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Abstract

In this paper we develop and analyze a Multiscale Finite Element
Method (MsFEM) for problems in porous microstructures. By solving local
problems throughout the domain we are able to construct a multiscale
basis that can be computed in parallel and used on the coarse-grid. Since
we are concerned with solving Neumann problems, the spaces of interest
are conforming spaces as opposed to recent work for the Dirichlet problem
in porous domains that utilizes a non-conforming framework. The periodic
perforated homogenization of the problem is presented along with corrector
and boundary correction estimates. These periodic estimates are then used
to analyze the error in the method with respect to scale and coarse-grid
size. An MsFEM error similar to the case of oscillatory coefficients is
proven. A critical technical issue is the estimation of Poincaré constants
in perforated domains. This issue is also addressed for a few interesting
examples. Finally, numerical examples are presented to confirm our error
analysis. This is done in the setting of coarse-grids not intersecting and
intersecting the microstructure in the setting of isolated perforations.

1 Introduction

The modeling and simulation of porous media has wide ranging applications from
subsurface flows to simulation of charge and discharge of lithium-ion batteries.
At the pore-scale the simulation is constrained by the complex geometry of
the material microstructure. As the small pore scale features must be resolved,
however, this makes solving such a problem by direct numerical simulation very
costly. In this work, we propose a Multiscale Finite Element Method (MsFEM)
based on the now classical works in [10, 16]. In this method, we compute many
local problems with linear boundary conditions to build a coarse-grid basis.
This helps to encode fine-scale information into coarse-grid basis functions. The
computation of the local problems can be done in parallel in an offline phase,
then computation can be completed on a cheaper coarse-grid in the online phase.

Multiscale methods of this nature have been explored vigorously in recent
years. The primary motivation being multiscale phenomenon arising from
∗Institute for Numerical Simulation, University of Bonn, Germany brown@ins.uni-bonn.de
†Fraunhofer ITWM, Germany
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oscillatory or heterogenous coefficients. Many multiscale frameworks to attack
such problems have arisen, examples include the Variational Multiscale methods
[18, 19] and the Heterogenous Multiscale Method (HMM) [1, 8] and references
therein, to name a few. In this work, we will develop a method in the MsFEM
framework [10, 16], and utilize the theory of homogenization to obtain error
bounds with respect to coarse-grids and micro-scale parameters for the case of
multiscale behavior arising from perforated domains and Neumann boundary
conditions.

The problem of considering partial differential equations (PDEs) in domains
with perforated and complicated microstructure has a long history. This is
especially true in the area of effective media theory and homogenization c.f.
[5, 7, 24, 30], where an effective, non-perforated, PDE is derived and auxiliary
cell problems are proposed. Several computational approaches to perforated
problems have been applied and explored. Using an HMM, the authors in [14]
solve for an unknown diffusion coefficient at each coarse-grid node by solving a
local auxiliary cell problem. Then, computation of the coarse-grid problem is
carried out on a non-perforated domain. Utilizing a non-conforming Crouzeix-
Raviart approach, a perforated MsFEM is developed for the Laplace problems in
perforated domains with Dirichlet data in [21]. This approach was extended to
the case of Stokes flow in complicated microstructures in [29], however, with an
orthogonal splitting approach close to Variational Multiscale Methods [18, 19].
In the work [4], the authors develop a Local Orthogonal Decomposition (LOD)
[13, 23] for perforated Neumann Problems. By truncating multiscale corrections
to coarse-scale basis functions, an efficient computational scheme was developed
and analyzed.

In this work, we develop and analyze a MsFEM method for Neumann
problems in perforated domains. This is similar to the equation considered in
[4], however, here we shall utilize homogenization techniques to obtain error
estimates based on characteristic scale and coarse-grid size. The advantage of
the MsFEM approach is the localized support of the basis functions compared to
the patch extensions of the method based on the LOD [4, 13, 23]. However, due
to the limitations of homogenization theory to mostly periodic problems, the
error estimates obtained in MsFEM are confined to periodic media. Applicability
beyond this setting must be verified numerically. Due to technical considerations
arising from the Poincaré constants in perforated domains c.f. [4, 28], we consider
here domains only created by isolated particles so that the Poincaré constant
remains uniformly bounded with respect to pore and coarse-grid sizes. We will
briefly discuss details of this technicality.

The paper is organized as follows. We first give a problem setup and a
brief necessary background on periodic homogenization in perforated domains.
With this foundation we are able to state our MsFEM algorithm for perforated
Neumann problems. Due to technical considerations of Poincaré constants in
perforated and complicated domains, we give a brief overview of their possible
impact to error estimates in this setting. With the assumption that these
constants are bounded with respect to scale and coarse-grid block size, we are able
to derive the standard error expression for MsFEM. The auxiliary results needed
for this estimate are given in the appendix for clarity of presentation. Finally,
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we test our error estimates by implementing the method on two geometries. The
first geometry has the perforations contained entirely in the coarse-grid blocks,
and the second where the perforations intersect the coarse-grid blocks and the
nodal points reside inside the perforations. The second example is critical to
demonstrate that the technical restriction of having the perforations inside the
coarse-grids is only for simplicity and the method has possible wider applicability.

2 Neumann Problem in Porous Microstructures

In this section, we briefly give the problem statement of Neumann problems in
porous microstructures. Due to the multiscale nature of such microstructures
and complex geometries, we use the tools of periodic homogenization to derive
the effective equation and generate auxiliary cell problems that connect macro-
and micro-scale information. From this homogenization framework we develop a
MsFEM method where local basis functions are computed in parallel. These basis
functions are then used to compute on a coarse-grid as multiscale information
is contained in the basis functions. We then present error analysis that closely
follows the work of [10, 16], and references therein and the standard MsFEM
analysis. In this context, we extend this idea to domains with perforations.
Finally, we remark on the possible effects of the microstructure on the Poincaré
constants in perforated domains [4, 28].

We suppose we have a Lipschitz domain Ω ⊂ Rn such that it is decomposed
into a solid microstructure Sε and an open connected pore space Ωε with a
characteristic pore size of ε. The interior interface of such a microstructure is
denoted as Γε and the outer global boundary we denote as ∂Ωε\Γε. Given a
f ∈ L2(Ωε), we consider the following Neumann problem in Ωε. We wish to find
a cε such that

−∆cε = f in Ωε, (2.1a)
−∇cε · n = 0 on Γε, (2.1b)

cε = 0 on ∂Ωε\Γε. (2.1c)

Note that we could consider a similar Neumann problem with oscillatory
diffusion coefficients in addition to the pore microstructure, however in terms of
MsFEM such problems are well studied both numerically and theoretically cf.
[9, 16, 17].

