariate transfer entropy
from X? to Y can be calculated by taking from X2, all variables of X*’s past, A?, and
calculating I(A%Y; | (X2, U Y5)\AY).

There is one big disadvantage of multivariate TE in the context of finding causal re-
lationships: it does not distinguish between direct and indirect effects, only between
stronger and weaker effects. Consider as example the target variable Y and two source
processes X! and X? with X} , — X? | — Y;, then the effect of X! on Y gets medi-
ated through X?2. If, for some reason, the direct effect is weaker than the indirect, then
it will choose the latter and probably ignore the former. With just three variables,
this is quite unlikely to happen. In a setting with more variables, however, this is a
valid concern.

We again use the setup of Figure 4.1 to show how the algorithm can be misled. For
an increasing number n of intermediate processes, the information contribution of X
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Figure 4.3: The run time of multivariate TE with respect to the three parameters
number of variables, number of samples and the maximum time lag.

to the target becomes stronger and the contributions of X' to X™ get weaker. Our
experiments show that for n < 3, Xy is not found as a parent. For 3 < n < 8, it
is considered as a parent in addition to the true parents, and for n > 8, it is found
as the only parent of Y. In other words, only for few intermediate variables the al-
gorithm outputs the true result. For many, it even refers to Xy as the only parent, even
though the effect is indirect and the intermediate variables are the true causal parents.

According to Wiener’s principle, we want to know what information other time series
provide additionally to the information of the target’s own past [WPP713]. The im-
plementation of multivariate TE follows this principle. Unlike PCMCI, which treats
the past time steps of all processes equally, multivariate TE first measures how the
target process is affected by auto-correlation. Other potential sources are only con-
sidered in the second step and have to provide strictly more information than the past
of the target variable.

The number of CMI calculations scales, in the worst case of a fully connected network,
with O(k‘STmaXS ) where S is the number of surrogate calculations. Conditional mutual
information can be calculated with the non-parametric Kraskov estimator [KSGO04],
which scales with O(KT log T'), where T is the length of the time series and K denotes
the number of nearest neighbors considered during the estimation. On a CPU, the
algorithm can be parallelized over targets; and computation on a GPU even allows
for parallelization over targets and surrogates, significantly cutting down on run time
[Wol20b].

Our experiments show that multivariate TE with the Kraskov estimator scales almost
linearly with respect to number of samples and maximum time lag, see Figure 4.3. It
scales worse than linear in the number of variables, but more extensive experiments
would be necessary to establish the exact relation.

4.4 CausalKinetiX

The problem of finding the causal structure of continuous-time systems is closely re-
lated to finding the structure of ODEs. The Picard-Lindeltf theorem states that there
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is at least locally a solution to an ODE X = f(X) if the function f is Lipschitz [CL55].
This implies that it is possible to predict the immediate future given the past values,
so that ODEs get causal interpretation [Sch19]. This connection is exploited by Pfister
et al. [PBP19], who propose an algorithm to find the causal structure of a kinetic sys-
tem via estimating the structure of the underlying ODEs. They use invariance-based
causality to incorporate knowledge from different environments (e.g. stemming from
interventions) and want to find an invariant model that predicts the data well across
the environments.

Pfister et al. highlight the connection of predictability and invariance explicitly. The
former is the standard goal of machine learning techniques, while the latter is the key
to causality. By taking into account the different environments they want to improve
the model, so that it generalizes better to unseen data. CausalKinetiX [PBP20] trans-
fers the methods of i.i.d. data [PBM16, HDMP18, ABGLP19] to dynamical systems.
The approach of CausalKinetiX is similar to the one of score-based algorithms in the
i.i.d. case: there is a space of possible models and the algorithm searches for the one
that fits the data best.

It is assumed that the dynamical system is described by ODEs and measured at dis-
crete time points. As input data of CausalKinetiX, observational and /or interventional
data of a so-called causal kinetic model are taken.

Definition 4.4.1. A causal kinetic model over processes (Xi)iers, = (X}, ..., Xﬁ)teR;o
is a finite collection of d ODFEs

where Xg denotes the time derivative of the component X7 at time t and PA; c
{1,...,d}\{j} is the set of direct parents. The system of ODEs needs to be solvable.
Interventions on the process correspond to replacing the j-th initial condition or the

j-th ODE with

Xg = x0 Or th = g(XfAjan)a

for some xy € R and function g, where PA < {1,..,d}\{j} is the set of new parents.
The system of ODEs is still required to be solvable after the intervention.

Note that the definition of the causal kinetic model is closely related to structural
causal models. Furthermore, we want to stress that the possibilities for creating
different environments as inputs for CausalKinetiX are numerous. It is assumed that
the function is a version of the mass-action kinetic law.

d d d
Yy = fo(Xe) = D 00,Y7 + DD 0, X X] (4.5)
j=1

i=1j=1
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Here, 0 € RHd+1)/2+4d ig the parameter vector. Let v be the sparsity pattern indicating
the zero entries of 6. Define

GY = {f@ ‘R SR | VreR?: fo(x) = Zei,jwixjav x 0 = 9} ) (4.6)

i,
where x denotes the element-wise product. Let
M = {G", v e {0, 1}4d+D/2+dy (4.7)

be a model space. As this space would become too large, CausalKinetiX tries to
reduce its size. The default model space of the implementation is

M, = {M € M : v has at most p non-zeros}. (4.8)

However, model spaces can be defined in any way that is best adapted to the task
at hand. If the number of variables is too large, one can use screening or variable
selection techniques that are based on predictability, such as Lasso [Tib96].

The algorithm does the following to compute the score of the models. We fit two
cubic splines computed with the help of a convex quadratic program on the data. For
the details we refer to [PBP19]. The first is calculated without any constraints, the
second is required to go through the predictions of the current model. If the predic-
tions are good, the difference of the two splines is small. If, on the other hand, they
are not, then the second spline will have difficulties with properly fitting the data.
The stability score is computed based on the difference of the two splines.

Apart from ranking models, it is possible to rank the importance of individual vari-
ables for the prediction of the target. In order to do this, we have to guess the number
K of invariant models (i.e. models that are able to correctly describe the dynamics of
the system in every experimental environment). Then, the algorithm just computes
the fraction of invariant models that depend on a certain variable. For example, if

variable X appears L times in the K best-ranked models, then the score would be
L/K.

To wrap up the algorithm, we can divide it into four steps: For a collection of models
M = {M?', ..., M™}, repetitions i € {1,...,n}, and (noisy) data ﬁ(lz),...,ﬁ(;) we need

to do the first step once and repeat (2) — (4) for every model M.

(1) Smooth target trajectories directly from the data using smoothing splines for each
repetition.

(2) Fit for each repetition j the candidate target model across all repetitions of the
other experiments and obtain fitted values for the repetition j (without actually
using the information to obtain invariance).

(3) Smooth target trajectories with the new (estimates) of the data from the step
before.

(4) Compute the score by comparing the two smoothed trajectories.
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© Model Space Without Products
& - © Model Space With Products

Number of Summands in the ODE

Figure 4.4: The run time of CausalKinetiX with respect the maximum number of
summands in the ODEs.

According to the experiments of Pfister et al., the algorithm scales in the worst case
cubicly in the number of variables and sample size, although in practice it is supposed
to be faster [PBP19]. We tested the run time for different model spaces. We tested
the run time with respect to the maximum number of summands of the ODEs. In
one space, we allowed for products of the form X? (no products like XY are included
yet), in the other one we did not. Figure 4.4 shows that the algorithm scales linearly,
even though it is much slower for the space including the products.

4.5 Topological Causality and Convergent Cross Map-
ping

We use the same setup as in Section 2.4. The mappings M;_,; from the delay embed-
ding 7* to the delay embedding 77 exist if and only if wi; # 0, i.e. if and only if the
system part X does not depend on the system part X7 where i = 1,2 and j = 3 — 1.
This is exploited by both Harnack et al. [HLSP17] and Sugihara et al. [SMY*12]
to create the algorithms topological causality (TC) and convergent cross-mapping
(CCM). Both use a nearest-neighbor approach. They project the neighborhood of r
to the other delay embedding of X’ and measure how well the projection performs.
If it works well, then there is a dependency.

Note that the direction of the prediction and of the causal effects are ‘reversed’: there
is a (causal) dependency from e.g. X! to X? if and only if X2 helps to predict X!,
ie. wo # 0.

