
Real Time Image Processing based on
Reconfigurable Hardware Acceleration

Steffen Klupsch, Markus Ernst
research center caesar

center of advanced european studies and research
Friedensplatz 16, 53111 Bonn

Sorin A. Huss
Integrierte Schaltungen und Systeme

Fachbereich Informatik
Technische Universität Darmstadt
Alexanderstr. 10, 64283 Darmstadt

M. Rumpf, R. Strzodka
Institut für Mathematik

Gerhard-Mercator-Universitaet Duisburg
Lotharstr. 65, 47048 Duisburg

Abstract

This paper is concerned with a substantial speed up of image processing methods on 2D and
3D images making use of modern FPGA (Field Programmable Gate Array) technology. The
applications of this class of methods ranges from 2D and 3D image denoising and restoration,
segmentation, morphological shape recovery and matching to vector field visualization and sim-
ulation. The described demonstrator is based on level set methods, but the proposed workflow
allows to exchange the underlying mathematical methods easily.

The FPGA based hardware implementation profits especially from the high parallelism in the
algorithm and the moderate number precision required to preserve the qualitative effects of the
mathematical models. Furthermore, different variants can be supported on the same hardware by
uploading a new programming onto the FPGA. This will enable the use of these flexible image
processing methods in applications where real time performance is indispensable.

1 Mathematical Background

The quality and the size of image data (especially 3D medical

Figure 1: Segmentation of a hu-
man brain.

data) is constantly increasing. Fast and optimally interactive
postprocessing of these images is a major concern. E. g., segmen-
tation on them, morphing of different images, sequence analysis
and measurement are difficult tasks to be performed. Especially
for segmentation and for morphing purposeslevel set methods
[3] play an important role. They can be regarded as continuous
region growing algorithms dependent on a variety of boundary
criteria and have proved to be effective and robust (Fig. 1).

The motion of an interfaceΓ(t) in time t starting from an ini-
tial positionΓ(0) = Γ0 can be formulated based on an implicit
description of the interfaceΓ(t) = {x |φ(t, x) = 0 }.

Real Time Image Processing based on FPGA Hardware Acceleration 1

If f(t, x) is the speed of the interface at timet and positionx we obtain the partial differential
equation

∂tφ(t, x) + f(t, x)‖∇φ‖ = 0

In the case of image segmentationf is a force which pushes the interface towards the boundary of a
segment region in an image. Usuallyf equals one in homogeniety regions of the image, where asf
tends to zero close to the segment boundary.

The discretization of the level set model is performed with finite differences on an uniform quadri-
lateral or octahedral grid. The grid elements are enumerated with ad-dimensional (d = 2, 3) multi-
indexα and denote the element centers by thed-dimensional vectorxα. The element vector contain-
ing values of a numerical approximationΦ of the continuous functionφ associated with the elements
centers will be marked by a bar:̄Φ = (Φ̄α)α = (φ(xα))α.

Our numerical solution of the level set equation is based on an explicit Euler scheme in time and an
upwinding flux approximation in space. Depending on the order of the time scheme update formulas
have to be evaluated to obtain the next timestep solution.

Picking up the upwinding methodology [3] used in finite volume computations we approximate
H(u):= f‖u‖ by the numerical fluxg : R2×2 → R and thus obtain the upwind level set scheme as

Φk+1
α = Φk

α − τk · g(D−
α Φk, D+

α Φk) (1)

D+
α Φk:=

(
Φk

α+ei
− Φk

α∣∣xα+ei
i − xα

i

∣∣
)

i=1...d

D−
α Φk:=

(
Φk

α − Φk
α−ei∣∣xα

i − xα−ei
i

∣∣
)

i=1...d

τk is the current timestep width. The discrete solution corresponding to the vectorΦ̄k is expected
to approximateφ(

∑k−1
j=0 τj, .). To satisfy the natural boundary condition we setD±

α Φ̄k:= 0 for all α
enumerating border elements.

Forg we can also choose between different orders of approximation. The simple Enquist-Osher flux
[1] is suitable for convexH:

g(U, V) := H(0) +

∫ U

0

H ′(s)⊕ds +

∫ V

0

H ′(s)	ds

A⊕ := max(A, 0), A	:= min(A, 0)

 g(Ūα, V̄α) = F̄⊕
α

√
‖Ū⊕

α ‖2 + ‖V̄ 	
α ‖2 + F̄	

α

√
‖Ū	

α ‖2 + ‖V̄ ⊕
α ‖2

For the implementation 2D data on an equidistant grid is considered, with the grid specific diameter
h, and the first order time discretization with the Enquist-Osher flux is applied to it.