2.1 Periodic Homogenization

As noted, solving the equations (2.1) is complicated by the fact that the geometry
has many scales and can be very complex. A useful tool in circumventing this
issue is homogenization. In particular we employ the use of two-scale asymptotic
expansions to homogenize the system [30]. These techniques are closely related to
the design and analysis of MsFEM. A key assumption in many of these methods
is the assumption of periodic structure, however, this assumption may be relaxed
in the application of MsFEM. We suppose that our medium has additional
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periodic structure and can be written as

Ωε =

( ⋃
k∈Zn

ε(Y ∗ + k)

)⋂
Ω, (2.2)

where Y is the reference cell, Y ∗ is the open pore space, and Y Γ is the interface,
or perforations boundary, in the cell.

We briefly recall the periodic homogenization of (2.1), similar derivations
can also be found in [5]. We expand using the two-scale asymptotic expansion as

cε(x) = c0(x, y) + εc1(x, y) + ε2c2(x, y) + · · · , (2.3)

here y = x
ε , the periodic variable in the unit cell. Applying the above expansion

into (2.1), and gathering the ε−2 terms in (2.1a) and ε−1 terms in (2.1b), we
obtain

−∆yyc0 = 0 in Y ∗,

−∇yc0 · n = 0 on Y Γ,

hence, c0(x, y) = c0(x). Taking the next orders in ε we obtain the cell equations

−∇y · (∇xc0 +∇yc1) = 0 in Y ∗, (2.4a)

− (∇xc0 +∇yc1) · n = 0 on Y Γ, (2.4b)

with c1 being y-periodic. We denote the average over a domain by 〈·〉Y ∗ =
1
|Y |
∫
Y ∗ · dy, and require 〈c1〉Y ∗ = 0 to eliminate the arbitrary constant. We may

simplify the above cell problem by writing the two-scale function

c1

(
x,
x

ε

)
= Q

(x
ε

)
∇xc0(x). (2.5)

Here, Q(y) ∈ (H1
#(Y ∗))n×n, where # signifies periodic, satisfies the following

cell problems

−∇y · (I +∇yQ) = 0 in Y ∗, (2.6a)

− (I +∇yQ) · n = 0 on Y Γ, (2.6b)

with Q being y-periodic and 〈Q〉Y ∗ = 0. Here we write I to mean the n × n
identity matrix or (I)ij = δij . Taking the final order in ε of (2.1), we arrive at

−∇x · (∇xc0 +∇yc1)−∇y · (∇xc1 +∇yc2) = f.

Averaging over the y variable, the second term vanishes on the boundary of the
interface. The homogenized problem can then be written as

−∇x · (D∗∇xc0) =
|Y ∗|
|Y |

f in Ω, (2.7a)

c0 = 0 on ∂Ω, (2.7b)

where (D∗)ij = 〈δij + (∇yQ)ij〉Y ∗ and we write cT = 〈c0〉Ω.

4



2.2 A Perforated Multiscale FEM

In this section, we outline the method of MsFEM for perforated Neumann
problems. Due to the Neumann condition, we are able to construct a conforming
multiscale finite element method. This is in contrast to the case when the
problem has a Dirichlet condition on the perforations and weak conditions can
be effectively utilized [3, 29]. Moreover, the coarse-grid blocks may intersect
the perforations and so the basis functions can have holes on portions of the
boundary. Our analysis however, will focus on the case where the holes are entirely
contained in each coarse-grid block. This assumption is to avoid complicated
technical details in the homogenization and error estimates [6, 12]. We will present
numerical examples in Section 3 with coarse-grids intersecting the microstructures.
We will highlight the areas where this non-intersecting assumption is made and
can be weakened.

We begin first with some notation. Suppose we have a domain with mi-
crostructure Ωε, not necessarily periodic, and a quasi-uniform coarse-grid Th (of
characteristic grid size h) of the domain. In our error analysis, we will suppose
that the coarse-grid does not intersect the perforations along the edges. We
suppose ε < h, as the case where h < ε corresponds to a full direct numerical
simulation and the coarse mesh will resolve the geometry. The standard finite
element error of local problems is ignored in the analysis.

We let K ∈ Th be an element in the partition (may also be triangulation)
without perforations and denote K̃ = K ∩ Ωε to be a perforated element. We
denote the boundaries of the perforations ΓK and the boundary of the element
∂K. We build a basis from the following functions

−∆φi = 0 in K̃, (2.8a)

−∇φi · n = 0 on ΓK , (2.8b)

φi = φiL on ∂K\ΓK . (2.8c)

Here we denoted the corresponding linear interpolant ofK by φiL, where φ
i
L(xj) =

δij . The vertices of K are given by xj . Note here we have dropped the K index
from the multiscale basis.

Remark If the coarse-grid does not intersect the perforations, then, ∂K\ΓK =
∂K, and this is the case we will consider for our analysis and proofs. However,
the variational form for a local problem with intersections is to find φi ∈ H1(K̃)
such that ∫

K̃
∇φi∇ψ =

∫
∂K\ΓK

(∇φi · n)ψ, (2.9)

for all ψ ∈ H1(K̃), ψ = φiL on ∂K\ΓK . In our algorithm, we suppose that the
perforations leave portions of the linear Dirchlet condition intact so that the
above right hand data gives a useful basis function.

We denote the space of solutions by V = {cε ∈ H1(Ωε) | cε = 0 on ∂Ωε\Γε}
and we define the MsFEM approximation space to be V h

ms = span{φiK : i =
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1, . . . , d;K ∈ Th}. Note that this approximation space is conforming. We will
approximate the solutions of (2.1) by ch ∈ V h

ms. The corresponding variational
form is given by ∫

Ωε

∇ch∇v =

∫
Ωε

fv , ∀v ∈ V h
ms, (2.10)

where the boundary term over Γε vanishes due to condition Neumann condition.
We take a similar approach as in [16, 17]. We denote the Lagrange interpolation
operator for the multiscale basis as Ihms : V → V h

ms. We let Ihms(c0) be the
interpolant of c0 (the solution of (2.7)) using the multiscale basis φi. More
specifically, the local interpolant is

Ihms(c0)
∣∣
K̃

=

d∑
i=1

c0(xi)φ
i. (2.11)

Remark Here we emphasize what domain the interpolant its expressed on
as in the analysis it will be important to distinguish between perforated and
unperforated quantities. For example, even if xi ∈ Sε, c0(xi), a solution to (2.7),
is well defined as this function is expressed on the unperforated domain Ω and is
what we refer to as a coarse-grid quantity.