There are two ways to evaluate the quality of the projection, which leads to the two
different algorithms. Let {t!, ...,#}} be the k-nearest neighbors around rf. Topological
causality uses a local linearization M | ; of M;_,;, which is either estimated from data,
or analytically computed as the Jacobian of a differentiable function. Then, singular
values of (M} ;) are used to define the expansion e} ,; of M ;.
ef ;= [ [max(1,0f (M) (4.9)
k

The expansion measures the quality of the mapping M;_,;: the smaller it is, the
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better the approximation of {rﬂ (), .. '(tj )}, which is given by the projection of
{ri(t), .., P (1)} to {r(tY), ..., 17 (t1)}. Topologlcal causality is defined as
1
o Y
i—j 1+ 10g( Z—)j)
1
Clyji=—————. (4.10)

72T T log(eh )

Convergent cross-mapping, on the other hand, uses a slightly different idea. It focuses
not only on the measure itself, but rather on its convergence. In practice, convergence
of the prediction is limited by observational error, process noise, and time series length
T. Hence, increasing the time series length should improve predictions. If not, then
no prediction is possible in the first place, and there is no causal relationship in the
corresponding direction. Thus, CCM uses the predictability that increases with T
and is a necessary condition for causation. The algorithm is implemented in the R
package TEDM [SYC™*20].

4.6 Comparison of the Algorithms

In the following, we want to evaluate the algorithms in different situations and for
different kinds of data. In Section 4.6.2, we consider data from discrete-time dynamical
systems where functions define the evolution of the process. In Section 4.6.3, the
algorithms are tested on data from continuous-time systems where the dynamics are
given by an ODE. In Section 4.6.4, we look at data from chemical reaction networks
that can be either sampled using fixed time steps, or by sampling every reaction
separately via Gillespie algorithm [Gil76, Gil77].

Not all algorithms are meant to be used on all data. PCMCI, for example, assumes
that the underlying process has a discrete-time evolution. However, as PCMCI was
explicitly tested for climatological data [RNK*19, RBB*19], we will try it out on
continuous-time data as well. The same holds for multivariate TE. CausalKinetiX
works only for dynamical systems based on ODEs and convergent-cross mapping only
for deterministic systems.

4.6.1 Selection of Hyperparameters

PCMCI: The maximum time lag 7nax = 5, the minimum time lag 7, = 1, the con-
ditional independence test based CMIknn, and the significance level o = 0.05.

Multivariate TE: The JIDT KSG estimator for CMI (the default non-parametric op-
tion for continuous data), the significance level a = 0.05, the maximum time lag
Tmax = 9, and the minimum time lag T, = 1.

CausalKinetiX: The maximum of three summands per ODE, products of the form
X2, additional models if they include summands of the form XY, 15 repetitions of
the same experiment (one is declared to belong to another environment if all the data
stems from the same environment), 100 samples per time series.

57



4.6. Comparison of the Algorithms

Convergent Cross Mapping: The maximum forecast horizon ¢tp = 0 in the continuous-
time case (i.e. a prediction horizon of 0 time steps in the future) and tp = 1 in the
functional case, a minimum of 10 and a maximum of 150 data points (recall that CCM
considers the convergence of the respective measure).

The time series that we sample have a length of T" = 1000.

4.6.2 Functional Data

We consider data of the form
F(X]) = f;(PA)) + N/ (4.11)
where (Nt] )?fl\{ <4 are i.i.d. noise variables and

0 0 d d

PAj « {Xt*‘l'ma;d Xt*‘rmax“’l’ s thTminJr].? thTmin} (412>
is the parent set of Xg . We will perform two experiments: one where f; is linear and
one where it is non-linear. Both experiments are carried out with Gaussian, Cauchy
and t-distributed noise, i.e. we use (1) N} ~ N(0,1), (2) N} ~ Cauchy(0,1), and (3)
Ni ~t(2).

The linear model is the following. Let (X;); be a time series where X; = (X7, ..., X}})
and

X7 = 08X, + N,

X} = 05X], + 08X}, + N/,

X?2:=05X), +08X2, +0.5X} | + N, (4.13)
X} = 08X> | + 05X, + N,

X} :=08X}, + N/,

where the initial values are given by the noise variables.

In Figure 4.5, as well as in Figures B.2 and B.1, it can be seen that PCMCI did a
perfect job for the models with Gaussian and t-distributed noise, but did not find the
link X;* ;| — X? for the one with Cauchy-distributed noise. Overall, the results are
good and one can consider the algorithm reliable.

Multivariate TE does not include auto-correlation in its output and uses a summary
graph instead of a time series graph. An example can be found in Figure 4.6. All
correct links are included in the output, but the links between 4 and 1 as well as 3
and 2 are incorrect, even though these effects are not even indirect. Apparently, the
algorithm finds an information flow that goes backward in time at one point. For
example, to get information from X* to X', it has to go one step backward from
X2 to X! (see Figure 4.5). However, a causation cannot go backward in time and a
weakness of multivariate TE becomes apparent. Unlike PCMCI, it does not condition
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Figure 4.5: This is the output of PCMCI for the dataset described by the functions
in Equation (4.13) with Gaussian noise. Recall that the data is stationary, so that all
causal relations can be shifted in time.

1 I . . I I 4

2/\/ \\, ) 3

X\ \ 14

IS w (1] 2 A 2
Y’

3

\2

delay [samples]

~ 1

4

Figure 4.6: This is the output of multivariate TE for the dataset described by the
functions in Equation 4.13 with Gaussian noise. The thick ends of the edges stand
for edgemarks, i.e. they give the orientation of the edges. The numbers refer to the
time lags of the causal relations. On the right-hand side there is a matrix which can
be read in the following way: if the square (i, ) is non-white, then there is a causal
relationship from X to X7.
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on the parent sets. Otherwise, it would take the information of th_l into account,
making any information flow from X* to X! impossible.

Figure B.3 shows the result of the experiment with Cauchy-distributed noise; one
obtains a similar picture. All true relationships were found, but also two additional
dependencies that are different from the ones before. The time lag of the relationship
between X4 and X? is in reality 7 = 2 and not 7 = 1 as the output of multivariate
TE suggests. Additionally, it found the false link X? ; — X?. A relationship between
the processes exists, but with time lag 7 = 2 and it is indirect not direct. Probably
the information flow from X} | goes first the step back, and then over X} | to X?.

Let us now consider the non-linear model (X;); where X; = (X?, X}, X?) and

XI? = XLP—Q + Nt0>
X} :=1/X), + N}, (4.14)
X?:=sin(X/} ;) + N2

The results of the experiments with PCMCI (Figures B.5 - B.7) show that almost all
non-linear relationships were found. Only the relationship X — X! has not been
found in the case of Cauchy-distributed noise. Hence, even in the non-linear case,
PCMCI can be trusted as long as the data is of the required form.

In Figures B.8 - B.10, we see that multivariate TE found the link X — X' only in
the data with Gaussian noise. Since multivariate TE does not show auto-correlation
in its outputs, the only link that is found in the Cauchy- and t-distributed data is
X} | — X?. This time, the algorithm did not output more relationships than there
actually are in the data.

We conclude that the results of PCMCI are a better than the ones of multivariate
TE for data with both linear and non-linear relationships. PCMCI is able to reliably
estimate most relationships in data where the dynamics are given by the functional
approach from Equation 4.11.

4.6.3 ODE-Based Data

The algorithms were tested on datasets with two different underlying mechanisms. To
integrate the ODEs we used the function odeint from the Python package scipy! with
a sampling rate of 0.01 and the time interval [0.0,5.0]. First, we simulated the Lorenz
attractor. The system is described by

X0 = o(x' - X9, X0 :=1,
X'=Xx%p-Xx%)-Xx' X}:=1, (4.15)
X% = X0x'—px? Xx2:=1,

where o = 10,p = 28, and § = 8/3. The second model is a variation of the Lotka-
Volterra model, where we added a third variable. The dynamics are described by

1https://docs.scipy.org/doc/scipy/reference/genera‘ced/scipy.integrate.odeint.html, last accessed
2020-03-12
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target process time lag p-value strength of causal
relation
Xo Xo 1 0.0 0.215
X4 4 0.009 0.002
Xy 0 0.0 0.009
X5 2 0.001 0.011
Xa 3 0.0 0.011
X5 4 0.0 0.01
Xo ) 0.001 0.011
X3 Xo 0 0.0 0.001
Xo 1 0.0 0.001
Xo 2 0.0 0.001
Xo 3 0.0 0.001
Xo 4 0.0 0.002
Xo 5 0.004 0.01
X4 1 0.0 0.225
X3 5 0.004 0.002
Xs X4 0 0.0 0.007
X4 1 0.0 0.01
X4 2 0.006 0.011
X4 4 0.009 0.008
X3 5 0.006 0.011
Xo 1 0.0 0.043

Table 4.2: The output of PCMCI for the dataset simulated from the Lorentz system.

