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Universitätsstraße 38, 70569 Stuttgart, Germany

email: {michael.lahnert, miriam.mehl}@ipvs.uni-stuttgart.de
2Institute for Numerical Simulation and Hausdorff Center for Mathematics, University of Bonn

Wegelerstraße 6, 53115 Bonn, Germany
email: burstedde@ins.uni-bonn.de

3Institute for Computational Physics, University of Stuttgart
Allmandring 3, 70569 Stuttgart, Germany

email: {christian.holm, georg.rempfer, florian.weik}@icp.uni-stuttgart.de

Keywords: Octree Grids, Lattice-Boltzmann, Dynamical Adaptivity, Fluid Dynamics, Coupled
Soft-Matter Simulations.

Abstract. We present the minimally-invasive exchange of the regular Cartesian grid in the
lattice-Boltzmann solver of ESPResSo by a dynamically-adaptive octree grid. Octree grids are
favoured by computer scientists over other grid types as they are very memory-efficient. In
addition, they represent a natural generalisation of regular Cartesian grids, such that most
discretisation details of a regular grid solver can be maintained. Optimised codes, however,
require a special tree-oriented grid traversal, which typically conflicts with existing simulation
codes using various iterators, some for only parts of the grid, e.g., boundaries. ESPResSo is a
large software package developed for soft-matter simulations involving fluid flow, electrostatic,
and electrokinetic effects, and molecular dynamics. The currently used regular Cartesian grid
hinders the simulation of realistic domain sizes and significant time periods, a problem that can
be solved using grid adaptivity. In a first step, we focus on the lattice-Boltzmann flow solver in
ESPResSo.
p4est is a grid framework, that already provides dynamically adaptive quadtree and oc-

tree grids together with high-level interfaces for flexible grid traversals with direct neighbour
access in all grid components. In this paper, we first describe extensions of p4est that were
necessary to fulfill certain application requirements. The second part of our work consists of
the minimally-invasive changes in ESPResSo preserving the expertise accumulated in the soft-
ware’s implementation over years. Our numerical results demonstrate physical correctness of
the implementation, good parallel scalability and low overhead of the dynamical grid adap-
tivity. These are prerequisites to actually profit from grid adaptivity in terms of being able to
simulate larger domains over longer time periods with limited computational resources. Thus,
the current status forms a solid basis for further steps such as the development of refinement
criteria, the setup of more realistic application scenarios, and a GPU implementation.
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1 INTRODUCTION

Many scientifically and industrially relevant soft matter systems contain hydrodynamic flow
with strong gradients in small subvolumes. Most biomolecules, including DNA and proteins,
are charged when solvated in aqueous solution. Any charged object in electrolytic solution is
surrounded by a so-called double layer – a thin layer, typically on the scale of one to a few
hundred nanometres. This double layer is the only part of the volume that is not net neutral, a
state maintained by the attraction of counterions and the repulsion of coions from the charged
surface. Applying an external electric field causes fluid stress in the double layer and perturbs
the ionic distributions. The fluid flow resulting from this complex coupling of ion and fluid
dynamics is called electroosmotic flow (EOF) in the case of a charged surface at rest, while the
resulting motion of a charged particle is called electrophoresis.

Both EOF and electrophoresis are important in applications such as the separation of bio-
molecules and other charged particles, DNA profiling, and pumping and sample transport in
microfluidic devices, to name just a few.

Simulations of EOF and electrophoresis prove challenging, due to the large discrepancy be-
tween the nanometre scale of the double layer and the system sizes, which often range up to
several hundred microns. Existing numerical schemes that work on unstructured grids like the
finite-element method (FEM) or the finite-volume method (FVM) are great tools to investi-
gate stationary electrophoresis and EOF systems, but the overhead incurred through remeshing
makes these methods infeasible for systems containing mobile particles.

In this paper, we present our approach to moving a large simulation application from a regular
Cartesian mesh to fully adaptive tree-structured Cartesian meshes in a minimally-invasive way.
The application is the molecular and continuum dynamics package ESPResSo [1, 2], where we
particularly focus on the included lattice-Boltzmann solver. For scalable parallel adaptive mesh
refinement, we base our work on the software library p4est [3, 4].

Many large simulation codes use regular Cartesian meshes due to their cheap representation
in memory, the simple data layout, the easy domain partitioning, and the straight-forward dis-
cretisations. However, the missing grid adaptivity in time and space limits the size of the domain
and the simulation time accessible with reasonable computation time on available machines.
Grid adaptivity would allow for coarsening of the mesh in regions of minor importance and
provide the possibility for space-time adaptivity, i.e., to also apply larger time steps in spa-
tially coarser domains. Two major types of adaptive meshes are widely used in simulation
codes. The first type, unstructured meshes, offers a very high flexibility in terms of local mesh
resolution, shape and even type of mesh elements. Thus, even very complex geometries can
be represented accurately. However, unstructured meshes come with high memory require-
ments, and structures and element types completely different from regular Cartesian meshes.
The second type of adaptive meshes consists of tree-structured Cartesian meshes, with octrees
and quadtrees being the most famous examples. These meshes form a natural generalisation of
regularly refined Cartesian meshes. They are constructed by recursively refining mesh elements
into a fixed number of equally sized and equally shaped child elements. They are very efficient,
in particular in terms of memory requirements and memory access patterns, if represented in
a linearised form according to a depth-first traversal of the underlying tree and an ordering of
the children prescribed by a space-filling curve [5, 6, 7]. Depending on the aggressiveness of
the encoding, however, this may impede traversal of the mesh or parts thereof in an arbitrary
order. In contrast, existing application codes on regularly refined Cartesian meshes often rely
on access to parts of the mesh (e.g., boundaries), particular mesh regions, or neighbours of
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mesh elements. Thus, integrating a tree-structured Cartesian mesh with an existing simulation
code based on regular Cartesian meshes in a minimally-invasive way calls for a mesh interface
that allows for the easy implementation of user-defined iterators and direct neighbour access.
The challenge in this lies in finding the optimal trade-off between minimally-invasiveness, and
memory and run-time efficiency.