2.3 Poincaré Constants in Perforated Domains

Before we start the error analysis of our MsFEM, it is important to note that
we do not track the Poincaré constants as we suppose that such a constant is
uniformly bounded with respect to the microstructural parameters of scale and
separation length. For our case of isolated particles of size and separation length
ε, this uniform bound is known to hold c.f. [4, 28]. Here we briefly discuss some
of the cases that may occur.

The analysis of Poincaré constants has a long history and too vast of literature
to discuss here. We will follow the method and examples introduced in [28], and
the references therein, for the application of weighted Poincaré inequalities. It is
known that the shape of the domain and moreover, the microstructure may have
an effect on the Poincaré constant. First recall that for K̃, with diam(K) = h,
we have ∥∥u− 〈u〉

K̃

∥∥
L2(K̃)

≤ hCP (h, ε) ‖∇u‖
L2(K̃)

, (2.12)

where CP (h, ε) is the Poincaré constant that may depend on the size of the
diameter of the domain as well as the separation length of the microstructure
and scale. We take the scale of the pore and the scale of the separations to both
be of order ε.

A classical illustration of domain dependence of the Poincaré constant is the
dumbbell shaped domain. Suppose we take K = [0, h]2 and remove the two thin
pieces

Sε =

(
[
h− ε

2
,
h+ ε

2
]× [0,

h− ε
2

]

)⋃(
[
h− ε

2
,
h+ ε

2
]× [

h+ ε

2
, h]

)
.
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Then, we let K̃ = K\Sε. In Figure 1, we see Sε is black, and K̃ as the white
background.

Figure 1: Schematic of dumbbell domain.

Using isoperimetric inequality methods to bound CP for the dumbbell domain,
[25, 26] yields the pessimistic bound

C2
P (h, ε) ≤ C

(
h

ε

)
, (2.13)

where C is a benign constant independent of h or ε. By using methods derived
for high-contrast problems and weighted Poincaré inequalities, the authors in
[28] are able to obtain a more optimistic bound by a constructive method. For
the dumbbell domain it is known that

C2
P (h, ε) ≤ C

(
1 + log

(
h

ε

))
. (2.14)

A particularly bad Poincaré constant occurs when the domain is particularly
tortuous. Using methods from [28] adapted to the perforated case, the authors
in [4] show that for a reticulated interlocking filamented structures, Figure 2,
have the bound

C2
P (h, ε) ≤ C

(
h

ε

)2

. (2.15)
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Figure 2: Schematic of interlocking structures.

However, in the geometries we will consider in our analysis and in our
numerics we largely consider isolated particles that do not create the ill effects
that may be possible in the above domains. This was first demonstrated for
high-contrast domains in [28] and in perforated domains in [4]. Given that the
particles are of characteristic size and separation length ε in R2, along with
technical assumptions for the constructive approach it can be shown in [4] that

C2
P (h, ε) ≤ C, (2.16)

where C is a benign constant independent of h or ε. The above bound is the
Poincaré bound we shall suppose throughout the rest of the paper.

2.4 Error Analysis of the MsFEM

We will now show the errors introduced in the method are similar to that of the
classic elliptic MsFEM error estimates. Indeed, due to the structure of (2.1), the
homogenization procedure and related analysis are very similar to the elliptic
oscillatory case considered in [16, 17]. Thus, the proofs here follow closely those
works. In this analysis, we suppose that the perforations do not intersect the
coarse-grid, i.e. all the microstructure is in the interior of the basis functions
(2.8). This is to avoid technical considerations of periodic unfolding methods,
however, we will discuss the possible extensions in this direction. We will ignore
the fine-scale discretization error throughout and consider only coarse-grid error
h. This is also the case when we investigate the numerics. Finally, we will also
suppose the microstructure has periodic structure and, the domain and data
are sufficiently smooth for the following estimates to hold. More specifically, we
suppose regularity so that cε ∈ H1(Ωε), c0 ∈ C2,1(Ω), and Q ∈ (C1(Ȳ ∗))n×n.

We proceed as in [16], note that the basis functions may be expanded in K̃
as

φi = φi0 + ε
(
φi1 − θi

)
+ · · · , in K̃. (2.17)

This is simply the two-scale expansion similar to (2.3), applied to the multiscale
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basis. Here, φi0 satisfies the homogenized equation

−∇ ·
(
D∗∇φi0

)
= 0 in K, (2.18)

φi0 = φiL on ∂K, (2.19)

with φi1(x) = Q
(
x
ε

)
∇φi0(x), where Q is given by (2.6) after rescaling, and

−∆θi = 0 in K̃, (2.20a)

−∇θi · n = 0 on ΓK , (2.20b)

θi = φi1 on ∂K. (2.20c)

Remark As we would like to multiply quantities that are on the periodic cell
and the homogenized domain and then rescale to the perforated media, we note
here that there is some ambiguity in the notation of Q(y) for y ∈ Y ∗ and the
same function rescaled to Ωε. When there is ambiguity in the notation we shall
denote Qε(x) := Q(xε ) in Ωε.

In the case of linear Lagrange triangular finite elements, for example, the
functions φi0 are a basis for solving the homogenized equations (2.7) with ap-
proximation order h in H1(Ω). Note that linear Lagrange is just a choice of
convenience and other MsFEM elements have been developed, for example in
the case of non-conforming elements in [11], and recent work in the setting of
higher order finite elements in [15]. Using the same notation as in [16], we denote
the space V h

0 ⊂ H1
0 (Ω) to be the space of first order finite elements (order h

approximation) with zero global Dirichlet conditions. More specifically, we define
V h

0 to be the space spanned by φi0, satisfying (2.18). Further, we define the
Lagrange interpolation operator Ih0 : V → V h

0 , to be the operator that gives the
Lagrange interpolation in the V h

0 basis.
Note that Ihms(c0), given by (2.11), satisfies

−∆Ihms(c0) = 0 in K̃, (2.21a)

−∇Ihms(c0) · n = 0 on ΓK . (2.21b)

Hence, we may expand, as an ansatz as in (2.17)

Ihms(c0) = Ih0 (c0) + ε
(
Qε∇Ih0 (c0)− θI,ε

)
+ · · · , in K̃, (2.22)

this is simply the two-scale expansion similar to (2.3), applied to the multiscale
interpolant in K̃. Here we may expand the first term as