X% =01X°-02x%%x1 X9 :=1,
X' =03X°Xx' —0.1Xx!, X} =1, (4.16)
X?=Xx"-X% X§:=1

Results of PCMCI and Multivariate Transfer Entropy

Although PCMCI and multivariate TE assume a discrete-time underlying process, we
will try to find out how they behave on this kind of data as well. The results do not
show a clear picture. PCMCI’s output for the Lorenz system, shown in Table 4.2,
tells us that all processes are interconnected, which is true. However, as expected, the
notion of time lag loses its meaning and the algorithm shows many causal relationships
from X to X/ for all 4,5 € {0,1,2}. Both the summary graph of PCMCI’s output
and the one of multivariate TE (see Figure 4.7) are correct.

The results for the modified Lotka-Volterra system seem to be quite different. Both al-
gorithms do not manage to find the true summary graph. As can be seen in Table 4.3,
PCMCI finds many links again, but most of them are either due to auto-correlation
or simply wrong. In reality, there is neither a causal relationship from X? to XY,
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Figure 4.7: The output of multivariate transfer entropy of the experiment with the
dataset of simulations of the Lorenz system.

nor from X2 to X!. The causal relationships from X' to X? and to X° are missing.
Multivariate TE does not find any wrong links, but is missing two out of three correct
ones in the summary graph, see Figure 4.8.

As a maximum time lag of 7. = 5 is too much for a dataset where, in theory, the
effects are instantaneous, we also tried PCMCI with 7. = 1. We observe in Table
4.4 that, in this case, the algorithm found two of the correct causal relations and only
missed the one from X! to X°. Apparently, the results with different maximum time
lags are not consistent, in the sense that one cannot just add all relationships with
a certain time lag to a result with smaller maximum time lag. From a theoretical
perspective, this comes from the fact that the parent sets we condition on depend on
the maximum time lag.

We conclude for the two algorithms, that they are not really suited for continuous-
time dynamical systems. One can probably find parameters so that the result is
reasonable, but there is much doubt over where this is possible in actual applications
with an unknown underlying structure.

Results of CausalKinetiX

First, we evaluate the algorithm on data stemming from the same environment. The
algorithm is meant to discover the structure of the ODE which describes the dynamics
of the target process. For example, if we have the ODE X =2Y +37Z— XY, then we
write the output as {{Y'},{Z},{X,Y}}.

The true output for the Lorenz system is {{X°}, {X'}} for the equation of X0
{{X° X2}, {X"}, {X'}} for the equation of X!, and {{X°, X1}, {X?}} for the equation
of X2
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target process time lag p-value strength of causal
relation
Xo Xo 1 0.0 0.079
Xo 2 0.0 0.000
Xo 3 0.0 0.000
Xo 4 0.0 0.000
Xo 5 0.0 0.000
Xy 1 0.0 0.000
X5 2 0.0 0.000
X5 3 0.0 0.000
X 4 0.0 0.000
X5 5 0.0 0.000
X3 X4 1 0.0 0.649
Xs 1 0.0 0.000
X5 2 0.0 0.000
Xs 3 0.0 0.000
X5 4 0.0 0.000
X 5 0.0 0.000
Xs X5 1 0.0 0.001

Table 4.3: The output of PCMCI for the dataset simulated from the Lotka-Volterra
system. Note that the strength of causal relations can be 0.000 due to rounding.

delay [samples]

Figure 4.8: The output of multivariate TE for the modified Lotka-Volterra system.
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target process time lag p-value strength of causal
relation

Xo Xo 1 0.0 0.093

X4 Xo 1 0.022 0.016

X5 X3 1 0.0 0.098

Table 4.4: The output of PCMCI for the dataset simulated from the Lotka-Volterra
system with T = 1.

For the target X, CausalKinetiX gives five models a score below 0.03, while the
remaining ones have scores larger than 200 (recall that the best score is zero). The true
model is only ranked fifth. In several experiments, we observed that CausalKinetiX
ranks models with fewer than the maximum number of summands (i.e. with one or
two summands in our case) worse. The four models with a lower score are probably
a perfect fit for the data as well, as they all have the same two summands with a
varying third term.

The result of the algorithm for the targets X' and X? is perfect, as the true model
has best score of almost 0 in both cases and all other models have scores of more than
1300 and 200 respectively.

Next, we look at the modified version of the Lotka-Volterra model with a third vari-
able that is dependent on the first one. The true model is set to {{X°}, {X°, X}},
{{X1},{X? X1}}, and {{X"},{X?}} for the targets X?, X! and X? respectively.

The results are similar to the experiment above. For X° and X!, the true model is
found and ranked highest. For the target variable X2, the algorithm put four models
before the true model in the ranking that have both true summands plus a varying
third.

To find out how CausalKinetiX profits from the multi-domain setting, we performed
the same experiments with a varying number of interventional environments. For one
experiment, we created up to five of them. The interventions we used have either the
form X = 0 to fix one variable to a certain value, or they reduced the number of
summands that appear in the ODE, e.g. from X = f(X,Z) + g(Y) to X = f(X, Z).
One would expect the algorithm to perform better having this additional information,
but the results were not as good as in the experiments with just one environment. The
algorithm was not able to find the true structure of the ODE for any of the variables
that we intervened on. Additionally, the algorithm had difficulties with finding the
structure of the variables that were not intervened on. These results are probably
caused by the alpha state of the implementation.

To summarize, CausalKinetiX can discover the model structure well in the case of
purely observational data, although the best-ranked model is not unique in some
cases. However, it does not yet appear to be suitable for a multi-domain setting.
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Results of Convergent Cross-Mapping

We tried out convergent cross-mapping on all the datasets that we mentioned previ-
ously, but the algorithm gave the wrong answer almost every time. Either the effects
were found in both directions and rated equally strong, or the wrong direction had
a higher score. Only in its original setup described in Section 2.4, with equations of
the form X! = f1(X!, wiap(X?)), the algorithm gave correct answers. We did not
find a reason for this, even though it is likely that there is a structural error in the
implementation, as the links were reversed in many experiments.

4.6.4 Data from Chemical Reaction Networks

Chemical reaction networks (CRNs) can be simulated in two different ways. Either,
one takes fixed time steps and samples them like ODEs, or one uses no fixed time
steps and simulates every single reaction that is happening separately. For the first
option, we use the python package CRN [Bor20]. A reaction X >> Y where species
X transforms into species Y has a certain speed indicating how often the reaction
takes place with respect to other reactions. More complicated reactions are possible,
eg. X +Y >> Z where two molecules react and a new one is created. We simulate
five seconds with a step size of 0.01. Gaussian noise is used to get a more realistic
setting with measurement errors. We performed the experiments with data sampled
from a CRN which translates into the following system of ODEs:

X0 =—-x° X9 := 500,

X' =Xx%—2x?! Xx}:=300,

X? =2Xx'-0.2x2 X2:=0, (4.17)
X =02X2% X3:=0.

CausalKinetiX

We use again a maximum number of three summands per ODE. In this case, however,
there are two equations with only one summand each, which turned out to be prob-
lematic in the experiments before. Another difficulty might be the chain of effects
from XY to X3, which might confuse the algorithm because of the presence of direct
and indirect effects. To compare the results of the algorithm on CRN data with the
performance on normal ODE data, we additionally use the same sampling technique
for ODEs as before.

The results of the experiments show that CausalKinetiX is not able at all to find the
true model for CRN data. In contrast, when the data was sampled using odeint, the
algorithm found the true structure of X!, ranked the true model of X second and got
the variable ranking for X? right. Additional models included have more summands,
but appear to be perfect fits as well. The only target variable wide off the mark is
X0,

We conclude that CausalKinetiX behaves well on most of the data, as long as it strictly
follows the rules of deterministic ODEs plus a random noise. As soon as there is more
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Figure 4.9: Here we can see a scatter plot of the two variables X (on x-axis) and Y
(on y-axis). In the first example the variables are dependent, in the second one they
are not.

randomness in the data, as is the case for chemical reaction networks, the algorithm’s
performance worsens drastically.

PCMCI

The other way to simulate CRNs is to use the Gillespie algorithm to simulate every
reaction separately [Gil76, Gil77]|. Essentially, this means that the process is sampled
in discrete time steps. However, the dynamics are not described by a function, but
by a stochastic process. We will see that we can use this setting to learn something
about PCMCI.

At first, the results of PCMCI, run with the same parameters as before, were not
satisfactory. To investigate its failure, we considered one target variable at a time.
Assume that we have the chain of reactions Z >> X >> Y. Testing the conditional
independence corresponds to fixing the value of Z and considering the values of X and
Y for Z = 2. One can visualize X and Y by plotting the values using a scatter plot.
This plot can be used to confirm visually that X and Y are dependent or independent
(see Figure 4.9).