Our idea for making spatial adaptivity more accessible to researchers from other fields is to
turn the integration of an octree-based Cartesian grid into a three-step process. In a first step
the regular grid of the existing application is replaced with an octree-based one, specialised for
uniform refinement. In this way we are able to reproduce results of the existing implementation
using a regular grid, without having to worry about spatial adaptivity, yet. This step preserves
all of the regular grid’s data-access patterns, up to a permutation of the mesh elements. This
permutation is induced by the octree refinement, which replaces a traditional lexicographic
ordering with one governed by the space-filling curve. Reordering this way benefits data locality
and cache performance of large scale simulations, while the mathematical problem being solved
remains the same. In case of a traversal of subregions of the grid, e.g. for setting boundary
values, we may traverse the whole grid along the space-filling curve and only take action on
the cells that meet a selection criterion, possibly caching the subset indices for later reuse.
Alternatively, we may access the position of an initial cell and traverse the local part of the
mesh by hopping to neighbours, independently of the space-filling curve.

The next step of our three-step process consists of solving numerical issues that arise when
actually making use of the spatial adaptivity. An example for such an issue is the speed of sound
in the lattice-Boltzmann fluid, which depends on the element size and the time step, and is
therefore no longer uniform for a locally refined mesh with a constant time step. A uniform
speed of sound can be recovered by using different time steps for differently refined parts of
the mesh. There are several ways to consistently implement this, e.g., using a finite-volume
approach [8], compact interpolation [9], or volumetric formulation [10].

As the final step, the application should be tuned by adapting both data access patterns and
grid-traversal to make full use of the locality provided by the data storage scheme.

The need to be able to traverse subregions in our grid efficiently in step one introduces two
requirements for the implementation of the grid library. First, we need random access to cells,
and secondly, we need to be able to compute cell positions in our linearised array (as it is given
by the space-filling curve) based on geometric coordinates. We will show that those two criteria
are met by the p4est mesh interface.

In the remainder of the paper, we present the software package ESPResSo together with a
short introduction to the implemented lattice-Boltzmann solver on regular Cartesian meshes
(Sect. 2), give an overview of the adaptive mesh software p4est (Sect. 3), a more detailed de-
scription of our contributions to both software packages establishing the first lattice-Boltzmann
prototype on tree-structured meshes with minimal changes in ESPResSo (Sect. 4), followed by
first results (Sect. 5) and a conclusion (Sect. 6).

2 ESPRESSO AND THE LATTICE-BOLTZMANN METHOD

2.1 ESPResSo

ESPResSo [1, 2], the extensible simulation package for research on soft matter systems, is
a molecular dynamics (MD) program that focuses on coarse grained soft matter applications.
While originally focused on the simulation of charged and uncharged polymers and colloids,
today it implements a wide range of algorithms [11] for electrostatics [12, 13, 14, 15, 16], di-
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electrics [17, 18, 19], magnetostatics [20] and hydrodynamics [11, 21], both for periodic and
non-periodic systems. Applications include, amongst others, engineering problems such as soot
aggregation [22], hydrogels [23], biological membranes [24], DNA like-charge attraction [25]
and translocation [26], and ionic liquids [27]. Aside from the plethora of implemented meth-
ods, the major strength of ESPResSo lies in its ability to flexibly combine different methods
and particle interactions to encompass new applications and systems quickly. ESPResSo is
MPI parallelized and can employ GPU acceleration for hydrodynamics [21] and electrostatics
calculations.

The regular mesh refinement currently used for continuum methods in ESPResSo hinders the
efficient exploitation of different scales in different regions of the simulation volume, such that
the generalisation to adaptively refined meshes is crucial for accurate simulations encompassing
experimentally relevant time scales.

2.2 Lattice-Boltzmann

Lattice-Boltzmann (LB) is a method for solving the Navier-Stokes equations and similar
partial differential equations, which was first proposed in the context of lattice gas automata.
It was later discovered that the lattice-Boltzmann equation can also formally be derived as
a discrete lattice approximation to the continuum Boltzmann equation for fluids, providing a
sound mathematical basis for the method [28]. Further analysis based on the Chapman-Enskog
expansion shows that the LB equation is equivalent to the full Navier-Stokes equations in the
limit of low Mach numbers. Dünweg and Ladd gave a comprehensive analysis of the LB method
and many of its extensions relevant to soft matter simulations in 2009 [29]. A good overview of
the state of the development and its possible applications were given by Succi, Sbragaglia, and
Ubertini in 2010 [30].

The LB equation is a discretisation of the Boltzmann equation. The Boltzmann equation
is defined in the seven-dimensional space with three spatial coordinates, three velocity or mo-
mentum components and time as independent variables and describes the time evolution of the
microscopic particle distribution. The lattice-Boltzmann method discretises the velocity space
with a finite number of discrete velocities ci and finite differences on a cubic grid in the three-
dimensional coordinate space. This results in the lattice-Boltzmann equation (LBE)

fi(r + ci∆t, t+∆t) = fi(r, t) +
∑
k

Lik {f eq
k − fk(r, t)}+Ψi , (1)

where fi denotes the densities of virtual particle populations assuming the velocity ci, and Ψi

models the density change of the population fi due to external forces. The discrete velocities
are chosen such that they transport particles from one lattice node to one of its neighbours in
one time step. Fig. 1 shows the widely used D3Q19 discretisation for the velocities with 19
velocity components associated to the centre of a three-dimensional cubic grid cell. We assume
linear relaxation towards the equilibrium distributions f eq

i , according to the linear operator Lik.
The macroscopic values for the density ρ, momentum p, and stress π can be recovered from

the microscopic particle populations through

ρ =
∑
i

fi, p =
∑
i

fici, π =
∑
i

fici ⊗ ci, (2)

where ⊗ denotes the tensor product. Using those, the lattice equilibrium distribution is given
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Figure 1: One cell from a D3Q19 LB grid, depicting the 19 discrete velocities, connecting the node with itself, its
nearest, and next nearest neighbours. Image adapted from [31].