2 Design Methodology

A characteristic of image processing methods is the above described multiple iterative processing of
data sets. Due to the possible restriction on the number precision it is possible to work on integer
data sets with a restricted range of values, i. e., an application specific word length. Furthermore, it
is possible to incorporate parallel execution of the update formulas.

General purpose CPUs of todays computers can be used to implement such algorithms, but the
performance of pure software implementations is not sufficient. All operations have to be mapped

2 Real Time Image Processing based on FPGA Hardware Acceleration

I/O
Controller

(SRAM)

SRAM
Interface

Level Set
Kernel

I/O Controller (PCI)

PCI Interface

In
terface

C
lo

ck
D

esig
n

 C
lo

ck
In

terface
C

lo
ck

D
esig

n
 C

lo
ck

Clock domain decouplingClock domain decoupling

33 MHz

50 MHz

(a)

PCI BUS

FixedFixed

C-Program
FPGA
Card
API

Application-
specific
I/O Lib.

Software

C-Program
FPGA
Card
API

Application-
specific
I/O Lib.

C-Program
FPGA
Card
API

Application-
specific
I/O Lib.

Software

FPGA
Implemen-

tation

PCI
Interface

Application-
specific

I/O Modules

Hardware

FPGA
Implemen-

tation

PCI
Interface

Application-
specific

I/O Modules

FPGA
Implemen-

tation

PCI
Interface

Application-
specific

I/O Modules

Hardware

Project SpecificProject Specific

ReusableReusable

(b)

Figure 2: Conceptional hardware and software design of the hardware accelerated system.

to a processor with a fixed word length (e.g., Intel Pentium, 32 bit) - the choice of the word length
is not based on the requirements for the concrete processing task. The range of available operations
is limited to common basic operations. Complex operations have to be realized by a large sequence
of simple operations. Finally the CPU is burdened with additional tasks, such as operating system
requests, user interaction, etc., which is a major drawback in the context of real-time processing. As
a result it is difficult to meet hard real time requirements.

The proposed approach to solve the shortcomings of genuine software implementations is to use
application specific hardware acceleration. A standard PCI card product is used as accelerator
board [4]. This card is equipped with a reconfigurable logic device (FPGA) from Xilinx Inc. [5], in
which the functionality can be implemented. The used card is equipped with a XC4085XLA-FPGA
with a complexity of max. 180.000 system gates. Furthermore, the card comes with a programmable
clock generator, 2MB static RAM and external interfaces. The integration into a target system is ac-
complished via the PCI interface (Fig. 2(a)).

A generic concept for system partitioning of hardware accelerators based on PCI cards is shown
in Fig. 2(b). The system is centered around thefixedPCI interface with reusable, but application-
specific, low level I/O access functions. The system functionality is divided into a software part
(running on the CPU) and a hardware part (implemented within the FPGA). The high performance
PCI interface allows a fast and efficient data

R
efin

em
en

t

Refactoring

Partitioning:
Application Specific

Building Testbenches

Building Component

Automated Validation

Taskmanagement

Abstraction levels

Troublemanagement

ProductProduct

Design Space ExplorationDesign Space Exploration

Specification:
Conceptional Prototypes

Validation:
Automated Tests

Quality:
Integration of

Test and Implementation

Maintenance:
Well defined Models

R
efin

em
en

t

Refactoring

Partitioning:
Application Specific

Building Testbenches

Building Component

Automated Validation

Taskmanagement

Abstraction levels

Troublemanagement

ProductProduct

Design Space ExplorationDesign Space Exploration

Specification:
Conceptional Prototypes

Validation:
Automated Tests

Quality:
Integration of

Test and Implementation

Maintenance:
Well defined Models

Figure 3: Quality optimized workflow.

exchange between the FPGA card and the
software running on the host computer. Ac-
curacy and word length of operations can be
optimized and arbitrary complex operations
can be built to allowsingle stepcalcula-
tions. The FPGA approach promotes the us-
age of pipelined and parallelized algorithms
through a concurrent execution paradigm.

Nowadays, the design entry for most digi-
tal circuits is based on behavioral models
in hardware description languages (HDL),
such as VHDL or Verilog. These descrip-
tions are processed by synthesis tools to derive

Real Time Image Processing based on FPGA Hardware Acceleration 3

a netlist of basic logic elements, which can be fed into place and route tools. With the development
of especially large FPGAs and the high time-to-market pressure for consumer products, the need
for fast Algorithm-to-Chip workflows has proved to be very lucrative. As a matter of fact the time
needed during development can be more important than the optimization of the synthesized circuit
with regard to chip size or performance. As a consequence many attempts are made to incorporate
higher abstraction levels into synthesis tools - which is exploited for our design, but not without
shifting the optimization goal (Fig. 3): By using parametrised high level descriptions, we gain the
possibility to do detailed design space explorations. The design complexity is reduced by using small
abstract behavioral descriptions. By extensive hardware/software co-evaluation we add validation
of the synthesis results without leaving the abstraction level [2]. The time saved is then used for
selective optimization of critical design subcircuits.