As there are not sufficiently many data points of X and Y for a single value Z = z,
we consider different hypercubes which each include a certain interval of values of Z
as well as the corresponding X and Y values. This procedure is similar to the one
used by the conditional independence test CMIknn. There, the size of the hypercubes
is determined by the number of neighbors that are taken into consideration.

The size of the hypercubes, i.e. the number k of nearest neighbors, is a parameter
which can be a lot more important than appears at first. The default option of PCMCI
for the k-nearest-neighbors that are considered is a fraction of the number of samples.
This leads to a large number of neighbors and to smaller variance in the decisions.
However, it can also increase the bias when the local structure can only be seen in a
smaller hypercube.

66



4.6. Comparison of the Algorithms

1952.01 @ L 19164 @
[ ]
1951.5 4
1914 4 L] L]
1951.0 4 [ ] [ ] L]
1912 4 L]
1950.5 4
[ ] [ ] [ ] [ ]
1950.0 1 L] 1910 4 L]
[ ]
1949.5
1908 L] [ ]
1949.0 L] L] [ ]

Figure 4.10: We have again a scatter plot of X (on x-axis) and Y (on y-axis). The
values of X and Y do not matter for our purpose. On the left-hand side, the case of
few neighbors, one could imagine a linear dependency. On the right-hand side, the
case of many neighbors, one cannot.

In the case of our CRN data, the number of samples is far too big if we consider a
fraction of the number of samples as k, so that the results of PCMCI were not satis-
factory. Instead, we should have used only a small number of neighbors of about three
to five. Indeed, we observed that in this case, PCMCI is able to find the true parent
set if the reaction from parent to child is faster than the other reactions. In Figure
4.10 we can the reason for this phenomenon. If we look at only a few neighbors, there
might still be some local structure that cannot be seen with more neighbors (i.e. a
larger hypercube) anymore.

In chemical reaction networks, a higher reaction rate means that there are more
samples in the hypercube around a certain z. In our example of the chain Z >>
X >> Y, we observe that if the reaction Z >> X is much faster than the reaction
X >> Y, there might not be any samples for X and Y given a certain value Z = z.
In order to get a significant number of samples for X and Y, one has to choose a large
hypercube. However, there might be no structure visible in this hypercube, so that
PCMCI fails to find a causal relationship from X to Y.

There are also examples where even the small hypercube is too large and where it is
not possible to see any local structure, see Figure 4.11 on the left-hand side. Here,
the reaction rate of Z >> X is much faster than that of X >> Y. On the right-hand
side of Figure 4.11, we see the opposite case where Z >> X is slower than X >> Y,
so that we detect a local linear structure even in a larger hypercube.

The problem that PCMCI has with the conditional independence test CMIknn can be
generalized to all methods, which are based on conditional independence testing, as
they have to find (local) structures in the data, and do this by considering a certain
neighborhood. The latter can be smaller or bigger, such that there is a varying number
of other data points included. More data means less variance, but also increases the
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Figure 4.11: On the left-hand side there is the scatter plot of X (on x-axis) and Y
(on y-axis) where the reaction rate of Z >> X is faster than the one of X >>Y. On
the right-hand side we have the opposite case. Again, the values of X and Y do not
matter for our purpose.

probability that a structure which is visible in a smaller neighborhood cannot be found
anymore.

4.6.5 Learnings from the Experiments

We can conclude that PCMCI is the best algorithm for discrete-time dynamical sys-
tems. Its non-parametric version can handle almost every input data of the functional
form and finds even highly non-linear relations. Only in the case of data sampled
from stochastic processes, e.g. the Gillespie algorithm, PCMCI had some trouble. We
analyzed its behavior and concluded that conditional independence tests do not work
in this setting, as long as the reaction considered is not much faster than the others.
Multivariate TE’s output was mostly correct for functional data, but there were al-
ways some (minor) mistakes, making the algorithm less trust-worthy in real-world
applications where no causal structure is known a priori.

CausalKinetiX worked reasonably well as long as the data was sampled from ODEs;
it was not able to handle other kinds of data. A big drawback is that the algorithm
did not work for multi-domain data, even though it was explicitly developed for this
setting. The implementation of CCM is not usable on general datasets yet.
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Chapter 5

Estimation of Causal Effects

Apart from finding causal relationships, the next big task of causal inference is to
estimate the strength of causal effects. An example for this would be the average
treatment effect (ATE), defined in Equation 5.2, which is usually used in clinical trials
to rate the efficacy of a treatment.

In practice, this is done empirically via randomized controlled trials, i.e. by actually
carrying out the experiments and comparing the results of the treatment groups with
the control groups. In causal inference, the goal is to obtain the same knowledge, but
with just using observational data, i.e. without carrying out any experiments. In the
language of causal inference, the problem reduces to the estimation of the effects of
interventions and all the theory that is discussed in this chapter tries to tackle it in
different situations. Note that all causal relationships need to be known already, in
order to estimate the strength of causal effects.

Estimating causal effects with observational data has been done in statistics long be-
fore Pearl formalized the framework of causality. The work that most of these methods
can be related to is the theory of potential outcomes, pioneered by Neyman [SNDS90]
in the 1920s and formalized by Rubin in the 1970s [Rub74]. Another useful tool is
called instrumental variables [Wri28]. With the help of a confounding variable satis-
fying certain properties, it allows to estimate the causal effect from one variable to
another.

The instrumental variables method is an example for approaches which assume the
model to belong to a specific class. Only then one can estimate causal effects. If,
on the other hand, no model structure can be assumed a priori, one has to identify
the intervention. For an arbitrary model this is only possible with Pearl’s do-calculus,
see [Pea09] for the case of atomic interventions and [CB19] for stochastic interventions.

We will see that the methods in the i.i.d. case are quite advanced, while there is not
much research for time series. However, there are attempts to make the transfer from
the i.i.d. to the time series case, for example Blondel et al. [BAG17] who extended
the theory of causal Bayesian networks to dynamical causal Bayesian networks and
proved identifiability as well as transportability results (transportability is discussed
in Section 6.3).
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We will divide this chapter into three parts: Section 5.1 is about all methods and
concepts that are related to Pearl’s framework, in Section 5.2 the potential outcome
framework of Rubin is introduced shortly, and in Section 5.3, the relevance of estim-
ation of causal effects for dynamical systems is discussed.

The two frameworks of Pearl and Rubin are closely connected, as they both formalize
(certain aspects of) causal inference. The potential outcome framework has been
developed explicitly to model individual experiments. As the potential (i.e. possible)
outcomes of one experiment cannot all happen at the same time (as one experiment
can only have one outcome), they can also be seen as counterfactuals and can thus be
included in Pearl’s framework.

5.1 Interventions and Counterfactuals in Pearl’s Frame-
work

There are two important steps necessary to compute the effect of an intervention:
identifying and estimating. Identification is especially important, as we want to do
causal inference on arbitrary models, which are not covered by most of the other meth-
ods that compute causal effects. For arbitrary models it is not clear a priori whether
a certain intervention can be computed or not. In Pearl’s framework, the second step
consists of estimating conditional expectations, while handling various pitfalls like un-
known confounders.

The do-calculus provides a tool to either identify every intervention or state that it is
not possible to do so. The ID algorithm has been developed for this task by Shpitser
and Pearl [SP06]. The output of the algorithm is a more or less complex expression of
conditional expectations, which then have to be estimated using a suitable technique.
Linear regression is probably the most famous one, but there are many which can be
used in the non-linear case as well (e.g. [VM19)).

Identifiability, which has been introduced in Section 2.1.4, has been extended in several
ways. Bareinboim and Pearl introduced z-identifiability [BP12a], which extends the
notion to experimental data. However, the assumption that all experiments are avail-
able makes it difficult to use, so that Lee et al. [LCB19] developed g-identifiability,
which includes both observational and experimental settings and does not assume
that all experiments are available. The original form of the ID algorithm is only able
to treat atomic interventions, i.e. fixing a variable to a certain value, but Correa
and Bareinboim recently proved completeness of their method for the identification of
stochastic interventions [CB19].

Unfortunately, the extensions of identifiability are not widely implemented in software
packages until now. For instance, Microsoft’s causal inference library DoWhy [SK19]
and others still only include implementations of the standard ID algorithm.

