Modellierung und Simulation des effektiven Verhaltens von Grenzflächen in Metalllegierungen

DISSERTATION

zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

> vorgelegt von Martin Lenz aus Cochem (Mosel)

> > Bonn, Juli 2007

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn am Institut für Numerische Simulation

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Erscheinungsjahr 2007

1. Referent: Prof. Dr. Martin Rumpf 2. Referent: Prof. Dr. Sergio Conti

Tag der Promotion: 28.11.2007

Da ging zu seinem Saale der König wohlgemut. Wieland in der Schmiede nahm eine Feile gut; Damit ward zerfeilet das Schwert zu eitel Staub: Wer es vernommen hätte, die Ohren wären ihm taub. Geworden von der Feile Geschrill auf hartem Stahl; Auch hätt' ihn wohl gedauert des guten Schwertes Qual. Da lagen nun die Späne: die schlug der weise Schmied Mit Mehl und Milch zusammen: der Teig ihm trefflich geriet. Dann nahm er Mastvögel, die schon den dritten Tag Auf Kost umsonst gelauert im engen Gitterhag, Und warf die schwere Speise den Hungerleidern vor Da fraßen sie gewaltig, nicht hat begieriger Thor Noch tapferer eingehauen, als er für Freia galt Und Thyrmur der Riese die Braut gefräßig schalt: Man sah in kurzer Stunde den ganzen Trog geleert Und einen anderen rückseits am Morgen doppelt beschwert. Des letztern Inhalt brachte der Meister in die Glut: Das Erz daraus zu schmelzen schürt' er das Feuer gut, Schöpfte dann aus dem Kessel, was da von Unrat war, Und gewann ein Eisen endlich von Schlacken lauter und klar. Als sich das erkühlte, da schuf der Degen wert Vor dem siebten Tage ein meisterliches Schwert: Das war erst scharf und schneidig, das war erst fest und hart,

Wie auf Erden schwerlich, ein bess'res gesehen ward.

KARL JOSEPH SIMROCK: Wieland der Schmied. Bonn, 1835.
 (Eine frühe Beschreibung des Nitrocarburierens von Eisen, vgl. [Hum97, Seite 131] sowie Kapitel 3.)

Inhaltsverzeichnis

Symbolverzeichnis				
1	Einle	eitung	13	
	1.1	Zusammenfassung der Methoden und Ergebnisse	16	
2	Kontinuumsmodelle in den Materialwissenschaften			
-	2.1	Linearisierte Elastizitätstheorie	21	
	2.2	Mikromagnetismus	26	
	2.2	Atom-Diffusion im Festkörper	28	
3	Ostwald-Reifung in Metallen			
	3.1	Modellierung des Vergröberungsprozesses	34	
	3.2	Die Evolution als Gradientenfluss	36	
	3.3	Restriktion auf eine Untermannigfaltigkeit	38	
	3.4	Formulierung mittels Randintegralgleichungen	41	
	3.5	Diskretisierung des vollen Modells	43	
	3.6	Diskretisierung des reduzierten Modells	48	
	3.7	Lokalisierte Zeitschritte um kleine Partikel	50	
	3.8	Validierung	56	
	3.9	Partikelformen und Partikel-Interaktion	60	
	3.10	Vergleich der Modelle	62	
	3.11	Statistik des Vergröberungsprozesses	67	
	3.12	Ausblick	76	
4	Mag	netische Formgedächtnis-Materialien	77	
	4.1	Mikrostrukturierte Materialien	78	
	4.2	Modellierung des Gleichgewichtszustandes	81	
	4.3	Einschränkung auf ein Zellproblem	83	
	4.4	Mikrostruktur und Materialparameter	88	
	4.5	Diskretisierung der Elastizität in der Matrix	89	
	4.6	Diskretisierung der Elastizität im Polykristall	92	
	4.7	Diskretisierung des Demagnetisierungspotentials	95	
	4.8	Abstiegsverfahren	97	
	4.9	Validierung	98	
	4.10	Polykristalle und Komposite	102	

	4.11	Systematische Untersuchung einzelner Parameter	109	
	4.12	Das Demagnetisierungsfeld auf der Makroskala	113	
	4.13	Ausblick: Phasengrenzen in Partikeln	116	
5	Refe	renz zur Randelemente-Methode	119	
	5.1	Fundamentallösungen	120	
	5.2	Randintegraloperatoren	122	
	5.3	Berechnung von Gradienten	124	
	5.4	Diskretisierung mittels Kollokation	127	
	5.5	Beschleunigung durch hierarchische Matrizen	129	
6	Impl	ementation der numerischen Verfahren	133	
	6.1	Gitterverwaltung	133	
	6.2	Integraloperatoren	137	
	6.3	Berechnung der Matrixeinträge	139	
	6.4	Berechnung der integralfreien Koeffizienten	142	
	6.5	Schnittstelle zu AHMED	143	
7	Schlu	ıssbemerkungen	147	
Lit	Literaturverzeichnis			
Le	Lebenslauf			

Symbolverzeichnis

 $[f]^{\beta}_{\alpha}$ Sprung von f von Ω_{α} nach Ω_{β} , Seite 25

a Fläche rechteckiger Partikel, Seite 39

b Seiten rechteckiger Partikel, Seite 39

- b_i Konstanter Anteil der affinen Verschiebung auf dem Partikel *i*, Seite 90
- C Elastizitätstensor, Seite 21
- C_{α} Elastizitätstensor in Ω_{α} , Seite 24
- *D* Diffusionskoeffizient, Seite 30
- *d* Magnetische Austauschlänge, Seite 28
- δ Diracsche Delta-Distribution am Nullpunkt, Seite 122
- \mathscr{E}_{anis} Energie der magnetischen Anisotropie, Seite 28
- \mathcal{E}_{demag} Energie des Demagnetisierungsfeldes, Seite 28
- \mathcal{E}_{eff} Effektive (makroskopische) Energie, Seite 87

$$\mathscr{E}_{elast}$$
 Elastische Energie, Seite 23

- \mathscr{E}_{exch} Magnetische Austauschenergie, Seite 28
- \mathscr{E}_{ext} Energie der Interaktion mit einem externen Magnetfeld, Seite 28
- \mathscr{E}_{micro} Energie des Mikromagnetismus, Seite 28
- $\bar{\varepsilon}$ Bevorzugte Verzerrung, Seite 24
- $\bar{\varepsilon}_{\alpha}$ Bevorzugte Verzerrung in Ω_{α} , Seite 24
- ε Skala der Mikrostruktur, Seite 86
- $\varepsilon[u]$ Symmetrisierter Gradient $\frac{1}{2}(\nabla u + \nabla u^T)$ (Verzerrung), Seite 21
- ε_0 Skalierung der Eigenverzerrung, Seite 79

- η Parameter für die Zulässigkeit von Clusterpaaren, Seite 131
- *F* Integralfreie Koeffizienten der direkten Formulierung, Seite 125
- *f* Randkraft, Seite 23
- F_0 Periodischer Offset der elastischen Verschiebung u, Seite 87
- F_i Linearer Anteil der affinen Verschiebung auf dem Partikel *i*, Seite 90
- G Integralfreie Koeffizienten für die Berechnung der Gradienten, Seite 128
- G_0 Periodischer Offset der elastischen Deformation φ , Seite 98
- Γ Grenzfläche, Seite 28
- γ Anisotropie-Funktion, Seite 28
- $\gamma^{\alpha}[f]$ Spur von f auf dem Rand von Ω_{α} , Seite 124
- $\gamma^{\alpha}_{\mathcal{Z}}[f]$ Spur der Normalenableitung von f auf dem Rand von Ω_{α} , Seite 124
- Γ_h Stückweise affine Approximation von Γ , Seite 129
- $g_{\Omega}(\cdot, \cdot)$ Metrik an der Stelle Ω , Seite 37
- \mathscr{H}^1 eindimensionales Hausdorff-Maß, Seite 29
- H_d Demagnetisierungsfeld oder Streufeld, Seite 26
- H_{ext} Externes magnetisches Feld, Seite 28
- I Identische Abbildung oder Einheitsmatrix, Seite 21
- \mathscr{I}_{b} Lagrange-Interpolationsoperator, Seite 129
- *J* Eshelby-Tensor, Seite 35
- κ Mittlere Krümmung (bzw. Krümmung einer Kurve), Seite 34
- K_{μ} Anisotropie-Konstante, Seite 28
- *L* Symmetrischer linearer elliptischer Differentialoperator zweiter Ordnung, hier Laplace-Operator oder linearisierte Elastizität, Seite 121
- λ 1. Lamé–Navier-Konstante, Seite 22
- L_x Differential operator L in Bezug auf den Parameter x, Seite 122
- M Mannigfaltigkeit aller Partikel-Konfigurationen, Seite 36

- *M* Magnetisierung, Seite 26
- *m* Normierte Magnetisierung, Seite 26
- M_s Gesättigte Magnetisierung, Seite 26
- m_i Konstanter Wert der Magnetisierung m auf dem Partikel / Korn i, Seite 90
- μ 2. Lamé–Navier-Konstante, Seite 22
- μ Chemisches Potential, Seite 29
- μ_0 Permeabilitätskonstante des Vakuums, Seite 28
- N Untermannigfaltigkeit der Vektoren achsenausgerichteter Rechtecke, Seite 38
- N_b Menge der Kollokationspunkte, Seite 129
- v Äußere Normale, Seite 23
- ν_{α} Äußere Normale an Ω_{α} , Seite 25
- ω Aktives Material, Formgedächtnis-Material, Seite 84
- Ω_{α} Phase mit Index α , Seite 24
- *p* Phasenindex, Seite 84
- φ Elastische Deformation, Seite 21
- φ_i Basiselement von \mathscr{V}_b , Seite 129
- p_i Konstanter Wert des Phasenindex p auf dem Partikel / Korn i, Seite 90
- Q Gitterorientierung, Seite 84
- Q_i Konstanter Wert der Gitterrotation Q auf dem Partikel / Korn *i*, Seite 90
- r Rechteckige Partikel, Seite 39
- σ Spannungstensor, Seite 21
- σ_{Γ} Grenzflächenspannung, Seite 29
- *t* Normalenspannungen am Rand (*traction*), Seite 43
- $\mathscr{T}_{\Omega}\mathscr{M}$ Tangentialraum volumenerhaltender Normalengeschwindigkeiten, Seite 36
- $\mathscr{T}_r \mathscr{N}$ Tangentialraum für rechteckige Partikel, Seite 40
- \tilde{U} Einfachschichtpotential, Seite 124

- U Einfachschichtoperator, Seite 124
- *u* Elastische Verschiebung, Seite 21
- U' Cauchy-singulärer Integraloperator zum Integralkern $\nabla_x u^*$, Seite 128
- u_h Diskrete Lösung, Seite 129
- u^* Fundamentallösung zum Differentialoperator L, Seite 122
- \tilde{V} Doppelschichtpotential, Seite 124
- V Doppelschichtoperator, Seite 124
- v Normalengeschwindigkeit der Grenzfläche, Seite 29
- V' Hypersingulärer Integraloperator zum Integralkern $\nabla_x v^*$, Seite 128
- \mathscr{V}_{h} Diskreter Ansatzraum, Seite 129
- v^* Richtungsableitung der Fundamentallösung u^* , Seite 122
- $W_{\rm eff}$ Effektive (makroskopische) Energiedichte, Seite 87
- W_{elast} Elastische Energiedichte, Seite 23
- ξ_i Kollokationspunkt, Seite 129

1 Einleitung

Die vorliegende Arbeit diskutiert die Modellierung und die numerische Simulation von Phasenübergängen in Metalllegierungen. Die dabei auftretenden Phasen unterscheiden sich hinsichtlich der Struktur des Kristallgitters, dieser Umstand soll jedoch auf einer kontinuierlichen Skala modelliert werden. Dabei werden die Unterschiede in Größe und Form der Einheitszelle der jeweiligen Gitter als elastische Verzerrung dargestellt. Die Beschreibung der Materialien durch solche Kontinuums-Modelle wird in Kapitel 2 kurz zusammengefasst.

Ein Beispiel für Phasenübergänge in Festkörpern ist die Entwicklung von partikelförmigen Ausscheidungen, die in Kapitel 3 diskutiert wird: Dabei gibt es in einem bestimmten Temperaturbereich zwei (oder auch mehr) stabile lokale Konfigurationen des Kristallgitters, die sich hinsichtlich des Anteils der Legierungskomponenten unterscheiden. Dadurch können sich kleine Partikel einer dieser Konfigurationen in einer Hintergrundmatrix der anderen Phase bilden.

Dies geschieht z. B. in Legierungen aus Nickel und Aluminium, die als sehr temperaturbeständige so genannte Superlegierungen zahlreiche technische Anwendungen haben. Dabei entsprechen die beiden Phasen einem kubisch-flächenzentrierten NiAl-Gitter mit einem geringen, zufällig verteilten Aluminium-Anteil und einem Ni₃Al-Gitter. Die beiden Einheitszellen unterscheiden sich nur geringfügig hinsichtlich ihrer Größe (durch eine isotrope Skalierung mit dem Faktor $1 + \varepsilon_0$), so dass sie auf Kosten elastischer Spannungen trotzdem ein gemeinsames Gitter bilden können. Abbildung 1.1 zeigt eine Darstellung der beiden Phasen und deren Repräsentation in einem zweidimensionalen kontinuierlichen Modellproblem.

Die Grenzflächen zwischen den beiden Phasen sind energetisch ungünstig, so dass die Partikelstruktur zur Vergröberung tendiert. Die Bewegung der Grenzflächen kann dabei nur durch die Diffusion von Atomen im Festkörper stattfinden, die Zeitskala ist dementsprechend langsam.

Eine andere Art von Phasenübergängen findet in Formgedächtnis-Legierungen (Kapitel 4) statt: Bei hohen Temperaturen besitzt das Gitter eines Materials wie etwa Ni₂MnGa eine kubische Symmetrie, diese Struktur wird als Austenit bezeichnet. Bei niedrigeren Temperaturen – im so genannten martensitischen Bereich – geht diese Symmetrie verloren. Hier entsteht durch eine Scherung der Einheitszelle (im zweidimensionalen Modell eine Verkürzung entlang einer Achse und eine Verlängerung in Richtung der zweiten Achse) ein Gitter niedrigerer Symmetrie, das – je nach Richtung der Scherung – in verschiedenen Varianten existiert. Die unterschiedlichen Varianten des Materials wer-

Abbildung 1.1:

Gitterstruktur von (a) ungeordnetem NiAl und (b) Ni₃Al. Blau: Nickel, Gelb: Aluminium, Grün: Nickel oder Aluminium. (c) Kontinuierliche Modellierung der Verzerrung zwischen den beiden Einheitszellen. (d) Quadratisches Partikel mit positiver Fehlpassung im Vergleich zum umgebenden Kristall und daraus resultierende elastische Deformationen in der Umgebung der Grenzfläche.

den durch volumenerhaltende Verzerrungen der Referenzzelle modelliert, siehe Abbildung 1.2.

Bei Ni₂MnGa ist die kürzere Achse auch die Richtung der bevorzugten Magnetisierung, so dass sich die Varianten durch Anlegen eines äußeren Magnetfeldes beeinflussen lassen. Da der Wechsel zwischen den Varianten hierbei nur eine lokale Verschiebung des Gitters erfordert, geschieht das Umschalten wesentlich schneller als wenn zum Phasenwechsel Atome durch das Gitter diffundieren müssen.

Wir betrachten Kontinuumsmodelle mit scharfen Grenzflächen für die beschriebenen Phasenübergänge: Dabei gehen wir von einem kontinuierlichen Material aus, in dem sich scharf begrenzte Bereiche der verschiedenen Phasen befinden. Der Phasenübergang und die Wechselwirkung der benachbarten Phasen miteinander werden dabei durch unter-

Abbildung 1.2:

(a) Gitterstruktur von austenitischem Ni₂MnGa und (b), (c) zweier Martensit-Varianten. Blau: Nickel, Rot: Mangan, Grün: Gallium. (d) Kontinuierliche Modellierung der Verzerrung einer Variante. (e) Grenzfläche zwischen zwei Varianten mit kompatiblen Verzerrungen.

schiedliche bevorzugte Verzerrungen modelliert. Dadurch kann es im Bereich der Grenzflächen zu elastischen Spannungen kommen, wenn die benachbarten Verzerrungen nicht kompatibel sind. Weitere Teile der Modelle beschreiben die Dynamik der Vergröberung oder die Wechselwirkung mit Magnetfeldern.

In allen beschriebenen Modellen ergeben sich letztlich als Teilprobleme lineare elliptische partielle Differentialgleichungen mit stückweise – d. h. innerhalb der Phasen – konstanten Koeffizienten. Für diese bietet sich die Diskretisierung mit der Methode der Randelemente an, die auf der Transformation linearer elliptischer Gleichungen in Integralgleichungen auf den Grenzflächen der Teilgebiete basiert. Dadurch genügt zur Approximation der (u. U. zeitlich veränderlichen) Geometrie die Diskretisierung der Grenzflächen, auch die zu diskretisierende Integralgleichung enthält nur Funktionen die auf dieser niederdimensionalen Menge definiert sind. Kapitel 5 stellt die dazu verwendeten numerischen Verfahren kurz zusammen, Kapitel 6 beschreibt zentrale Aspekte der Implementierung.

In beiden Arten von Materialien treten Mikrostrukturen auf einer Skala weit unterhalb der Größe der Materialprobe auf. Die Auflösung dieser Strukturen in der numerischen Simulation erfordert besondere Ansätze: Im Kapitel 3 wird ein reduziertes Modell benutzt, das a-priori-Wissen über die Morphologie der Mikrostruktur zur Vereinfachung des Modells ausnutzt. Dabei verwenden wir die Struktur eines Gradientenflusses, um die Evolution der Partikel auf die Untermannigfaltigkeit aller entsprechenden Mikrostrukturen (hier Mengen an den Gitterachsen ausgerichteter Rechtecke) einzuschränken. Dies erlaubt die Simulation von zahlreichen Partikeln einfacher Form, um deren Zusammenwirken in Bezug auf die Vergröberung des Systems zu untersuchen, vgl. Abbildung 1.1.5.

Im Gegensatz dazu liegen in Kapitel 4 gerade die Auswirkungen unterschiedlicher Formen der Mikrostruktur auf das makroskopische Verhalten im Fokus der Betrachtung. Dazu zerlegen wir das Problem in eine Mikro- und eine Makroskala und berechnen, wie sich die mikroskopische Geometrie auf das makroskopisch gemittelte Verhalten des Materials auswirkt. Dabei wird das effektive Verhalten des Materials aufgrund der Mikrostruktur bestimmt, indem Zellprobleme mit periodischen Randwerten numerisch gelöst werden, siehe Abbildung 1.1.6.

1.1 Zusammenfassung der Methoden und Ergebnisse

Abbildung 1.1.3:

Konfiguration eines rechteckigen Partikels. Auf diese Weise können sowohl die Partikel als auch ihre Bewegung durch sehr wenige Freiheitsgrade beschrieben werden.

Der Vergröberungsprozess partikelförmiger Ausscheidungen lässt sich als Gradientenfluss betrachten. Dabei bewegt sich die Partikelmenge $\Omega(t)$ auf der Mannigfaltigkeit \mathcal{M} aller möglichen Partikelkonfigurationen in der Richtung des steilsten Abstiegs einer Energie \mathcal{E} (die Grenzflächenenergie und Elastizität beinhaltet) in Bezug auf eine Metrik g (die den Diffusionsmechanismus beschreibt):

$$g_{\Omega(t)}(\dot{\Omega}(t), w) + \langle \operatorname{diff} \mathscr{E}[\Omega(t)], w \rangle = 0 \qquad \forall w \in \mathscr{T}_{\Omega(t)} \mathscr{M}.$$

Wir betrachten nun die Einschränkung dieser Evolution auf die Untermannigfaltigkeit $\mathcal{N} \subset \mathcal{M}$ rechteckiger, an den Koordinatenachsen ausgerichteter Partikel, wie sie durch

Abbildung 1.1.4:

Evolution der Grenzflächen für das volle und das reduzierte Modell. Der Vergleich zeigt die gute Übereinstimmung der beiden Simulationen.

Abbildung 1.1.5:

Ausschnitt aus einer numerischen Simulation des Vergröberungsprozesses für das reduzierte Modell. Neben der Vergröberung kann man insbesondere die Ausrichtung benachbarter Partikel beobachten.

die Anisotropie des Elastizitätstensors bevorzugt werden. Dadurch erhalten wir eine reduziertes Modell, dass die Evolution entsprechend geformter Partikel beschreibt.

Zur numerischen Simulation beider Modelle verwenden wir die Methode der Randelemente. Die vorkommenden Integraloperatoren werden durch hierarchische Matrizen approximiert, diese Approximation liefert auch ein geeignetes Verfahren zur Vorkonditionierung. Um die Kopplung der Zeitschrittweite an die Seitenlängen des jeweils kleinsten Partikels zu vermeiden, werden um kleine Partikel lokalisierte Zeitschritte durchgeführt. Der Abschirmeffekt erlaubt es dabei, nur kleine Umgebungen der betroffenen Partikel zu betrachten. Auf diese Weise erhält man ein effizientes Verfahren zur Simulation beider Modelle; beim reduzierten Modell ist die Simulation entsprechend größerer Partikelzahlen möglich. Durch Vergleichsrechnungen lässt sich verifizieren, dass das reduzierte Modell viele wesentliche qualitative und quantitative Eigenschaften des vollen Modells abbildet.

Magnetische Formgedächtnis-Materialien kann man auf der kontinuierlichen Skala mit einer Kombination aus Elastizitätstheorie und Mikromagnetismus modellieren. Dabei koppelt ein diskreter Phasenparameter p die Varianten der elastischen Verzerrung $\bar{\varepsilon}_p$ an die magnetische Anisotropie γ_p , die Anisotropie bevorzugt eine Magnetisierung m in der Richtung, in der sich das Materials gemäß der elastischen Verzerrung zusammenzieht.

$$\bar{\varepsilon}_1 = \begin{pmatrix} -\varepsilon_0 & 0\\ 0 & \varepsilon_0 \end{pmatrix}, \qquad \qquad \bar{\varepsilon}_2 = \begin{pmatrix} \varepsilon_0 & 0\\ 0 & -\varepsilon_0 \end{pmatrix},$$
$$\gamma_1(m) = \frac{m_2^2}{|m|^2}, \qquad \qquad \gamma_2(m) = \frac{m_1^2}{|m|^2}.$$

Abbildung 1.1.6:

Deformation eines zusammengesetzten und eines polykristallinen Formgedächtnis-Materials, jeweils als periodisches Zellproblem. Die Abbildung zeigt in beiden Fällen die Referenzkonfiguration und die deformierte Konfiguration. Das Schachbrettmuster illustriert die Ausrichtung des Kristallgitters im Formgedächtnismaterial (blau), die Farbschattierung die elastische Energiedichte. Dieses Modell lässt sich auf verschiedene Arten mikrostrukturierter Materialien anwenden, es ist sowohl zur Beschreibung zusammengesetzter Materialien mit einer nichtmagnetischen Hintergrundmatrix als auch für polykristalline Strukturen geeignet. Um das effektive Verhalten der Mikrostruktur zu berechnen, betrachten wir im Rahmen eines Homogenisierungsansatzes Zellprobleme periodischer Konfigurationen.