3 Design Optimizations

Image processing algorithms as described in Sec. 1 consist of a complex sequence of primitive
operations, which have to be performed on each nodal value. By combining the complete sequence
of primitive operations into a compound operation it is possible to reduce the loss of performance
caused by the synchronous design approach (Fig. 4).

This design approach, which is common to CPU designs as well as for FPGA designs, is based
on the assumption that all arithmetic operations will converge well in advance to the clock tick,
which will cause the results to be postprocessed. Therefore, the maximum clock speed of such
systems is defined by the slowest combinatorial path. In a CPU this leads to ’waiting time’ for many
operations. Furthermore, there is no need for command fetching in FPGA designs, which solves
another problem of CPU-based algorithms. Additionally, it is possible to do arbitrary parallel data
processing in a FPGA, so that several nodal values can be updated simultaneously.

The input data rate for CPU-based and FPGA-based applications is determined by the bandwidth of
the available memory interface. A2562 image results in 64k words, resulting in 768 kBit data at 12
bit resolution. A CPU with a 16 bit wide data access would need 128 kByte to store the original
image data, without taking the memory for intermediate results into account. Even though many
FPGA architectures can store data in special RAM blocks within the FPGA chip, we need to store
most of the image data in external RAM. The access speed of the RAM and the bit width are limiting

pipelined logic

calc X

build d-Norm

� High accuracy through adaptive result ranges
� Arbitrary pipeline stages possible
� Exchangeable norm calculus

max(a-b,0)

max(a-b,0)

max(a-b,0)

max(a-b,0)

max(a,b,c,d)

+

xn

*

F

+
round &
clamp xn+1

Figure 4: Node update implementation.

4 Real Time Image Processing based on FPGA Hardware Acceleration

X11 X21X01

X12

X10

X11
(n+1)F11_in X11 X21X01

X12

X10

X11
(n+1)F11_in

X10_in Buffer(n-1) Buffer(n-1)Reg

X10
X21 X11 X01

Reg

X22

X10_in Buffer(n-1) Buffer(n-1)Reg

X10
X21 X11 X01

RegX10_in Buffer(n-1) Buffer(n-1)Reg

X10
X21 X11 X01

Reg

X22

(a)

X32

X30

X22

X01 X41 X51

X20

X21 X31X11

X32

X30

X22

X01 X41 X51

X20

X21 X31X11

X20_in Buffer(n/2-1) Buffer(n/2-1)Reg

X20
X41 X21 X01

Reg

X22

X30_in Buffer(n/2-1) Buffer(n/2-1)Reg

X30
X51 X31 X11

Reg

X32

X20_in Buffer(n/2-1) Buffer(n/2-1)Reg

X20
X41 X21 X01

Reg

X22

X20_in Buffer(n/2-1) Buffer(n/2-1)Reg

X20
X41 X21 X01

RegX20_in Buffer(n/2-1) Buffer(n/2-1)Reg

X20
X41 X21 X01

Reg

X22

X30_in Buffer(n/2-1) Buffer(n/2-1)Reg

X30
X51 X31 X11

Reg

X32

X30_in Buffer(n/2-1) Buffer(n/2-1)Reg

X30
X51 X31 X11

RegX30_in Buffer(n/2-1) Buffer(n/2-1)Reg

X30
X51 X31 X11

Reg

X32

(b)

Figure 5: Cache structures for a single calculation unit (a) and for doubled calculation units (b).

the input data rate. To reduce the impact of this bottleneck, it is a major design task to buffer reusable
data in appropriate structures within the FPGA in order to minimize the amount of RAM accesses
(Fig. 5(b)). This involves algorithm analysis and sophisticated scheduling, first order optimizations,
like reuse of data by calculating sequels of adjacent nodal values, are obvious and reduce the amount
of data needed for the level set application from 6 to 4. By doing further optimizations it is possible
to reduce the amount of transferred data per node update to the optimum of 2 data values, so that
both data arrays (input datāΦ and the velocity vector̄F) will be accessed only once which is shown
in Fig. 5(a) for a single processing instance. Fig. 5(b) shows the cache implementation with doubled
data throughput for parallel update of two adjacent nodes. Further parallelisation is not reasonable
due to restricted external data rates.