Interventions play an important role in counterfactual analysis as well. Let us consider
a structural causal model M = (V,U, F') where U and V are two sets of variables and
F is a set of functions that determine how values are assigned to each variable V; € V.
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5.1. Interventions and Counterfactuals in Pearl’s Framework

The assignments have the form
v = fi(v,u),

where V; is assigned the value v; given the current values v and w of all variables in V'
and U. The variables in V' are called endogenous, the variables in U are exogenous.
Let P(u) be the probability distribution of the exogenous variables U, which defines
a distribution P(v) on V as the variables in U uniquely determine the values of the
variables in V. According to Pearl [Pea|, the basic counterfactual entity in structural
models is the sentence ‘Y would be y had X been z in situation U = wu’, denoted
Y. (u) =y.

Let M, be the SCM M where the assignment X = x replaces the original one. We
can formally define the counterfactual Y, by

Yo (u) := Yar, (u), (5.1)

i.e. the value of Y in the modified SCM with the same values of the exogenous vari-
ables U = u.

P(u) also induces a probability distribution on the counterfactual events Y, = y and
thus on Boolean combinations of such events. We will use this in the following. Pearl
introduced three steps to compute the probability P(Y, = yle) for some propositional
evidence e [Pea09]. The first step is called abduction. We update P(u) to obtain
P(ule). The second step, action, consists of replacing the equations determining
the variables in set X by X = z. Finally, in the prediction step, we compute the
probability of Y = y in the modified model.

In order to clarify the steps of a counterfactual analysis, we give an example, following
the one given in [Pea].

Example 5.1.1. Let X be the level of assistance given to a student, Z the amount
of time the student spends studying, and Y the student’s performance on an exam.
We assume to have the following linear assignments.

X =€,
Z :=0.5X + e,
Y :=07X 4047 + e3.

Assuming we measure (X,Z,Y) = (0.5,1,1.5), we can estimate what would have
happened if the student had doubled his or her study time. The student’s charac-
teristics u = (€1, €2, €3) stay the same. The first step is abduction, where we have to
recompute the probability distribution given the observations. We compute (€1, €2, €3)
by replacing X,Y, and Z with the measured values. We obtain

€1 = 0.5,
€2 =1-—0.5-0.5=0.75,
€3=15-05-07—1-0.4=0.75.
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In the action step, we replace the equation of Z with Z = 2, so that all the links to
the parent variables (in this case only the link to X) are removed. Now we can do the
prediction that we wanted to do:

Y7.0=05-074+2-044+0.75=1.9.

The result is that the student’s score would have improved from 1.5 to 1.9 if he or she
had doubled the amount of studying time.

There are various possible applications of counterfactuals, e.g. in reinforcement learn-
ing [BWZ*18], complex learning systems [BPQC™13], or Earth system science [HPO116].
In the latter work, the authors used them in a detection and attribution task where
weather and climate events are related to anthropogenic climate change, for example
the European heat wave in the summer of 2003. Ness et al. built a method for per-
forming counterfactual inference for Markov process models in equilibrium [NPV19].
Even though this is quite a special case, it is a first step towards using causal in-
ference for continuous-time systems in practice. For this, probabilistic programming
languages such as Pyro play an important role, as Ness et al. pointed out. They can
be used not only for time series data, but also for i.i.d. data.

Even though instrumental variables are much older than Pearl’s framework, they can
be fitted into it. The setup of instrumental variables is the following. We want to
estimate the effect of X on Y, but are not able to do so right away, as there are hidden
common causes. Instead, it is possible to make use of a specific confounding variable to
indirectly estimate the effect. This confounding variable Z, the instrumental variable,
needs to fulfill three properties: (a) Z is independent of all common causes of X and
Y, (b) Z is not independent of X, and (c) Z effects Y only through X. As an example,
if we have the linear case

X := BZ +vyH + Ny,
Y :=aX +0H + Ny = a(B8Z) + (ay + 0)H + Ny,

where H is the common cause. Here, we can regress Y on SZ to get an unbiased
estimator of Y. If one tried to regress directly on X, the result would be a biased one
due to the lack of independence of X and H.

There are many extensions and generalizations of instrumental variables and the
concept has been widely applied in practice [IA94, BT90, DMS10, GKTCS18|. Most
of the times, instrumental variables are fitted into the potential outcome framework of
Rubin, which is more common in practice than Pearl’s graphical causality. However,
there are a few publications connecting traditional methods of causal inference to the
ones that were developed more recently. For example, Rothenh&usler et al. looked at
instrumental variables from an invariance-based perspective of causality, which might
give new insights in the future.

5.2 Potential Outcome Framework

The language of the potential outcome framework differs from Pearl’s language, mainly
because its central part are counterfactuals. Let n be the number of i.i.d. experiments
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(or units on whom an experiment is carried out), 7" the treatment, and Y the response.
The simplest case is a binary treatment (i.e. treatment or no treatment) which we will
consider in this thesis, but there are several extensions [Rub04, Rub05, MW15, IR15].

We consider the potential outcomes of the i-th experiment, Y (1) and Y (0), indicating
the reaction of the response on the treatment 7' = 1 and T = 0, respectively. The
famous ‘fundamental problem of causal inference’ [Hol86] highlights the fact that we
can only observe one of the outcomes per experiment, so that the average treatment
effect (ATE)

ATE :=E[Y (1) - Y(0)], (5.2)

is purely hypothetical for just one experiment. For example, if somebody has a head-
ache and takes an aspirin at time 1, then one can measure at time to whether or not
the headache is gone. If the person takes no aspirin, then one can also measure at time
to what happened. However, one cannot just try and take the aspirin at a later stage,
e.g. if the headache is still there at time to, as this would be a different experiment.

Apart from the ATE, we can also look at the average treatment effect of the treated
(ATT) and the untreated (ATU):

ATT :=E|Y(1)—-Y(0) | T =1] (5.3)
ATU :=E[Y(1) =Y (0) | T = 0] (5.4)
Note that Y (0) given T = 1 is not a contradiction, as it is merely a potential outcome,
i.e. a counterfactual. It is the response of the same unit in a counterfactual world

where the unit has not been treated, even though conditioning on 7' = 1 means that
has been treated in the real world.

Due to the fundamental problem of causal inference, we cannot properly estimate
ATE with averaging over all units, as only one treatment can be carried out per unit.
Hence,

- 1 &
ACE = — Y;(1) — Y;(0). 5.5
RARD (5.5
is not a good estimator. Instead, Neyman [SNDS90] and Rubin [Rub74] show that

ATE = — S v(1) - — S Y(0) (5.6)
|51 iEZS:I S0 i;;o

is an unbiased estimator of Equation 5.2. Here Sj is the set of units on which treat-
ment T' = j, j € {1,2}, is carried out.

In reality, we will often have observational studies where the assignment to a group
(treatment or control group) is not fully random, i.e. (Y(0),Y (1)) 1L 7" does not hold
and E(Y(1)|Z =1) # E(Y(1)), so that ATE is not an unbiased estimator anymore.
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In this case, the so-called strongly ignorable treatment assignment (SITA) assumption
can help us [RR83b]. We assume, similar to instrumental variables, that a confound-
ing variable with certain properties exists, which can then be conditioned on to get
an unbiased estimator again. The values P(Z = 1|X) are called propensity scores
[RR83b]. They are used in different methods like matching, stratification, inverse
propensity score weighting, or covariate adjustment [HIKS07, Ros87, LD04, Ausll1].
There is still a lot of active research to find better methods for causal inference (e.g.
[SLK18]), but also on applying the framework to actual problems, even in continuous
time [ZS12].

5.3 Interventions on Dynamical Systems

In the i.i.d. setting, we want to estimate something like E[Y |do(X := z)] from obser-
vational data. It is not entirely clear how this expression can transferred to the time
series case. It makes sense to differentiate between discrete-time and continuous-time
dynamical systems.

In discrete time, we can try to estimate E[Y;|do(X;—, := x)]. As long as we have
reasonable stationarity assumptions, we are able to estimate how the intervention
on one process in a certain time step affects another process in another time step.
There is some research that explicitly tries to solve this task [Lil8]. In contrast to the
continuous-time case, the discrete-time case can still profit from Pearl’s framework,
as we have already seen in Chapter 4 with PCMCI algorithm. The do-calculus can be
easily used and the identifiability statements hold.

Assuming now to have a continuous-time system, the situation is very different. The
expression E[Y;|do(X;—, := )] completely loses its power, as the number of time
steps is uncountable, so that probability measures give zero measure to events like
P(Y; = y). Therefore, it makes more sense to look at the dynamics of the process
after intervening.

However, these are only described by physical models, so that causal inference lacks
the tools for this task. As observational data is not enough to compute interventions,
one has to perform real experiments to obtain causal knowledge. Additionally, the lack
of identifiability results (or something similar adapted for continuous-time dynamical
systems) leaves us with no possibility of using observational data for estimating causal
effects.