Dadurch kann man den Einfluss von Parametern der mikroskopischen Struktur des Materials, wie beispielsweise die Form, Verteilung und Ausrichtung der Partikel oder die Elastizität der Hintergrundmatrix, auf das makroskopische Verhalten, insbesondere die beobachtete Verzerrung und die geleistete Arbeit, quantifizieren.

Abbildung 1.1.7:

Auswirkung der Orientierung der Partikel. (a) Geometrie, (b) Makroskopische Verzerrung und (c) geleistete Arbeit, jeweils als Funktion des Rotationswinkels. Bei einem Rotationswinkel von 0° ist eine Achse des Kristallgitters parallel zum Magnetfeld ausgerichtet und sowohl die makroskopische Verzerrung als auch die geleistete Arbeit sind daher maximal. Das makroskopische Verhalten ist relativ unempfindlich gegenüber kleinen Abweichungen der Orientierung, wird jedoch rapide schlechter, wenn sich der Rotationswinkel dem ungünstigst möglichen Wert 45° nähert. 1 Einleitung

2 Kontinuumsmodelle in den Materialwissenschaften

In diesem Kapitel sollen die zur Modellierung der betrachteten Materialien benötigten Begriffe aus der Kontinuumsmechanik zusammengetragen werden. Da die numerischen Verfahren in 2D implementiert wurden, beschränkt sich auch die folgende Darstellung vollständig auf den zweidimensionalen Fall.

2.1 Linearisierte Elastizitätstheorie

Die Verformung der betrachteten Festkörper soll mit den Methoden der Elastizitätstheorie modelliert werden. Eine umfassende Darstellung der isotropen mathematischen Elastizitätstheorie findet sich z. B. in [Cia97], eine ingenieurwissenschaftliche Darstellung die auch anisotrope Elastizität diskutiert in [Bet93, BG02]. Aufgrund der betrachteten Modelle und der verwendeten numerischen Methoden beschränken wir uns hier auf die linearisierte Theorie für kleine Verschiebungen. Die Modellierung von Mikrostrukturen in Festkörpern mit Methoden der Elastizitätstheorie wird beispielsweise in [Bha03, Phi01] diskutiert.

Sei $\Omega \subset \mathbb{R}^2$ ein elastischer Körper, der durch die Abbildung $\varphi = \mathbb{I} + u$ in einen Körper $\varphi(\Omega)$ deformiert werde; dabei werden φ als Deformation und u als Verschiebung bezeichnet. Die Verschiebung sei klein genug, so dass die Deformation um \mathbb{I} linearisiert werden kann.

Längenänderungen im Material werden durch die Matrix $\nabla \varphi^T \nabla \varphi$ (die erste Fundamentalform, wenn wir den deformierten Körper als mittels φ über der Referenzkonfiguration parametrisiert betrachten) beschrieben. Für kleine Verschiebungen lässt sich deren Abweichung von der Identität durch den linearisierten Verzerrungstensor

$$\varepsilon[u] = \frac{1}{2} (\nabla u + \nabla u^T)$$
(2.1)

approximieren, den symmetrisierten Gradienten von u. Den Zusammenhang zwischen dem Spannungstensor σ und der Verzerrung beschreibt das Hookesche Gesetz

$$\sigma = C \varepsilon[u], \quad \sigma_{ij} = \sum_{kl} C_{ijkl} \varepsilon_{kl}[u].$$
(2.2)

Dabei ist die lineare Abhängigkeit durch den Elastizitätstensor C (einen Tensor vierter Stufe) gegeben.

Aufgrund von Symmetrieüberlegungen lässt sich die Zahl der Freiheitsgrade von C jedoch stark reduzieren. Aus der Symmetrie des Spannungstensors σ und der Verzerrung $\varepsilon[u]$ sowie der Symmetrie des Elastizitätstensors als zweite Ableitung der elastischen Energiedichte (2.8) nach der Verzerrung ergeben sich für C die Symmetrieeigenschaften

$$C_{ijkl} = C_{jikl} = C_{ijlk} = C_{klij}.$$
 (2.3)

Notiert man die Spannung und die Verzerrung jeweils als Vektoren mit drei Komponenten (der vierte Eintrag ergibt sich aufgrund der Symmetrie), so lässt sich C in der folgenden Weise (die so genannte Voigtsche Notation) als symmetrische Matrix schreiben:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{14} \\ c_{12} & c_{22} & c_{24} \\ c_{14} & c_{24} & c_{44} \end{pmatrix} \begin{pmatrix} \varepsilon_{11}[u] \\ \varepsilon_{22}[u] \\ 2\varepsilon_{12}[u] \end{pmatrix}$$

Der Faktor 2 bei $\varepsilon_{12}[u]$ ist notwendig, wenn man Einträge der Matrix direkt mit Einträgen des Elastizitätstensors identifizieren will,

$$C_{kkll} = c_{kl}, \quad C_{kkij} = c_{k4}, \quad C_{ijij} = c_{44} \qquad \text{für } i \neq j.$$

da diese Komponente der Verzerrung aufgrund der Symmetrie zweimal in der Summe in (2.2) auftaucht. Dabei wird in der Matrixdarstellung die Indizierung 1, 2, 4 gewählt, damit die Bezeichnung der Konstanten im Fall kubischer Symmetrie der dreidimensionalen Situation entspricht, unter der man sie in der Regel in der Literatur findet.

In einem kubischen Kristall ist das elastische Verhalten nämlich symmetrisch unter Spiegelungen an den Gitterachsen (bzw. Gitterebenen) sowie unter deren Vertauschung. Dadurch reduziert sich die Zahl der Parameter des Elastizitätstensors weiter, man erhält (unter der Annahme, das die Symmetrieachsen die Koordinatenachsen sind)

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & 0 \\ c_{12} & c_{11} & 0 \\ 0 & 0 & c_{44} \end{pmatrix} \begin{pmatrix} \varepsilon_{11}[u] \\ \varepsilon_{22}[u] \\ 2\varepsilon_{12}[u] \end{pmatrix}.$$
 (2.4)

Im isotropen, d. h. vollständig rotationssymmetrischen Fall gilt zusätzlich die Bedingung $c_{11} = c_{12} + 2c_{44}$, die verbleibenden Parameter $\lambda = c_{12}$ und $\mu = c_{44}$ bezeichnet man als Lamé-Navier-Konstanten. Der Zusammenhang zwischen Spannung und Verzerrung hat dann die Form

$$\sigma = \lambda \operatorname{tr} \varepsilon [u] \mathbb{I} + 2\mu \varepsilon [u]. \tag{2.5}$$

Der Gleichgewichtszustand ist stets charakterisiert durch

$$\operatorname{div} \sigma = \operatorname{div} C \varepsilon[u] = 0, \qquad (2.6)$$

dies ist die Minimalstelle der elastischen Energie

$$\mathscr{E}_{elast}[u] = \int W_{elast}(\varepsilon[u]), \qquad (2.7)$$

$$W_{\text{elast}}(\varepsilon) = \frac{1}{2}\sigma : \varepsilon = \frac{1}{2}C\varepsilon : \varepsilon,$$
 (2.8)

dabei ist $A : B = tr(A^T B)$. In einem isotropen elastischen Material ergibt sich also für die Energiedichte W_{elast} die Form

$$W_{\text{elast}}(\varepsilon) = \frac{1}{2}\lambda(\operatorname{tr}\varepsilon)^2 + \mu|\varepsilon|^2, \qquad (2.9)$$

während wir bei kubischer Symmetrie entlang der Koordinatenachsen die folgende Darstellung erhalten:

$$W_{\text{elast}}(\varepsilon) = \frac{1}{2}c_{11}(\operatorname{tr} \varepsilon)^2 + (c_{12} - c_{11})\varepsilon_{11}\varepsilon_{22} + 2c_{44}\varepsilon_{12}^2$$
(2.10)

Kräfte am Rand haben die Form $f = \sigma v$ (mit der äußeren Normalen v). Außer der Vorgabe der Deformation u (Dirichlet-Randwerte), von der wir im Folgenden ausgehen wollen, ist auch die Vorgabe von Kräften auf dem Rand (Neumann-Randwerte) sinnvoll. An Grenzflächen verschiedener Phasen oder Materialien sind im Gleichgewichtszustand sowohl u als auch f stetig.

Wie in Kapitel 1 angedeutet ist eine wesentliche Eigenschaft der diskutierten Materialien die Existenz verschiedener Phasen, die sich durch eine unterschiedliche Verzerrung in Vergleich zum Referenzzustand auszeichnen. Im Kontext der linearisierten Elastizitätstheorie bedeutet das, dass die Minimalstelle der elastischen Energiedichte W_{elast} verschoben ist, wir messen den Abstand der Verzerrung $\varepsilon[u]$ von einer bevorzugten Verzerrung (Eigenverzerrung, Fehlpassung) $\overline{\varepsilon}$:

$$\mathscr{E}_{\text{elast}}[u] = \int W_{\text{elast}}(\varepsilon[u] - \overline{\varepsilon}), \quad \sigma = C(\varepsilon[u] - \overline{\varepsilon})$$

Dabei nimmt die bevorzugte Verzerrung \bar{e} in jeder Phase einen anderen konstanten Wert an. Des Weiteren kann sich auch der Elastizitätstensor C je nach Phase unterscheiden. Die elastischen Verschiebungen lassen sich in diesen Fällen folgendermaßen charakterisieren:

Formulierung 2.1.1 (Variationsformulierung für Elastizität) Ein Gebiet $\Omega \subset \mathbb{R}^2$ setze sich aus endlich vielen disjunkten Teilmengen Ω_{α} mit stückweise glattem Rand zusammen. Der Elastizitätstensor C und die Fehlpassung $\bar{\varepsilon}$ seien auf diesen Teilmengen konstant, den jeweiligen Wert bezeichne C_{α} bzw. $\bar{\varepsilon}_{\alpha}$. Gesucht ist $u \in H^1(\Omega, \mathbb{R}^2)$, so dass die folgende Energie minimal wird:

$$\mathscr{E}_{\text{elast}}[(\Omega_{\alpha})_{\alpha};u] = \int_{\Omega} \frac{1}{2} C(x)(\varepsilon[u](x) - \bar{\varepsilon}(x)) : (\varepsilon[u](x) - \bar{\varepsilon}(x)) dx \qquad (2.11)$$

$$=\sum_{\alpha}\int_{\Omega_{\alpha}}\frac{1}{2}C_{\alpha}(\varepsilon[u](x)-\bar{\varepsilon}_{\alpha}):(\varepsilon[u](x)-\bar{\varepsilon}_{\alpha})dx \qquad (2.12)$$

Dabei können die Teilmengen Ω_{α} sowohl fest vorgegeben sein (vgl. Abschnitt 4) als auch variabel wie in Abschnitt 3.

Wenn die Achsen eines Materials mit kubischer Symmetrie nicht entlang des Standard-Koordinatensystems ausgerichtet sind, kann man die einfache Darstellung der Spannungen und der Energiedichte aus (2.4) und (2.10) beibehalten, wenn man die Verzerrung in das entsprechende Koordinatensystem transformiert. Sei dazu Q die Rotation, die die Standard-Koordinatenachsen auf die Symmetrieachsen des Materials abbildet, dann wollen wir die Deformation φ durch eine Deformation $\tilde{\varphi}$ ersetzen, die in einem den Symmetrieachsen angepassten Koordinatensystem definiert ist, d. h. $\varphi(x) = \tilde{\varphi}(Q^T x)$. Damit ergibt sich für den Gradienten der Deformation $\nabla \varphi(x)Q = \nabla(\tilde{\varphi}(Q^T x))$. Die Verzerrung ergab sich als Linearisierung von $\nabla \varphi^T \nabla \varphi$ um die Identität, sie transformiert daher mittels $Q^T \varepsilon Q = \tilde{\varepsilon}$. In eine Energiedichte, die in einem an den Symmetrieachsen ausgerichteten Koordinatensystem definiert ist, muss man also $\tilde{\varepsilon}$ als Verzerrung einsetzen. Wenn die Eigenverzerrung $\bar{\varepsilon}$ ebenfalls im Koordinatensystem der Gittersymmetrieachsen gegeben ist, erhalten wir also eine Energie der Form

$$\mathscr{E}_{\text{elast}}[\boldsymbol{u}] = \int_{\Omega} W_{\text{elast}}(\boldsymbol{Q}^{T} \boldsymbol{\varepsilon}[\boldsymbol{u}] \boldsymbol{Q} - \bar{\boldsymbol{\varepsilon}}).$$
(2.13)

Zunächst fordern wir keine Randbedingungen auf $\partial \Omega$. Um eine Bedingung für die Minimalstelle herzuleiten, berechnen wir die Variation $\frac{d}{d\tau} \mathscr{E}_{\text{elast}}[u + \tau w]|_{\tau=0}$ für glatte Testfunktionen w. Vor der partiellen Integration nutzten wir die Symmetrieeigenschaften (2.3) des Elastizitätstensors

$$C\varepsilon[u]:\varepsilon[w] = \sum_{ijkl} C_{ijkl}\varepsilon_{kl}[u]\varepsilon_{ij}[w] = \sum_{ijkl} \frac{1}{2} C_{ijkl}\varepsilon_{kl}[u](w_{i,j} + w_{j,i})$$
$$= \sum_{ijkl} \frac{1}{2} (C_{ijkl} + C_{jikl})\varepsilon_{kl}[u]w_{i,j} = \sum_{ijkl} C_{ijkl}\varepsilon_{kl}[u]w_{i,j} = C\varepsilon[u]:\nabla w,$$

aufgrund derer wir in der elastischen Energie ∇w anstelle von $\varepsilon[w]$ verwenden können. Damit erhalten wir die schwache Form der Euler–Lagrange-Gleichungen für u:

$$0 = \frac{d}{d\tau} \mathscr{E}_{elast} [u + \tau w]|_{\tau=0}$$

= $\frac{d}{d\tau} \int_{\Omega} \frac{1}{2} C(x) (\varepsilon [u + \tau w](x) - \bar{\varepsilon}(x)) : (\varepsilon [u + \tau w](x) - \bar{\varepsilon}(x)) dx \Big|_{\tau=0}$
= $\int_{\Omega} C(x) (\varepsilon [u](x) - \bar{\varepsilon}(x)) : \varepsilon [w](x) dx$
= $\sum_{\alpha} \int_{\Omega_{\alpha}} C_{\alpha} (\varepsilon [u](x) - \bar{\varepsilon}_{\alpha}) : \nabla w(x) dx$
= $\sum_{\alpha} \int_{\Omega_{\alpha}} \operatorname{div} C_{\alpha} (\varepsilon [u](x) - \bar{\varepsilon}_{\alpha}) \cdot w(x) dx + \int_{\partial \Omega_{\alpha}} C_{\alpha} (\varepsilon_{\alpha} [u](x) - \bar{\varepsilon}_{\alpha}) v_{\alpha}(x) \cdot w(x) dx$

Dabei ist v_{α} die äußere Normale an Ω_{α} und ε_{α} der Grenzwert der Verzerrung auf dem Rand $\partial \Omega_{\alpha}$ aus Richtung des Inneren Ω_{α} . Mittels des Fundamentallemmas der Variationsrechnung ergibt sich daraus für ein genügend glattes *u* sowohl die elliptische Differentialgleichung im Inneren der Teilgebiete Ω_{α} als auch die Rand- und Sprungbedingungen für die Kräfte $f(x) = \sigma(x)v(x)$. Zur Formulierung der Sprungbedingung über eine Grenzfläche hinweg verwenden wir die folgende Notation:

$$[f]^{\beta}_{\alpha}(x) = \lim_{\xi \to x, \xi \in \Omega_{\beta}} f(\xi) - \lim_{\xi \to x, \xi \in \Omega_{\alpha}} f(\xi) \quad \text{für } x \in \partial \Omega_{\alpha} \cap \partial \Omega_{\beta}.$$
(2.14)

Formulierung 2.1.2 (Starke Formulierung für Elastizität) Ein Gebiet $\Omega \subset \mathbb{R}^2$ setze sich aus endlich vielen disjunkten Teilmengen Ω_{α} mit glattem Rand zusammen. Der Elastizitätstensor C und die Fehlpassung $\bar{\varepsilon}$ seien auf diesen Teilmengen konstant, den jeweiligen Wert bezeichne C_{α} bzw. $\bar{\varepsilon}_{\alpha}$. Gesucht ist

$$u \in C^{0}(\bar{\Omega}) \cap \bigcup_{\alpha} C^{1}(\bar{\Omega}_{\alpha}) \cap \bigcup_{\alpha} C^{2}(\Omega_{\alpha})$$

mit

$$\operatorname{div} C_{\alpha} \varepsilon[u](x) = 0 \qquad in \ \Omega_{\alpha}, \qquad (2.15)$$

$$\left[C(\varepsilon[u] - \bar{\varepsilon})\right]_{\alpha}^{\beta}(x)\nu(x) = 0 \qquad auf \ \partial\Omega_{\alpha} \cap \partial\Omega_{\beta}, \ \alpha \neq \beta, \qquad (2.16)$$

$$C_{\alpha}(\varepsilon[u](x) - \overline{\varepsilon}_{\alpha})v(x) = 0 \qquad auf \ \partial \Omega_{\alpha} \cap \partial \Omega.$$
(2.17)

Dabei sei v eine beliebige Normale an die jeweilige Grenzfläche. Durch diese Gleichungen ist u bis auf eine additive Konstante (die auch die Energie unverändert lässt) bestimmt, diese kann man durch eine geeignete Normierung festlegen. Alternativ kann man auf einem Teil des Randes Dirichlet-Randwerte fordern. Eine weitere Möglichkeit sind (bei geeigneter Form von Ω , und ebenfalls modulo einer additiven Konstante) periodische Randwerte, diese werden in Abschnitt 4.3 genauer beschrieben. Handelt es sich bei Ω um den ganzen Raum \mathbb{R}^2 , so muss zusätzlich eine geeignete Randbedingung im Unendlichen gefordert werden.

2.2 Mikromagnetismus

Die Theorie des Mikromagnetismus (eine aktuelle Übersicht findet sich zum Beispiel in [Ber98, HS99, DKMO04]) beschreibt Magnetisierungsmuster in ferromagnetischen Materialien. Sie bildet die Basis für die Modellierung der magnetischen Eigenschaften der in Abschnitt 4 diskutierten Formgedächtnis-Materialien. Im Folgenden stellen wir die benötigten Begriffe kurz zusammen.

Sei $M \in L^2(\mathbb{R}^2; \mathbb{R}^2)$ die Magnetisierung, dann ist das magnetische Streufeld oder Demagnetisierungsfeld $H_d \in L^2(\mathbb{R}^2; \mathbb{R}^2)$ nach den Maxwell-Gleichungen [Max04] durch die Tatsache gegeben, dass die magnetische Flussdichte $\mu_0(H_d + M)$ divergenzfrei ist (es gibt keine magnetischen Monopole), während das Demagnetisierungsfeld H_d in Abwesenheit elektrischer Ströme oder Ladungen rotationsfrei ist, d. h.

$$\operatorname{div}(H_d + M) = 0, \quad \operatorname{rot} H_d = 0.$$

Dabei ist μ_0 die Permeabilitätskonstante des Vakuums. Da H_d rotationsfrei ist, lässt es sich als Gradient eines Potentials

$$H_d = \nabla \psi, \quad \psi \in H^1(\mathbb{R}^2)$$

darstellen, wir erhalten also die (distributionell zu verstehende) Gleichung

$$\operatorname{div}(\nabla \psi + M) = 0.$$

Dies ist die Euler-Lagrange-Gleichung zur Minimierung des Energiefunktionals

$$\mathscr{E}[\psi] = \int_{\mathbb{R}^2} \frac{1}{2} |\nabla \psi + M|^2.$$

In diesem Sinne ist H_d die $L^2(\mathbb{R}^2; \mathbb{R}^2)$ -Projektion von -M auf rotationsfreie bzw. Gradientenfelder.

In einem Material mit Sättigungsmagnetisierung M_s hat M stets die Länge M_s , so dass sich eine Reskalierung auf die Länge 1 anbietet. Sei dazu $M(x) = M_s m(x)$, wobei dann $|m(x)| \in \{0,1\}$ ja nachdem ob x innerhalb oder außerhalb des magnetischen Materials liegt. Weiterhin skalieren wir ψ und H_d mit $-M_s$ (diese Skalierung muss anschließend bei der Berechnung der Energie des Streufeldes in Formulierung 2.2.3 berücksichtigt werden), so dass sich die folgende Darstellung des Streufeldes ergibt:

Formulierung 2.2.1 (Variationsformulierung für das Demagnetisierungspotential)

Set $m \in L^2(\mathbb{R}^2; S^1 \cup \{0\})$. Gesucht ist $\psi \in H^1(\mathbb{R}^2)$, so dass die folgende Energie minimal wird:

$$\mathscr{E}[\psi] = \int_{\mathbb{R}^2} \frac{1}{2} |\nabla \psi(x) - m(x)|^2 dx \qquad (2.18)$$

Mit anderen Worten, im Sinne von Distributionen ist ψ die Lösung von

$$\Delta \psi = \operatorname{div} m \tag{2.19}$$

mit Nullrandwerten im Unendlichen derart, dass $\nabla \psi \in L^2(\mathbb{R}^2; \mathbb{R}^2)$.