(a) (b) (c) (d)
Figure 2: Schematic view of the collision and the streaming step. The arrows indicate the discrete velocities ci
in a two-dimensional quadratic grid cell scaled with the respective densities fi. (a) – (c): collision step. Left to
right: pre-collision populations, virtual local equilibrium, post-collision populations. (d): streaming step. Grey
arrows indicate the pre-streaming population in the centre cell, black arrows the same populations transported to
the respective neighbour cells, i.e., after the streaming step.

by a second order expansion of the continuum Maxwell-Boltzmann equilibrium distribution

f eq
i = aiρ

(
1 +

v · ci
c2s

+
(v · ci)2

2c4s
− v2

2c2s

)
, (3)

with prefactors ai and the speed of sound cs depending on the specific lattice geometry.
Algorithmically, performing a time step for the LBE (1) consists of two parts with different

requirements in terms of data access: Whereas the collision is a local operation modelling the
interaction of densities of different velocity within a local cell described by the operator Lik,
the streaming step transports densities into neighbouring cells according to the direction of
the respective velocity ci. Fig. 2 schematically shows the collision step as a purely cell-local
operation on population densities and the equilibrium densities. In addition, it displays the
streaming as a transport of data from one cell to its neighbour cells.

Collision. ESPResSo implicitly implements different versions of the collision operator: The
simplest choice for the collision operator Lik = λδik is the so-called BGK collision operator
(after the inventors Bhatnagar, Gross, and Krook) using only a single relaxation parameter λ
for all populations, which can be chosen such that the fluid assumes the desired shear viscosity.
Other fluid properties such as the bulk viscosity cannot be chosen independently. The full multi-
relaxation time LB method (MRT-LB) results in less limitations. Here one relaxes different
linear combinations mi of the velocity populations fi towards their equilibrium values using
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different relaxation rates λi. These linear combinations correspond to the different macroscopic
quantities. The MRT-LB forms a superset of the simpler collision operators, i.e. by choosing
the λi accordingly, the MRT collision operator can reproduce the simpler BGK and TRT (two
relaxation time) collision operators [32].

Streaming. In terms of streaming, it is important to note that, due to the requirement that
virtual particle populations are transported exactly from one cell midpoint to the midpoint of
the respective neighbour cell, the size of the time step ∆t is proportional to the side length of
the grid cells. This observation plays a major role in adaptively refined grids in Sect. 4.

By identifying nodes on the boundaries of the cubic grid with the corresponding nodes on
the opposite side, one can trivially implement periodic boundary conditions in the streaming
step. Other boundary conditions, such as fixed velocity or fixed pressure are more complex
to implement. For simplicity, we will only discuss no-slip boundary conditions here. Further
information can be found in [33]. One simple way to realise no-slip boundary conditions is by
introducing so-called bounce-back nodes in the grid. Instead of streaming populations along
their respective velocities, they reverse the velocities of the populations and transfer them back
to the originating node. This procedure mimics a fluid flow on the opposite side of the boundary,
which is antisymmetric to the real one. Due to the antisymmetry, the flow velocity on the
boundary needs to vanish.

2.3 Lattice-Boltzmann in ESPResSo

While ESPResSo is primarily a molecular dynamics code, it includes an implementation
of the multi-relaxation time D3Q19 lattice-Boltzmann method (MRT LB) [34], to solve the
fluctuating Navier-Stokes equations. This lattice-Boltzmann fluid can be point-coupled to MD
particles using the method published by Dünweg and Ladd [29]. The LB is MPI parallelized,
which is realised by domain decomposition and halo communication at the node boundaries.

3 PARALLEL ADAPTIVE TREE-STRUCTURED GRIDS AND P4EST

3.1 Parallel Tree-Structured Grids

Tree-structured Cartesian grids are a natural generalisation of regular Cartesian grids that
have two important advantages over unstructured meshes: 1) The shape of the grid elements
is the same as in a regular Cartesian mesh. Thus, the underlying discretisation of a solver
operating on a regular Cartesian mesh can be generalised to this type of adaptive grid by locally
incorporating interpolation and projection on hanging nodes and/or faces [35, 36, 37]. 2) The
grids are strictly structured, which allows for a very cheap representation in memory and for
efficient grid partitioning. The construction principle of a tree-structured grid is the recursive
refinement of grid cells into a fixed number of children of equal size and shape. If the refinement
is performed globally, we get a regular Cartesian mesh, if we refine only locally in certain
marked cells, we get an adaptively refined grid. Figure 3 shows a pair of two-dimensional
quadtree grids (refinement of each quad into four subquads) and their respective cell trees.

In order to provide a unique ordering of grid cells on all levels, discrete iterates of space-
filling-curves are widely used. There are space-filling curves for two-dimensional and for three-
dimensional tree-structured grids [38] (in fact, many generalise to arbitrary dimension) and for
different refinement strategies. Figure 4 shows the iterate of a Peano-curve in a two-dimensional
grid with a recursive refinement of grid cells into nine children, a Hilbert-curve iterate [39] in a
quadtree grid, and the Z-curve or Morton-order [40] in a quadtree grid.

The tree-structure in combination with a space-filling curve iterate allows for a very efficient
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Figure 3: Left: a regularly refined quadtree grid of refinement level two. Right: an adaptively refined quadtree
grid of minimal refinement level one and maximal refinement level three. In both cases, we also display the
corresponding tree structure.

Figure 4: Some exemplary space-filling curve iterates on grids with regular refinement of level two. Left: Peano-
curve; middle: Hilbert-curve; right: Z-curve or Morton-order.

linearised bit-code representation of the whole grid. This representation follows a depth-first
grid traversal with an ordering of children according to the chosen space-filling curve. A ’1’
indicates a refined cell, whereas a ’0’ represents an unrefined cell. Figure 5 shows a two-
dimensional adaptive quadtree mesh ordered according to the Z-curve together with the cell
tree and the linearised representation.

In scientific simulation software, the combination of tree-structured grids and space-filling
curves has been used in several ways, for example augmented by hashing [41], or for partial
differential equation solvers with cache-optimised data administration [42, 5]. Octor [43]
and Dendro [6] are two examples of parallel octree libraries that have been scaled to 62,000
[44] and 32,000 [45] cores, operating on parent-child pointers and a linearised octant storage,
respectively.