Even though the case of continuous-time dynamical systems is especially difficult to
treat, there is some research that tries to connect causal and physical models and
can serve as a foundation for the next steps, e.g. identifiability for continuous-time
systems. For example, interventions that are defined for structural causal models can
used for differential equations as well, as they are just any form of replacing parts of
an equation by something else. For example, to fix the variable X to a certain value,
we can require that X(0) = £ and X = 0.

However, as physical models contain strictly more information than causal models, we
can only build that connection for strictly stationary or converged systems. This has
been one for ordinary differential equations [MJS13| as well as for random differen-
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tial equations [BM18|, which have random initial points and deterministic dynamics.
Sokol and Hansen [SH13| give a causal interpretation of stochastic differential equa-
tions without further relating the concepts to causal models.

To summarize, estimating causal effects is one of the oldest tasks of causal inference
and there has been much progress, mainly for i.i.d. data. Even though the concepts
of the i.i.d. case can be transferred quite easily to discrete-time dynamical systems,
they do not have the same power there, as they cannot provide information about the
change of dynamics of the whole time series.

In the continuous-time case, we do not even have the theoretical foundation anymore
and there is no way of estimating the effect of interventions or experiments without
actually carrying them out. Therefore, the number of possible applications for time
series data is limited.

75



5.3. Interventions on Dynamical Systems

76



Chapter 6

Causality and Machine Learning

Causality has always been a concept closely connected to data science and recently
also to artificial intelligence and machine learning. Schoélkopf and others even argue
that it is necessary to incorporate causal knowledge into machine learning models
and self-learning algorithms in order to get to the next step of artificial intelligence
[Sch19, Peal9]. There are various ways in which causality is of importantance in ma-
chine learning research and applications; numerous publications show that researchers
are aware of that [GCL118].

In this chapter, we want to cluster the publications into different groups that facilitate
the task of analyzing the connection of causality and machine learning. In Section
6.1, we discuss how causality can make machine learning models easier explainable
and interpretable. In Section 6.2, we wrap up some approaches that use causal rela-
tionships, as well as situations where machine learning can profit from knowing the
causal structure of data. We continue in Section 6.3 with evaluating how interven-
tional knowledge can be incorporated in data science; and finish with an analysis how
the most recent notion of causality, independence-based causality, can be applied in
practice.

6.1 Explainability

One central goal of machine learning is to make ‘black box models’* more interpretable
or explainable [RSG16a, RSG16b, KW17]. The link between explainability and caus-
ality is inherent in the way humans understand the world. We can observe causality
in nature, e.g. in physical or mechanical systems, and thus use it to better understand
a model.

For example, if we have a machine learning model that predicts Y from a multivariate
X, then it is a priori unclear whether every X; that Y depends on is actually a causal
parent. Causal inference is able to answer this question and to check whether the
model uses other variables than the causal parents to predict Y. If so, one can retrain
the models only using the causal parents to get a more robust and easier interpretable
machine learning model.

'Thus named for their metaphorical inability to observe their inner workings.
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Reimers et al. developed an algorithm that decides whether a feature is useful globally
or only locally by using causal inference methods [RRD19]. They argue that another
problem of standard algorithms in this field is that they work only locally for specific
inputs. Here, the invariance of causal mechanisms can help to get more relevant,
global information.

Apart from direct applications, there has been a lot of work on connecting causality
and explainability on a theoretical level. Kim and Bastani [KB19] built a framework
for causal interpretable models, i.e. models that are able to learn causal informa-
tion from observational data while still being interpretable. This led to the term
causability, introduced by Holzinger et al. [HLD'19], which goes side by side with
explainability. It highlights the importance of recognizing human perception as an
important parameter for explainability. In their recently published survey of explain-
ability and interpretability, Roscher et al. [RBDG19] stressed the role of causality for
real progress in the field of explainable machine learning. Zhao and Hastie published
a paper where they connected, on a theoretic level, the back-door criterion of caus-
ality with partial dependence plots and more advanced techniques which are used in
interpretable machine learning [ZH19].

6.2 Using Causal Structure

Causality is also able to make machine learning models better in different ways via
exploiting causal relationships. For example, if the causal structure of data is known,
only causal parents should be used for predicting a certain variable Y, as this leads
to more robust and explainable methods.

Not only the relationship between observed variables can be important, but also rela-
tions between observed and unobserved ones. One of the main challenges for obtaining
good datasets is selection bias, which occurs if there is an unobserved confounder that
influences the data-generating process [Pea09]. For example, if one wants to conduct
an empirical study in political or social sciences, there are many factors that poten-
tially lead to selection bias [BP12b]. If people are randomly chosen and questioned
in front of a university building, it will be likely that most of the participants are
students and not representative of the whole society. Similarly, visiting households
in the early afternoon probably leads to many closed doors, as anyone with a 9-to-5
job will not be at home. The framework of causality is able to properly address these
challenges, as we have seen in Example 2.1.10, where we discussed Berkson’s paradox.

Khajehnejad et al. [KTS'19] exploit causal knowledge for better decision-making. A
bank may use machine learning to calculate the interest rate offered to a customer
using their financial situation and other parameters which, in the past, allowed for
better prediction of the credit-worthiness. This is not per se a good or bad thing.
However, if these parameters are transparent, then one can actively intervene to get
a better score. Previous debts returned in full are a reasonable predictor for solvency,
which the bank could reward with a lower interest rate. Other parameters like the
home address, however, do not have any causal effect on credit-worthiness. As moving
to a different area does not make it any more likely to repay a loan, it shouldn’t lead
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to a better credit assessment.

It is likely that as soon as the parameters used to estimate credit-worthiness become
transparent, people actively start trying to manipulate their scores. We enter an inter-
ventional setting where causal relations become important and correlations lose their
power.

This is what Scholkopf calls ‘realm of causality’ [Sch19]. He gave the very intuitive
example of buying a laptop case in an online shop. Due to the obvious correlation of
people buying laptops and laptop cases, the algorithm might suggest you buy a laptop
along with the case. However, as few people would get a laptop case before buying
a laptop, this recommendation clearly is nonsense. On the other hand, suggesting to
somebody who purchased a laptop also to buy a fitting case actually makes sense.
The algorithm’s failure is caused by an intervention in the system, which occurs with
the (active) suggestion of an additional item.

Thus, purely statistical data cannot be used any more and a causal model is needed.
This causal model would show that there is a causal relationship from buying a laptop
to buying a laptop case, but not the other way around. Again, the machine learning
model operates in the ‘realm of causality’ without acknowledging the fact.

A field of research where causal knowledge can be used is anomaly detection. Qiu
et al. lay out different (standard) approaches used for this task which do not relate
to causal inference [QLSL12]. One option is to use machine learning to predict the
future of a time series using its past values. An anomaly is reported if the actual value
differs significantly (for some significance level «) from the predicted value [CBK09].
Another possibility is to use clustering techniques [YT02]. These methods, however,
yield no information about the source of the anomaly, which is just as important as
detecting it in the first place. Causality can help with so-called dependency anomalies,
i.e. anomalies that occur due to a change of temporal dependencies. One can use any
algorithm that uncovers the causal structure in data and apply the scores of Qiu et
al. to find out if there are anomalies somewhere in the given dataset.

Another field where investigating relations between variables is most crucial is neur-
oscience. Seth et al. [SBB15] give an overview of the importance of Granger causality
in neuroscience. Michalareas et al. use partial directed coherence to measure causal
relationships in MEG sensor measurements [MSPG13]. One of the difficulties inherent
to neuroscience is that many regions of the brain are not yet fully understood, so that
spurious correlations and confounding variables can mislead researchers; as such it is
obvious that using causal inference methods instead of the standard statistical tools
is necessary.

Zhou et al. enhanced standard Granger causality to apply it on non-stationary dy-
namical systems using modified Hodrick-Prescott filters to extract trend components
[ZKZS13]. They use it on smart buildings to understand relationships between the
sensors and allow for better predictions of energy usage and other applications. A
practical consequence is that in some cases, expensive-to-maintain sensors can be
made redundant, if their readings are found to be completely determined by cheaper
ones.
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6.3 Interventional Knowledge

One field of research, where one (implicitly) calculates the effect of interventions is
reinforcement learning. However, even though interventions were used in the past,
the setting has not been considered as a multi-dimensional one. Strictly speaking,
every action of the agent is a violation of the common i.i.d. assumption of machine
learning [Sch19] and a lot of causal and temporal information is created by these in-
terventions. Currently, however, this information is not used and researchers instead
try to get rid of it by permuting past data, which has, for example, been done with
DeepQ [MKS™15, Sch19].