Falls m stückweise konstant ist, so lässt sich auf dieselbe Weise wie bei der Elastizität die folgende starke Formulierung herleiten:

Formulierung 2.2.2 (Starke Formulierung für das Demagnetisierungspotential) Sei $m \in L^2(\mathbb{R}^2; \mathbb{R}^2)$ stückweise konstant auf endlich vielen Gebieten $\Omega_{\alpha} \subset \mathbb{R}^2$ mit stückweise glattem Rand, d. h. $m(x) = m_{\alpha}$ für $x \in \Omega_{\alpha}$ und m(x) = 0 in $\Omega_0 := \mathbb{R}^2 \setminus \bigcup_{\alpha} \Omega_{\alpha}$. Gesucht ist

$$\psi \in C^{0}(\mathbb{R}^{2}) \cap \bigcup_{\alpha} C^{1}(\bar{\Omega}_{\alpha}) \cap \bigcup_{\alpha} C^{2}(\Omega_{\alpha})$$

mit

$$\Delta \psi(x) = 0 \qquad in \ \Omega_{\alpha}, \qquad (2.20)$$

$$\left[\nabla\psi - m\right]_{\alpha}^{\beta}(x) \cdot v(x) = 0 \qquad \text{auf } \partial\Omega_{\alpha} \cap \partial\Omega_{\beta}, \ \alpha \neq \beta, \qquad (2.21)$$

(2.22)

mit der entsprechenden Randbedingung für ψ im Unendlichen.

Hierbei bezeichnet ν eine der beiden Normalen an die jeweilige Grenzfläche. Das Demagnetisierungspotential ist (ähnlich wie die elastische Deformation im in Abschnitt 2.1 diskutierten Fall) nur bis auf eine additive Konstante bestimmt. Diese kann man durch eine geeignete Normierung festlegen. Der Wert der Demagnetisierungsenergie in Formulierung 2.2.3 wird durch diese Normierung nicht beeinflusst.

Nach der Berechnung des Streufeldes H_d können wir nun (unter Berücksichtigung der Reskalierung von m und H_d) die mikromagnetische Energie definieren:

Formulierung 2.2.3 (Variationsformulierung des Mikromagnetismus) Sei $\Omega \subset \mathbb{R}^2$ ein Gebiet mit stückweise glattem Rand. Gesucht ist $m \in H^1(\Omega, S^1) \cap L^2(\mathbb{R}^2, S^1 \cup \{0\})$, so dass die folgende Energie minimal wird:

$$\mathscr{E}_{\text{micro}}[m] = \mathscr{E}_{\text{demag}}[m] + \mathscr{E}_{\text{ext}}[m] + \mathscr{E}_{\text{anis}}[m], \qquad (2.23)$$

$$\mathscr{E}_{\text{demag}}[m] = \frac{M_s^2}{\mu_0} \int_{\mathbb{R}^2} \frac{1}{2} |H_d(x)|^2 dx, \quad H_d = \nabla \psi \text{ nach Formulierung 2.2.1}, \qquad (2.24)$$

$$\mathscr{E}_{\text{ext}}[m] = -\frac{M_s}{\mu_0} \int_{\mathbb{R}^2} H_{\text{ext}}(x) \cdot m(x) \, dx \,, \qquad (2.25)$$

$$\mathscr{E}_{\text{anis}}[m] = K_{\mu} \int_{\Omega} \gamma(m(x)) dx, \qquad (2.26)$$

$$\mathscr{E}_{\text{exch}}[m] = \frac{1}{2} d^2 \int_{\Omega} |\nabla m(x)|^2 dx. \qquad (2.27)$$

Die Energiebeiträge modellieren die Energie des Streufeldes \mathscr{E}_{demag} , die Interaktion mit einem externen magnetischen Feld \mathscr{E}_{ext} (die so genannte Zeeman-Energie), die magnetische Anisotropie \mathscr{E}_{anis} und die magnetische Austauschenergie \mathscr{E}_{exch} . Dabei ist μ_0 die Permeabilitätskonstante des Vakuums, H_{ext} ein externes magnetisches Feld, K_u die magnetische Anisotropiekonstante und $\gamma : S^1 \rightarrow [0;1]$ eine geeignete Anisotropiefunktion (etwa $\gamma(m) = m_2^2$ falls die x_1 -Richtung bevorzugt wird) sowie d die magnetische Austauschlänge. Der magnetische Austausch spielt für den hier betrachteten Fall stückweise konstanter Magnetisierung keine Rolle.

2.3 Atom-Diffusion im Festkörper

Wir betrachten nun einen Festkörper aus zwei Phasen, die sich hinsichtlich des Anteils der Legierungskomponenten unterscheiden, wie es etwa bei dem in der Einleitung vorgestellten NiAl vorkommt. In diesen können sich die Grenzflächen zwischen den Phasen nur dadurch bewegen, dass Atome durch den Festkörper diffundieren. Das Standard-Modell für diese Situation stammt von Mullins und Sekerka [MS63, MS64], eine neuere Übersicht (die auch elastische Interaktionen einschließt) findet sich in [GV93, Voo92, FPL99]. Die Modellierung von Grenzflächenbewegungen für den Fall, dass die Phasen sich in Hinblick auf ihre Zusammensetzung nicht unterscheiden, wird in Abschnitt 4.13 skizziert.

Dazu betrachten wir ein Gemisch aus zwei Phasen $\Omega_0 \cup \Omega_1 = \mathbb{R}^2$ (dabei werde die beschränkte Phase $\Omega = \Omega_1 \subset \subset \mathbb{R}^2$ als Partikelphase bezeichnet), und die Grenzfläche der beiden Phasen

$$\Gamma = \partial \Omega. \tag{2.28}$$

Für eine skalare Funktion $v : \Gamma \to \mathbb{R}$ definieren wir die Verschiebung von Γ um v als

$$\Gamma + v = \left\{ x + v(x)v(x) \middle| x \in \Gamma \right\},$$
(2.29)

wobei $v = v_1$ die (von Ω_1 aus gesehen äußere) Normale an Γ ist. Für genügend reguläre Γ und v und eine genügend kleine Skalierung τ zerlegt $\Gamma + \tau v$ den \mathbb{R}^2 in zwei Teilmengen, von denen eine beschränkt ist. Die beschränkte Menge sei mit $\Omega_1 + \tau v$, die andere mit $\Omega_0 + \tau v$ bezeichnet.

Ein wesentlicher Energiebeitrag (neben der elastischen Interaktion der Phasen) ergibt sich durch die Kosten einer Grenzfläche Γ. Wir beschränken uns hierbei auf den isotropen Fall, indem die Energie proportional zur Länge der Grenzfläche ist.

Formulierung 2.3.1 (Grenzflächenenergie) Sei $\Omega \subset \mathbb{R}^2$ und $\Gamma = \partial \Omega$, dann ist die Grenzflächenenergie definiert als

$$\mathscr{E}_{\rm len}[\Gamma] = \sigma_{\Gamma} \int_{\Gamma} 1 \, d \, \mathscr{H}^1. \tag{2.30}$$

Abbildung 2.3.1: Bezeichnung der Phasen in einer zweiphasigen Legierung.

Die Konstante σ_{Γ} heißt auch Grenzflächenspannung. In kristallinen Festkörpern können Grenzflächenstücke unterschiedlicher Richtung unterschiedlich teuer sein, in diesem Fall würde man die 1 im Integranden durch eine von der Normalenrichtung abhängige Anisotropiefunktion $\gamma(\nu)$ ersetzen.

Wir betrachten nun eine Komponente der (als aus zwei Metallen bestehend angenommenen) Legierung. Wir wollen annehmen, dass die spinodale Entmischung beendet ist, so dass wir ihre Konzentration in den beiden Phasen als nahezu konstant betrachten können. Die Konzentration habe in der Phase Ω_{α} den Wert c_{α} .

Die Atome dieser Legierungskomponente bewegen sich nun zur Grenzfläche hin gemäß des negativen Gradienten des chemischen Potentials μ , für das gilt

$$\Delta \mu = 0 \quad \text{in } \Omega_0, \, \Omega_1; \qquad \mu(x) \to 0 \text{ für } x \to \infty.$$
(2.31)

Der Konzentrationsfluss der betrachteten Komponente aus Richtung der Phase Ω_{α} zur Grenzfläche hin hat also den Wert $-\tilde{D}\nabla_{\alpha}\mu\cdot\nu_{\alpha}$, in der Summe aus beiden Richtungen erhalten wir

$$-\tilde{D}\nabla_{0}\mu\cdot\nu_{0}-\tilde{D}\nabla_{1}\mu\cdot\nu_{1}=\tilde{D}(\nabla_{0}\mu-\nabla_{1}\mu)\cdot\nu_{1}=\tilde{D}[\nabla\mu]_{1}^{0}\cdot\nu,\qquad(2.32)$$

dabei steht ∇_{α} für die einseitigen Grenzwerte des Gradienten auf dem Rand und \hat{D} für den Diffusionskoeffizienten. Die Diffusion innerhalb der Grenzschicht (die man mittels Oberflächendiffusion modellieren könnte) sei vernachlässigbar.

Betrachten wir nun eine Bewegung der Grenzfläche um v nach (2.29), so ändert sich die Masse lokal um $(c_0 - c_1)v$. Daher bewegt sich die Grenzfläche (unter der Annahme eines quasistatischen Gleichgewichts) aufgrund des Masseflusses mittels

$$(c_0 - c_1)v = \tilde{D}[\nabla\mu]_1^0 \cdot v \quad \text{auf } \Gamma$$
(2.33)

um v in Richtung der Normalen v.

Dabei soll die Gesamtmasse beider Legierungskomponenten erhalten bleiben. Unter der Annahme stückweise konstanter Konzentrationen ergibt sich daraus, dass das Volumen der Phasen konstant bleiben muss, d. h. das Integralmittel der Bewegung v der Grenzfläche in Normalenrichtung ist 0.

Die Gibbs-Thomson-Bedingung als noch fehlende Randbedingung ergibt sich aus der Tatsache, dass das chemische Potential an der Grenzfläche die Variation des jeweiligen zu minimierenden Energiefunktionals ist, d. h.

$$(c_0 - c_1) \int_{\Gamma} \mu w \, d \, \mathcal{H}^1 = \frac{d}{d \tau} \mathscr{E}[\Gamma + \tau w] \Big|_{\tau=0}.$$
(2.34)

Dabei entspricht die Normale, in deren Richtung die Variation um w berechnet wird, der Normalen, in deren Richtung auch v gemessen wird. Als Testfunktionen w lassen wir ebenfalls nur volumenerhaltende Verschiebungen zu.

Zur Formulierung des Modells fassen wir die Konstanten zu einem reskalierten Diffusionskoeffizienten $D = \tilde{D}/(c_0 - c_1)^2$ zusammen. In den numerischen Experimenten skalieren wir die Zeitskala so, dass D = 1.

Formulierung 2.3.2 (Atom-Diffusion im Festkörper) Sei $\Omega_0 \cup \Omega_1 = \mathbb{R}^2$, $\Omega = \Omega_1 \subset \subset \mathbb{R}^2$, $\Gamma = \partial \Omega$, ν die äußere Normale aus der Sicht von Ω und \mathscr{E} bezeichne ein Energiefunktional bezüglich Ω . Dann ist die Normalengeschwindigkeit ν von Γ durch Diffusion zwischen den beiden Phasen zur Minimierung des Energiefunktionals \mathscr{E} gegeben durch

$$v(x) = D\left[\nabla\mu\right]_{1}^{0}(x) \cdot v(x) \qquad auf \ \Gamma, \qquad (2.35)$$

$$\int_{\Gamma} v(x) d\mathcal{H}^1 = 0, \qquad (2.36)$$

$$\Delta \mu(x) = 0 \qquad in \ \Omega_0, \ \Omega_1, \qquad (2.37)$$

Die Evolution der Phasengrenze ergibt sich nun dadurch, dass man die Grenzfläche Γ um v in Richtung der Normalen v bewegt.

3 Ostwald-Reifung in Metallen

Viele Metalllegierungen zeigen ein Alterungsverhalten [CV93, LMSV90, GV98, GV93, Voo92, FPL99, Voo85, VG84a], das sich als Entmischung und Vergröberung charakterisieren lässt. Dabei entwickeln sich in einer zu Beginn annähernd homogenen Mischung Phasen mit scharfen Grenzflächen.

Der Alterungsprozess lässt sich in zwei klar unterscheidbare Stadien unterteilen: Eine homogene Mischung ist bei Abkühlung unter eine kritische Temperatur nicht mehr stabil, so dass sich aus kleinen Inhomogenitäten Keimzellen der bei der niedrigeren Temperatur bevorzugten Konfigurationen bilden. Innerhalb von kurzer Zeit ist die Legierung vollständig in verschiedene Phasen mit nahezu homogener Gitterstruktur und scharf definierten Grenzen zerfallen [GMPW03]. In vielen Fällen (abhängig von den Materialeigenschaften und Volumenanteilen der Phasen) bilden sich dabei Partikel einer Phase in einer Hintergrundmatrix einer anderen Phase. Dieses erste Stadium bezeichnet man als Phasentrennung oder spinodale Entmischung.

Im zweiten Stadium verändert sich die entstandene Mikrostruktur. In einem Vergröberungsprozess wachsen große Partikel auf Kosten der kleinen, die schließlich verschwinden. Es sind jedoch auch verschiedene andere Effekte zu beobachten: So bilden sich bevorzugte Partikelformen aus [TAV99, LTN⁺04, TV99, TSV94, VMBM88, ATV01] oder die Partikel richten sich aneinander aus und bilden Ketten [SV96a, SV96b, JLL97]. In vielen Fällen bevorzugen die Phasengrenzen bestimmte durch die Kristallstruktur festgelegte Richtungen, so bilden sich rechteckige Partikel nur in einer Ausrichtung; benachbarte Partikel bilden außerdem bevorzugt Ketten entlang dieser Richtungen. Dieser Teil des Alterungsvorgangs wird als Vergröberung oder Ostwald-Reifung bezeichnet [V0092].

Der Vergröberungsprozess lässt sich durch die Minimierung der Größe der energetisch ungünstigen Grenzflächen erklären. Die beobachte Anisotropie, insbesondere in Bezug auf die Anordnung der Partikel, kann man auf der kontinuierlichen Skala durch eine elastische Fehlpassung beschreiben.

Beispiele für solche Materialien [VS87, LV02, HV88] sind etwa Legierungen aus Nickel und Aluminium (vgl. Abbildung 3.1 und Abbildung 1.1). Diese so genannten Superlegierungen haben aufgrund ihrer besonderen Temperatur- und Korrosionsbeständigkeit zahlreiche technische Anwendungen. Ein anderes Beispiel ist die Oberflächenbehandlung von Metallen, wie etwa das Nitrocarburieren von Eisen. Hier können Stickstoff und Kohlenstoff aus der aufgebrachten Oberflächenschicht in das Metall diffundieren und dort partikelförmige Ausscheidungen bilden. In beiden Fällen hat die Mikrostruktur wesentlichen Einfluss auf die hervorragenden mechanischen Eigenschaften der Materialien, denn die Partikel (und die elastischen Verzerrungen in ihrer Umgebung) bilden Barrieren gegen

die Ausbreitung von Versetzungen im Kristallgitter.

Abbildung 3.1: (a) Ostwald-Reifung der Mikrostruktur von NiAl, vgl. [LV02]. (b) Ausschnitt aus einer numerischen Simulation mit 10 000 Partikeln.

Zur numerischen Simulation bieten sich zwei verschiedene Ansätze an: In einem Phasenfeld-Modell [Wei02, OSSR99, OSSR00] beschreibt man die beiden Phasen durch einen Ordnungsparameter, der kontinuierlich variiert. Dabei sind die den beiden Phasen entsprechenden Werte lokale Energieminima, die Grenzfläche wird durch einen kontinuierlichen Übergang zwischen ihnen approximiert. Dieser Ansatz zur Approximation des freien Randes ist numerisch gut handhabbar und sehr mächtig insbesondere bei der Darstellung von Topologieänderungen.

Der zweite Ansatz diskretisiert direkt das Problem einschließlich der freien Unstetigkeit. Dabei muss die Grenzfläche selbst approximiert und ihre Diskretisierung in jedem Schritt angepasst werden. Allerdings sind die sich ergebenden partiellen Differentialgleichungen für das Potential- und das Elastizitäts-Teilproblem in diesem Fall linear, so dass deren Approximation mit der Methode der Randelemente möglich ist. Dadurch genügt es, das chemische Potential und die elastische Verschiebung ausschließlich auf der Grenzfläche zu approximieren, und eine Diskretisierung des vollen Gebiets der beiden Phasen ist nicht notwendig.

In diesem Kontext gibt es verschiedene Arbeiten, die einerseits die Morphologie einzelner Partikel oder kleiner Partikelgruppen untersuchen [VG84b, JLL97], sich aber auch teilweise auf die Simulation großer Partikelzahlen und deren statistische Auswertung beziehen [TAV04a, TAV04b, AV00, TAV01, ASAV99]. Dabei werden bisher hauptsächlich massiv parallelisierte Verfahren eingesetzt, um statistisch relevante Stichproben simulieren zu können. Die Diskretisierung der Krümmung nutzt in der Regel eine Parametrisierung über den Winkel, die weniger flexibel als die in dieser Arbeit verwendete semiimplizite Darstellung ist.

Im Folgenden soll ein Verfahren beschrieben werden, das durch eine geschickte Beschreibung der Partikel und die Ausnutzung von Kenntnissen über Abschirmeffekte sowie durch moderne Approximations- und Vorkonditionierungstechniken die Simulation großer Partikelzahlen auf einem normalen PC erlaubt. Dabei zeigt sich insbesondere, wie die Kenntnis von Eigenschaften des kontinuierlichen Modells die Formulierung von Approximationsverfahren erleichtert: Die Gradientenfluss-Struktur ermöglicht es in einfacher Weise, die Evolution auf bestimmte Partikelformen einzuschränken; die Abschirmeffekte erlauben die effiziente Behandlung verschwindender Partikel durch lokalisierte Zeitschritte. Sowohl das reduzierte Modell als auch Teile des numerischen Verfahrens wurden bereits im Abschlussbericht [GLN⁺06] des DFG-Schwerpunktprogramms 1095 veröffentlicht.

Zunächst beschreiben wir nun in Abschnitt 3.1 die Modellierung des Vergröberungsprozesses durch ein kontinuierlichen Modell mit scharf definierten Grenzflächen, wie es etwa in [FPL99, Gar03, Voo92] dargestellt wird. Dabei erfolgt die Vergröberung durch Diffusion von Atomen innerhalb des Kristallgitter, die Evolution wird getrieben von der Minimierung der Grenzflächenenergie und der elastischen Energie.

Diese Evolution lässt sich formal als Gradientenfluss interpretieren, dabei beschreibt die Metrik den Diffusionsmechanismus. Auf der Grundlage dieser allgemeinen Struktur stellen wir in Abschnitt 3.3 ein reduziertes Modell vor, in dem die Evolution auf eine Untermannigfaltigkeit eingeschränkt wird. Diese Untermannigfaltigkeit ist gegeben durch alle rechteckigen, an den Gitterachsen ausgerichteten Partikel. Auf diese Weise erhalten wir eine geeignete Formulierung der Randbedingungen auf der Grenzfläche, für die die Diskretisierung der Partikel durch jeweils vier Punkte genügt.

Zur numerischen Simulation verwenden wir ein Randelemente-Verfahren, das in den Abschnitten 3.4 bis 3.7 beschrieben wird. Ein wesentlicher Baustein, der es erlaubt große Zeitschritte zu verwenden, ist dabei die Verwendung lokalisierter Zeitschritte in der Umgebung kleiner Partikel. Die lineare Struktur des chemischen Potentials erlaubt es nämlich, die Potentialgleichung dadurch in Teilprobleme zu zerlegen, dass man jeweils nur auf einem Teil des Randes die eigentlichen Randwerte fordert und auf dem anderen Teil Nullrandwerte setzt. Durch die Ausnutzung des Abschirmeffektes genügt es dann, sich bei der Berechnung der lokalen Zeitschritte tatsächlich auf eine Umgebung der betroffenen Partikel zu beschränken.

In Abschnitt 3.10 vergleichen wir die beiden Modelle anhand numerischer Testrechnungen, schließlich zeigt Abschnitt 3.11 die Ergebnisse von Rechnungen mit größeren Partikelmengen von mehr als 10000 Partikeln. Erst durch die effiziente hierarchische Approximation der Randintegraloperatoren und die weitgehende Separierung der Skalen durch lokale Zeitschritte ist die Berechnung solcher Evolutionen auf normaler PC-Hardware möglich.

3.1 Modellierung des Vergröberungsprozesses

Das verwendete Modell für die Ostwald-Reifung basiert auf dem klassischen Modell von Mullins und Sekerka (siehe Abschnitt 2.3) und schließt zusätzlich elastische Wechselwirkungen mit ein (vgl. Abschnitt 2.1). Das Modell wird in dimensionslosen Variablen im \mathbb{R}^2 beschrieben, der dreidimensionale Fall funktioniert analog.

Dazu betrachten wir ein Gemisch aus zwei Phasen $\Omega_0 \cup \Omega_1 = \mathbb{R}^2$, wobei $\Omega = \Omega_1 \subset \subset \mathbb{R}^2$ die Partikelphase und $\Gamma = \partial \Omega$ die Grenzfläche zwischen den beiden Phasen sei. Die Evolution der beiden Phasen findet durch diffusiven Massetransport nach Formulierung 2.3.2 statt, die Energie setzt sich aus der Grenzflächenenergie aus Formulierung 2.3.1 und der elastische Energie der Ausscheidungen aus Formulierung 2.1.1 zusammen.