Due to the flexible architecture of FPGAs, it is possible to guarantee that numerical stiffness within
the compound operation will not impair errors caused by the quantization of the image. This is
achieved by delaying rounding to the final nodal value update. Opposed to the fixed word length
operations of CPUs, we support growing intermediate bit widths as needed. E.g., the result of the
addition of 12 bit data is 13 bit width, the result of the multiplication of two 12 bit data will be 24 bit
long. In the end, this allows to reduce the resolution of the input image data, since error propagation
is reduced.

4 Experimental Results

The demonstrator built can be loaded with a large picture, which is stored on the FPGA card’s
SRAM. Access to the SRAM is limited by the standard RAM interface, therefore the calculation
speed of the design is determined be the amount of RAM elements needed per node update. The
FPGA card uses 36 bit wide external asynchronous SRAM with 13 ns delay. Adding the FPGA’s I/O
delays, buffered SRAM access with up to 50 MHz was expected to be realizable. Since synchonous
50 MHz designs on the XC4085XLA with a CLB usage of over 80 % are highly implausible we
decided to split the design in a small high speed SRAM component and a large computation engine
which works with doubled latency. Fig. 6 shows the SRAM controller design. The SRAM72 com-
ponent was optimized by means of manual placement and further enhanced by adding dual edge
clock support which allows to realize pipelined SRAM access, which exploits the internal SRAM
latencies. This results in a 32% increase of the data throughput resulting in a constant unidirectional

Real Time Image Processing based on FPGA Hardware Acceleration 5

SRAM Controller 33MHz

� Transparent circular buffer
� IRQ and DMA-On-Demand support

FIFO(Xnew)Xnew

SleepRequest

Xn

FIFO(F)

FIFO(X)

Iteration
Complete
Counter

Sleep
Control

SRAM I/O

IRQ

CalcEnable

Fn

Addr(write X)

Addr(read F)

Addr(read X)

SRAM 72

66MHz

Addr(write X)

Addr(read F)

Addr(read X)

SRAM 72

66MHz

SRAM 72

66MHz

7272 2424

24247272

72722424

Figure 6: SRAM controller implementation.

72 Bit*33MHz data rate. There are two parallel node update engines on the demonstrator. Each
is based on a highly pipelined architecture which was generated by Synopsys Synthesis tools with
automated delay balancing (Fig. 8).

The node update engines work on 12 Bit data values, which motivates the SRAM controller design.
The SRAM controller does on-the-fly multiplexing and demultiplexing of the 2*12 bit data sets
which are delivered at each clock cycle eventhough the SRAM72 component writes or reads 72 bit
data vectors at each clock cycle. The design is optimal in respect to performance, as a matter of fact
it is not possible to get better data throughput without fundamental changes of the FPGA card.

We are caching all reusable data within the FPGA

SRAM Cache
Pixel update
calculation

Cache
Pixel update
calculation

Figure 7: Chaining processing elements.

by using internal buffer components as illustrated
in Fig. 5(b). These buffer components can be
chained which allows for calculation of multiple
iterations without intermediate storage of data in
the external RAM (Fig. 7). The XC4085XLA al-
lows for a two iteration design. Therefore, the fi-
nal frame could be calculated, which was experi-
mentally validated: The final design processes approximatly 2000 frames per second which corre-
sponds to approximately2, 2 · 109 integer operations per second implemented on an FPGA which is
available since 1998.

Pipeline Stages LUT Area Count FF Count Best Case Rate [MHz]
1 558 51 16,52
2 558 181 26,42
3 565 229 34,58
4 558 280 37,38
5 558 358 40,51
6 558 407 40,52
7 558 498 40,55
8 526 557 40,57

Pipeline Stages LUT Area Count FF Count Best Case Rate [MHz]
1 558 51 16,52
2 558 181 26,42
3 565 229 34,58
4 558 280 37,38
5 558 358 40,51
6 558 407 40,52
7 558 498 40,55
8 526 557 40,57

Figure 8: Synthesis results for a single node update unit.

6 Real Time Image Processing based on FPGA Hardware Acceleration

Bibliography

[1] B. Engquist and S. Osher. Stable and entropy-satisfying approximations for transonic flow cal-
culations.Math. Comp., Vol. 34(149):45–75, 1980.

[2] S. Klupsch. Design, Integration and Validation of Heterogeneous Systems. In2nd IEEE Inter-
national Symposium on Quality Electronic Design (ISQED 2001), San Jose (CA), Mar. 2001.
International Society for Quality Electronic Design (ISQED Org.).

[3] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Com-
putational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge
University Press, Cambridge, 2nd edition, Nov. 1998. ISBN 0-521-64204-3.

[4] Silicon Software. microEnable Users Guide, 1999.

[5] Xilinx. Programmable Logic Data Book, 1999.

Real Time Image Processing based on FPGA Hardware Acceleration 7

	Mathematical Background
	Design Methodology
	Design Optimizations
	Experimental Results