3.2 The p4est Software

The p4est software library [3] extends the linearised storage strategy to a forest of inter-
connected octrees [46, 47]. Figure 6 shows a forest of two trees as an example. p4est provides

1 0 0 0 01 0 0 1 0 0 11 0 0 0 00 0 0 0

Figure 5: Example for an adaptively refined quadtree grid with cell-ordering according to the Z-curve, the corre-
sponding cell-tree and the linearised bit-code.
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Figure 6: An example 2D forest of two adaptive quadtrees. It is partitioned into three processors (colour-coded).
Note that the partition boundary does not always coincide with a tree boundary and that the coordinate systems of
the trees can be rotated or mirrored relative to each other. This mesh is 2:1 balanced: Neighbour quadrants differ
in size by at most a factor of two. We use the terms quadrant/octant, leaf, and element as synonyms, since they are
logically equivalent.

a publicly available implementation of parallel algorithms required to create and dynamically
refine, coarsen, and repartition an adaptive mesh. Furthermore, p4est includes an efficient 2:1
balancing algorithm [48]. In our context, 2:1 balancing means that the refinement is graded in
such a way that it has a maximal level difference of one between adjacent grid cells. This fea-
ture limits the number of possible configurations of different-sized neighbours that can occur
with arbitrary adaptation. Some applications are designed not to use this feature [49], while we
exploit it in the lattice-Boltzmann code to maximise the simplicity of discretisation and time
stepping.
p4est manages the dynamic-adaptive connectivity of the mesh elements. It is a C library

using the MPI standard for parallelisation. The “root” or “coarse” mesh is a collection of tree
roots, each identified with its cubical subvolume of the domain, and augmented by the connec-
tivity relation between neighbouring trees. For many applications, it is sufficient to call builtin
functions that create a one-tree unit cube or a rectangular brick of a small number of trees.
The initial refinement of the forest is created by calling the New function with a given coarse
mesh and an initial level to create a uniform distributed mesh. The refinement and coarsening
functions can then be invoked any number of times to locally swap mesh elements with their
children and vice versa.
p4est uses the Morton curve to order the elements in each tree; see Figures 4 (right) and 6.

The code stores just the leaves of the forest by their lower left corner and refinement level and
operates on the mesh by exploiting the mathematical structure implicit in the curve. Refinement
and coarsening are local in the sense that a parent occupies the same segment in a curve as its
four (2D) or eight (3D) child elements. The Partition algorithm exploits this property to shift
the elements between processors without changing their order. Optionally, each element may
be assigned a weight to account for a varying computational load throughout the mesh.

The basic grid traversal component of p4est is the p4est iterate routine [50] that
visits all interfaces of local mesh cells across all co-dimensions. The user may define callback
functions separately for each co-dimension. Effectively, each mesh entity (cell, face, edge, or
corner) is visited exactly once, and the callback function is informed with a list of the mesh cells
adjacent to the visited entity. In this sense, the iterator provides a view of both the primal and
the dual mesh local to a process. Calling p4est iterate is the most general and lightweight
way to expose the mesh connectivity to applications, formulated exclusively in p4est’s en-
coding of mesh entities and their relative orientations.

Existing simulation codes often require direct (random) access to neighbours of cells or cor-
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ners, ideally in constant time. To meet this need, p4est provides the so-called p4est mesh
that we will shortly describe in more detail. In fact, we have chosen it as the central component
for the integration of p4est with ESPResSo.

The p4est mesh data structure consists of several lookup tables that store neighbourhood
information for each grid cell as well as level-wise cell lists. It covers all process-local cells
and the direct off-processor neighbour cells (ghosts). Thus, this module provides a way to
traverse the local partition of the grid independently of the space-filling curve and allows for
the evaluation of arbitrary stencils. However, this flexibility comes at the cost of additional
run-time (it is created by calling p4est iterate internally) and memory (the lookup tables
are allocated), cf. section 5.3. This overhead can be amortised if the mesh structure is queried
repeatedly, since each lookup only requires O(1) time. Information on a neighbouring cell is
encoded in two integers: The first stores the index of the neighbour cell in the global cell list of
the corresponding processor, the second stores the size and relative orientation of the neighbour
cell. The latter is important if the neighbour cell belongs to a different quadtree or octree, which
might have a different orientation. Due to the 2:1 balancing that we invoke, there are only three
different cases: the neighbour of a cell can have the same size or be either twice or half as big.
In the latter case, we store the indices of all smaller neighbours in the respective direction.

In summary, p4est provides a concise set of parallel AMR algorithms that are tailored
to dynamic-adaptive PDE solution, but can also be used more generally whenever an efficient
parallel space partition is required. p4est has been shown to scale to over 458k cores [50],
with applications using it successfully on 1.57M cores [51] and 3.14M cores [52].

4 LBM ON SPATIALLY-ADAPTIVE GRIDS

In this section, we present the exchange of the regular Cartesian grid in ESPResSo by a
dynamically-adaptive tree-structured grid provided by p4est. In Section 4.1, the underly-
ing ideas of the lattice-Boltzmann solver on tree-structured grids are introduced. This includes,
in particular, the realisation of collision and streaming, as well as the adaptive time stepping at
boundaries between different spatial refinement levels of the octree grid. These discretisation
details, together with the velocity discretisation scheme, define the neighbour cells that need
to be made accessible in the p4est mesh. The adaptations to p4est, including the gen-
eration of the p4est mesh for our adaptive lattice-Boltzmann implementation is outlined in
Section 4.2, whereas Section 4.3 sketches the changes in ESPResSo that were required for the
replacement of the original grid implementation by the p4est grid.

4.1 Adaptive Formulation of the LBM

In order to cope with different mesh widths over the computational domain imposed by spa-
tial adaptivity, the classical algorithm of the LBM needs to be extended. We use the collision
operator independent scheme proposed by Rohde, Kandhai, Derksen, and van den Akker in
2006 [53]. The scheme proposes a volumetric formulation of the LBM, i.e., the nodes contain-
ing the populations are associated to the cell centres.