Dazu ist nach Formulierung 2.3.2 die Berechnung der Variation des Energiefunktionals bei Änderungen der Grenzfläche erforderlich, d. h.

$$\frac{d}{d\tau} \mathscr{E}[\Omega + \tau w] \Big|_{\tau=0}, \quad \text{wobei } \mathscr{E}[\Omega] = \mathscr{E}_{\text{len}}[\partial\Omega] + \min_{u} \mathscr{E}_{\text{elast}}[\mathbb{R}^2 \setminus \Omega, \Omega; u].$$
(3.1)

Für das Längenfunktional ist die Variation bei einer Bewegung in Normalenrichtung die Krümmung κ

$$\frac{d}{d\tau} \mathscr{E}_{\text{len}}[\Gamma + \tau w] \Big|_{\tau=0} = \sigma_{\Gamma} \int_{\Gamma} \kappa(x) w(x) d\mathcal{H}^{1}.$$
(3.2)

Zur Berechnung der Variation der elastischen Energie (siehe etwa [Gar03]) verwenden wir die folgenden Bezeichnungen: Sei ξ ein Vektorfeld mit kompaktem Träger, so dass

$$\xi : \mathbb{R}^2 \to \mathbb{R}^2, \quad \xi(x) = w(x)v(x) \text{ für } x \in \partial\Omega_1, \tag{3.3}$$

und sei φ eine Familie von Deformationen mit $\partial_{\tau} \varphi = \xi$, etwa

$$\varphi : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \quad \varphi(\tau, x) = x + \tau \xi(x),$$
(3.4)

und ψ jeweils deren Inverse, d. h.

$$\psi(\tau,\varphi(\tau,x)) = x. \tag{3.5}$$

Weiterhin sei

$$W_{\alpha}(F) = \frac{1}{2}C_{\alpha}\left((F + F^{T}) - \bar{\varepsilon}_{\alpha}\right) : \left((F + F^{T}) - \bar{\varepsilon}_{\alpha}\right), \qquad (3.6)$$

wobei sowohl der Elastizitätstensor C_{α} als auch die Fehlpassung $\bar{\epsilon}$ von der Phase α abhängen. Nun erhalten wir

$$\begin{split} & \frac{d}{d\tau} \mathscr{E}_{\text{elast}} \big[(\Omega_{\alpha} + \tau w)_{\alpha}; u \big] \big|_{\tau=0} \\ &= \frac{d}{d\tau} \big|_{\tau=0} \sum_{\alpha} \int_{\Omega_{\alpha} + \tau w} W_{\alpha} (\nabla u(\varphi(\tau, x))) dx \\ &= \frac{d}{d\tau} \big|_{\tau=0} \sum_{\alpha} \int_{\Omega_{\alpha} + \tau w} W_{\alpha} \Big((\sum_{j} u_{i,j}(\varphi(\tau, x))\varphi(\tau)_{j,k}(x))_{ik} \Big) dx \\ &= \frac{d}{d\tau} \big|_{\tau=0} \sum_{\alpha} \int_{\Omega_{\alpha} + \tau w} W_{\alpha} \Big((\sum_{j} u_{i,j}(y)\varphi(\tau)_{j,k}(\psi(\tau, y)))_{ik} \Big) \left| \det \nabla \psi(\tau, y) \right| dy \\ &= \sum_{\alpha} \int_{\Omega_{\alpha}} \sum_{ijk} \frac{\partial W_{\alpha}}{\partial F_{ik}} (\nabla u(y)) u_{i,j}(y) \xi_{j,k}(y) - W_{\alpha} (\nabla u(y)) \operatorname{div} \xi(y) dy \\ &= \sum_{\alpha} \int_{\Omega_{\alpha}} -\sum_{jk} \xi_{j,k}(y) \Big(W_{\alpha} (\nabla u(y)) \delta_{jk} - \sum_{i} \frac{\partial W_{\alpha}}{\partial F_{ik}} (\nabla u(y)) u_{i,j}(y) \Big) dy \\ &= \int_{\partial \Omega} \sum_{jk} \xi_{j}(y) v_{k}(y) \Big[W(\nabla u(y)) \delta_{jk} - \sum_{i} \frac{\partial W}{\partial F_{ik}} (\nabla u(y)) u_{i,j}(y) \Big]_{1}^{\circ} dy . \end{split}$$

Dabei sei v_i eine Komponente der von Ω_1 aus nach außen zeigenden Normalen v. Den Term in Sprungklammern bezeichnet man als Eshelby-Tensor oder Energie-Impuls-Tensor; wir kürzen ihn mit J ab:

$$J[u] = \frac{1}{2}C(\varepsilon[u] - \overline{\varepsilon}) : (\varepsilon[u] - \overline{\varepsilon})\mathbb{I} - (\nabla u)^T C(\varepsilon[u] - \overline{\varepsilon})$$
(3.7)

Nach diesen Rechnungen erhalten wir aus (2.38) die Gleichung

$$\int_{\Gamma} \left(-\mu(x) + \sigma_{\Gamma} \kappa(x) + \left[J[u] \right]_{1}^{0}(x) v(x) \cdot v(x) \right) w(x) = 0$$

für Testfunktionen w mit $\int_{\Gamma} w(x) d\mathcal{H}^{1} = 0.$

Da wir nur Testfunktionen mit Integralmittel Null zulassen, kann der linke Faktor im Integranden jede auf Γ konstante Funktion sein, d. h.

$$-\mu(x) + \sigma_{\Gamma}\kappa(x) + \left[J[\mu]\right]_{1}^{0}(x)\nu(x)\cdot\nu(x) = c.$$

Damit können wir das volle Modell für die Ostwald-Reifung mit Elastizität formulieren:

r

Formulierung 3.1.1 (Ostwald-Reifung mit Elastizität) Sei $\Omega_0 \cup \Omega_1 = \mathbb{R}^2$, $\Omega = \Omega_1 \subset \subset \mathbb{R}^2$ und $\Gamma = \partial \Omega$. Dann sind die Normalengeschwindigkeit v von Γ , das chemische Potential μ , die Konstante c und das elastische Verschiebungsfeld u gegeben durch

$$\operatorname{div} C_{\alpha} \varepsilon[u](x) = 0 \qquad \qquad \text{in } \Omega_{\alpha}, \qquad (3.8)$$

$$\left[C(\varepsilon[u] - \bar{\varepsilon})\right]_{1}^{0}(x)v(x) = 0 \qquad \text{auf } \Gamma, \qquad (3.9)$$

$$\Delta \mu(x) = 0 \qquad \qquad in \ \Omega_0, \ \Omega_1, \qquad (3.10)$$

$$\mu(x) + c = \sigma_{\Gamma} \kappa(x) + \left[J[u] \right]_{1}^{\circ}(x) v(x) \cdot v(x) \quad auf \ \Gamma, \qquad (3.11)$$

$$v(x) = D\left[\nabla\mu\right]_{1}^{0}(x) \cdot v(x) \qquad auf \ \Gamma, \qquad (3.12)$$

$$\int_{\Gamma} v(x) d\mathcal{H}^1 = 0, \qquad (3.13)$$

mit den entsprechenden Randbedingungen für u und μ im Unendlichen.

3.2 Die Evolution als Gradientenfluss

Dieses Modell hat die formale Struktur eines Gradientenflusses auf einer (unendlichdimensionalen) Mannigfaltigkeit \mathcal{M} , d. h. die Evolution folgt der Richtung des negativen Gradienten des Energiefunktionals in einer geeigneten Metrik (die den Diffusionsmechanismus aus Abschnitt 2.3 kodiert).

Um dies zu konkretisieren, definieren wir zunächst die Mannigfaltigkeit *M* aller möglichen Konfigurationen. Die strukturellen Betrachtungen dieses Abschnittes sind rein formaler Natur, so dass hier auf eine Diskussion der Regularität verzichtet wird.

Als Darstellung einer Konfiguration betrachten wir jeweils die (beschränkte) Partikelphase, deren Gesamtvolumen aufgrund der Masseerhaltung (vgl. Abschnitt 2.3) einer gegebenen Konstante entspricht:

$$\mathscr{M} = \left\{ \Omega \subset \subset \mathbb{R}^2 \mid |\Omega| = \text{const} \right\}$$
(3.14)

Der Tangentialraum an \mathcal{M} für eine Partikelkonfiguration Ω lässt sich (solange der Rand $\partial \Omega$ genügend glatt ist) durch diejenigen Normalengeschwindigkeiten an $\partial \Omega$ darstellen, die das Volumen $|\Omega|$ unverändert lassen (vgl. Gleichung (3.13)), d. h.

$$\mathscr{T}_{\Omega}\mathscr{M} = \left\{ v : \partial \Omega \to \mathbb{R} \, \Big| \, \int_{\partial \Omega} v \, d \, \mathscr{H}^1 = \mathsf{O} \right\}.$$
(3.15)

Zur Definition des Gradienten einer Funktion \mathscr{E} benötigt man eine Riemannsche Struktur (eine Metrik g) auf \mathscr{M} , um anhand des Differentials von \mathscr{E} an der Stelle Ω (eines Elements des Kotangentialraumes) mittels $g(\operatorname{grad}\mathscr{E}, v) = \langle \operatorname{diff}\mathscr{E}, v \rangle$ den Gradienten im Tangentialraum zu bestimmen. Damit ergibt sich die folgende allgemeine Struktur
für einen Gradientenfluss:

$$g_{\Omega(t)}(\dot{\Omega}(t), w) + \langle \operatorname{diff} \mathscr{E}[\Omega(t)], w \rangle = 0 \qquad \forall w \in \mathscr{T}_{\Omega(t)} \mathscr{M}$$

$$(3.16)$$

Die Metrik ist ein Maß für die Dissipationsrate bei einer Bewegung in Richtung v, sie ist gegeben durch das Dirichlet-Integral des (über die Grenzfläche stetigen) chemischen Potentials μ zu v gemäß (3.10) und (3.12), d. h.

$$g_{\Omega}(v,v) = \int_{\mathbb{R}^2} \frac{1}{2} |\nabla \mu(x)|^2 dx, \quad \text{wobei}$$

$$\Delta \mu(x) = 0 \quad \text{in } \Omega, \quad \mathbb{R}^2 \setminus \Omega,$$

$$v(x) = D \left[\nabla \mu \right]_1^0 (x) \cdot v(x) \quad \text{auf } \partial \Omega.$$

Die Gleichung für μ entspricht derjenigen für das Demagnetisierungspotential ψ in Formulierung 2.2.2. Ebenso wie ψ dort ist μ hier nur bis auf eine additive Konstante bestimmt, die für den Wert von g jedoch irrelevant ist. Die eigentliche Metrik $g_{\Omega}(v, w)$ ergibt sich aus der quadratischen Form beispielsweise durch die Polarisationsformel

$$g(v,w) = \frac{1}{2} \left(g(v+w,v+w) - g(v,v) - g(w,w) \right), \tag{3.17}$$

das führt zu

$$g_{\Omega}(v, \tilde{v}) = \int_{\mathbb{R}^2} \frac{1}{2} \nabla \mu \cdot \nabla \tilde{\mu}$$

mit entsprechenden Potentialen μ und $\tilde{\mu}$ zu v und \tilde{v} wie oben.

Damit ist die Struktur der Mannigfaltigkeit festgelegt, auf der der Gradientenfluss betrachtet werden soll. Die Gibbs–Thomson-Bedingung (3.11) erhält man schließlich aus der Gradientenfluss-Gleichung (3.16) durch partielle Integration:

$$0 = g_{\Omega}(v, \tilde{v}) + \langle \operatorname{diff} \mathscr{E}[\Omega], \tilde{v} \rangle$$

= $\int_{\mathbb{R}^{2}} \nabla \mu \cdot \nabla \tilde{\mu} + \int_{\partial \Omega} \left(\sigma_{\Gamma} \kappa + [J[u]]_{1}^{\circ} v \cdot v \right) \tilde{v} \, d \mathscr{H}^{1}$
= $\int_{\partial \Omega} -\mu \tilde{v} \, d \mathscr{H}^{1} + \int_{\partial \Omega} \left(\sigma_{\Gamma} \kappa + [J[u]]_{1}^{\circ} v \cdot v \right) \tilde{v} \, d \mathscr{H}^{1}$

Dabei sind nur Testfunktionen $\tilde{v}\in\mathscr{T}_{\Omega}\mathscr{M}$ zugelassen, die also Mittelwert 0 haben. Daher können wir

$$-\mu + \sigma_{\Gamma}\kappa + \left[J[\mu]\right]_{1}^{0}\nu \cdot \nu = c$$

mit einer Konstanten c folgern, entsprechend Gleichung (3.11).

Formulierung 3.2.1 (Ostwald-Reifung als Grandientenfluss) Sei \mathcal{M} formal eine Mannigfaltigkeit mit der Metrik g vermittels

$$\mathcal{M} = \left\{ \Omega \subset \subset \mathbb{R}^2 \, \middle| \, |\Omega| = \text{const} \right\},\tag{3.18}$$

$$\mathscr{T}_{\Omega}\mathscr{M} = \left\{ v : \partial \Omega \to \mathbb{R} \, \Big| \, \int_{\partial \Omega} v \, d \, \mathscr{H}^1 = 0 \right\}, \tag{3.19}$$

$$g_{\Omega}(v,v) = \int_{\mathbb{R}^2} \frac{1}{2} |\nabla \mu(x)|^2 dx, \qquad (3.20)$$

$$\Delta \mu(x) = 0 \qquad \qquad in \ \Omega, \quad \mathbb{R} \setminus \Omega, \qquad (3.21)$$

$$v(x) = D\left[\nabla\mu\right]_{1}^{0}(x) \cdot v(x) \qquad \text{auf } \partial\Omega. \qquad (3.22)$$

Dann betrachten wir den Gradientenfluss

$$g_{\Omega(t)}(\dot{\Omega}(t), w) + \langle \operatorname{diff} \mathscr{E}[\Omega(t)], w \rangle = 0 \qquad \forall w \in \mathscr{T}_{\Omega(t)} \mathscr{M}$$
(3.23)

bezüglich der Energie

$$\mathscr{E}[\Omega] = \mathscr{E}_{\text{len}}[\partial\Omega] + \min_{u} \mathscr{E}_{\text{elast}}[\mathbb{R}^2 \setminus \Omega, \Omega; u], \qquad (3.24)$$

$$\langle \operatorname{diff}\mathscr{E}[\Omega], w \rangle = \int_{\partial \Omega} \left(\sigma_{\Gamma} \kappa(x) + \left[J[u] \right]_{1}^{\circ}(x) \nu(x) \cdot \nu(x) \right) w(x) d \mathscr{H}^{1}.$$
(3.25)

3.3 Restriktion auf eine Untermannigfaltigkeit

Wie in der Einleitung dieses Kapitels diskutiert, haben die Partikel in vielen Fällen eine bevorzugte Morphologie. Wenn die Elastizität eine kubische Symmetrie mit negativer Anisotropie besitzt, beobachtet man auch in den numerischen Simulationen (vgl. Abschnitt 3.9) die in zahlreichen Materialien experimentell (vgl. Abbildung 3.1) nachgewiesene Morphologie: Hierbei nehmen die Partikel die Form von an den Symmetrieachsen ausgerichteten Rechtecken an.

Wie in [NO01b] zur Untersuchung der Abschirm-Länge eingeführt, erlaubt uns die Gradientenfluss-Struktur des Problems auf direkte Weise die Entwicklung eines auf diese Partikelform angepassten Modells: Dazu schränken wir den Gradientenfluss (also das Energiefunktional \mathscr{E} und die Metrik g) auf eine Untermannigfaltigkeit $\mathcal{N} \subset \mathcal{M}$ aller Mengen solcher ausgerichteter Rechtecke ein. O. B. d. A. wählen wir als Symmetrieachsen der Elastizität (die hier als konstant im Raum angenommen werden) die Koordinatenachsen.

Dies vereinfacht die Diskretisierung der Partikel und erlaubt dadurch die Simulation großer Partikelzahlen. Dabei wird jedoch die Form der Partikel bereits im Modell berücksichtigt. Die Formulierung von Randbedingungen beispielsweise ergibt sich dadurch direkt aus der Struktur des Problems und des reduzierten Zustandsraumes und nicht aus einer Entscheidung für einen Diskretisierungsansatz.

Abbildung 3.3.1: Konfiguration eines rechteckigen, an den Koordinatenachsen ausgerichteten Partikels.

Wie in Abbildung 3.3.1 dargestellt, lässt sich ein Partikel durch zwei diagonal gegenüberliegende Punkte $r_{\pm}^{(i)}$ beschreiben, die Normalengeschwindigkeit durch eine skalare Größe $v_k^{(i)}$ pro Seite des Rechtecks (oder als zwei an den beiden Eckpunkten angreifenden vektorwertige Geschwindigkeiten).

$$r^{(i)} = (r_{-}^{(i)}, r_{+}^{(i)}) = ((r_{1}^{(i)}, r_{2}^{(i)}), (r_{3}^{(i)}, r_{4}^{(i)})) \in \mathbb{R}^{4},$$
(3.26)

$$v^{(i)} = (v_{-}^{(i)}, v_{+}^{(i)}) = ((v_{1}^{(i)}, v_{2}^{(i)}), (v_{3}^{(i)}, v_{4}^{(i)})) \in \mathbb{R}^{4}.$$
(3.27)

Damit können wir naheliegenderweise $r + \tau v$ mit dem Partikelensemble r nach einer Bewegung mit Geschwindigkeit v für einen Zeitschritt der Länge τ identifizieren.

Weiterhin benötigen wir eine Notation für die Fläche $a^{(i)}$ und die Seiten $b_k^{(i)}$ des Rechtecks und deren Normalenrichtungen $v_k^{(i)}$. Die Indizierung entspricht dabei den dort angreifenden Geschwindigkeiten

$$a^{(i)} = [r_1^{(i)}; r_3^{(i)}] \times [r_2^{(i)}; r_4^{(i)}], \qquad (3.28)$$

$$b_k^{(i)} = \{r_k^{(i)}\} \times [r_2^{(i)}; r_4^{(i)}] \text{ falls } k \text{ ungerade}, \qquad (3.29)$$

$$b_k^{(i)} = [r_1^{(i)}; r_3^{(i)}] \times \{r_k^{(i)}\} \text{ falls } k \text{ gerade}, \qquad (3.30)$$

$$v_{2k+l}^{(i)} = (-1)^{\delta_{k1}} e_l \,. \tag{3.31}$$

Wie bisher sei $\Omega = \Omega_1 = \bigcup_i a^{(i)}$ die Partikelphase und $\Omega_0 = \mathbb{R}^2 \setminus \Omega_1$. Nun können wir die Untermannigfaltigkeit $\mathcal{N} \subset \mathcal{M}$ für eine gegebene Anzahl N von Partikeln und den Tangentialraum der (von erster Ordnung) volumenerhaltenden Normalengeschwindigkeiten definieren als

$$\mathcal{N} = \left\{ r = (r^{(i)})_i \in \mathbb{R}^{4N} \mid \sum_{i=1}^N |a^{(i)}| = \text{const} \right\},$$
(3.32)

$$\mathcal{T}_{r}\mathcal{N} = \left\{ v = (v^{(i)})_{i} \in \mathbb{R}^{4N} \mid \sum_{i=1}^{N} \sum_{k=1}^{4} |b_{k}^{(i)}| v_{k}^{(i)} = 0 \right\}.$$
(3.33)

Die Oberflächenenergie und deren Variation in Richtung einer Normalengeschwindigkeit $v \in \mathscr{T}_r \mathscr{N}$ lässt sich explizit berechnen:

$$\mathscr{E}_{\text{len}}[r] = \sigma_{\Gamma} \sum_{i=1}^{N} \sum_{k=1}^{4} |b_k^{(i)}|$$
(3.34)

$$\langle \operatorname{diff} \mathscr{E}_{\operatorname{len}}[r], v \rangle = \sigma_{\Gamma} \sum_{i=1}^{N} \sum_{k=1}^{4} 2v_{k}^{(i)}$$
(3.35)

Zur Berechnung der Gibbs–Thomson-Bedingung für das reduzierte Problem betrachten wir nun erneut die Gradientenfluss-Gleichung (3.16):

$$\begin{split} 0 &= g_{r}(v,w) + \langle \operatorname{diff}\mathscr{E}_{\operatorname{len}}[r] + \operatorname{diff}\mathscr{E}_{\operatorname{elast}}[r],w \rangle & \text{für alle } w \in \mathscr{T}_{r}\mathscr{N} \\ &= \sum_{i=1}^{N} \sum_{k=1}^{4} \left(\int_{b_{k}^{(i)}} -\mu w_{k}^{(i)} d\mathscr{H}^{1} + 2\sigma_{\Gamma} w_{k}^{(i)} + \int_{b_{k}^{(i)}} \left[J[u] \right]_{1}^{\circ} v_{k}^{(i)} \cdot v_{k}^{(i)} w_{k}^{(i)} d\mathscr{H}^{1} \right) \\ &= \sum_{i=1}^{N} \sum_{k=1}^{4} \int_{b_{k}^{(i)}} \left(-\mu w_{k}^{(i)} + \frac{2\sigma_{\Gamma} w_{k}^{(i)}}{|b_{k}^{(i)}|} + \int_{b_{k}^{(i)}} \left[J[u] \right]_{1}^{\circ} v_{k}^{(i)} \cdot v_{k}^{(i)} w_{k}^{(i)} \right) d\mathscr{H}^{1} \\ &= \sum_{i=1}^{N} \sum_{k=1}^{4} \int_{b_{k}^{(i)}} \left(-\mu + \frac{2\sigma_{\Gamma}}{|b_{k}^{(i)}|} + \left[J[u] \right]_{1}^{\circ} v_{k}^{(i)} \cdot v_{k}^{(i)} \right) w_{k}^{(i)} d\mathscr{H}^{1} \end{split}$$

Nun können wir zu zwei beliebigen Kanten $b_k^{(i)}$ und $b_l^{(j)}$ ein $w \in \mathscr{T}_r \mathscr{N}$ definieren durch

$$w_k^{(i)} = \frac{1}{|b_k^{(i)}|}, \quad w_l^{(j)} = -\frac{1}{|b_l^{(j)}|}, \quad w_q^{(p)} = 0 \text{ sonst,}$$

und erhalten, dass für alle Indizes (i;k) und (j;l) die folgenden Integralmittel über die Kanten gleich sind:

$$\int_{b_{k}^{(i)}} \left(\frac{2\sigma_{\Gamma}}{|b_{k}^{(i)}|} + [J[u]]_{1}^{\circ} v_{k}^{(i)} \cdot v_{k}^{(i)} - \mu \right) d\mathcal{H}^{1} = \int_{b_{l}^{(j)}} \left(\frac{2\sigma_{\Gamma}}{|b_{l}^{(j)}|} + [J[u]]_{1}^{\circ} v_{l}^{(j)} \cdot v_{l}^{(j)} - \mu \right) d\mathcal{H}^{1}$$

Die Ausdrücke $\int_{b} \frac{2\sigma_{\Gamma}}{|b|} + [J[u]]_{1}^{\circ} v \cdot v - \mu$ haben also einen konstanten Wert. Hier übernimmt der Term $\frac{2}{|b|}$ die Rolle der Krümmung, diese so genannte kristalline Krümmung ergibt sich auch in Modellen mit kubischer Kristall-Anisotropie aus der Oberflächenenergie [Tay78, Gur93]. Zusammenfassend ergeben sich die folgenden Evolutionsgleichungen:

Formulierung 3.3.1 (Ostwald-Reifung mit Elastizität für Rechtecke) Sei $r \in \mathcal{N}$. Ω_0 und Ω_1 beschreiben das Äußere und das Innere der durch r dargestellten Partikelmenge. Dann sind die Normalengeschwindigkeit $v \in \mathcal{T}_r \mathcal{N}$ und das elastische Verschiebungsfeld u gegeben durch:

$$\operatorname{div} C_{\alpha} \varepsilon[u](x) = 0 \qquad \qquad \text{in } \Omega_{\alpha}, \qquad (3.36)$$

$$\left[C(\varepsilon[u] - \bar{\varepsilon})\right]_{1}^{0}(x)v = 0 \qquad \qquad f \ddot{u}r \ alle \ Kanten \ b \ , v \perp b \ ,$$
(3.37)

$$\Delta \mu(x) = 0 \qquad \text{in } \Omega_0, \, \Omega_1, \qquad (3.38)$$

$$\int_{b} \mu(x) d\mathcal{H}^{1} + c = \frac{2\sigma_{\Gamma}}{|b|} + \int_{b} \left[J[u] \right]_{1}^{\circ}(x) v \cdot v(x) d\mathcal{H}^{1} \quad f \ddot{u} r \text{ alle Kanten } b, v \perp b,$$
(3.39)

mit den entsprechenden Randbedingungen für u und µ im Unendlichen.