Ih0 (c0)
∣∣
K̃

=

d∑
i=1

c0(xi)φ
i
0, (2.23)

where φi0 satisfy (2.18). The above quantity may be expressed on the unperforated
domain. The next order corrector is given by Qε∇Ih0 (c0) in K̃. Finally, the local
boundary layer correction θI,ε satisfies

−∆θI,ε = 0 in K̃, (2.24a)
−∇θI,ε · n = 0 on ΓK , (2.24b)

θI,ε = Qε∇Ih0 (c0) on ∂K. (2.24c)
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Further we will need the so-called global boundary corrector

−∆θε = 0 in Ωε, (2.25a)
−∇θε · n = 0 on Γε (2.25b)

θε = c1 on ∂Ω , 〈θε〉Ωε
= 0. (2.25c)

We will need the following technical lemma that we will restate and prove in the
Appendix B related to the above global boundary corrector.

Lemma 2.1. Let cε be a solution of (2.1), let c0 be a solution to (2.7), and
Q given by (2.6). We suppose the global boundary layer correction θε satisfies
(2.25). Then, we have the following estimate

‖cε − c0 − ε (Qε∇c0 − θε)‖H1(Ωε) ≤ ε
1
2C. (2.26)

In addition, we have the following estimate for

Lemma 2.2. The interpolants satisfy the following corrector estimate∥∥∥Ihms(c0)− Ih0 (c0)− ε(Qε∇Ih0 (c0)− θI,ε)
∥∥∥
H1(Ωε)

≤ ε
1
2C ‖Q‖L∞(Y ∗) |c0|H2(Ωε) ≤ ε

1
2C ‖f‖L2(Ω) .

(2.27)

Proof. We may compactly write the differential operator associated to (2.1) as
Lε, and by (2.21), we have that LεI

h
ms(c0) = 0. Hence, we may write the formal

two-scale ansatz expansion in K̃ of Ihms(c0) as

Ihms(c0) = Ih0 (c0) + ε
(
Qε∇Ih0 (c0)− θI,ε

)
+ · · · ,

we may apply the corrector estimate (2.26) to Ihms(c0) so that we have∥∥∥Ihms(c0)− Ih0 (c0)− ε
(
Qε∇Ih0 (c0)− θI,ε

)∥∥∥
H1(K̃)

≤ ε
1
2C ‖Q‖L∞(Y ∗) |I

h
0 (c0)|

H2(K̃)
.

(2.28)

This is proved in Appendix B in the general setting.
Again, by briefly following the arguments of [16], we let cbl be a standard

bilinear approximation of c0. We have by standard approximation theory and
elliptic regularity of c0 that

|c0|H2(Ω) ≤ C ‖f‖L2(Ω) , (2.29)

and
|cbl|H2(K) ≤ |cbl − c0|H2(K) + |c0|H2(K) ≤ C|c0|H2(K).

Since −∇·(D∗∇(Ih0 (c0)−cbl)) = ∇·(D∗∇cbl) in K, we have by a-prior estimates
that

|Ih0 (c0)|
H2(K̃)

≤ |Ih0 (c0)|H2(K) ≤ |Ih0 (c0)−cbl|H2(K)+|cbl|H2(K) ≤ C|cbl|H2(K) ≤ C|c0|H2(K).

Thus, using the above inequality and (2.28), summing over K, using the bound
(2.29) we obtain (2.27).
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We are now in a position to state our main theorem. Again, we note that it
is for the most part a translation of the elliptic oscillatory case ([16, 17]) into the
language of perforated homogenization and perforated multiscale finite elements.
The main differences being the need to emphasize what are perforated fine grid
quantities and what can be represented on the unperforated coarse-grid.

We will be assuming sufficient smoothness on the domains Ωε and Ω and
that the perforations do not intersect the global boundary ∂Ω or the edges
and vertices of the discretization Th. Moreover, we suppose that the Poincaré
constants in perforated domains do not interfere with the estimate and satisfy
the uniform bound (2.16). These assumptions may be loosened by periodic
unfolding ([6]) or carefully tracking the Poincaré constants in perforated domains
([4, 28]), however, these may be considered in future works. First we proceed by
noting that from the so-called Cea’s Lemma we have the following error.

Theorem 2.3. Suppose that cε is a solution to (2.1) and ch satisfies the varia-
tional form (2.10). Further, we suppose that the Poincaré constant CP satisfies
a uniform bound (2.16). Then, we have the following error estimate, that there
exists a C > 0 independent of h and ε such that∥∥∥cε − ch∥∥∥

H1(Ωε)
≤ hC ‖f‖L2(Ω) + C

( ε
h

) 1
2

+ ε
1
2C. (2.30)

Proof. From the classical Cea’s Lemma and Galerkin orthogonality we have for
C > 0, independent of h and ε, that∥∥∥cε − ch∥∥∥

H1(Ωε)
≤ C inf

cI∈V h
ms

‖cε − cI‖H1(Ωε)

Taking cI = Ihms(c0) given by (2.11), and using Theorem 2.4, we arrive at our
result.

The above error relies on the following estimate.

Theorem 2.4. Suppose that cε is a solution to (2.1) and Ihms(c0) given by (2.11).
Further, we suppose that the Poincaré constant CP satisfies a uniform bound
(2.16). Then, we have the following error estimate, that there exists a C > 0
independent of h and ε such that∥∥∥cε − Ihms(c0)

∥∥∥
H1(Ωε)

≤ hC ‖f‖L2(Ω) + C
( ε
h

) 1
2

+ ε
1
2C. (2.31)

Proof. Using the expansions (2.3) and (2.22) for cε and Ihms(c0) respectively and
the corresponding corrector estimates (2.26) and (2.27) we have∥∥∥cε − Ihms(c0)

∥∥∥
H1(Ωε)

≤
∥∥∥c0 − Ih0 (c0)

∥∥∥
H1(Ωε)

+
∥∥∥ε(c1 −Qε∇Ih0 (c0))

∥∥∥
H1(Ωε)

+ ‖ε(θε − θI,ε)‖H1(Ωε) + ε
1
2C ‖f‖L2(Ωε) . (2.32)

We begin by estimating each of these term by term. Recall that from (2.23)
Ih0 (c0) is in V h

0 and is a finite element approximation to (2.7) with the basis
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spanned by φi0. Thus, we have the estimate∥∥∥c0 − Ihms(c0)
∥∥∥
H1(Ωε)