The algorithm consists of several steps that are shown schematically in Fig. 7 for a part of
the mesh consisting of a coarse grid cell and a further refined neighbour cell with four children.
Outward facing arrows indicate streaming, inward facing arrows collision. The steps of the
algorithm result from two basic observations: 1) Due to the proportionality of the time step
to the cell width, we have to perform two time steps in the smaller cells, while performing
only one (twice as large) time step in the coarser cell. We will use the optional feature of
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coarse fine
Mesh width ∆x ∆xc ∆xf = 0.5 ·∆xc

Time step ∆t ∆tc ∆tf = 0.5 ·∆tc
Lattice velocities ci ci,c ci,f = ci,c
Viscosity ν νc νf = νc
Relaxation parameter λ (BGK) λc λf = 2.5 · λc + 0.5
Velocity u uc uf

External acceleration/force g gc gf = 0.5 · gc
Table 1: Conversion of parameters and observables between fine and coarse cells for 2:1 balanced grids according
to [53].

p4est partition to assign different weights to the leaves for load balancing. 2) Streaming
populations from the finer grid cells into the coarse cell and vice versa requires populations
associated to a common grid level. Thus, we have to interpolate populations of the coarse
cell to virtual child cell populations before the streaming step and restrict the results back to the
coarse cell after the second time step of the fine cells. Additionally, some fluid properties differ
between different discretisation widths as shown in Table 1.

Step 1 in Fig. 7 depicts the collision on both coarse and fine cells for the discussed example
situation. After this collision, we provide streaming partners for the finer cells by copying the
coarse cell populations to four (2D) or eight (3D) virtual child cells (step 2). Then a streaming
step can be performed on both the virtual and the original fine grid cells (step 3). Note that in
the virtual fine cells, only populations associated to velocities pointing towards the original fine
grid cells actually have to be streamed. In step 4a, the second collision step in the original fine
cells is executed, followed by the second fine grid streaming step (step 4b). Finally, we transfer
the virtual fine grid populations back to the coarse grid by taking the arithmetic mean, and finish
the coarse grid time step with the streaming of the coarse grid populations whose velocities
point towards other coarse cells. Note that, in a more general case without 2:1 balancing, we
would have to perform more substeps on the fine grid cells before returning to the coarse level.

The generalisation of the presented adaptive lattice-Boltzmann algorithm to three-dimen-
sional 2:1 balanced octree grids is, in principle, straight-forward. If we summarise the require-
ments for the octree mesh stemming from the adaptive LBM, we can state that the p4est mesh
has to provide direct access to the 18 neighbour cells corresponding to the 19 velocity directions
minus the zero velocity in the D3Q19 LBM (compare Fig. 1). In addition, we have to implement
the realisation of the virtual fine grid cells in p4est, a feature that was not available previously.

4.2 Preparing p4est for adaptive lattice-Boltzmann

As mentioned above, two aspects in p4est are crucial for a successful and minimally-
invasive integration of the p4est grid in the lattice-Boltzmann solver in ESPResSo: the provi-
sion of the required neighbour cells in p4est mesh and the implementation of virtual children
of grid cells neighbouring a further refined region. In this section, we describe the generation
of the p4est mesh in more detail and briefly sketch the implementation of virtual refinement.
p4est mesh. The first issue in generating the p4est mesh (during a grid traversal using

p4est iterate) is to identify the neighbours actually required by the LBM among the infor-
mation that can be generated with p4est callback functions for neighbour detection of faces,
edges and corners. The iterator provides a top-view on each element of each co-dimension, i.e.,
two adjacent cells for faces, four for edges, and eight for corners. In an adaptive mesh, the in-
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step 1

t
coarse

fine
tk tk+1/2 tk+1

step 2

t
tk tk+1/2 tk+1

step 3

t
tk tk+1/2 tk+1

step 4a

t
tk tk+1/2 tk+1

step 4b

t
tk tk+1/2 tk+1

step 5

t
tk tk+1/2 tk+1

Figure 7: Collision operator independent extension to the algorithm of the LBM to spatially adaptive Cartesian
grids as proposed by [53]. 1. Collision on coarse and fine grid. 2. Homogeneous redistribution of populations
from coarse to fine grid. 3. Streaming step on virtual fine and fine grid. 4a. Collision step in fine grid. 4b.
Streaming step on virtual fine and fine grid. 5. Homogeneous redistribution of populations from virtual fine to
coarse grid. Note that steps 4a and 4b are only performed once due to the 2:1 balancing constraint.
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Figure 8: Naming scheme of faces, edges, and corners in p4est.

terface may be hanging and may have one side consisting of four small faces instead of one,
or two small edges instead of one. We display two possible situations in Figure 9. We have to
combine this information to end up with the list of the 18 neighbours required in the D3Q19
LBM, which means that we have to eliminate face neighbours from the edge neighbour list and
face and edge neighbours from the corner neighbour list. The Z-curve allows for a very sim-
ple and efficient calculation of the Morton-index of neighbour cells. However, since the grid
is adaptively refined, the Morton index is not the same as the position in the actual cell list.
Therefore, neighbour cells are detected via a recursive divide-and-conquer algorithm operating
on the cell list1. p4est uses a fixed naming scheme for faces, edges and corners of a cell as
displayed in Figure 8. This helps to reduce the costs for the neighbour search by allowing us to
fill the neighbour lookup tables pairwise for neighbour cells within the same tree using a simple
mechanism based on XOR to determine the naming of the respective face, edge or corner in the
considered partner cell.

For the detection of neighbours across boundaries between different octrees, the relative
orientation of the involved octrees has to be taken into account. Figure 9 shows two examples
for such situations. We observe that, in this case, even the number of neighbours of an edge
or corner can take any value. However, for our LBM, only rectangular meshes are envisioned
such that at least this latter issue does not occur. As different trees may have different local
coordinate systems we cannot know beforehand which edge or corner index the diagonally
opposite element will have. The orientation and the index of a neighbouring tree can be retrieved
from the p4est connectivity, which represents the macroscopic structure of the grid, i.e.,
the way that the different octrees are arranged relative to each other. With this, we calculate the
edge or corner indices of neighbours using a transformation.