Dabei wird als Randbedingung für das chemische Potential gefordert, dass der Sprung $[\nabla \mu]_1^0 \cdot \nu$ auf Kanten konstant ist. Den dann noch pro Kante offenen Freiheitsgrad legt die Bedingung an $\int \mu$ fest. Dadurch ist das chemische Potential bis auf eine globale additive Konstante bestimmt; diese ist irrelevant und wird durch eine geeignete Normierung festgelegt.

Die Evolution ist in dieser Weise definiert, bis ein Partikel Volumen 0 erreicht. Solche Partikel werden entfernt und die Berechnung wird fortgesetzt.

3.4 Formulierung mittels Randintegralgleichungen

In diesem Abschnitt betrachten wir zunächst die in beiden Modellen vorkommenden linearen Teilprobleme (das Potentialproblem und die linearisierte Elastizität), die mit der Methode der Randelemente behandelt werden sollen, und stellen für diese die benötigten Randintegralgleichungen zusammen. Eine ausführlichere Erläuterung der entsprechenden Begriffe findet sich in Kapitel 5.

Wie bisher sei dazu $\Omega_1 \subset \mathbb{R}^2$ und $\Omega_0 = \mathbb{R}^2 \setminus \Omega_1$, weiterhin sei ν_{α} die äußere Normale an Ω_{α} sowie $\nu = \nu_1$ und $\Gamma = \partial \Omega_1$. Die Randwerte von Funktionen, die auf Ω_{α} definiert sind, werden mit

$$\gamma^{\alpha}[f](x) = \lim_{\Omega_{\alpha} \ni \xi \to x} f(\xi) \qquad \qquad \text{für } x \in \Gamma, \qquad (3.41)$$

$$\gamma_{\partial_{\nu}}^{\alpha}[f](x) = \lim_{\Omega_{\alpha} \ni \xi \to x} \nabla f(\xi) \cdot \nu \qquad \text{für } x \in \Gamma \qquad (3.42)$$

bezeichnet. Dabei werde unabhängig von der Richtung, aus der der Grenzwert gebildet wird, stets dieselbe Normale $v = v_1$ verwendet.

Wir beginnen mit dem Potentialproblem. Dazu erfülle $\mu : \Omega_1 \to \mathbb{R}$ die Gleichung

$$\Delta \mu = 0$$
 in Ω_1 ,

die Dirichlet- und Neumann-Randwerte von μ seien

$$g_D = \gamma^1[\mu]$$
 und $g_N = \gamma^1_{\mathcal{Z}}[\mu]$.

Dann können wir eine Integralgleichung zwischen den beiden Arten von Randwerten aufstellen,

$$g_D = U_{\Delta} [g_N] - V_{\Delta} [g_D] + F_{\Delta} g_D \quad \text{auf } \Gamma.$$
(3.43)

Dabei bezeichnet man U_{Δ} als Einfachschicht-Operator (in den man die Neumann-Randwerte g_N einsetzt) und V_{Δ} als Doppelschicht-Operator (in den man die Dirichlet-Randwerte g_D einsetzt) des Laplace. F_{Δ} ist eine skalare Funktion, deren punktweises Produkt mit g_D ebenfalls in die Gleichung eingeht; man bezeichnet F_{Δ} auch als integralfreien Koeffizienten. Für glattes Γ ist $F_{\Delta} = \frac{1}{2}$, in Ecken ergeben sich jedoch abhängig vom Winkel andere Werte.

Für die Bewegung der Grenzfläche müssen wir ein Potentialproblem beiderseits der Grenzfläche lösen. Dazu sei μ in beiden Phasen harmonisch, d. h.

$$\Delta \mu = 0$$
 in Ω_0 und Ω_1 ,

und stetig über Γ , die Normalenableitungen können dort jedoch springen. Diese Randwerte wollen wir folgendermaßen bezeichnen:

$$g_D = \gamma^{\circ}[\mu] = \gamma^1[\mu]$$
 und $g_N^{1-\circ} = [\nabla \mu \cdot \nu]_{\circ}^1 = \gamma^1_{\partial_{\nu}}[\mu] - \gamma^{\circ}_{\partial_{\nu}}[\mu]$ auf Γ .

Wie in Abschnitt 5.2 beschrieben, können wir dann Randintegralgleichungen für die Randwerte aus der Sicht von Ω_1 und Ω_0 aufstellen und anschließend addieren. Die beiden Terme mit dem Doppelschicht-Operator $V_{\Delta}[g_D]$ addieren sich aufgrund unterschiedlicher Vorzeichen zu Null, und es ergibt sich

$$g_D = U_\Delta[g_N^{1-0}].$$
 (3.44)

 U_{Δ} bildet also Sprünge in Neumann-Randwerten auf (über die Grenzfläche stetige) Dirichlet-Randwerte ab.

Für die linearisierte Elastizität erhält man Gleichungen derselben Struktur. Dazu sei $u: \Omega \rightarrow \mathbb{R}^2$ die elastische Verschiebung, d. h.

$$\operatorname{div} C \varepsilon[u] = 0 \quad \text{in } \Omega.$$

Als Neumann-Randwerte bezeichnet man im Fall der Elastizität die Normalenspannungen auf dem Rand (*traction: t*), d. h.

$$t^{\alpha}(x) = \gamma^{\alpha}_{\partial_{\nu}}[u](x) = \lim_{\Omega_{\alpha} \ni \xi \to x} C \varepsilon[u](\xi) \nu(\xi) \quad \text{für } x \in \Gamma.$$
(3.45)

In diesem Fall erhalten wir (mit den Bezeichnungen $u = \gamma^1[u]$ und $t = t^1 = \gamma^1_{\partial_v}[u]$) analog zum Laplace die Randintegralgleichung

$$u = U_{\text{elast}} \begin{bmatrix} t \end{bmatrix} - V_{\text{elast}} \begin{bmatrix} u \end{bmatrix} + F_{\text{elast}} u \quad \text{auf } \Gamma$$
(3.46)

mit den Einfach- und Doppelschichtoperatoren U_{elast} und V_{elast} und den integralfreien Koeffizienten F_{elast} . Die Randwerte u und t sind hierbei vektorwertig und F_{elast} ist eine matrixwertige Funktion, also ist $F_{elast}u$ punktweise als Matrix–Vektor-Produkt zu verstehen. Bei der Betrachtung der Randwerte aus der Sicht von $\mathbb{R}^2 \setminus \Omega$ drehen sich die Vorzeichen der Randintegraloperatoren um.

Durch Differentiation der Kerne der Integraloperatoren wie in Abschnitt 5.3 beschrieben lassen sich aus den Randintegralgleichungen auch Darstellungen des Gradienten der Verschiebung u gewinnen. Dabei seien U'_{elast} und V'_{elast} die Randintegraloperatoren zu den abgeleiteten Kernfunktionen und G_{elast} der dort auftretende integralfreie Term, in diesem Fall punktweise ein Tensor vierter Stufe. Dann erhalten wir für die einseitigen Grenzwerte des Gradienten die Gleichung

$$\gamma^{1}[\nabla u] = U'_{\text{elast}}[t] - V'_{\text{elast}}[u] + G_{\text{elast}}\gamma^{1}[\nabla u] \quad \text{auf } \Gamma.$$
(3.47)

Falls *u* sowohl im Innen- als auch im Außenraum ein elastisches Problem (mit demselben Elastizitätstensor *C*) löst, können wir wie oben die Gleichungen von beiden Seiten addieren. Dabei verschwindet wieder der Term $V'_{\text{elast}}[u]$, da *u* über die Grenzfläche stetig ist, und wir erhalten (in glatten Randpunkten, wo $G_{\text{elast}} = \frac{1}{2}$)

$$\frac{1}{2}(\gamma^{1}[\nabla u] + \gamma^{\circ}[\nabla u]) = U'_{\text{elast}}[t^{1} - t^{\circ}] \quad \text{auf } \Gamma.$$
(3.48)

Wir können hierbei allerdings nur den Mittelwert der beiden einseitigen Limites des Gradienten berechnen, da dieser ja über Γ nicht stetig ist. In Eckpunkten ergibt sich ein entsprechend $\mathbb{I} - G_{\text{elast}}$ gewichtetes arithmetisches Mittel.

3.5 Diskretisierung des vollen Modells

Zunächst betrachten wir die Diskretisierung des vollen Problems aus Formulierung 3.1.1. Dazu müssen wir den Gradienten der elastische Verschiebung *u* berechnen

$$\operatorname{div} C_{\alpha} \varepsilon [u](x) = 0 \qquad \text{in } \Omega_{\alpha},$$
$$\left[C(\varepsilon [u] - \overline{\varepsilon}) \right]_{1}^{0} (x) v(x) = 0 \qquad \text{auf } \Gamma,$$

und dann daraus über das Potential μ die Normalengeschwindigkeit v der Grenzfläche bestimmen:

$$\begin{split} \Delta \mu(x) &= 0 & \text{in } \Omega_0, \, \Omega_1, \\ \mu(x) + c &= \sigma_\Gamma \kappa(x) + \left[J[\mu] \right]_1^0(x) \, \nu(x) \cdot \nu(x) & \text{auf } \Gamma, \\ v(x) &= D \left[\nabla \mu \right]_1^0(x) \cdot \nu(x) & \text{auf } \Gamma, \\ \int_{\Gamma} v(x) d \, \mathcal{H}^1 &= 0. \end{split}$$

Für das elastische Problem erhalten wir nach (3.46) von beiden Seiten die Randintegralgleichungen

$$u = U_{\text{elast}}^{1}[t^{1}] - V_{\text{elast}}^{1}[u] + F_{\text{elast}}^{1}u, \qquad (3.49)$$

$$u = -U_{\text{elast}}^{0}[t^{0}] + V_{\text{elast}}^{0}[u] + F_{\text{elast}}^{0}u, \qquad (3.50)$$

wobei t^{α} nach (3.45) die einseitigen Normalenableitungen bezeichnet. Aufgrund des Kräftegleichgewichts (3.9) lässt sich eine Beziehung zwischen t° und t^{1} herstellen, so dass wir im Folgenden nur noch $t = t^{\circ}$ als Funktion auf dem Rand betrachten und t^{1} stets durch t ausdrücken.

$$0 = \left[C(\varepsilon[u] - \bar{\varepsilon})\right]_{1}^{0}(x)\nu = \left(t^{0}(x) - \bar{\varepsilon}_{0}\nu\right) - \left(t^{1}(x) - \bar{\varepsilon}_{1}\nu\right)$$
(3.51)

$$t^{1}(x) = t^{0}(x) + (\bar{\varepsilon}_{1} - \bar{\varepsilon}_{0})\nu$$
(3.52)

Wenn wir nun außerdem die Abkürzung $e = (\bar{\varepsilon}_1 - \bar{\varepsilon}_0)\nu$ verwenden, so können wir das Integralgleichungssystem für die linearisierte Elastizität folgendermaßen schreiben:

$$\begin{pmatrix} U_{\text{elast}}^1 & -V_{\text{elast}}^1 - \mathbb{I} + F_{\text{elast}}^1 \\ -U_{\text{elast}}^0 & V_{\text{elast}}^0 - \mathbb{I} + F_{\text{elast}}^0 \end{pmatrix} \begin{bmatrix} t \\ u \end{bmatrix} = \begin{pmatrix} -U_{\text{elast}}^1[e] \\ 0 \end{pmatrix}$$
(3.53)

Daraus lassen sich nun u (bis auf eine additive Konstante) und t berechnen. Aus diesen erhalten wir dann nach Gleichung (3.47) die beiden einseitigen Limites des vollen Gradienten der Verschiebung:

$$(\mathbb{I} - G_{\text{elast}}^{1})\gamma^{1}[\nabla u] = U_{\text{elast}}^{\prime 1}[t + e] - V_{\text{elast}}^{\prime 1}[u]$$
(3.54)

$$(\mathbb{I} - G_{\text{elast}}^{\circ})\gamma^{\circ}[\nabla u] = -U_{\text{elast}}^{\prime\circ}[t] + V_{\text{elast}}^{\prime\circ}[u]$$
(3.55)

Falls $C_0 = C_1$, so vereinfacht sich die Berechnung deutlich. Nach der Darstellungsformel für Gradienten im homogenen Fall (3.48) kann man (in Punkten in denen Γ glatt ist) den Mittelwert der beiden einseitigen Grenzwerte des Gradienten direkt berechnen. Andererseits gilt für den Sprung des Gradienten neben (3.9) auch die Stetigkeit der tangentialen Ableitungen (in Richtung τ), d. h. mit den Bezeichnungen

$$m = \frac{1}{2} \left(\gamma^{1} [\nabla u] + \gamma^{\circ} [\nabla u] \right) \quad \text{und} \quad s = \frac{1}{2} \left(\gamma^{1} [\nabla u] - \gamma^{\circ} [\nabla u] \right)$$
(3.56)

ergeben sich die Bedingungen

$$m = U'_{\text{elast}}[e], \quad s\tau = 0 \quad \text{und} \quad C(s+s^T)\nu = C(\bar{\varepsilon}_1 - \bar{\varepsilon}_0)\nu.$$
 (3.57)

Da C im Sinne quadratischer Formen auf symmetrischen Matrizen positiv definit ist und $\overline{\varepsilon}$ symmetrisch ist, lässt sich aus diesen Bedingungen *s* berechnen, und aus *m* und *s* schließlich die beiden einseitigen Spuren von ∇u .

Wir erhalten also die Verschiebungsgradienten beiderseits der Grenzfläche und können aus diesen mittels (3.7) den Sprung des Eshelby-Tensors über die Grenzfläche berechnen; den Wert, der in die Berechnung der Randwerte des Potentialproblems eingeht. Verwenden wir die Bezeichnungen aus Formulierung 3.1.1, so erhalten wir dann aus (3.44) unter zusätzlicher Berücksichtigung der Nebenbedingung zur Volumenerhaltung

$$-U_{\Delta}[v] + c = \sigma_{\Gamma}\kappa + [J[u]]_{1}^{0}v \cdot v, \quad \int_{\Gamma} v \, d \, \mathcal{H}^{1} = 0.$$
(3.58)

Die Diskretisierung der Randintegralgleichungen erfolgt nun auf die naheliegende Art und Weise: Nach dem in Abschnitt 5.4 beschriebenen Verfahren projizieren wir die Gleichungen auf einen diskreten Ansatzraum \mathscr{V}_b aus stückweise konstanten oder affinen Funktionen.

Die Potentialgleichung mit Nebenbedingung führt dabei auf ein Blocksystem: Wenn wir mit

$$j = \left[J[u]\right]_{1}^{\circ} \nu \cdot \nu$$

den Sprung des Energie-Impuls-Tensors abkürzen und die Volumenerhaltung über

$$\int_{\Gamma_b} v_b \, d\mathcal{H}^1 = \sum_i \int_{\Gamma_b} \varphi_i \, d\mathcal{H}^1 v_i = l_b \cdot v_b \quad \text{mit } l_b = (l_i)_i, \quad l_i = \int_{\Gamma_b} \varphi_i \, d\mathcal{H}^1 \quad (3.59)$$

diskretisieren, ergibt sich das folgende System mit einer zusätzlichen Zeile für die Nebenbedingung:

$$\begin{pmatrix} -U^{\Delta} & 1\\ l_{b}^{T^{b}} & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_{b}\\ c \end{bmatrix} \end{bmatrix} = \begin{pmatrix} \sigma_{\Gamma}\kappa_{b} + j_{b}\\ 0 \end{pmatrix}$$
(3.60)

Nun bleibt noch die Diskretisierung der geometrischen Aspekte der Grenzfläche, d. h. der Krümmung κ und der Bewegung mit Normalengeschwindigkeit v zu diskutieren.

Der Krümmungsvektor (d. h. das Produkt $k = \kappa \nu$) lässt sich nach [Dzi94] in Eckpunkten mittels

$$k_{i}^{n} = -\frac{\frac{\zeta_{i\oplus1}^{i} - \zeta_{i}^{n}}{|\zeta_{i\oplus1}^{n} - \zeta_{i}^{n}|} - \frac{\zeta_{i}^{n} - \zeta_{i\oplus1}^{n}}{|\zeta_{i}^{n} - \zeta_{i\oplus1}^{n}|}}{\frac{|\zeta_{i\oplus1}^{n} - \zeta_{i}^{n}| + |\zeta_{i}^{n} - \zeta_{i\oplus1}^{n}|}{2}}, \quad \nu_{i}^{n} = \frac{k_{i}^{n}}{|k_{i}^{n}|}, \quad \kappa_{i}^{n} = k_{i}^{n} \cdot \nu_{i}^{n}$$
(3.61)

approximieren, wobei die Indizes so zu verstehen sind, dass mit $i \oplus 1$ und $i \oplus 1$ jeweils der nächste oder vorherige Knoten innerhalb eines Partikels bezeichnet wird. Im Fall von stückweise affinen Ansatzfunktionen erhalten wir dadurch sowohl die Krümmung als auch die Bewegungsrichtung für die Normalengeschwindigkeit v_h in den Kollokationspunkten. Die neuen Positionen der Punkte ξ_i ergeben sich dann durch

$$\xi_i^{n+1} = \xi_i^n + \tau^n v_i^n v_i^n \,. \tag{3.62}$$

Berechnet man die Krümmung aus den Positionen der Knoten zum alten Zeitschritt, so erhält man ein voll explizites Zeitschrittverfahren. Um die dadurch entstehende extreme Zeitschrittweitenbeschränkung zu vermeiden, folgen wir weiter [Dzi94] mit der folgenden semiimpliziten Diskretisierung von $k = \kappa v$:

$$\tilde{k}_{i}^{n} = -\frac{\frac{\xi_{i\oplus1}^{n+1} - \xi_{i}^{n+1}}{|\xi_{i\oplus1}^{n} - \xi_{i}^{n}|} - \frac{\xi_{i}^{n+1} - \xi_{i\oplus1}^{n+1}}{|\xi_{i}^{n} - \xi_{i\oplus1}^{n}|}}{\frac{|\xi_{i\oplus1}^{n} - \xi_{i}^{n}| + |\xi_{i}^{n} - \xi_{i\oplus1}^{n}|}{2}}, \quad \tilde{\kappa}_{i}^{n} = \tilde{k}_{i}^{n} \cdot \nu_{i}^{n}$$
(3.63)

Wenn wir nun weiter das Zeitschrittverfahren (3.62) verwenden, so lässt sich $\tilde{\kappa}^n$ durch die Krümmung κ^n zum alten Zeitschritt und die unbekannte Geschwindigkeit v^n in der folgenden Art und Weise darstellen:

$$\tilde{\kappa}_{i}^{n} = \kappa_{i}^{n} + \tau \frac{\frac{v_{i}^{n} \cdot v_{i\oplus1}^{n}}{h_{i\oplus}^{n}} v_{i\oplus1}^{n} + \frac{v_{i}^{n} \cdot v_{i\oplus1}^{n}}{h_{i\oplus}^{n}} v_{i\oplus1}^{n}}{\frac{h_{i\oplus}^{n} + h_{i\oplus}^{n}}{2}} - \frac{2\tau}{h_{i\oplus}^{n} h_{i\oplus}^{n}} v_{i}^{n}$$
(3.64)

Dabei schreiben wir $h_{i\oplus}^n = |\xi_{i\oplus 1}^n - \xi_i^n|$ und $h_{i\oplus}^n = |\xi_i^n - \xi_{i\oplus 1}^n|$. Wenn wir nun den impliziten Teil der Krümmungsapproximation mittels einer Matrix der Form

$$K = (K_{ij})_{ij}, \quad K_{ij} = \begin{cases} \frac{2\nu_i^n \cdot \nu_{i\oplus1}^n}{h_{i\oplus}^n (h_{i\oplus}^n + h_{i\oplus}^n)} & \text{für } j = i \oplus 1, \\ \frac{2\nu_i^n \cdot \nu_{i\oplus1}^n}{h_{i\oplus}^n (h_{i\oplus}^n + h_{i\oplus}^n)} & \text{für } j = i \oplus 1, \\ -\frac{2\nu_i^n \cdot \mu_{i\oplus1}^n}{h_{i\oplus1}^n h_{i\oplus1}^n} & \text{für } j = i. \end{cases}$$
(3.65)

kodieren, so ergibt sich aus (3.60) die folgende Diskretisierung:

$$\begin{pmatrix} -U_b^{\Delta} - \tau \sigma_{\Gamma} K & 1 \\ l_b^T & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_b^n \\ c^n \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma_{\Gamma} \kappa_b^n + j_b^n \\ 0 \end{pmatrix}$$
(3.66)

Verfahren 3.5.1 (Ostwald-Reifung mit homogener Elastizität) Sei Γ_b^0 eine Menge von Polygonen mit Eckpunkten $(\xi_i^0)_i$ (die gleichzeitig die Kollokationspunkte sind) und $(\tau_n)_n$ eine Folge von Zeitschritten. Dann berechnen wir die Eckpunkte $(\xi_i^n)_i$ der Polygone Γ_b^n für n = 1, ... rekursiv folgendermaßen:

• Berechne den Mittelwert m_h des Verschiebungsgradienten durch

$$m_b = U'_{\text{elast},b}[e_b], \quad \text{wobei} \ e_b = \mathscr{I}_b[(\bar{\varepsilon}_1 - \bar{\varepsilon}_0)v_1].$$

• Berechne den Sprung s_h des Verschiebungsgradienten anhand von

$$s_b \tau = 0$$
 und $C(s_b + s_b^T) v = Ce$

• Berechne einseitige Gradienten $g_h^{0;1}$ und Verzerrungen $\varepsilon_h^{0;1}$ durch

$$g_{b}^{0;1} = m_{b} \mp s_{b} \text{ und } \varepsilon_{b}^{0;1} = \frac{1}{2} (g_{b}^{0;1} + (g_{b}^{0;1})^{T}).$$

• Berechne den Eshelby-Tensor $J_h^{0;1}$ und dessen Normalensprung j_h mittels

$$\begin{aligned} j_h &= (J_h^0 - J_h^1) \mathbf{v}_1 \cdot \mathbf{v}_1, \quad \text{wobei} \\ J_h^{0;1} &= \frac{1}{2} C(\varepsilon_h^{0;1} - \bar{\varepsilon}_{0;1}) : (\varepsilon_h^{0;1} - \bar{\varepsilon}_{0;1}) \mathbb{I} - (g_h^{0;1})^T C(\varepsilon_h^{0;1} - \bar{\varepsilon}_{0;1}). \end{aligned}$$

• Berechne die Geschwindigkeit v_h^n aus dem Gleichungssystem

$$\begin{pmatrix} -U_b^{\Delta} - \tau^n \sigma_{\Gamma} K & 1 \\ l_b^T & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_b^n \\ c^n \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma_{\Gamma} \kappa_b^n + j_b^n \\ 0 \end{pmatrix}.$$

Dabei ist l_b in (3.59), K in (3.65) und κ_b^n in (3.61) definiert. Bei expliziter Approximation der Krümmung ist K = 0.