≤
∥∥∥c0 − Ihms(c0)

∥∥∥
H1(Ω)

≤ hC ‖f‖L2(Ω) . (2.33)

Here, we used that both c0 and Ihms(c0) are able to be represented as unperforated
quantities. Note that assuming sufficient smoothness of the perforations, we
have ‖Q‖L∞ ≤ C and ‖∇Q‖L∞ ≤ C/ε. Using the expression c1 = Qε∇c0, we
have element-wise∥∥∥ε(c1 −Qε∇Ih0 (c0))

∥∥∥
H1(K̃)

=
∥∥∥ε(c1 −Qε∇Ih0 (c0))

∥∥∥
L2(K̃)

+ |ε(c1 −Qε∇Ih0 (c0))|
H1(K̃)

≤ C
(
‖Q‖L∞

(
|ε(c0 − Ih0 (c0))|

H1(K̃)
+ |ε(c0 − Ih0 (c0))|

H2(K̃)

)
+ ‖∇Q‖L∞ |ε(c0 − Ih0 (c0))|

H1(K̃)

)
.

Taking the integral over the whole domain on the unperforated coarse-grid
quantities, summing over K, and using the approximability of V h

0 we have∑
K∈Th

∥∥∥ε(c1 −Qε∇Ih0 (c0))
∥∥∥
H1(K̃)

≤ C
∑
K∈Th

(
|ε(c0 − Ih0 (c0)|H1(K) + |ε(c0 − Ih0 (c0)|H2(K) + |(c0 − Ih0 (c0))|H1(K)

)
≤ C (εh+ ε+ h) ‖f‖L2(Ω) . (2.34)

Finally, using the estimates (A.5) and (A.7) in the Appendix A for θε, θI,ε we
have

‖εθε‖H1(Ωε) ≤ Cε
1/2 , ‖εθI,ε‖H1(Ωε) ≤ C

( ε
h

)1/2
. (2.35)

Combining the estimates (2.33), (2.34), and (2.35) into (2.32) and summing over
K we have∥∥∥cε − Ihms(c0)

∥∥∥
H1(Ωε)

≤ hC ‖f‖L2(Ω) + C (εh+ ε+ h) ‖f‖L2(Ω) + Cε
1
2 + C

( ε
h

) 1
2

+ ε
1
2C ‖f‖L2(Ω)

≤ C
(
h ‖f‖L2(Ω) +

( ε
h

) 1
2

+ ε
1
2

)
. (2.36)

Remark In terms of the analysis from homogenization, the assumptions that
perforations do not intersect the global boundary or the boundary of the coarse-
grid may also be relaxed. This can be achieved through the method of periodic
unfolding cf. [6] and references therein. In this methodology, assumptions
on perforations intersecting boundaries may be relaxed. In addition, corrector
estimates such as those derived in Appendix B may be extended to this setting by
combining periodic unfolding methods to standard corrector estimate techniques
[12]. However, this comes at the cost of much technical overhead and we focus
on the theory without intersections and verify that it may be extended via our
numerical results.
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3 Numerical Examples

We will now demonstrate our error estimate from Theorem 2.3 on a few numerical
examples. We begin by setting up how we will compute the numerical solutions
by constructing multiscale basis functions. We will set up numerical experiments
that vary both scales ε and coarse-grid value h. This will be done for coarse-grids
not intersecting perforations and coarse-grids intersecting the perforations to
show that the theory may be extended beyond the theory of non-intersection.

3.1 Problem Setup

In our numerics we have the flexibility to add in an oscillatory coefficient, kε,
in addition to oscillations created by the multiscale geometry. We restate the
main problem (2.1) here for our specific case. Recall, we wish to solve the
following boundary value problem in the perforated domain Ωε = Ω\Sε, where
Ω = [0, 1] × [0, 1] ⊂ R2, Sε is the collection of the perforations, and Γε is the
interface as shown in Figure 3. We wish to solve

−∇ · (kε(x)∇cε) = f in Ωε, (3.1a)
−kε(x)∇cε · n = 0 on Γε, (3.1b)

cε = 0 on ∂Ω\Γε. (3.1c)

Again, we will not utilize the flexibility in our code to add in the oscillatory
coefficient in our results, we just state it here to show that it is an easy extension.

Figure 3: Perforated solution domain with coarse mesh of finite elements

To begin construction of the multiscale basis functions, let TH be a partition
of the perforated domain Ω into elements K, which are shown in Figure 4. Then,
we denote the perforated element K̃ = K ∩ Ωε and we have that Ωε =

⋃
K∈TH

K̃.

For a single element, we denote with B the domain of the perforation inside

13



K and ∂B is its boundary. With "•", as shown in Figure 4, we indicate the
vertices of K in which the coarse-grid nodal values are calculated, and with N
we denote the number of vertices in TH . Then, the multiscale basis functions
φMi , i = 1, 2, . . . , N , are solutions to the following local problems

−∇ ·
(
kε(x)∇φMi

)
= 0 in K̃, (3.2a)

−kε(x)∇φMi · n = 0 on ∂B, (3.2b)

φMi = φLi on ∂K̃\∂B, (3.2c)

which we solve for each coarse finite element K ∈ TH and {φLi (x)}Ni=1 is the
standard piecewise bilinear basis. We show an example of a perforated multiscale
basis function with 9 holes in Figure 5.

Figure 4: A single perforated coarse-grid finite element.

14



(a) MsFEM shape func-
tion

(b) MsFEM shape function

Figure 5: Multiscale basis function

3.2 Numerical Setup and Methods

Again, we do not consider the case when kε(x) is a highly oscillating function of
x because we are interested only in oscillations coming from the perforations.
Therefore, we take kε to be a constant. In the MsFEM framework, we use finite
elements which are perforated squares and the coarse-grid size is denoted by h.
The small parameter ε characterizes the size of the microstructures. For a con-
sistent numerical analysis of the convergence of the method, we need to decrease
uniformly h and ε. Hence, we consider solution domains Ωε with periodically
arranged identical perforations. However, the method as a computational tool is
not restricted to periodic media, only the analysis is restricted to such simple
cases.