The ultimate goal of reinforcement learning is to imitate the learning of a human or
animal. However, the latter learn by interacting with their environment. Scholkopf
[Sch19] gives the example of an Atari game, which becomes easier for algorithms when
the resolution is downsampled. For humans, this downsampled version proves to be
much harder, as the characters are not clearly visible any more. Any child can eas-
ily play around with the joystick to find out which game character it plays and how
the characters interact with each other. For a machine, this is much more difficult,
as the concept of learning by intervention and transformation is not currently used
[Mac71, Sch19]. For some of the various applications of causality in reinforcement
learning, see [BWZ"18, LSHL18, DWC'19, ZB19].

The goal of transportability, a concept which has been developed by Bareinboim and
Pearl [PB11, BP13, BP14, PB14], is to transfer interventional information from one
domain to another. For example, let us imagine that a study has been carried out
in New York, where the causal effect of an exposure X on outcome Y is estimated
for every age group Z = z. Now, we want to use this knowledge to get insights on
the effect on people living in Los Angeles. However, the distribution P*(X,Y, Z) of
Los Angeles differs significantly from the distribution P(X,Y, Z) in New York, due to
factors like e.g. age structure. Bareinboim and Pearl suggest the transport formula

P*(y | do(x)) = Y, P(y | do(), z) P* (=), (6.1)

which can be obtained from the invariance principle of causal inference. One assumes
that causal effects do not depend on specific environments, so that P*(y|do(x)) =
P(y|do(z)) holds. In [BP13] they give a complete algorithm that identifies effects that
can be transported using the rules of do-calculus.

One problem encountered by every data scientist, is that one dataset can often stem
from various, possibly very different sources. For example, consider a study that tries
to analyze the maths results of all students in high school. The dataset comes from
many schools and is very likely pooled together. At this point structural differences
between the schools are ignored. Conceivably, one of the schools could have offered
two additional lessons a week on mathematics, while most of the students at another
may have practiced at home for a maths competition. In a third school, all the maths
teachers might have been seriously sick, leaving the students with a biology teacher
as replacement for most of the year, reducing the quality of teaching. If we were
trying to estimate the effectiveness of an intervention, such as the introduction of
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smart blackboards on pupils, the results would ignore many potential confounders in
the data.

This is called the data fusion problem and has been addressed by Bareinboim and
Pear] [BP16] in a general framework, including interventional and observational data
with selection bias among others. Hiinermund and Bareinboim focused specifically on
data fusion in econometrics [HB19].

Little and Badawy [LB19] recently developed a causal version of the statistical boot-
strap resampling method [ET93]. The goal is to train models with bootstrapping,
while trying to get knowledge of interventions and the causal structure, which is then
in turn used to improve the results of the algorithm.

This procedure is more robust than standard prediction tools, e.g. in the presence
of common drivers of X and Y. Little and Badawy give the example of the MNIST
dataset where a confounding variable has been introduced: the brightness of the
background of the pictures. It is highly correlated with the numbers (i.e. the variable
Y'), such that standard machine learning algorithms tend to learn the brightness and
use it as a predictor for the numbers. Only causal knowledge of the three variables
pixels X, brightness U, and numbers Y can detect the spurious correlation between
U and Y, and thus build a more robust model.

6.4 Independent Mechanisms

Invariance-based causality [PBM16, HDMP18, PBP19] led to new domain adaptation
methods, complementary to the ones developed by Bareinboim and Pearl [SJPZ11,
ZSMW13, ZGS15, GZL*16, HDM17, MvOC*18, RCSTP18]. The goal is to close the
gap between invariance, robustness, and causality [RMBP18].

A major challenge of machine learning lies in transferring conclusions from the train-
ing data to a larger dataset (data generalization), or from one dataset to a (slightly)
different one (transfer learning). Causality plays a major role in these tasks, as causal
mechanisms are assumed to be invariant, allowing both for generalization and transfer
of knowledge [RCSTP18]. At this point, we leave the graphical causality behind, as
causal mechanisms that are invariant across domains do not necessarily have to be a
relationship between two variables.

Arjovsky et al. [ABGLP19] exploit invariance of causal mechanisms for prediction
tasks. The example they give is that of cow pictures with predominantly green back-
ground and camel pictures usually taken in the desert. Clearly, the background should
be insignificant to distinguish the two animals, but the algorithm is quite likely to over-
estimate the importance of the background and would classify a cow on a beach as
camel.

This can be avoided by considering different environments where the percentage of
pictures with cows on green pastures and other backgrounds varies. The same is done
for the camel pictures. If the algorithm now includes the background as relevant
information for the classification, the results will be that classification scores differ
across the environments. If environments with a lot of cows on green pasture lead
to better results than others, one can infer that the background factored into the
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classification. Arjovsky et al. use this fact when they say that mechanisms are only
relevant if they are independent across all environments. Here, this would clearly not
be the case. Indeed, no model that includes the background can get invariant results
if the environments are chosen properly.

The example shows that there is a huge potential in exploiting the hypothesis of
independent mechanisms. Another field where it led to a much better understanding
of many machine learning models is semi-supervised learning. The idea of semi-
supervised learning is to exploit Bayes’ rule

P(X,Y)
P(X)

which indicates that additional information about P(X) can help in predicting P(Y'|X).
However, the independent mechansism hypothesis tells us that P(Y|X) is invariant
if there is a causal relationship from X to Y. Thus, looking at the larger dataset
with unlabeled samples of X does not change the prediction power. In the anti-causal
direction where we use Y to predict X, on the other hand, the additional information
does help [Sch19]. According to Scholkopf, this result can explain why many data
scientists are not able to improve the power of their models with additional unlabeled
data.

P(Y | X) = (6.2)
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Chapter 7

Conclusion and Outlook

We talked about four different approaches to causality: Pearl’s graphical causality,
invariance-based causality, Wiener-Granger causality, and topological causality. The
first is not originally intended, but suitable for discrete-time dynamical systems. As it
needs to treat every time step of the dynamical system as random variable, it does not
qualify for continuous-time dynamical systems. Unsurprisingly, the results of PCMCI,
the algorithm that is based on this approach, are not reliable for ODE-based data.
For discrete-time dynamical systems on the other hand, they are the most promising.
There are no implementations yet of algorithms using the invariance-based approach
for dynamical systems. Li [Lil8] developed an algorithm on a theoretical level, but
there is no publicly available implementation at the time of writing. As there is no
reason why invariance-based causality should not perform well for time series data,
one can hope for promising algorithms to be developed in the upcoming years.
Wiener-Granger causality has been applied widely already in the easy case of linear
relationships in the data. It is closely connected to the methods that use information
theory to test for causal relationships. We used the implementation of multivariate
transfer entropy of the Python package IDTxl, which can handle non-parametric and
multivariate dynamical systems, finding that the greedy approach of the implementa-
tion did not work as well as PCMCI. Just as the algorithms based on Pearl’s approach
mainly rely on conditional independence testing, multivariate TE relies on testing for
conditional mutual information. Hence, the easiest way to improve the algorithms is
to improve the respective statistical tests.

The algorithms based on topological causality are able to treat the case of determ-
inistic systems that are non-separable. Separability is one of the most important
assumptions that is needed for Granger causality and also a huge drawback from the
theoretical perspective, as it is unlikely to hold in practice [SMY 12, HLSP17]. In our
experiments, convergent cross mapping did not work properly for most of the data,
but there are some extensions of CCM and other, similar, algorithms have been de-
veloped recently, so further progress may yet be achieved in the future. An important
critique to bear in mind, however, is that of Stark et al. [SBDH97], pointing out that
systems in the real world do not function in a purely deterministic way, leading to
problems with the traditional theory of chaotic dynamical systems. Another approach
that connects the ideas of Granger and topological causality is needed, which works
for random dynamical systems that are non-separable.
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Continuous-time Discrete-time i.i.d. data
dynamical systems dynamical systems
Observational Convergent cross- Convergent cross-
data - mapping? mapping
deterministic
Observational CausalKinetiX PCMCI, FCI,GES, etc.
data - multivariate TE
stochastic
Observational and | CausalKinetiX NonlinearICP
experimental data

Table 7.1: This table shows for what kind of data which algorithm can be used.

A singular perfect solution exists neither for finding causal relationships, the case
we just mentioned, nor for other tasks, like estimating the effect of causal interven-
tions. However, there are many situations, in which it is very helpful or necessary to
include causal knowledge. Data is often sampled from different domains and interven-
tional/experimental data is not treated accordingly. Mostly, it is simply discarded,
making the task of learning good models harder than it should be. The goal is to not
suffer from heterogeneous data but to embrace it as a good opportunity for learning
more robust models.