• Berechne die Eckpunkte $(\xi_i^{n+1})_i$ der Polygone Γ_h^{n+1} des nächsten Zeitschrittes durch

$$\xi_i^{n+1} = \xi_i^n + \tau^n \upsilon_i^n \nu_i^n \,.$$

Eine gewisse Vorsicht ist bei der Entscheidung für den richtigen Ansatzraum angebracht. Wie Abbildung 3.5.1 zeigt, ist bei stückweise konstanten Ansatzfunktionen schon die Rekonstruktion des Gradienten in der Nähe des Randes problematisch. Hier sind in der Regel stetige, stückweise affine Ansatzfunktionen zu bevorzugen.

Für die Rekonstruktion der Gradienten auf dem Rand nach Abschnitt 5.3 (im Gegensatz zur Darstellung im Inneren des Gebietes) sind sogar Hölder-stetige Ableitungen an der entsprechenden Stelle erforderlich, also bleibt die Berechnung der Gradienten auch bei stückweise affinen Ansatzfunktionen auf die inneren Punkte der Randsegmente beschränkt. Wenn diese an Eckpunkten benötigt werden, ist etwa die Interpolation aus zwei benachbarten Segmenten möglich.

Abbildung 3.5.1: Die Komponente $\partial_{x_1}u_1$ des Verschiebungsgradienten, für (a) stückweise konstante und (b) stückweise lineare Ansatzfunktionen.

3.6 Diskretisierung des reduzierten Modells

Die Struktur des reduzierten Problems aus Formulierung 3.3.1 ist ähnlich dem vollen Modell. Wie bisher müssen wir zunächst die Gleichungen der linearisierten Elastizität lösen, um den Gradienten den Verschiebung u zu bestimmen.

$$\operatorname{div} C_{\alpha} \varepsilon[u](x) = 0 \qquad \text{in } \Omega_{\alpha},$$

$$\left[C(\varepsilon[u] - \overline{\varepsilon})\right]_{1}^{0}(x)v = 0 \qquad \text{für alle Kanten } b, v \perp b.$$

Diese gehen über den Eshelby-Tensor zusammen mit der kristallinen Krümmung in die Randwerte des Potentialproblems ein, aus dem die Bewegung der Seiten der Rechtecke berechnet wird.

$$\begin{split} \Delta \mu(x) &= 0 & \text{in } \Omega_0, \, \Omega_1, \\ & \int_b \mu(x) d \,\mathcal{H}^1 + c = \frac{2\sigma_\Gamma}{|b|} + \int_b \left[J[u] \right]_1^0 (x) v \cdot v(x) d \,\mathcal{H}^1 & \text{für alle Kanten } b, v \perp b, \\ & v_k^{(i)} &= \left[\nabla \mu \right]_1^0 (x) \cdot v_k^{(i)} & \text{für } x \in b_k^{(i)}, \\ & \sum_{i=1}^N \sum_{k=1}^4 |b_k^{(i)}| \, v_k^{(i)} &= 0. \end{split}$$

Die Volumenerhaltung in der letzten Zeile ist dabei die Bedingung an v als Element des Tangentialraums.

Auch in der Diskretisierung sind die Änderungen gering: Die Geschwindigkeit ist wegen der vorgeschriebenen Partikelform auf den Seiten des Rechtecks konstant, hier ist also keine weitere Diskretisierung nötig, und konstante Ansatzfunktionen auf den vier Partikelseiten sind angemessen. Eine Galerkin-Approximation des Integraloperators würde auch die Mittelung von μ in den Dirichlet-Randwerten beinhalten, beim Kollokationsansatz bleibt jedoch hier ein Diskretisierungsfehler. Zur Abbildung der wesentlichen qualitativen und quantitativen Effekte scheint diese grobe Diskretisierung durch ein Segment für jede Seite des Rechtecks jedoch in jedem Fall ausreichend, wie auch numerische Experimente im Vergleich mit dem vollen Modell belegen, siehe etwa Abschnitt 3.10.

Ähnliches gilt für die Elastizität. Im Falle gleicher Elastizitätstensoren in beiden Phasen lässt sich wie oben diskutiert ∇u direkt aus $\bar{e}v$ berechnen, welches auf den Kanten des Rechtecks ebenfalls konstant ist. Auch hier würde die Diskretisierung nach Galerkin die Integralmittelung exakt darstellen. Beim Kollokationsansatz verbleibt ein Diskretisierungsfehler, der sich durch numerische Quadraturmethoden in Bezug auf den Sprung des Eshelby-Tensors reduzieren lässt. Dabei setzt man die Kollokationspunkte auf allen Segmenten nicht mehr in die Mitte des Randstücks, sondern lässt sie nacheinander Gauß-Quadraturpunkte durchlaufen und mittelt die Werte des Eshelby-Tensors entsprechend.

Ein weiterer Unterschied besteht in der kristallinen Krümmung. Im Fall einer expliziten Diskretisierung bleibt nichts weiter zu sagen, der Wert

$$\kappa_i = \frac{2}{|b_k^{(j)}|} \quad \text{falls } \xi_i \in b_k^{(j)}, \quad \kappa_b = (\kappa_i)_i \tag{3.67}$$

lässt sich exakt berechnen. Zur Entwicklung einer semidiskreten Approximation sei $l_i(t)$ die Länge eines Segmentes zur Zeit t, dann ist

$$\frac{1}{l_i(\tau)} = \frac{1}{l_i(0)} - \tau \frac{l_i'(0)}{l_i(0)^2} + \mathcal{O}(\tau^2) = \frac{1}{l_i(0)} - \tau \frac{v_{i\oplus 1} + v_{i\oplus 1}}{l_i(0)^2} + \mathcal{O}(\tau^2).$$
(3.68)

Wie oben kodieren wir diese Approximation in eine Matrix

$$K = (K_{ij})_{ij}, \quad K_{ij} = \frac{2}{l_i^2} \quad \text{für } j = i \oplus 1, j = i \oplus 1$$
 (3.69)

und erhalten dann eine diskrete Gleichung analog zu (3.66).

Verfahren 3.6.1 (Ostwald-Reifung mit homogener Elastizität für Rechtecke) Sei zunächst r° eine Menge von Rechtecken (mit Kollokationspunkten in den Seitenmitten) und $(\tau_n)_n$ eine Folge von Zeitschritten. Dann berechnen wir die Rechtecke r^n für n = 1, ... rekursiv folgendermaßen:

- Wiederhole, wobei der Kollokationspunkt auf jedem Segment Gauß-Quadraturpunkte durchläuft:
 - Berechne den Mittelwert m_h des Verschiebungsgradienten durch

$$m_h = U'_{\text{elast},h}[e_h], \quad \text{wobei } e_h = \mathscr{I}_h[(\bar{\varepsilon}_1 - \bar{\varepsilon}_0)v_1].$$

- Berechne den Sprung s_h des Verschiebungsgradienten anhand von

$$s_b \tau = 0$$
 und $C(s_b + s_b^T) v = Ce$.

- Berechne einseitige Gradienten $g_h^{0;1}$ und Verzerrungen $\varepsilon_h^{0;1}$ durch

$$g_{b}^{0;1} = m_{b} \mp s_{b} \text{ und } \varepsilon_{b}^{0;1} = \frac{1}{2} (g_{b}^{0;1} + (g_{b}^{0;1})^{T}).$$

- Berechne den Eshelby-Tensor $J_h^{0;1}$ und dessen Normalensprung j_h mittels

$$J_{b}^{0;1} = \frac{1}{2}C(\varepsilon_{b}^{0;1} - \bar{\varepsilon}_{0;1}) : (\varepsilon_{b}^{0;1} - \bar{\varepsilon}_{0;1})\mathbb{I} - (g_{b}^{0;1})^{T}C(\varepsilon_{b}^{0;1} - \bar{\varepsilon}_{0;1}), \quad j_{b} = (J_{b}^{0} - J_{b}^{1})\nu_{1} \cdot \nu_{1}.$$

- Addiere die Werte von j_h an den Quadraturpunkten eines Segments mit den entsprechenden Gewichten.
- Berechne die Geschwindigkeit v_h^n aus dem Gleichungssystem

$$\begin{pmatrix} -U_{b}^{\Delta} - \tau^{n} \sigma_{\Gamma} K & 1 \\ l_{b}^{T} & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_{b}^{n} \\ c^{n} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma_{\Gamma} \kappa_{b}^{n} + j_{b}^{n} \\ 0 \end{pmatrix}.$$

Dabei ist l_h in (3.59), K in (3.69) und κ_h^n in (3.67) definiert. Bei expliziter Approximation der Krümmung ist K = 0.

• Berechne die Rechtecke zum nächsten Zeitschritt durch

$$r^{n+1} = r^n + \tau_n v_h^n \,.$$

3.7 Lokalisierte Zeitschritte um kleine Partikel

Die Wahl der Zeitschrittweite unterliegt für beide Modelle einer Bedingung der Art

$$\tau \le c_T \min_i \left\{ \frac{h_{i\oplus}}{v_i}; \frac{h_{i\oplus}}{v_i} \right\},\tag{3.70}$$

d. h. dass die Verschiebung τv lokal durch $c_T h$ (in Bezug auf die Länge der beiden benachbarten Segmente) beschränkt sein muss. Diese Bedingung ergibt sich aus rein geometrischen Überlegungen: In der Diskretisierung des vollen Modells kann es zu Selbstüberschneidungen der Randkurve kommen, wenn die in einer Ecke angreifende Verschiebung in Normalenrichtung größer als die (mit c_T skalierte) Länge der beiden benachbarten Segmente ist, der Faktor c_T hängt dabei vom maximal zulässigen Winkel in der Ecke ab. Im Fall des reduzierten Modells muss zumindest verhindert werden, dass die Verschiebung zweier gegenüberliegender Seiten, etwa $\tau(v_1 + v_3)$, größer als die Länge der dazwischen liegenden Seiten $h_2 = h_4$ wird.

Die Einhaltung dieser Bedingung wird ggf. durch eine Anpassung der Zeitschrittweite erzwungen. Unter Umständen sind dadurch, insbesondere wenn ein Partikel kurz vor dem Verschwinden steht, zahlreiche verkürzte Zeitschritte notwendig.

Beim vollen Modell würden dann die erforderlichen Zeitschritte für ein verschwindendes Partikel beliebig klein. Um das zu verhindern, kann man die Diskretisierung kleiner Partikel rechtzeitig vergröbern und die Partikel schließlich entfernen, wenn ihr Volumen unter eine vorgegebene Schranke nahe bei Null fällt.

Im Fall des reduzierten Problems kann es auch sinnvoll sein die Zeitschrittweite zu vergrößern, wenn dadurch ein Partikel exakt auf Volumen Null gebracht wird. Da man dabei jedoch eine Geschwindigkeit, die durch eine semiimplizite Approximation mit einer gegebenen Zeitschrittweite berechnet wurde, im Nachhinein mit einem anderen Faktor skaliert, ist nur eine geringe Vergrößerung des Zeitschrittes zulässig.

Bei Konfigurationen aus vielen tausend Partikeln ergeben sich durch dieses Zeitschrittverfahren zwei Probleme: Neben der starken Beschränkung der Zeitschrittweite durch einzelne kleine Partikel ist die semiimplizite Approximation der kristallinen Krümmung nur für den Fall gültig, dass alle Partikel noch signifikant vom Verschwinden entfernt sind. In der Tat kann die Approximation für verschwindende Partikel auch bei kleinen Geschwindigkeiten beliebig schlecht werden, falls $l_i(\tau)$ nahe bei 0 ist. In diesem Fall kann man ein lokales Zeitschrittverfahren einsetzen, dass die für kleine bzw. verschwindende Partikel angepasste, explizite Zeitschritte rechnet und die Auswirkungen auf die Partikelgesamtheit akkumuliert.

Die Rechtfertigung dafür ist der so genannte Abschirm-Effekt [NO01b, NV06], d. h. die Evolution eines Partikels durch Diffusion wird im Wesentlichen durch die Randwerte des Potentials auf Partikeln in der direkten Umgebung gesteuert. Die Abschirmung gilt in der hier diskutierten Form jedoch nicht für den elastischen Teil der Gleichung, in diesem Teil werden stets alle Partikel berücksichtigt.

Im Einzelnen ist das Vorgehen wie folgt: Zunächst wird wie oben der Elastizitäts-Anteil betrachtet und der Sprung *j* des Eshelby-Tensors berechnet. Dieser Randwert bleibt für alle Teile des folgenden Zeitschrittes fest. Nun wird anhand einer voll-explizit berechneten Geschwindigkeit entschieden, für welche Partikel im folgenden Zeitschritt die Bedingung (3.70) nicht erfüllt wäre, dabei wird die Konstante c_T kleiner gewählt, um ggf. eine Unterschätzung der Geschwindigkeit durch das explizite Verfahren auszugleichen. Diese Partikel bilden die Teilmenge Γ_S (der kleinen bzw. verschwindenden Partikel) des Randes, der Rest sei $\Gamma_L = \Gamma \setminus \Gamma_S$, siehe Abbildung 3.7.1.

Da das Diffusionsproblem linear ist, kann man die Gleichung in zwei Teilprobleme bezüglich dieser beiden Teilen des Randes separieren. Dazu betrachten wir zwei Potentiale μ_s und μ_L mit

Abbildung 3.7.1: (a) Zerlegung des Randes Γ in die Teile Γ_s und Γ_L , sowie (b) die Umgebung Γ_{s*} um Γ_s . In diesem Beispiel enthält Γ_s zur Verdeutlichung nur ein Partikel.

$$\Delta \mu_L = 0 \qquad \text{in } \mathbb{R}^2 \setminus \Gamma_L, \qquad \Delta \mu_S = 0 \qquad \text{in } \mathbb{R}^2 \setminus \Gamma, \quad (3.71)$$

$$\mu_L + c_L = \sigma_L \kappa + j$$
 auf Γ_L , $\mu_S + c_S = 0$ auf Γ_L , (3.72)

$$\mu_S + c_S = \sigma_{\Gamma} \kappa + j - \mu_L - c_L \quad \text{auf } \Gamma_S, \quad (3.73)$$

$$v_L = D \left[\nabla \mu_L \right]_1^\circ \cdot \nu \quad \text{auf } \Gamma_L, \qquad v_S = D \left[\nabla \mu_S \right]_1^\circ \cdot \nu \qquad \text{auf } \Gamma, \quad (3.74)$$

$$\int_{\Gamma_L} v_L = 0, \qquad \qquad \int_{\Gamma} v_S = 0. \tag{3.75}$$

Dann ist $\mu = \mu_S + \mu_L$ die Lösung des Potentialproblems mit Randwerten $\sigma_{\Gamma}\kappa + j$ auf ganz Γ (und der zugehörigen Konstanten $c = c_S + c_L$) sowie $v = v_S + v_L$ die entsprechende global volumenerhaltende Geschwindigkeit. Unter der Annahme, dass O. B. d. A. die Freiheitsgrade von Γ_L in der Aufzählung zuerst gelistet werden, und mit den Abkürzungen $A = -U_{\Delta}$ für den diskreten Operator und $b = \sigma_{\Gamma}\kappa + j$ für die rechte Seite lässt sich dies (mit expliziter Krümmungsdiskretisierung) auch als blockweise Zerlegung des linearen Gleichungssystems deuten:

$$\begin{pmatrix} A_{LL} & A_{LS} & 1\\ A_{SL} & A_{SS} & 1\\ l_L & l_S & 0 \end{pmatrix} \begin{pmatrix} v_L + v_S^1\\ 0 + v_S^2\\ c_L + c_S \end{pmatrix} = \begin{pmatrix} b_L\\ b_S\\ 0 \end{pmatrix}$$
(3.76)

$$\begin{pmatrix} A_{LL} & 0 & 1\\ 0 & 0 & 0\\ l_L & 0 & 0 \end{pmatrix} \begin{pmatrix} v_L \\ 0\\ c_L \end{pmatrix} = \begin{pmatrix} b_L \\ 0\\ 0 \end{pmatrix}$$
(3.77)

$$\begin{pmatrix} A_{LL} & A_{LS} & 1\\ A_{SL} & A_{SS} & 1\\ l_L & l_S & 0 \end{pmatrix} \begin{pmatrix} v_S^1\\ v_S^2\\ c_S \end{pmatrix} = \begin{pmatrix} 0\\ b_S - A_{SL}v_L - c_L 1\\ 0 \end{pmatrix}$$
(3.78)

Dabei löst man zunächst (3.77), das nur die Freiheitsgrade in Γ_L berücksichtigt. Anschließend berechnet man mittels (3.78) nach einer Korrektur der rechten Seite die restliche Geschwindigkeit. Die Summe der Lösungsvektoren löst dann das ursprüngliche Problem (3.76).

Abbildung 3.7.2:

(a) Volumenänderung der Partikel aufgrund des Verschwindens des roten Partikels sowie (b) Ausschnittvergrößerung. Der Kreis markiert den Abschirm-Bereich um das verschwindende Partikel; der Abschirm-Bereich deckt mehr als 99,9% der Volumenänderung ab. (c) Histogramm der Geschwindigkeiten in diesem Zeitschritt.

Also können wir zunächst die Geschwindigkeit v_L (nach dem diskutierten semiimpliziten Verfahren) mittels des Potentials μ_L berechnen. Dabei werden die "kleinen" Partikel vollständig aus der Berechnung entfernt, die Berechnung findet also nur auf Γ_L statt. Anschließend müssen wir für die Berechnung des Potentials μ_S auf ganz Γ die Randwerte auf Γ_S um den Wert des Potentials μ_L korrigieren und auf Γ_L Nullrandwerte fordern.

Dieser Teil des Problems lässt sich nun aufgrund der Abschirm-Eigenschaft vereinfachen. Wie in [NO01b] genügt es, die Nullrandwerte für μ_s statt auf ganz Γ_L nur in einer kleinen Umgebung Γ_{s*} von Γ_s (siehe Abbildung 3.7.1) zu fordern, und auch die Geschwindigkeit v_s^1 , die angibt, wie Masse von den Partikeln in Γ_s nach Γ_L fließt, ist außerhalb von Γ_{s*} klein. Abbildung 3.7.2 zeigt anhand einer Kontrollrechnung ohne Berücksichtigung der Abschirmung, dass die Masse des verschwindenden Partikels fast voll-

Abbildung 3.7.3:

Vergleich einer Rechnung mit lokalen Zeitschritten mit einer Rechnung, bei der in jedem globalen Zeitschritt maximal ein Partikel verschwindet. (a) Gesamtlänge der Grenzfläche, (b) Partikelzahl.

ständig auf die Nachbarn innerhalb des Abschirmbereichs verteilt wird, und die weiter entfernten Partikel nahezu keine Rolle spielen.

Die Berechnung für verschwindende Partikel findet also im modifizierten Verfahren nur in einer kleinen Umgebung der entsprechenden Partikel statt, so dass der Anteil an der Gesamtlaufzeit entsprechend gering ist. Weiterhin sollte hier aufgrund der Probleme der semiimpliziten Approximation bei rechteckigen Partikeln, die im aktuellen Zeitschritt verschwinden könnten, die Krümmung in diesem Fall explizit behandelt werden. Für festen Volumenanteil wählen wir die Abschirmweite proportional zum durchschnittlichen Partikelabstand [NO01b, NV06].

Auf diese Weise führt man nacheinander ggf. mehrere lokale Zeitschritte aus, bis der globale Zeitschritt erreicht ist. Die Zeitschrittweitenbeschränkung (3.70) erzwingt in der Regel kleinere lokale Zeitschritte. Dabei kann aber in jedem der lokalen Zeitschritte ein Partikel verschwinden.

Die berechneten Geschwindigkeiten werden schließlich aufaddiert. Auf diese Weise ist es möglich, bei Berechnungen mit großen Partikelzahlen in einem (globalen) Zeitschritt viele Partikel verschwinden zu lassen, und dabei die Masse der verschwindenden Partikel korrekt auf die Nachbarn zu übertragen. In Abbildung 3.7.3 sehen wir die gute Übereinstimmung zwischen einer Rechnung mit dem lokalen Zeitschrittverfahren und einer Simulation mit dem zu Beginn dieses Abschnitts beschriebenen gewöhnlichen Zeitschrittverfahren.

Verfahren 3.7.1 (Lokales Zeitschrittverfahren) Sei Γ_h^0 eine Menge von Polygonen bzw. Rechtecken von durchschnittlichem Abstand d und τ ein Zeitschritt. Dann berechnen wir die Polygone bzw. Rechtecke Γ_h^1 des nächsten Zeitschrittes folgendermaßen:

• Berechne den Sprung des Eshelby-Tensors j_h wie in Verfahren 3.5.1 bzw. 3.6.1.