Consequently, we choose
(

1

h

)2

as the number of coarse elements and so(
1

ε

)2

is the number of holes in the solution domain Ωε. With Nmicro we denote

the number of finite elements that we use in order to obtain the reference
microscale solution, and with nf we denote the number of finite elements per
single coarse-grid block in the MsFEM formulation of the problem. We run the

simulations with Nmicro ≈ nf
(

1

h

)2

, i.e., the total number of fine elements in all

of the coarse elements is approximately equal to the number of finite elements
in the microscale problem. However, the multiscale local problems can be solved
in parallel. For the reference solution, we use the total fine-scale grid used in
the computation of the local problems with size nf . Thus, the fine-grid is also
of order Nmicro, however, we lose the parallel structure and it must be solved
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in entirety. This is done using standard bilinear finite elements on the fine-grid
rectangles.

We run numerical simulations with different number of holes per coarse
element. We will vary both h and ε and record the results in tables. In Figure 6
we show example of two geometries and the placement of the coarse-grid elements.
In Figure ?? we show macro-elements with 4 holes entirely included in them.
The second geometry has coarse elements with the edges and vertices inside the
perforations, see Figure ??. The first example matches our theory, while the
second demonstrates the applicability beyond the assumption of the perforations
not intersecting the coarse-grids.

We solve the local problems (3.2) using the standard Finite Element Method
with linear Lagrange triangular elements. For the numerical integration we use a
Gaussian quadrature rule and we use the preconditioned Stabilized Biconjugate
Gradient Method as a linear solver. We show numerical results for the L2 norm
and the L∞ norm. We recall that for the standard MsFEM , the following L2

error estimate holds, for the case of oscillatory coefficients in [16], and the proof
of Theorem 2.3 in the case for perforated Neumann problems

‖uε − uhε‖L2(Ω) ≤ Ch2‖f‖L2(Ω) + C
( ε
h

) 1
2

+ Cε
1
2 , (3.3)

where this estimate can be achieved by a use of the standard Aubin-Nitsche
lemma. The following improved error estimate is shown numerically again in
[16],

‖uε − uhε‖L2(Ω) ≤ C1h
2‖f‖L2(Ω) + C2

( ε
h

)
+ C3ε. (3.4)

pic:msfemperforatedMacroFE4HolesInside

(a) Coarse elements with 4 holes en-
tirely included in the element.

pic:msfemperforatedMacroFEHolesOnEdges

(b) Coarse element with holes on the
edges and vertices.

Figure 6: Perforated coarse-grid finite elements

3.3 Numerical Results

We now will present our numerical results. Throughout we take the coefficient to
be kε(x) = 5 and the right-hand side to be f(x) = 16. We begin by performing
tests on the first geometry in Figure ?? where the coarse-grid does not intersect
the geometry. Then, we will perform similar test on the second geometry where
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the coarse-grid nodes and edges intersect the perforations in Figure ??. We
perform two tests on each geometry. Fixing h then decreasing ε and then fixing
ε and decreasing h.

3.3.1 Non-intersecting Coarse-Grid

We now begin with tests on Figure ??. Here we keep h = 1
16 fixed and decrease

ε. In this test case we have 162 = 256 coarse-grid blocks with varying number of
holes per block. We start with 1 perforation per block and we finish with 82 = 64
holes per macro finite element. The results from Table 1 show a convergence rate,
which is even better than the theoretical one given by (3.3). We also observe
that when ε becomes very small, which is equivalent to the

(
ε
h

) 1
2 term getting

very small, the convergence rate starts to decline. This is most likely due to the
fact that the h2 term becomes dominant for very small values of ε. In Figure 7
and 8, we show numerical results for different values of ε.

Table 1: Fixed h =
1

16
and decreasing ε.

ε Nmicro n ‖uε − uh
ε‖L2(Ω) Rate ‖uε − uh

ε‖∞ Rate
0.0625 131806 500 0.0284502 - 0.05975 -
0.03125 517806 2003 0.0173716 0.71 0.03544 0.75

0.015625 2072411 7985 0.0110185 0.66 0.02425 0.55

0.0078125 7279206 28257 0.00781583 0.5 0.01840 0.4
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(a) Microscale solution with maximum=1.529

(b) MsFEM solution with maximum=1.488

Figure 7: Comparison between the microscale and the MsFEM solution for

ε = h =
1

16
.
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(a) Microscale solution with maximum=1.527

(b) MsFEM solution with maximum=1.525

Figure 8: Comparison between the microscale and the MsFEM solution for

ε =
1

128
.

Now keeping ε =
1

128
fixed and decrease h. In this experiment we have

1282 = 16384 perforations and a varying number of coarse-grid blocks. The
convergence rates are given in Table 2. When h is relatively large, the error first
decreases, and then, when h becomes small enough, the error starts to increase
as predicted by the theoretical estimate with a convergence rate close to the
improved one (3.4). Note that the final error in in Table 2, when h = 0.0078125,
we are in the h = ε regime. Here we may experience resonance errors from the
order ( ε

h)
1
2 error terms. The microscale and the MsFEM solutions are shown in

Figures 9 and 10.
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Table 2: Fixed ε =
1

128
and decreasing h.

h Nmicro n ‖uε − uh
ε‖L2(Ω) Rate ‖uε − uh

ε‖∞ Rate
0.125 7279206 113391 0.021233 - 0.04982 -
0.0625 7279206 28257 0.00781583 1.44 0.01840 1.44

0.03125 7279206 6943 0.00822288 −0.07 0.01457 0.34

0.015625 7279206 1763 0.0145742 −0.83 0.02565 −0.82
0.0078125 7279206 451 0.0266223 −0.87 0.04651 −0.86

(a) Microscale solution with maximum=1.527

(b) MsFEM solution with maximum=1.543

Figure 9: Comparison between the microscale and the MsFEM solution for

h =
1

8
.
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(a) Microscale solution with maximum=1.527

(b) MsFEM solution with maximum=1.525

Figure 10: Comparison between the microscale and the MsFEM solution for

h =
1

16
.

3.3.2 Intersecting Coarse-Grid

Now we will perform the same tests, but this time on a geometry that has the
perforations intersecting the coarse-grids, moreover, the nodes of the coarse-grid
are directly centered on the perforations. Let us assume that we have some fixed
coarse-grid size h and we want to vary the number of holes per single coarse-grid

block. We show for this geometry coarse block in the case when h = ε, ε =
h

4
,

and ε =
h

8
in Figures ??, ??, and ??, respectively.
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pic:HolesOnEdges1HoleBlock

(a) h = ε

pic:HolesOnEdges4x4 = 16HolesBlock

(b) ε =
h

4

pic:HolesOnEdges8x8 = 64HolesBlock

(c) ε =
h

8

Figure 11: Coarse-grid blocks with different number of perforations per block.