In order to transform the index of a corner from the perspective of one tree to the perspective
of another across a face, a transformation was proposed in [3] that only needs the face indices
of the common face from both perspectives (fi, fj), the relative orientation (r) of the two octree
faces and the respective face corner ξi. A local Morton order is imposed on the corners of each
face by enumerating all four in ascending order w.r.t. p4est’s naming scheme. Then the face

1p4est works with an optimised binary search that recursively splits the list of the leaf cells covered by a
branch of the octree into eight sublists, one for each child branch, during the top-down depth-first tree traversal in
p4est iterate [50]. This function also identifies neighbours of different sizes created by adaptation.
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•

Figure 9: Exemplary multiple tree scenarios to find edge or corner neighbours for each cell. Each tree is drawn in
a different colour. The element over which neighbours are to be found is marked in red.

corner number ξj viewed from the adjacent octree is given by the permutation

ξj = Pc(Qc(Rc(fi, fj), r), ξi) ≡ ξj(ξi) (4)

with

Rc =


0 1 1 0 0 1
2 0 0 1 1 0
2 0 0 1 1 0
0 2 2 0 0 1
0 2 2 0 0 1
2 0 0 2 2 0

 Qc =

1 2 5 6
0 3 4 7
0 4 3 7

 Pc =



0 1 2 3
0 2 1 3
1 0 3 2
1 3 0 2
2 0 3 1
2 3 0 1
3 1 2 0
3 2 1 0


. (5)

The permutations of the face corners listed in the rows of Pc correspond to the 2 × 4 elements
of the dihedral group of face orientations. The matrices Rc and Qc are designed to choose the
correct one in a non-redundant way (using 0-based indexing).

To extend this logic to edges, we propose a similar transformation. In addition to the already
defined face corners ξi, we define face edges νi in the same way, i.e. by enumerating the edges
spanning a face in ascending (Morton-)order. Then each face edge is enclosed by two face
corners that can be written as rows of

Ξi =


0 2
1 3
0 1
2 3

 . (6)

We can thus infer the edge corners seen from the adjacent tree by the element-wise application
of (4),

Ξj(νi, k) = ξj (Ξi(νi, k)) , k = 0, 1. (7)

Using (6) in reverse, the resulting two face corners can be identified one-to-one with the face
edge’s number seen from the other tree. We can condense this process into the form used earlier
by writing the edge transformation

νj = Pe(Qe(Re(fi, fj), r), νi) ≡ νj(νi) (8)
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with

Re =


0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0

 Qe =

(
4 1 2 7
0 6 5 3

)
Pe =



0 1 2 3
0 1 3 2
1 0 2 3
1 0 3 2
2 3 0 1
2 3 1 0
3 2 0 1
3 2 1 0


. (9)

The two permutations (4) and (11) allow excluding face neighbouring cells when creating
edges and corner lookup tables and are sufficient for our D3Q19 LBM.

To complete p4est mesh we additionally have to exclude edge neighbours, when the cor-
ner lookup table is created. We define edge corners µi, analog to face corners ξi and face
edges νi. It has to be noted that in this case the relative orientation is no longer between two
faces but between two edges. Thus, we will distinguish the relative orientation between two
edges from the relative orientation between two faces by denoting the former by s. In case
of two faces only two cases have to be distinguished instead of four, because edges can either
face the same or the opposite direction. Again, this information can be derived from the face
corner transformation. Inspecting (5) and (7), we see that some transformations will lead to two
ascending edge corner numbers and others to descending ones. In the latter case the edge is
flipped when going between the two trees and the edge corners must be permuted.

To determine s for each edge neighbour we consider all three edges that contain the corner
across which we want to find neighbours separately. Beginning with the current cell, we set the
relative orientation s = 0. Then we can iterate over the two faces adjacent to the respective
edge into the next cell. One of the two faces we do not have to consider, because it is the face
across which we entered the cell. The relative orientation of the edge s in the face neighbouring
cell is determined using (10).

snew = (sold + (Ps(Qs(Rs(fi, fj), r), νi))) mod 2 (10)

with

Rs = Re Qs =

(
0 2 1 3
0 1 2 3

)
Ps =


0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

 . (11)

To map edge corners from one octree to the other we can apply the transformation

µj = Pec(Qec(r), µi) (12)

with

Qec =
(
0 1

)
Pec =

(
0 1
1 0

)
. (13)

In the implementation, the relative orientation s does not need to be calculated separately for
each edge neighbour. Instead, s is stored inside of p4est connectivity. This redundancy
facilitates creating p4est mesh, because the above transformation can be applied directly.

Summarising, the first permutation from [3] allows removing the face neighbours when set-
ting up the lookup table for corner neighbours, while the third permutation allows to omit edge
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neighbours in that case. The second permutation is used to remove face neighbours when set-
ting up edge neighbour lookup tables.

Virtual refinements. Our adaptive LBM algorithm requires to persistently store the popula-
tions within virtually embedded cells over multiple grid traversals to restrict their results back
to the coarse cell after two smaller time steps on the fine grid. Therefore, we have to store their
data additionally to the data of the original coarse cell. This leads to two obvious options con-
sidering the question which cells we store in the list of octree leaf quadrants. 1) We store the
virtual fine cells as part of the leaf list and create the parent cell as a virtual cell or 2) we store
the coarse cell and create four (2D) or eight (3D) virtual fine cells. We choose the latter solution
and store the virtual cells in Morton order using a modified version of the p4est children
inside p4est mesh, creating them simultaneously with the lookup tables. This algorithm dif-
fers from a standard refinement step only in the sense that the resulting quadrants are not stored
within the list of leaf quadrants and that the parent quadrant is not discarded. This allows in-
tegrating virtual cells into an existing application in a completely transparent way, hiding the
whole process from the application via abstraction in the neighbour lookup. Furthermore, we
can account for the increased load of those cells that contain virtual children by modifying the
weight passed to the partition function [3].