The most important step is not to forget that causality plays a huge role in many ap-
plications. Especially in today’s machine learning community, researchers commonly
attempt to find the best models without being able to explain what the algorithm
does and why it says that certain variables are important for the prediction. If there
is no causal relationship from X; to Y, then a robust model should not use this
source variable. On the training data, and even on similar test data, the prediction
results appear worse at first, but the algorithm can generalize better to other datasets.

Causality is so important for humans and the way we learn and see things, that one
often does not see the immediate connection of the given (data science) task and
causality. For example, many dynamical systems are given by differential equations
which explicitly specify the causal structure of the data. Hence, causal models are
not the solution for everything. Physical or mechanical models often contain even
more information about the causal structure and the dynamics of the system. Causal
models can often be learned from data, which is an advantage over physical models,
but their main aim is to improve statistical ones.

Therefore, if one has a dataset of samples of a dynamical system and ODEs that
describe this system well, then the maximum of causal knowledge is reached already.
In this case, one could only find out whether the dataset is really from i.i.d. data
or in fact a collection of data from different environments. In the latter case, causal
inference has the tools to include the additional knowledge in a sensible way.

Even though Pearl’s approach has been criticized for not being applicable in prac-
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tice, it provides, at least, one tool that is very useful and generally applicable: the
do-calculus. It gives a formal language that includes interventional and observational
data. As such, it is the foundation of the next level of data science, which is going to
be able to handle and profit from experimental data.

Even though causality slowly enters in the mainstream of data science, there is still
a lack of publications that apply causal inference methods to real-world problems,
especially in the case of dynamical systems. Granger causality in its linear form is the
only method that has been widely adopted. However, at least in theory, there are far
more advanced approaches. In the following, we want to outline a few situations where
we think that causality can bring significant progress. The focus is on the adoption
of invariance-based methods for time series, as both graphical and Wiener-Granger
causality are not really able to handle continuous-time dynamical systems, and this
will continue to be a big problem of causal inference.

First, we consider the process of estimating a differential equation from data. Even
though there is a natural way of defining interventions on dynamical systems and there
is extensive theory about controlling mechanical systems, researchers might not always
use all the experimental knowledge they have. In order to get to more robust mod-
els, one can carry out different experiments on the system, collect the data, and see
whether the ODE is able to describe the experiments well across all environments. If
not, the chosen model (given by a collection of ODEs) might not be sufficiently robust.

The second field, where we think that causality will play a major role in the future, is
anomaly detection, or, more general, the detection of (physical) mechanisms, which are
not explained by available ODE models. We can use the ideas of Qiu et al. [QLSL12]
and connect them to recent developments in causal inference.

If one is able to collect data from different environments, say of wind turbines in dif-
ferent countries/regions/places where the same anomaly is observed, then one could
explicitly focus on it and try to find the source processes X, so that P(Y|X) is in-
variant across all environments. Here Y denotes the anomaly. If there is such an X,
then there is a causal relationship (a causal mechanism) according to the principle
of independent mechanisms. This approach is not only able to detect and predict
anomalies, but also to fully explain why they happen.

Even though significant progress has been made in predictive maintenance, there is
still room for further improvements. We can think of a machine that is used in very
different environments, e.g. on oil platforms and in the car industry. Currently, data
scientists try to collect all the data they can get from the machine and pool them
together, in order to get a dataset which is as large as possible. However, in the pool-
ing procedure really important information gets lost. Assuming that there are similar
circumstances in the different environments that lead to a defect of the machine, we
might not be able to detect them after two or more different probability distributions
are averaged out.

One could imagine a situation where one component of machine A starts to mal-
function. This influences a neighboring machine B, which in turn starts to show a
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different behavior. This has an impact on some of the sensors of machine A. These
sensors might be seen as a predictor for the malfunction of machine A, even though
their change is merely caused by machine B.

If there is always a machine B next to our machine A, then, while not being robust,
the model will at least work well. Otherwise, the predictions will not be satisfactory
and considering another environment may help. We assume that in the second en-
vironment, there are no neighboring machines influencing the sensors, such that it is
obvious that they cannot be good predictors.

However, this knowledge can only be used if one treats the two environments separ-
ately. If one pools all the data together, the algorithm might learn to use the sensors
as a predictor, even though the predictions are poor on some of the data. A more
robust algorithm can only be obtained by treating the data as heterogeneous.

To give another data-driven field which can profit from causality, we consider Earth
system processes that are still far from being understood. For them, it is very im-
portant to avoid spurious correlations and instead find actual causal relationships,
as otherwise no real knowledge is gained. The modern challenge of climate change
makes it more and more important to understand how the climate works and how
different meteorological processes relate to each other, but hardly any experiments
can be carried out because they are too expensive, infeasible, or too dangerous. Even
though there has been progress, which led, for example, to the algorithm PCMCI
[RNK*19, RBB"19], it is important to also include the notion of invariance-based
causality, in order to properly address data which is often sampled from very different
environments.

The author believes that the biggest progress lies in developing algorithms which
use invariance-based causality. Not only since it is the newest (and as of yet least
developed) approach, but also because it is able to include all the data, both observa-
tional and experimental, to create better models. The goal is to create models which
learn in a way that is more human than any other Al algorithm, as they actively use
knowledge that has been created by transforming and experimenting, just as humans
and animals do.
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Appendix A

Finding Causal Relationships -
IID Case - Experiments

A.1 Latent Variables

(a) True DAG (b) Estimated PAG by FCI ~ GES

Figure A.1: Multivariate Gaussian data, where the first variable has been deleted, so
that the first node is hidden for FCI and GES.

A.2 Different Distributions
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A.2. Different Distributions
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Figure A.2: The results of FCI with Fisher’s z-transformation and GES for the second
dataset with Gaussian distribution.
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Figure A.3: The results of FCI with RCIT and RCoT for the second dataset with
Gaussian distribution.
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A 2. Different Distributions
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Figure A.4: The results of FCI with Fisher’s z-transformation and GES for the third
dataset with Gaussian distribution.

(b) Estimated PAG using (c) Estimated PAG using
(a) True DAG RCIT RCoT

Figure A.5: The results of FCI with RCIT and RCoT for the third dataset with
Gaussian distribution.
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A.2. Different Distributions

(c) Estimated PAG using
RCoT

(a) True DAG

Figure A.6: The results of FCI with RCIT and RCoT for the second dataset with
Cauchy distribution.

(b) Estimated PAG using (c) Estimated PAG using
(a) True DAG RCIT RCoT

Figure A.7: The results of FCI with RCIT and RCoT for the third dataset with
Cauchy distribution.
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A 2. Different Distributions
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Figure A.8: The results of FCI with RCIT and RCoT for the second dataset with
t-distribution.

(b) Estimated PAG using (c) Estimated PAG using
(a) True DAG RCIT RCoT

Figure A.9: The results of FCI with RCIT and RCoT for the third dataset with
t-distribution.
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A.2. Different Distributions
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Appendix B

Finding Causal Relationships -
Dynamical Systems -
Experiments

B.1 Functional Data
B.1.1 Linear Case
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Figure B.1: The output of PCMCI for the dataset described by the functions in

Equation 4.13 with Cauchy-distributed noise.

B.1.2 Non-Linear Case
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B.1. Functional Data

t—2 t—1 t
0 < = 9
1 g 3 L
2 & & »
3 & e L ]
4 W L @

] I I I
0.00 0.05 0.10 0.15 0.20 0.25 0.30
cross-MCl

Figure B.2: The output of PCMCI for the dataset described by the functions in
Equation 4.13 with t-distributed noise.
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Figure B.3: The output of multivariate transfer entropy for the dataset described by
the functions in Equation 4.13 with Cauchy-distributed noise.
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B.1. Functional Data
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Figure B.4: The output of multivariate transfer entropy for the dataset described by
the functions in Equation 4.13 with t-distributed noise.
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Figure B.5: The output of PCMCI for the dataset described by the functions in
Equation 4.14 with Gaussian noise.
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B.1. Functional Data
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Figure B.6: The output of PCMCI for the dataset described by the functions in
Equation 4.14 with Cauchy-distributed noise.
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Figure B.7: The output of PCMCI for the dataset described by the functions in
Equation 4.14 with t-distributed noise.
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B.1. Functional Data

1

delay [samples]

Figure B.8: The output of multivariate transfer entropy for the dataset described by
the functions in Equation 4.14 with Gaussian noise.
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Figure B.9: The output of multivariate transfer entropy for the dataset described by
the functions in Equation 4.14 with Cauchy-distributed noise.
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B.1. Functional Data
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Figure B.10: The output of multivariate transfer entropy for the dataset described by
the functions in Equation 4.14 with t-distributed noise.
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