We now begin with tests on ??. Here we fix h = 1
16 and decrease ε. In this

test case we have 162 = 256 coarse-grid blocks with different number of holes per
block. Here h is sufficiently small and, as we can see from Table 3, we obtain a
very good convergence rate, which is even better than the theoretical result (3.3)
and coincides with the improved one (3.4). The microscale and the MsFEM
solutions for chosen values of ε are given in Figures 12 and 13.

Table 3: Fixed h = 1
16 and decreasing ε.

ε Nmicro n ‖uε − uh
ε‖L2(Ω) Rate ‖uε − uh

ε‖∞ Rate
0.0625 118434 448 0.0137621 - 0.02730 -
0.03125 472373 1842 0.00733666 0.91 0.01452 0.91
0.015625 1875022 7294 0.00403372 0.86 0.008011 0.86
0.0078125 7479234 28950 0.00236792 0.77 0.004607 0.8
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(a) Microscale solution with maximum=0.3025

(b) MsFEM solution with maximum=0.2766

Figure 12: Comparison between the microscale and the MsFEM solution for

ε = h =
1

16
.
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(a) Microscale solution with maximum=0.3026

(b) MsFEM solution with maximum=0.2998

Figure 13: Comparison between the microscale and the MsFEM solution for

ε =
1

128
.

We now keep fixed ε =
1

128
and decrease h. In this experiment we have a

fixed number of 1282 = 16384 holes in the solution domain and we vary the size
of the coarse-grid. As we can see from Table 4, first, when h is relatively big,
the error decreases and then, when h becomes sufficiently small we obtain a
convergence rate, which tends to the improved one (3.4). The microscale and
the MsFEM solutions are given in Figures 14 and 15.

Table 4: Fixed ε =
1

128
and decreasing h.

h Nmicro n ‖uε − uh
ε‖L2(Ω) Rate ‖uε − uh

ε‖∞ Rate
0.125 7479234 116050 0.00404241 - 0.008052 -
0.0625 7479234 28950 0.00236792 0.77 0.004607 0.81
0.03125 7479234 7168 0.00355501 −0.59 0.007261 -0.66
0.015625 7479234 1806 0.00664181 −0.9 0.01364 -0.91
0.0078125 7479234 424 0.0128549 −1 0.02646 -0.96
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(a) Microscale solution with maximum=0.3026

(b) MsFEM solution with maximum=0.3042

Figure 14: Comparison between the microscale and the MsFEM solution for

h =
1

8
.
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(a) Microscale solution with maximum=0.3026

(b) MsFEM solution with maximum=0.2762

Figure 15: Comparison between the microscale and the MsFEM solution for

h =
1

128
.

4 Conclusion

In this work we developed and analyzed a multiscale finite element for domains
with porous microstructures. The standard error estimates for the case of oscil-
latory coefficients were shown to also hold in the case of perforated media. Due
to the complexity of the Poincaré constants in perforated domains a discussion
on their dependence of the microstructure is warranted and was presented. It
should be noted that for our case of isolated particles the geometry has no effect
on this constant. Further, to develop and support the theory, we provided correc-
tor estimates and boundary correction estimates. Finally, we implemented the
algorithm on two different geometries and recorded the results in tables varying
geometry size and coarse-grid sizes. The results were in good agreement with
the theory. Future works include the incorporation of these methods into more
complicated nonlinear and multiphysics problems such as lithium ion transport
to speed up computation. In addition, the investigation of classical improvements
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methods such as oversampling would also be of interest.

A Estimating Boundary Correctors θε, θI,ε

We will need the following inequalities. The following Gagliardo-Nirenberg
interpolation inequality [27]

‖w‖H1/2(∂K) ≤ C ‖w‖
1/2
L2(∂K)

‖∇w‖1/2
L2(∂K)

, (A.1)

and the trace inequality for w ∈ H1(K)

‖w‖2L2(∂K) ≤ C
(
h−1 ‖w‖2L2(K) + h ‖∇w‖2L2(K)

)
≤ Ch−1 ‖w‖2H1(K) , (A.2)

we refer the reader to [2] for proof. From the global boundary correction equation,

−∆θε = 0 in Ωε, (A.3a)
−∇θε · n = 0 on Γε (A.3b)

θε = c1 on ∂Ω , 〈θε〉Ωε
= 0, (A.3c)

we see that we may easily obtain the bounds using the interpolation inequality
(A.1) on the global boundary ∂Ωε\Γε = ∂Ω, (since the perforations do not
intersect the global boundary) we have using the classical estimate from [22]

‖θε‖H1(Ωε) ≤ C ‖c1‖H1/2(∂Ω) ≤ C ‖c1‖1/2
L2(∂Ω)

‖∇c1‖1/2
L2(∂Ω)

≤ C ‖Qε‖1/2
L∞(∂Ω) ‖∇c0‖1/2

L2(∂Ω)
‖∇Qε∇c0 +Qε∇∇c0‖1/2

L2(∂Ω)

≤ C ‖Qε‖1/2
L∞(∂Ω) ‖∇Qε‖1/2

L∞(∂Ω) ‖∇c0‖L2(∂Ω)

+ C ‖Qε‖L∞(∂Ω) ‖∇c0‖1/2
L2(∂Ω)

‖∇∇c0‖1/2
L2(∂Ω)

(A.4)

By smoothness, we have ‖Q‖L∞ ≤ C and ‖∇Q‖L∞ ≤ C/ε , and so using a trace
inequality we have the estimate

‖θε‖H1(Ωε) ≤ ε
−1/2C|∇c0|H1(Ω) + C|∇c0|1/2

H1(Ω)
|∇∇c0|1/2

H1(Ω)
≤ O(1 + ε−1/2)

(A.5)

Thus, since we suppose global regularity of the homogenized quantity c0 ∈
C2,1(Ω), the solution to (2.7), and therefore is in H3(Ω). We have the bound on
the quantity of interest ‖εθε‖H1(Ωε) ≤ Cε1/2.