4.3 Minimally-Invasive Integration of p4est with ESPResSo

As a very general change that is not directly related to grid adaptivity, we wrote some addi-
tional callbacks such that the manager node can call the slave nodes to perform the respective
distributed routines of p4est for initialising, traversing or deallocating a grid. This enables
p4est, which is designed as a fully distributed library, to work with ESPResSo, which uses a
manager/worker architecture. In case of a manager/worker architecture the system is controlled
by one or more manager nodes which distribute the work among the worker nodes. Note, that
the number of worker nodes is generally significantly bigger than the number of manager nodes.
In case of a fully distributed architecture all nodes are equal and have to agree on distribution
of the workload. Therefore, a manager/worker scheme avoids solving some (either implicit or
explicit) consensus problems at the cost of a reduced fault tolerance.

Besides that, the actual changes that were made to ESPResSo for integrating p4est were
fairly small. We changed the storage scheme and the grid-traversal from the classical lexico-
graphic ordering to an ordering along the space-filling curve. Cell-local functions, a category
in which in case of the LBM all algorithmic steps belong except from the streaming step, could
be preserved the way they were. We only changed the function headers to make the respective
functions callable as volume callback function using p4est iterate and, for efficiency rea-
sons, changed the data layout from a propagation optimised storage scheme to a collision op-
timised data scheme, cf. [54]. In a collision optimised data layout, all populations of a cell are
grouped locally in memory, i.e., the memory contains N × Q populations. On the other hand,
in a population optimised data layout all cells of a lattice velocity ci are grouped locally such
that Q × N populations are stored. Both data layout schemes are illustrated in Fig. 10. The
reason for switching the data layout is that, in case of dynamic refining and coarsening, we have
to shift data in a collision optimised scheme once to preserve data locality as it is given by the
space-filling curve. In a propagation optimised scheme, we have to shift data Q times, i.e., in
our case 19 times. The remainder of the code was preserved.

For functions requiring access to neighbouring cell data, which in case of the LBM is the
streaming step, we changed the header such that the function is callable as a volume callback
function using p4est iterate. Neighbour data are accessed using the lookup tables as they
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Figure 10: Comparison of different data layout schemes for the LBM. The highlighted black rectangle shows
which data have to be loaded for the collision step in the first cell. The upper half shows the propagation optimised
data layout which requires more cache lines to be read for the collision step. The lower half of the figure shows
the collision optimised data layout. Image adapted from [33].

are provided by p4est mesh instead of performing classical index calculations in the regular
grid’s (i, j, k)-indexing scheme. To hide the complexity of the different tables from the user, we
extended the p4est mesh module by a function returning a list of pointers to the respective
neighbouring quadrants as well as a list of encodings specifying the meta information contained
in the mesh.

Moreover, p4est iterate does only visit local quadrants, specifically it does not visit
ghost quadrants in the parallel domain partitioned version. That means we do not perform a
collision step in the ghost layer but we perform an additional communication step after the
collision step. This is motivated by a more rigorous understanding of ownership of quadrants:
the data of a quadrant is only written by the process that logically owns this quadrant. Following
to this idea and in order to perform correct streaming steps at process boundaries, the streaming
and the bounce back step (at boundaries) have been slightly adapted as shown in Fig. 11. In
case that a neighbouring cell is part of the ghost layer we mirror the streaming step. Instead
of streaming populations from the current cell into the ghost cell, we do the inverse streaming
operation (for the inverse lattice velocity) from the ghost cell into the current cell.

While the complete integration of spatial adaptivity is not yet finished, the mesh is already
prepared for saving virtual quadrants. To achieve full dynamical adaptivity, we will change the
grid traversal to level-wise traversals matching the time-adaptive algorithm outlined in 4.1 and
Fig. 7 instead of traversing the entire grid while explicitly omitting all cells of different levels.

5 RESULTS

To test our integration we performed some tests on a shared memory machine with 72 phys-
ical cores (Intel R© Xeon R© CPU E7-8880 @2.30GHz) and 512 GB RAM. In 5.1, we compare
our new p4est grid using a regular discretisation to the existing regular grid. To mimic spa-
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streaming of
inverse compo-
nent from ghost
cell

regular
streaming

Figure 11: Illustration of the streaming step at neighbouring cells from the ghost layer (grey). Instead of streaming
from the local cell into the ghost cell (red) we perform the inverse streaming step from the ghost cell to the current
cell (blue).

Figure 12: Geometry of the considered Poiseuille flow scenario. Note that the channel is not cylindrical but
extruded to better match with the unit hypercube.

tial adaptivity in terms of realistic run-time, we do not use the information that the actually
used grid is regularly refined and constant over time. Instead, we reconstruct the entries of
p4est ghost and p4est mesh in each time step. In 5.2, we analyse the additional costs of
this choice, i.e., the time it takes to create both structures. The section is concluded by compar-
ing the run-time for traversing the grid using p4est iterate and p4est mesh in 5.3.

5.1 Run-time of LBM on Different Grids

To test our integration, we performed some scalability tests for a simple Poiseuille flow
scenario as it is shown in Fig. 12. Note that the channel was not rotated to a cylindrical shape
but that it has been extruded to the size of the unit cube, thus containing more fluid and fewer
obstacle cells compared to a cylindrical channel.

We compared our p4est based implementation using a regularly refined octree and a col-
lision optimised data layout to the existing regular grid with lexicographic cell-ordering us-
ing a propagation optimised data layout. For simulating the run-time effects of dynamic grid
adaptivity, we did not use the information that we have both a constant layer of ghost cells
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NUPS p4est NUPS regular grid
Proc Level 4 Level 5 Level 6 Level 7 Level 8 Level 4 Level 5 Level 6 Level 7 Level 8

16 1,323.85 2,824.1 3,621.2 4,044.3 4,300.2 2,185.7 9,019.6 11,083.8 13,934.5 13,867.5
32 1,411.93 4,567.6 6,450.7 7,513.4 8,294.2 2,200.96 11,583 21,357.7 23,125 27,104
64 1,422.23 6,261.7 9,461.7 13,600.2 15,498.8 1,895.42 11,279.9 36,880 39,871 46,580

Table 2: Comparison of lattice-Boltzmann run-times using the p4est grid with existing regular grids on various
discretisation levels for an increasing number of MPI processes in NUPS (node updates per second).
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Figure 13: Comparing the run-time for 1, 000 time-steps of the LBM on various discretisation levels using the
existing regular grid and the newly integrated p4est grid for an increasing number of processes (left). On the
right we show the relative factor that our implementation is slower.