- Berechne eine geschätzte Geschwindigkeit v
 _h mit der expliziten Variante von Verfahren 3.5.1 bzw. 3.6.1.
- Zerlege $\Gamma_{h}^{0} = \Gamma_{h}^{L} \dot{\cup} \Gamma_{h}^{S}$ so, dass Γ_{h}^{S} genau die Partikel enthält für die die Zeitschrittweitenbeschränkung (3.70) mit dem globalen Zeitschritt τ und der Geschwindigkeit \tilde{v}_{h} nicht erfüllt wäre. Sei Γ_{h}^{S*} die Menge aller Partikel in Γ_{h}^{L} , die von Γ_{h}^{S} höchstens $C_{S}d$ entfernt sind.
- Berechne die Geschwindigkeit v_h^L auf Γ_h^L aus dem Gleichungssystem

$$\begin{pmatrix} U_{b}^{\Delta;L} - \tau \sigma_{\Gamma} K^{L} & 1 \\ (l_{b}^{L})^{T} & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_{b}^{L} \\ c^{L} \end{bmatrix} = \begin{pmatrix} \sigma_{\Gamma} \kappa_{b}^{L} + j_{b}^{L} \\ 0 \end{pmatrix}.$$

• Berechne das Potential μ_{b}^{L} an den Punkten ξ_{i}^{S} aus Γ_{b}^{S} durch

$$\mu_b^L(\xi_i^S) = U_b^{\Delta;L}[v_b^L](\xi_i^S).$$

- Wiederhole lokale Zeitschritte k = 0, 1, ...beginnend mit $\Gamma_{h;0}^{S} = \Gamma_{h}^{S}$ und $\Gamma_{h;0}^{S*} = \Gamma_{h}^{S*}$ bis $\sum_{l} \tau_{l} = \tau$:
 - Berechne die Geschwindigkeit $v_{b;k}^{S}$ auf $\Gamma_{b;k}^{S} \cup \Gamma_{b;k}^{S*}$ aus dem Gleichungssystem

$$\begin{pmatrix} U_{h}^{\Delta;S} & 1\\ (l_{b}^{S})^{T} & 0 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_{h;k}^{S}\\ c^{S} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} r_{h}^{S}\\ 0 \end{pmatrix}, \ r_{h}^{S}(\xi) = \begin{cases} \sigma_{\Gamma}\kappa_{h}^{S} + j_{h}^{S} - \mu_{h}^{L} & :\xi \in \Gamma_{h;k}^{S}, \\ 0 & :\xi \in \Gamma_{h;k}^{S*}. \end{cases}$$

- Wähle τ_k so, dass maximal ein Partikel verschwindet und $\sum_l \tau_l \leq \tau$.
- Bewege die Partikel in der lokalen Umgebung der verschwindenden Partikel

$$\Gamma_{b;k+1}^{S} = \Gamma_{b;k}^{S} + \tau_{k} v_{b;k}^{S} \quad und \quad \Gamma_{b;k+1}^{S*} = \Gamma_{b;k}^{S*} + \tau_{k} v_{b;k}^{S}$$

• Verwerfe die lokalen Änderungen (an Γ_{b}^{S} und Γ_{b}^{S*}) und bewege alle Partikel (d. h. ganz Γ_{b}) mit der akkumulierten Geschwindigkeit

$$\Gamma_b^1 = \Gamma_b^0 + \tau v_b^L + \sum_k \tau_k v_{b;k}^S \,.$$

Dadurch erreichen auch in Γ_{h}^{1} alle Partikel Volumen Null, die in einem der lokalen Zeitschritte $\Gamma_{h:k}^{S}$ verschwunden sind.

3.8 Validierung

Zur Validierung des numerischen Verfahrens verwenden wir zwei verschiedene Testprobleme, um Diffusion und Elastizität getrennt mit bekannten Lösungen zu vergleichen. Für das Diffusionsproblem betrachten wir dabei ein ringförmiges Partikel wie in Abbildung 3.8.1. In dieser vollständig rotationssymmetrischen Konfiguration lässt sich die Entwicklung der Radien das Partikels durch ein System gewöhnlicher Differentialgleichung ausdrücken [Sto96], wenn wir uns auf die Mullins–Sekerka-Evolution ohne Elastizität beschränken.

Abbildung 3.8.1: Ringförmiges Partikel.

Dazu stellen wir zunächst fest, dass das chemische Potential außerhalb des Partikels (d. h. im inneren Kreis und im Außengebiet) konstant der jeweiligen Krümmung entspricht. Innerhalb des Partikels stellt sich ein logarithmisches Profil ein:

$$\mu(r) = \begin{cases} -\frac{1}{r_1} & :r \le r_1 \\ c_1 \log(r) + c_2 & :r_1 < r < r_2 \\ \frac{1}{r_2} & :r_2 \le r \end{cases}$$
(3.79)

Dabei ist zu beachten, dass wir die Krümmung aus Sicht des Partikels betrachten, auf dem inneren Rand hat diese also das umgekehrte Vorzeichen.

Aufgrund der Stetigkeit von μ lassen sich die Konstanten

$$c_1 = \frac{r_1 + r_2}{r_1 r_2 (\log r_2 - \log r_1)} \quad \text{und} \quad c_2 = -\frac{r_1 \log r_1 + r_2 \log r_2}{r_1 r_2 (\log r_2 - \log r_1)}$$
(3.80)

bestimmen. Daraus berechnet man den Sprung der Normalenableitung zu

$$\dot{r}_2 = v_2 = \left[\nabla\mu(r_2)\right]_1^0 \nu(r_2) = \left[\mu'(r_2)\right]_1^0 = 0 - \frac{c_1}{r_2} = -\frac{r_1 + r_2}{r_1 r_2^2 (\log r_2 - \log r_1)},$$
(3.81)

$$\dot{r_1} = -v_1 = -\left[\nabla\mu(r_1)\right]_1^0 v(r_1) = -\left[-\mu'(r_1)\right]_1^0 = 0 - \frac{c_1}{r_1} = -\frac{r_1 + r_2}{r_1^2 r_2(\log r_2 - \log r_1)}.$$
(3.82)

Mit der Lösung dieses Systems gewöhnlicher Differentialgleichungen können wir nun die numerischen Lösungen vergleichen, um Fehler und Konvergenzordnung in diesem Beispiel zu bestimmen. Tabelle 3.8.1 zeigt den Fehler bei der Berechnung der Geschwindigkeit in einem Zeitschritt, Tabelle 3.8.2 den Fehler im Radius zu einer gegebenen Zeit. In Abbildung 3.8.2 wird die Entwicklung des inneren Radius des kreisförmigen Partikels für verschiedene Zeitdiskretisierungen mit einer numerischen Referenzlösung der gewöhnlichen Differentialgleichung verglichen.

N	e_{b}	eoc		
16	$1,58 \cdot 10^{-2}$			
32	3,71 · 10 ⁻³	2,09		
64	8,99 · 10 ⁻⁴	2,04		
128	$2,22 \cdot 10^{-4}$	2,02		
256	$5,73 \cdot 10^{-5}$	1,96		
512	$1,53 \cdot 10^{-5}$	1,91		

Tabelle 3.8.1:

Konvergenzuntersuchung für ein ringförmiges Partikel. Die Tabelle zeigt den Fehler der Geschwindigkeitsberechnung eines Zeitschrittes in L^{∞} für verschieden feine Diskretisierungen des Randes (anhand der Anzahl N der Kollokationspunkte), d. h. $e_{b} = ||v_{b}(0) - v \circ l_{b}(0)||_{L^{\infty}(\Gamma_{b})}$ sowie die experimentelle Konvergenzordnung eoc = $\frac{\log e_{2b} - \log e_{b}}{\log 2}$.

Zur Untersuchung des Elastizitätsteils verwenden wir ein kreisförmiges Partikel mit Radius r, dessen Fehlpassung ein Vielfaches der Einheitsmatrix ist, d. h. $\bar{\varepsilon}_1 = \varepsilon_0 \mathbb{I}$. Im Fall isotroper Elastizität lässt sich hier die Lösung direkt angeben: Dazu betrachten wir ein radiales Verschiebungsfeld, das im Inneren des Partikels linear ansteigt und außen wie $\frac{1}{r}$ abfällt. Aufgrund der Stetigkeit von u hat es die Form

$$u(x) = \begin{cases} cx & : |x| \le r, \\ c\frac{r^2}{|x|^2}x & : |x| > r, \end{cases}$$
(3.83)

$$\nabla u(x) = \begin{cases} c \mathbb{I} & : |x| < r, \\ c \frac{r^2}{|x|^2} (\mathbb{I} - 2\frac{xx^T}{|x|^2}) & : |x| > r. \end{cases}$$
(3.84)

Die lineare Funktion im Inneren löst offensichtlich Gleichung (2.6), im Außengebiet be-

Abbildung 3.8.2:

Entwicklung des inneren Radius eines ringförmiges Partikels. Referenzlösung der gewöhnlichen Differenzialgleichung und Randelemente-Lösungen für verschiedene Anzahlen von Zeitschritten.

rechnen wir mittels (2.5)

$$\begin{aligned} \operatorname{div} \sigma &= \operatorname{div} \left(\lambda \operatorname{tr} \varepsilon [u] \mathbb{I} + 2\mu \varepsilon [u] \right) \\ &= c r^2 \operatorname{div} \left(\frac{\lambda}{|x|^2} \left(2 - 2\frac{x_1^2 + x_2^2}{|x|^2} \right) \mathbb{I} + \frac{2\mu}{|x|^2} \left(\mathbb{I} - 2\frac{xx^T}{|x|^2} \right) \right) \\ &= 2\mu c r^2 \operatorname{div} \left(\frac{1}{|x|^2} \left(\mathbb{I} - 2\frac{xx^T}{|x|^2} \right) \right) = 2\mu c r^2 \left(\frac{-2x}{|x|^4} - 2\operatorname{div} \frac{xx^T}{|x|^4} \right) = 0, \end{aligned}$$

wobei sich die Divergenz in der letzten Zeile durch

$$\partial_1 \frac{x_1^2}{|x|^4} + \partial_2 \frac{x_1 x_2}{|x|^4} = \frac{2x_1 |x|^4 - 4x_1^3 |x|^2}{|x|^8} + \frac{x_1 |x|^4 - 4x_1 x_2^2 |x|^2}{|x|^8} = -\frac{x_1}{|x|^4},$$

und die entsprechende Rechnung für die zweite Komponente berechnen lässt.

Zur Bestimmung von *c* betrachten wir die Normalenspannungen $t_{\alpha} = C(\varepsilon[u] - \overline{\varepsilon}_{\alpha})v$

$$t_{1} = \lambda_{1}(2c - 2\varepsilon_{0})\nu + \mu_{1}(2c\nu - 2\varepsilon_{0}\nu)$$

= $2(\lambda_{1} + \mu_{1})(c - \varepsilon_{0})\nu$ und
$$t_{0} = \lambda_{0}(2c - 2c\operatorname{tr}(\nu\nu^{T}))\nu + \mu_{0}(2c\nu - 4c\nu\nu^{T}\nu)$$

= $-2\mu_{0}c\nu$

М	1		2		4		8		16
N	$e_{ au}$	eoc	$e_{ au}$	eoc	$e_{ au}$	eoc	$e_{ au}$	eoc	$e_{ au}$
16	$4,98 \cdot 10^{-2}$	0,82	$2,81 \cdot 10^{-2}$	0,97	$1,43 \cdot 10^{-2}$	1,18	$6,34 \cdot 10^{-3}$	1,66	$2,01 \cdot 10^{-3}$
32	$2,97 \cdot 10^{-2}$	0,89	1,61 · 10 ⁻²	0,97	$8,18 \cdot 10^{-3}$	1,06	$3,92 \cdot 10^{-3}$	1,22	1,69 · 10 ⁻³
64	$1,65 \cdot 10^{-2}$	0,93	$8,62 \cdot 10^{-3}$	0,98	$4,36 \cdot 10^{-3}$	1,03	$2,14 \cdot 10^{-3}$	1,09	$1,00 \cdot 10^{-3}$
128	$8,72 \cdot 10^{-3}$	0,96	$4,47 \cdot 10^{-3}$	0,99	$2,25 \cdot 10^{-3}$	1,01	$1,12 \cdot 10^{-3}$	1,04	$5,42 \cdot 10^{-4}$
256	$4,50 \cdot 10^{-3}$	0,98	$2,28 \cdot 10^{-3}$	0,99	$1,14 \cdot 10^{-3}$	1,01	5,69 · 10 ⁻⁴	1,02	$2,81 \cdot 10^{-4}$

Tabelle 3.8.2:

Konvergenzuntersuchung für ein ringförmiges Partikel. Die Tabelle zeigt den Fehler $e_{\tau} = \max_i ||\xi_i| - r|$ der Radien (d.h. den Abstand der Kollokationspunkte ξ_i vom Radius r aus der Lösung der gewöhnlichen Differentialgleichung) zur Zeit t = 0,125 und die daraus berechnete experimentelle Konvergenzordnung eoc (siehe Tabelle 3.8.1) in Bezug auf die Zeitdiskretisierung. Die Größe eines Zeitschrittes ist $\tau = \frac{1}{NM}$, dabei bezeichnet N die (vertikal aufgetragene) Anzahl der Kollokationspunkte und M einen (horizontal aufgetragenen) Zeitschritt-Faktor. Die experimentelle Konvergenzordnung wird jeweils zwischen zwei Rechnungen mit gleicher Ortsdiskretisierung und unterschiedlich feiner Zeitdiskretisierung gemessen.

auf dem Rand des Partikels. Das Kräftegleichgewicht $t_0 = t_1$ impliziert dann

$$(c - \varepsilon_0)(\lambda_1 + \mu_1) = -c \mu_0$$
, $c = \frac{\varepsilon_0(\lambda_1 + \mu_1)}{\lambda_1 + \mu_1 + \mu_0}$. (3.85)

Nun können wir die Spannungen auf dem Rand berechnen, in Tabelle 3.8.3 werden diese mit dem numerischen Ergebnis verglichen.

N	e_b	eoc		
16	$4,41 \cdot 10^{-2}$			
32	$2,25 \cdot 10^{-2}$	0,97		
64	$1,14 \cdot 10^{-2}$	0,99		
128	$5,72 \cdot 10^{-3}$	0,99		
256	$2,87 \cdot 10^{-3}$	1,00		
512	$1,43 \cdot 10^{-3}$	1,00		

Tabelle 3.8.3:

Konvergenzuntersuchungen für ein kreisförmiges Partikel. Die Tabelle zeigt den Fehler der Spannungen auf dem Rand in L^{∞} für verschieden feine Diskretisierungen des Randes (anhand der Anzahl N der Kollokationspunkte), d. h. $e_b = ||\sigma_b - \sigma \circ l_b||_{L^{\infty}(\Gamma_b)}$ sowie die experimentelle Konvergenzordnung $eoc = \frac{\log e_{2b} - \log e_b}{\log 2}$.

3.9 Partikelformen und Partikel-Interaktion

In den folgenden Kapiteln zeigen wir einige Ergebnisse der beschriebenen Simulationsverfahren. Zunächst betrachten wir typische Partikelformen für verschiedene Arten von Anisotropien. Dazu betrachten wir in Abbildung 3.9.1 die Evolution eines Partikels im vollen Modell, für verschiedene Anisotropien im Elastizitätstensor und in der Fehlpassung. Die Entstehung sehr scharfer Ecken insbesondere im Fall negativer Anisotropie rechtfertigt die Approximation der Partikel im reduzierten Modell.

Weiterhin zeigen wir zwei Beispiele für die Wechselwirkung benachbarter Partikel, nämlich die Anziehung von Partikeln bei inhomogener Elastizität und die Ausrichtung entlang der Anisotropie-Achsen (Abbildung 3.9.2). Weitere Beispiele insbesondere für die Ausrichtung der Partikel finden sich in den folgenden Abschnitten.

Im Allgemeinen verwenden wir hier (und in den folgenden Abschnitten) die Parameter

$$\sigma_{\Gamma} = 0,094, \quad (c_{11}; c_{12}; c_{44}) = 200(3; 1; 100), \quad \bar{\varepsilon} = 0,1\mathbb{I};$$

eine andere Parameterwahl wird jeweils bei der entsprechenden Rechnung erwähnt. Die Berechnung findet grundsätzlich im Einheitsquadrat statt. Die Parameter wurden derart gewählt, um den Effekt der elastischen Anisotropie zu betonen und erheben nicht den Anspruch ein existierendes Material abzubilden.

Abbildung 3.9.1:

Entwicklung der Partikelform bei (a) positiver, d. h. $(c_{11}; c_{12}; c_{44}) = 100(30; 1; 1)$, und (b) negativer, d. h. $(c_{11}; c_{12}; c_{44}) = 200(3; 1; 100)$ Anisotropie, sowie (c) bei anisotroper Fehlpassung $\bar{\varepsilon} = 0, 1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Abbildung 3.9.2:

(a) Anziehung zweier Partikel bei inhomogener Elastizität, die Matrix ist viermal härter als die Partikel. (b) Ausrichtung einer Partikelkette bei anisotroper Elastizität.

3.10 Vergleich der Modelle

Zum Vergleich des reduzierten Modells aus Formulierung 3.3.1 mit dem vollen Modell nach Formulierung 3.1.1 berechnen wir die Evolution eines kleinen Ensembles von Partikeln. Um eine sinnvolle Startkonfiguration für beide Modelle zu generieren, beginnen wir zunächst mit kreisförmigen Partikeln im vollen Mullins–Sekerka-Modell und berechnen einige kleine Zeitschritte, bis sich die Partikelformen relaxiert haben. Dies geschieht vergleichsweise schnell. Zu dieser Konfiguration generieren wir nun eine passende Geometrie aus rechteckigen Partikeln, die Partikel mit demselben Seitenverhältnis und Volumen an denselben Positionen enthält. Die Vergleichsrechnung benutzt dann diese Konfiguration für das reduzierte Modell. Für das volle Modell verwenden wir die Geometrie mit den schon relaxierten Partikelformen als Startkonfiguration. Auf diese Weise erreichen wir eine bessere Vergleichbarkeit der Rechnungen.

Abbildung 3.10.2 zeigt die Ergebnisse der beiden Rechnungen zu verschiedenen Zeiten, in Abbildung 3.10.1 vergleichen wir die Entwicklung der Oberflächenenergie über die Zeit. Schließlich zeigt Abbildung 3.10.3 verschiedene Größen aus der Elastizität für den ersten Zeitschritt. Einen qualitativen Vergleich zweier Rechnungen mit ca. 150 zufällig verteilten Partikeln sehen wir in den Abbildungen 3.10.4 und 3.10.5.

Abbildung 3.10.1: Entwicklung der Grenzflächenenergie für die beiden Modelle.

Abbildung 3.10.2:

Evolution der Grenzflächen für das Mullins–Sekerka Modell (oben) und das reduzierte Modell (unten). Die dargestellten Zeitschritte sind jeweils die Startkonfiguration t = 0 sowie t = 0,0003; 0,0006; 0,0011; 0,002; 0,004.

Abbildung 3.10.3:

Spur der Verzerrung, Spur der Spannung und elastische Energiedichte für das Mullins–Sekerka Modell (links) und das reduzierte Modell (rechts), jeweils in der Startkonfiguration. Die Farbskala wurde jeweils für beide Modelle gleich gewählt.

Abbildung 3.10.4:

Qualitativer Vergleich zweier Rechnungen mit zu Beginn jeweils ca. 150 zufällig verteilten Partikeln bei einem Volumenanteil von 25%. Drei Zeitschritte illustrieren die Geschwindigkeit der Vergröberung und die Ausrichtung benachbarter Partikel. Die Parameter sind $\sigma_{\Gamma} = 0,04$ und $(c_{11}; c_{12}; c_{44}) = 50(3; 1; 200)$ bei $\bar{\varepsilon} = 0,05\mathbb{I}$.

Abbildung 3.10.5:

Energiegraphen zu den Rechnungen aus Abbildung 3.10.4, für Oberflächenenergie und elastische Energie, jeweils im (a) vollen und (b) reduzierten Modell. In beiden Fällen spielt zunächst die Verringerung der Oberflächenenergie die wesentliche Rolle, erst in der zweiten Hälfte des Vergröberungsprozesses liegen die Effekte beider Energiebeiträge in derselben Größenordnung. Teilweise erhöht sich hier die Oberflächenenergie wieder, um eine Verringerung der elastischen Energie zu ermöglichen. Im Vergleich der Gesamtenergien (c) erkennt man die gute qualitative Übereinstimmung des Vergröberungsverhaltens. Erst gegen Ende der Vergröberung, wenn nur noch wenige Partikel vorhanden sind, werden die Unterschiede größer und das reduzierte Modell bildet das Verbalten nicht mehr angemessen ab.

3.11 Statistik des Vergröberungsprozesses

In diesem Abschnitt betrachten wir nun einige Simulationen des reduzierten Modells mit 10000 bzw. 25000 Partikeln – ausreichend viele Partikel um statistische Aussagen über die Partikelverteilung machen zu können. Dabei sind die Parameter grundsätzlich

$$\sigma_{\Gamma} = 0,04$$
, $(c_{11}; c_{12}; c_{44}) = Z(3; 1; 200)$ und $\varepsilon_0 = 0,05$

mit unterschiedlichen Werten für Z.

Wir beginnen mit zwei Simulationen mit 10000 Partikeln und Z = 250 bzw. Z = 500. Abbildung 3.11.1 und 3.11.2 zeigen nebeneinander die Entwicklung der Partikel für verschiedene Zeiten, man sieht deutlich die Vergröberung, die Ausrichtung benachbarter Partikel und den Übergang von quadratischen zu rechteckigen Partikeln. Insbesondere in Bezug auf Ausrichtung und Form der Partikel sind die Effekte bei Z = 500 deutlich stärker. Daher werden in Abbildung 3.11.5 und 3.11.6 noch einmal zwei Zeitschritte der Rechnung vergrößert dargestellt.

Zur Untersuchung der Partikel-Ausrichtung eignet sich die Betrachtung der Fouriertransformation der charakteristischen Funktion einer Phase, die in Abbildung 3.11.3 für einige der betrachteten Zeitschritte abgebildet wird. Man erkennt in beiden Rechnungen die zunehmende Konzentration der Partikelausrichtung auf die Koordinatenrichtungen. Schließlich illustrieren die Graphen in Abbildung 3.11.4 die Entwicklung der Grenzflächenenergie sowie des durchschnittlichen Radius und Seitenverhältnisses. Besonders markant ist hierbei die Tatsache, dass bei stärkerer Elastizität der Übergang von nahezu quadratischen zu länglichen Partikeln früher stattfindet, dies hat offenbar auch signifikanten Einfluss auf die Vergröberungsrate.