Similarly on the element K, from (2.24) we see that using (A.1) and estimates
of L∞ estimates of Q,∇Q we obtain

‖θI,ε‖H1(K̃)
≤ C

∥∥∥Qε∇Ih0 (c0)
∥∥∥
H1/2(∂K)

≤ C
∥∥∥Qε∇Ih0 (c0)

∥∥∥1/2

L2(∂K)

∥∥∥∇Qε∇Ih0 (c0)
∥∥∥1/2

L2(∂K)

≤ C ‖Qε‖1/2
L∞(∂K)

∥∥∥∇Ih0 (c0)
∥∥∥1/2

L2(∂K)

∥∥∥∇Qε∇Ih0 (c0) +Qε∇∇Ih0 (c0)
∥∥∥1/2

L2(∂K)

≤ ε−1/2C
∥∥∥∇Ih0 (c0)

∥∥∥
L2(∂K)

+ C
∥∥∥∇Ih0 (c0)

∥∥∥1/2

L2(∂K)

∥∥∥∇∇Ih0 (c0)
∥∥∥1/2

L2(∂K)
.

(A.6)
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Finally, using (A.2), we obtain

‖θI,ε‖H1(K̃)
≤ h−1/2ε−1/2C|∇c0|H1(K) + C(h−1/2|∇c0|)1/2

H1(K)
(h−1/2|∇∇c0|)1/2

H1(K)

≤ O(h−1/2ε−1/2 + h−1/2). (A.7)

Here we have used the global regularity c0 ∈ C2,1(Ω). Thus, we have after
summing over K, ‖εθI,ε‖H1(Ωε) ≤ C

(
ε
h

)1/2
.

B Corrector Estimates

To obtain an error estimate for the Perforated MSFEM we need to obtain
corrector estimates for the homogenization of (2.1). We approach this estimate
in the standard way and follow the presentation in [5]. We let the first order
corrector be denoted

ĉε

(
x,
x

ε

)
= c0(x) + ε

(
Q
(x
ε

)
∇c0(x)− θε(x)

)
,

where the boundary correction θε is given by (A.3). Thus, ĉε = c0 on ∂Ω. Note
since we suppose c0 ∈ C2,1, then c1 = Qε∇c0 is at least H1 and so a well defined
H1/2 trace exists.

Remark We suppose enough regularity on f and the smoothness of Ω so that
these regularity conditions are satisfied. Similarly, we suppose that the cell
problems have similar regularity and smoothness of the perforations to presume
that Q and its derivative are in L∞.

Remark In addition, to avoid technical details we suppose the perforations
do not intersect the global boundary. These assumptions may be relaxed with
the use of periodic unfolding techniques to handle perforations intersecting the
boundaries [6, 12].

Lemma B.1. Let cε be a solution of (2.1), let c0 be a solution to (2.7), and
Qε given by (2.6). We suppose the boundary layer correction θε satisfies (A.3) .
Then, we have the following estimate

‖cε − ĉε‖H1(Ωε) ≤ ε
1
2C (B.1)

Proof. We let ωε = cε − ĉε, then applying the operator from (2.1) we obtain

−∆ωε = f + ∆ĉε in Ωε, (B.2a)
−∇ωε · n = ∇ĉε · n on Γε. (B.2b)
ωε = 0 on ∂Ωε\Γε, 〈ωε〉Ωε

= 0 (B.2c)

Multiplying the above equation with ωε, we obtain on the left hand side

−
∫

Ωε

∆ωεωε =

∫
Ωε

|∇ωε|2 −
∫
∂Ωε\Γε

(∇ωε · n)ωε −
∫

Γε

(∇ωε · n)ωε

=

∫
Ωε

|∇ωε|2 +

∫
Γε

((I +∇Qε)∇c0 · n+ εQε∇∇c0 · n− ε∇θε · n)ωε

=

∫
Ωε

|∇ωε|2 + ε

∫
Γε

Qε∇∇c0 · nωε. (B.3)
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Here, we used ωε = 0 on ∂Ω, (2.6b), and (A.3b). On the right hand side, using
(2.7)∫

Ωε

(∆ĉε + f)ωε =

∫
Ωε

(
∆ (c0 + ε (Qε∇c0 − θε))−

|Y |
|Y ∗|
∇ · (D∗∇c0)

)
ωε

=

∫
Ωε

∇ ·
(

(I +∇Qε)∇c0 −
|Y |
|Y ∗|

D∗∇c0

)
ωε + ε

∫
Ωε

(Qε∆∇c0 −∆θε)ωε.

(B.4)

Taking a closer look at the first term we see that using
n∑

j=1

∂

∂xj
(δij + (∇Qε)ij) = 0,

from (2.6), we obtain∫
Ωε

∇ ·
(

(I +∇Qε)∇c0 −
|Y |
|Y ∗|

D∗∇c0

)
ωε =

∫
Ωε

((
(I +∇Qε)−

|Y |
|Y ∗|

D∗
)

∆c0

)
ωε.

(B.5)

Combining (B.3), (B.4), and (B.5), we obtain∫
Ωε

|∇ωε|2 =

∫
Ωε

((
(I +∇Qε)−

|Y |
|Y ∗|

D∗
)

∆c0

)
ωε

+ ε

∫
Ωε

(Qε∆∇c0 −∆θε)ωε − ε
∫

Γε

Qε∇∇c0 · nωε

=

∫
Ωε

((
(I +∇Qε)−

|Y |
|Y ∗|

D∗
)

∆c0

)
ωε

+ ε

∫
Ωε

Qε∆∇c0ωε +∇θε∇ωε − ε
∫

Γε

Qε∇∇c0 · nωε. (B.6)

Letting g(xε ) =
(

(I +∇Qε)− |Y |
|Y ∗|D

∗
)
, it is easy to verify that 〈g〉Y ∗ = 0 and is

ε-periodic. Thus, we may use the following lemma from [20] that for mean zero
functions g

(
x
ε

)
, and u ∈ H1(Ωε) with u = 0 on ∂Ω, and v ∈ H1(Ωε), we have

the following bound∣∣∣∣∫
Ωε

g
(x
ε

)
v(x)u(x)

∣∣∣∣ ≤ εC ‖v‖H1(Ωε) ‖u‖H1(Ωε) . (B.7)

The above result can be extended to multidimensions by applying the proof in
[20] to each partial derivative direction. Thus, by an application of the Cauchy-
Schwarz, by assuming sufficient smoothness we Q ∈ L∞, and the above lemma
(B.7) we have the estimate

‖ωε‖H1(Ωε) ≤ εC ‖∆c0‖H1(Ωε) + Cε ‖∆∇c0‖L2(Ωε) + Cε ‖θε‖H1(Ωε) + Cε ‖∇∇c0‖L2(Γε) .

From the estimate (A.5) of θε, we obtain the estimate

‖cε − ĉε‖H1(Ωε) ≤ ε
1
2C. (B.8)
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