and a constant neighbourhood. Instead, we discarded and re-created the information about the
ghost layer in p4est ghost as well as the lookup tables for the neighbouring information in
p4est mesh in each time step. The overhead of dynamical grid adaptivity was bound by a
factor of 4 as shown in Table 2 and Fig. 13. We therefore could prove, that even in a worst case
scenario, where the grid would be allowed to change in every fine time step, the performance
of the adaptive grid does not degrade compared to an optimised regular grid. Note that this is
true in spite of using a data layout that is known to reduce the performance of a regular dis-
cretisation and despite performing additional grid traversals for rebuilding p4est ghost and
p4est mesh. We use the collision optimised data layout, because it will reduce the amount
of data that has to be transferred in case of dynamic spatial adaptivity, cf. 4.3. The impact on
performance for the different data layouts in case of a regular grid is described in [54].

Further optimisations reusing the overhead are to be done in the future. E.g., by restricting
the grid adaptivity to the end of the coarsest time steps, we can omit rebuilding the information
of p4est ghost and p4est mesh during the smaller time steps of the smaller cells.

5.2 Creating p4est ghost and p4est mesh

Building the information of neighbourhood and ghost cells in case of a regular grid can be
done in constant time using simple index calculations. In case of a dynamically-adaptive grid,
this process is more challenging. A comparison between creating the ghost layer and accessing
neighbours in case of regular and octree-based grids is schematically shown in Fig. 14. To
investigate the overhead of the more complicated ghost layer as well as the creation of lookup
tables for the neighbourhood information, we performed run-time and scalability experiments
using our regularly refined grids within p4est for the Poiseuille flow scenario.

We measured the run-time for creating both, p4est mesh and p4est ghost using a
single octree with periodic boundaries for different discretisation levels and a varying number
of processes. Both, ghost information and lookup tables have only been created for faces and
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Figure 14: Differences in the structure and calculation of ghost layers and neighbour in formation in a regular grid
versus a spatially adaptive grid.
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Figure 15: Left: run-times for creating p4est ghost; right: run-times for creating p4est mesh for a regularly
refined grid on various discretisation levels for an increasing number of processes.

edges, i.e., no information about corner neighbours was gathered as this is not required by the
D3Q19 lattice-Boltzmann method. The results are shown in Fig. 15. Note that the volume
to surface ratio is low in the grid of level 4 which limits the scalability for creating the ghost
information.

5.3 Run-Times of Grid Traversals

To compare the computational costs of traversing the grid in the streamlined and optimised
way using p4est iterate and the more flexible p4est mesh we applied some stencil
operations similar to the one used by the D3Q19 LBM. Again, we investigated the run-time
for traversing a regularly discretised p4est based grid with periodic boundary conditions once
while accessing all nearest and next-nearest neighbours. We varied both, discretisation level
and number of processes. The results are shown in Fig. 16. We observe that traversing the
grid using p4est mesh is on average a factor of 2 slower than using p4est iterate. This
represents in a sense the price we pay for the minimal-invasiveness, in particular for being able
to preserve the existing grid traversal logic and the direct neighbour access in ESPResSo. Note
that on discretisation level four there is only a very limited number of quads associated to each
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Figure 16: Comparison of the run-times of a grid traversal. Top left: using the highly optimised p4est iterate;
top right: using the much more flexible p4est mesh; bottom: relative overhead of p4est mesh compared to
p4est iterate. In both cases, we traverse a regularly refined grid using an increasing number of processes.

processing node such that in both cases the run-time was less than a microsecond.

6 CONCLUSION AND OUTLOOK

With the combination of ESPResSo and p4est, we have prepared a powerful implementa-
tion of a lattice-Boltzmann solver on adaptively refined octree grids. We are not the first group
setting up such a solver. However, there are a few major differences to other approaches: [55]
and [56] both implement the lattice-Boltzmann method on top of a highly optimised octree
grid implementation. I.e., the solver itself had to be developed more or less from scratch in
a way that is adapted to the grid structure and its specific memory-optimal traversal in the
Peano framework [57] or waLBerla [58]. Also, [56] provides a solver on statically adaptive
meshes, which allows for much more sophisticated solutions in terms of run-time optimisation
per core and on massively parallel hardware. In contrast, we focus on full dynamical adaptivity
as required by the physical systems simulated with ESPResSo, where regions with high refine-
ment requirements move with particles or molecules immersed in the flow. In addition, the task
was to port the full lattice-Boltzmann functionality in ESPResSo to the new grid type with only
minimal changes to the code.

Our results show that p4est is well-suited for minimally-invasive integration of an octree-
based grid into existing applications. Some changes in the code of the existing application are
necessary, as at least the additional numerical features at boundaries between different refine-
ment levels have to be developed from scratch and i, j, k-loops have to be exchanged by more
general variants. However, most of the core code can be preserved. Even in worst-case tests
where we assumed full dynamical adaptivity in every fine grid time step, we observe good per-
formance and scalability. The flexibility and minimal invasiveness of the p4est mesh comes
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with an acceptable overhead when compared to specialised versions such as [58, 57].
In the future, we intend to tackle complex real world applications using the new solver. Sce-

narios that we expect to clearly benefit from spatial and time adaptivity are, e.g., the translo-
cation of DNA through a nanopore [59] or the filtering of dust particles in charged cabin air
filters [60]. To actually be able to handle these scenarios efficiently, the most important steps to
be taken are: 1) the full implementation of the virtual cell functionalities at refinement bound-
aries; 2) the adaption of the iterations to level-wise iterations accounting for the natural time-
adaptivity of the LBM; 3) the development of a suitable weighting concept for octree cells on
different tree levels, accounting for the different time-step sizes and possible overhead at par-
tition boundaries in the dynamical load-balancing of p4est; 4) the coupling of electrostatics,
electrokinetics, and the molecular dynamics modules of ESPResSo to the lattice-Boltzmann
solver; 5) the further optimisation of the p4est mesh and its generation.
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