Abschließend zeigen Abbildung 3.11.7 und 3.11.8 erste Zeitschritte einer noch größeren Rechnung mit 25 000 Partikeln.

Abbildung 3.11.1: Zwei Rechnungen mit 10000 Partikeln.

Abbildung 3.11.2: Fortsetzung von Abbildung 3.11.1.

Abbildung 3.11.3: Betrag der Fouriertransformation zu Abbildung 3.11.1.

Entwicklung des (a) durchschnittlichen Radius und (b) Seitenverhältnisses der Partikel sowie (c) der Grenzflächenenergie in der Rechnung aus Abbildung 3.11.1.

Abbildung 3.11.5: Vergrößerung zu Abbildung 3.11.1 zur Zeit t = 0.

Abbildung 3.11.6: Vergrößerung zu Abbildung 3.11.1, $t = 2,1 \cdot 10^{-6}$ und Z = 500.

Abbildung 3.11.7: Startkonfiguration mit 25 000 Partikeln.

Abbildung 3.11.8: Entwicklung von Abbildung 3.11.7 bei $Z = 1000, t = 2,7 \cdot 10^{-8}$.

3.12 Ausblick

Die existierende Implementierung beschränkt sich auf die Situation, in denen der Elastizitätstensor in der Matrix und den Partikeln gleich ist, so dass die Darstellung des Gradienten über Gleichung (5.37) möglich ist. Dabei kann der Gradient ∇u direkt aus der Fehlpassung $\bar{\varepsilon}v$ mittels des Cauchy-singulären Operators U' berechnet werden, ohne dass man vorher die Randwerte der elastischen Verschiebung berechnen muss.

Bei inhomogener Elastizität erfordert die Berechnung des Verschiebungsgradienten über (5.36) im Gegensatz dazu die Diskretisierung des hypersingulären Operators V'. Außerdem werden für die Darstellungsformel die Randwerte der Verschiebung und der Normalenspannung benötigt, so dass davor das Randwertproblem der linearisierten Elastizität zu lösen ist. Dadurch steigt der Aufwand sowohl während der Implementierung als auch zur Laufzeit, grundsätzliche Probleme stehen dem jedoch nicht entgegen.

In vielen Materialien unterscheiden sich die Elastizitätstensoren der beiden Phasen jedoch deutlich. Daher ist die Erweiterung auf inhomogene Elastizität insbesondere im Hinblick auf die Anwendung naheliegend. Die wesentlichen Teile eines erweiterten Verfahrens wurden in Abschnitt 3.5 bereits beschrieben.

In dem hier diskutierten Ansatz betrachtet man eine Menge von Partikeln, die in einer beschränkten Teilmenge der unbegrenzten Hintergrundmatrix eingebettet sind. Dabei ergibt sich in der Nähe des Randes des von Partikeln besetzten Gebietes ein teilweise artifizielles Verhalten. Wie in Abschnitt 4.3 des folgenden Kapitels für ein anderes Problem beschrieben, bietet sich für Mikrostrukturen in vielen Fällen ein Homogenisierungsansatz an, in dem das makroskopische Verhalten durch das Lösen mikroskopischer Zellprobleme dargestellt wird. In ähnlicher Weise kann man auch für das Problem der Ostwald-Reifung die Simulation auf ein periodisches Zellproblem beschränken, entsprechende Diskretisierungsansätze werden ebenfalls im folgenden Kapitel (Abschnitt 4.5) beschrieben.

4 Magnetische Formgedächtnis-Materialien

Der ferromagnetische Formgedächtnis-Effekt (*magnetic shape memory: MSM*) lässt sich über zwei charakteristische Eigenschaften beschreiben: Zum einen die Existenz eines Phasenübergangs [Bha03], indem eine sehr symmetrische, bei hohen Temperaturen stabile Konfiguration des Kristallgitters, die so genannte Austenit-Phase, in eine weniger symmetrische, bei niedrigerer Temperatur stabile Martensit-Phase übergeht (siehe auch Abbildung 1.2); zum anderen die Kopplung einer magnetischen Anisotropie an die loka-le Variante der martensitischen Phase zusammen mit der leichten Umschaltbarkeit dieser Varianten.

Der Austenit-Martensit-Phasenübergang entspricht demjenigen bei klassischen Formgedächtnis-Materialien. Bei diesen kann bereits durch geringe äußere Kräfte die Mischung der Varianten im Martensit geändert werden. Im Unterschied dazu erlaubt die hier diskutierte Kopplung an die magnetischen Eigenschaften die Beeinflussung der Mikrostruktur des Martensits durch Magnetfelder, vgl. Abbildung 4.1.

Die tatsächlichen Symmetrien des dreidimensionalen Kristallgitters können sehr komplex sein. Für das im Folgenden numerisch untersuchte zweidimensionale Modell wollen wir uns jedoch auf die folgende Modellvorstellung einschränken: Der Übergang zur Niedrigtemperatur-Phase bestehe aus einer Verkürzung in einer Richtung und einer (entsprechend großen, d. h. insgesamt volumenerhaltenden) Verlängerung in eine andere Richtung. Er lässt sich also (in einem geeigneten, dem Kristallgitter angepassten Koordinatensystem) durch eine Verzerrungsmatrix der folgenden Form beschreiben:

$$\begin{pmatrix} -\varepsilon_0 & 0 \\ 0 & \varepsilon_0 \end{pmatrix}$$

Dabei soll die magnetische Anisotropie die verkürzte Richtung bevorzugen. Der Parameter ε_0 beschreibt also die relative Verkürzung in einem Einkristall. Das dreidimensionale Modell unterscheidet sich hiervon lediglich in der Anzahl der martensitischen Varianten und der Form der jeweiligen Gitterverzerrung.

Abbildung 4.1:

(a) Austenit. (b) Martensit mit zwei Varianten. (c) Umschalten zu einer Variante durch ein Magnetfeld. (d) Bewegung der Grenze zwischen zwei Varianten durch ein Magnetfeld, vgl. [OMM⁺00].

4.1 Mikrostrukturierte Materialien

Für solche Einkristalle liegt ε_0 in einer Größenordnung von bis zu 10%. Ein typisches Beispiel (auf dessen Modellierung und Simulation wir uns hier konzentrieren wollen) ist Ni₂MnGa, für das Längenänderungen von bis zu 5,5% gemessen wurde [UHK⁺96, TJS⁺99, MMA⁺00, SGS⁺05].

Ein Polykristall besteht im Gegensatz zum Einkristall aus Körnern, in denen das Kristallgitter unterschiedlich ausgerichtet ist. Das Verhalten eines solchen mikrostrukturierten Materials hängt stark von der lokalen Struktur ab: Die Deformations-Gradienten auf den beiden Seiten einer Grenzfläche müssen kompatibel sein [Mül99], d. h. die Differenz der beiden Matrizen muss eine Rang-1-Matrix sein. Dies schränkt die Menge der möglichen Deformationen stark ein und reduziert damit die makroskopisch zu beobachtende Verformung [AMA⁺01, UES⁺01].

Ein alternativer Ansatz besteht im Erstellen eines zusammengesetzten Materials, d. h. eines Komposits, indem man kleine, einkristalline aktive Partikel in eine weiche polymere Hintergrundmatrix einbettet [SHG⁺07, FMJ⁺03, FGH⁺04]. Im Gegensatz zum Polykristall hat man hierbei größere Einflussmöglichkeiten beim Design des zusammengesetzten Materials, etwa bei der Wahl des Polymers, sowie bei Form, Anordnung, Größe und Dichte der MSM-Partikel [SBA04]. Dieser Ansatz wurde bei magnetostriktiven Materialien wie Terfenol-D bereits erfolgreich umgesetzt [SFC⁺94, ONMC03]. In diesem Fall zeigte sich, dass die Verwendung länglicher Partikel und deren Ausrichtung an einem externen Feld während der Verfestigung des Polymers die makroskopische Verformung des Materials deutlich vergrößern.

Theoretische Untersuchungen der Bedeutung der Geometrie der Mikrostruktur für das makroskopische Verhalten haben sich bisher auf den Fall kleiner, weit entfernter, ellipsoider Partikel in einem Komposit konzentriert [FFH04, LJH06]. Erste numerische Simulationen für magnetostriktive Komposite unter Verwendung einer gitterlosen Methode mit zusätzlichen auf die Sprungbedingungen angepassten Ansatzfunktionen wurden in [WCS03] vorgestellt.

Abbildung 4.1.1:

Die Abbildung zeigt einen Ausschnitt zweier periodischer Mikrostrukturen, einen Polykristall und ein Komposit. Das Schachbrett-Muster verdeutlicht die Ausrichtung des Kristallgitters, die Farbschattierung die elastische Energiedichte. Eine detaillierte Diskussion der numerischen Ergebnisse findet in Kapitel 4.10 statt.

Dieses Kapitel der vorliegenden Arbeit beschäftigt sich mit der numerischen Bestimmung makroskopischer Eigenschaften solcher Materialien. Abschnitt 4.2 beschreibt ein allgemeines kontinuumsmechanisches Modell für magnetische Formgedächtnis-Materialien (das sich sowohl zur Beschreibung von Polykristallen als auch von zusammengesetzten Materialien eignet) auf der Basis von Elastizität und Mikromagnetismus. Dabei beschreibt ein Phasenparameter die lokale Martensit-Variante des MSM-Materials. Jede der Varianten hat eine andere Eigenverzerrung, die einer Verkürzung entlang einer der Richtungen des Kristallgitters entspricht. Neben der Eigenverzerrung hängt auch die magnetische Anisotropie vom Phasenparameter ab, hier ist die verkürzende Richtung die magnetisch bevorzugte. Die Magnetisierung interagiert mit einem externen Feld mittels eines Zeeman-Terms, sowie mit sich selbst über das Demagnetisierungsfeld. Im Fall eines zusammengesetzten Materials verformt sich neben den MSM-Partikeln auch die Polymer-Matrix elastisch.

Anschließend diskutieren wir in Abschnitt 4.3 einen Ansatz zur Beschreibung des effektiven Verhaltens mikrostrukturierter Materialien, der auf Methoden aus der Homogenisierungstheorie [Wil81, OSY92, BD98, CD99] basiert. Falls die Mikrostruktur auf einer Skala periodisch ist, die signifikant unter der Größe des Gesamt-Werkstücks liegt, lässt sich das Problem dabei in einem makroskopischen Teil (der nur die Form des Werkstücks berücksichtigt) und einem mikroskopischen Teil (basierend auf der Geometrie der Mikrostruktur) zerlegen. Für ein einfaches Beispiel (in dem die Kopplung schwach und das makroskopische Problem analytisch lösbar sind) diskutieren wir das Zusammenwirken der beiden Teilprobleme. Ansonsten beschränkt sich die vorliegende Arbeit auf den mikroskopischen Anteil, mittels dessen sich effektive Eigenschaften berechnen lassen, die dann in die Lösung des makroskopischen Problems eingehen. Dadurch lässt sich der Einfluss der Mikrostruktur auf das makroskopische Materialverhalten beschreiben; dies gibt Hinweise zur Verbesserung der Materialeigenschaften durch das Verändern der Mikrostruktur.

Das numerische Verfahren approximiert das Zellproblem unter einigen weiteren Annahmen, die insbesondere auf den Fall kleiner, harter Partikel in einem Komposit zugeschnitten sind, siehe Abschnitt 4.4. Dabei werden Magnetisierung und Verzerrung innerhalb eines Partikels als konstant angenommen. Die eigentliche numerische Berechnung erfolgt mittels eines Randelemente-Verfahrens, die Implementierung wird in Abschnitt 4.5 für den zweidimensionalen Fall diskutiert und durchgeführt. Ein Beispiel für die numerische Lösung des Zellproblems zeigt Abbildung 4.1.1. In Abschnitt 4.11 werden die Auswirkungen verschiedener Parameter der Mikrostruktur auf das makroskopische Verhalten systematisch numerisch untersucht.

Das Modell aus Abschnitt 4.2 basiert teilweise auf Ansätzen aus [DJ97, JW98, O'H98, TJS⁺99, LU00, DJ02]. Eine grundsätzliche Darstellung der Modellierung martensitischer Phasenübergänge findet man in [Bha03]. Im Hinblick auf die numerische Implementierung und aus Gründen der Übersichtlichkeit wird das Modell ebenfalls nur für den zweidimensionalen Fall diskutiert. Das Modell und die numerischen Verfahren wurden bereits sowohl für den Fall zusammengesetzter Materialien [CLR07b] als auch für Polykristalle [CLR07a] in Zeitschriftenartikeln veröffentlicht.

Abbildung 4.2.1:

Referenzkonfiguration für (a) Komposite und (b) Polykristalle. (c), (d) Deformierte Konfiguration. Dabei ist die Funktion $Q : \omega \to SO(2)$, die die Rotation des Kristallgitters im Vergleich zum Standard-Koordinatensystem angibt, in der Referenzkonfiguration definiert, die Funktion $m : \Omega \to S^1 \cup \{0\}$ (die Magnetisierung) jedoch in der deformierten Konfiguration.

4.2 Modellierung des Gleichgewichtszustandes

Sei $\Omega \subset \mathbb{R}^2$ das vom Material beanspruchte Gebiet, davon $\omega \subset \Omega$ das MSM-Material. Im Falle eines Komposits enthalte $\Omega \setminus \omega$ das isotrop elastische, nicht magnetische Hintergrundmaterial, ansonsten sei $\omega = \Omega$. Das Formgedächtnis-Material habe zwei Phasen mit unterschiedlicher bevorzugter Verzerrung und unterschiedlicher magnetischer Anisotropie.

Weiterhin sei $u: \Omega \to \mathbb{R}^2$ die elastische Verschiebung, $\varphi = \mathbb{I} + u$ die Deformation (vgl.

Abschnitt 2.1),

$$p: \omega \to \{1, 2\} \tag{4.1}$$

der Phasenparameter des MSM-Materials und $m : \mathbb{R}^2 \to S^1 \cup \{0\}$ die normierte Magnetisierung (siehe Abschnitt 2.2). Dabei sind u und p auf dem Referenzgebiet, m jedoch auf dem deformierten Gebiet definiert. d. h. wenn ein Punkt x des Materials durch die elastische Deformation auf einen Punkt $\varphi(x)$ abgebildet wird, ist dessen Phasenindex p(x), die Magnetisierung jedoch $m(\varphi(x))$. Weiterhin sei φ injektiv, so dass Selbstdurchdringungen ausgeschlossen sind. Das die Hintergrundmatrix bildende Polymer sei nicht magnetisch, d. h. m verschwindet außerhalb von ω . Schließlich bezeichne

$$Q: \omega \to SO(2) \tag{4.2}$$

die Ausrichtung des Kristallgitters innerhalb des aktiven Materials, dabei wählt p aus, welche der beiden Achsen dieses Gitters die verkürzende und magnetisch bevorzugte ist.

Das Modell besteht aus zwei wesentlichen Teilen, der linearisierten Elastizität nach Formulierung 2.1.1 und dem Mikromagnetismus gemäß Formulierung 2.2.3, gekoppelt durch den Phasenparameter p. Dieser selektiert in Bezug auf die Elastizität die Variante der lokalen Eigenverzerrung, in Bezug auf den Mikromagnetismus die bevorzugte Magnetisierungsrichtung. Beide sind in Relation zur jeweiligen Gitterorientierung Q zu sehen.

Im Standard-Koordinatensystem haben die beiden Varianten der Eigenverzerrung $\bar{\varepsilon}$ und der magnetischen Anisotropie γ die Form

$$\bar{\varepsilon}_1 = \begin{pmatrix} -\varepsilon_0 & 0\\ 0 & \varepsilon_0 \end{pmatrix}, \qquad \qquad \bar{\varepsilon}_2 = \begin{pmatrix} \varepsilon_0 & 0\\ 0 & -\varepsilon_0 \end{pmatrix}, \qquad (4.3)$$

$$\gamma_1(m) = \frac{m_2^2}{|m|^2}, \qquad \gamma_2(m) = \frac{m_1^2}{|m|^2}.$$
 (4.4)

Nach (2.13) lässt sich die elastische Energie des MSM-Materials also folgendermaßen darstellen, wobei W_{part} die anisotrope elastische Energiedichte der MSM-Legierung ist:

$$\mathcal{E}_{\text{elast}}^{\text{part}}[u,p] = \int_{\omega} W_{\text{part}}(Q^T(x)\varepsilon[u](x)Q(x) - \bar{\varepsilon}_{p(x)})dx$$
(4.5)

Zur Berechnung der Anisotropie-Energie ist zu berücksichtigen, dass die Magnetisierung in der deformierten Konfiguration definiert ist, der Phasenparameter und die Gitterorientierung jedoch in der Referenzkonfiguration. Wir müssen also p und Q jeweils an der mit φ^{-1} zurückgezogenen Position auswerten. Außerdem muss die Magnetisierung m in das Standard-Koordinatensystem für γ zurück transformiert werden, d. h. zunächst entsprechend des Rotationsanteils $R(\nabla \varphi)$ der Deformation in die undeformierte Konfiguration, von dort entsprechend der Gitterorientierung Q in Standard-Koordinaten.

$$\mathscr{E}_{\mathrm{anis}}[\varphi, m, p] = K_{u} \int_{\varphi(\omega)} \gamma_{p(\varphi^{-1}(y))} \left(Q(\varphi^{-1}(y))^{T} R\left((\nabla \varphi)(\varphi^{-1}(y)) \right)^{T} m(y) \right) dy.$$
(4.6)

Der Rotationsanteil einer Matrix sei dabei durch $R(F) = F(F^T F)^{-1/2}$ über die Polarzerlegung definiert. Im Kontext linearisierter Deformationen ist (für kleine Drehwinkel) die Approximation über den schiefsymmetrischen Anteil des Gradienten $R(\mathbb{I} + F) \approx$ $\mathbb{I} + \frac{1}{2}(F - F^T)$ naheliegend.

Mit diesen Überlegungen lässt sich die Gesamtenergie des Systems folgendermaßen darstellen:

Formulierung 4.2.1 (Energie für magnetische Formgedächtnis-Materialien)

Set $\omega \subset \Omega \subset \mathbb{R}^2$ sowie $Q : \omega \to SO(2)$. Gesucht sind $u : \Omega \to \mathbb{R}^2$, $p : \omega \to \{1,2\}$ und $m : \mathbb{R}^2 \to S^1 \cup \{0\}$ mit supp $(m) \subset \varphi(\omega)$, $\varphi = \mathbb{I} + u$, so dass die folgende Energie minimal wird:

$$\mathscr{E}[u,m,p] = \mathscr{E}_{elast}^{matr}[u] + \mathscr{E}_{elast}^{part}[u,p] + \mathscr{E}_{ext}[\mathbb{I}+u,m]$$
(4.7)

$$+\mathscr{E}_{demag}[\mathbb{I}+u,m]+\mathscr{E}_{anis}[\mathbb{I}+u,m,p], \qquad (4.8)$$

$$\mathscr{E}_{\text{elast}}^{\text{matr}}[u] = \int_{\Omega \setminus \omega} W_{\text{matr}}(\varepsilon[u](x)) \, dx \,, \tag{4.9}$$

$$\mathcal{E}_{\text{elast}}^{\text{part}}[u,p] = \int_{\omega} W_{\text{part}}(Q^T(x)\varepsilon[u](x)Q(x) - \bar{\varepsilon}_{p(x)})dx, \qquad (4.10)$$

$$\mathscr{E}_{\text{ext}}[\varphi,m] = -\frac{M_s}{\mu_0} \int_{\mathbb{R}^2} H_{\text{ext}}(y) \cdot m(y) \, dy \,, \tag{4.11}$$

$$\mathscr{E}_{\text{demag}}[\varphi, m] = \frac{M_s^2}{\mu_0} \int_{\mathbb{R}^2} \frac{1}{2} |H_d(y)|^2 \, dy \,, \tag{4.12}$$

$$\mathscr{E}_{\text{anis}}[\varphi, m, p] = K_{\mu} \int_{\varphi(\omega)} \gamma_{p(\varphi^{-1}(y))} \left(Q(\varphi^{-1}(y))^T R((\nabla \varphi)(\varphi^{-1}(y)))^T m(y) \right) dy.$$
(4.13)

Dabei ist $H_d = \nabla \psi$ und $\psi : \mathbb{R}^2 \to \mathbb{R}$ so, dass die folgende Energie minimal:

$$\mathscr{E}[\psi] = \int_{\mathbb{R}^2} \frac{1}{2} |\nabla \psi(y) - m(y)|^2 dy$$
(4.14)

 W_{matr} ist die isotrope elastische Energiedichte der Polymermatrix und nach (2.9) durch die Konstanten μ und λ gegeben, W_{part} ist die anisotrope Energiedichte des Formgedächtnis-Materials (nach (2.10) durch die Konstanten c_{11} , c_{12} und c_{44} gegeben), dessen kubische Symmetrie die Standard-Koordinatenachsen als Symmetrieachsen habe.

4.3 Einschränkung auf ein Zellproblem

In den für die Anwendung relevanten Fällen ist die Anzahl der Körner oder Partikel in einem Werkstück oft sehr groß, so dass eine Simulation der gesamten Mikrostruktur sehr aufwändig wäre. Stattdessen verwenden wir hier den Ansatz der Homogenisierungstheorie [Wil81, OSY92, BD98, CD99, Mil02], um uns auf die Betrachtung periodischer Konfigurationen zurückzuziehen. Dabei enthalte eine Zelle des periodischen Materials nur einige wenige Partikel oder Körner, vgl. Abbildung 4.3.1. Die periodische Struktur entstehe durch Skalierung aus einer Referenzkonfiguration auf dem Einheitsquadrat $(0; 1)^2$.

Abbildung 4.3.1: Zellproblem in einem periodischen Material.

Sei ε die Periode der Mikrostruktur und $\Omega\subset \mathbb{R}^2$ das Gebiet, auf dem das Gesamtproblem definiert ist. Mit

$$\Omega_{\text{cell}} = (0; 1)^2, \quad \omega_{\text{cell}} \subset \Omega_{\text{cell}}, \quad Q_{\text{cell}} : \omega_{\text{cell}} \to SO(2)$$

$$(4.15)$$

bezeichnen wir die Referenzdaten der Periodizitätszelle. Dann betrachten wir eine Familie von Gleichungen 4.2.1 mit den Daten

$$\Omega_{\varepsilon} = \Omega, \quad \omega_{\varepsilon} = \left\{ x \in \Omega \, \middle| \, \frac{x}{\varepsilon} \in \omega_{\text{cell}} + \mathbb{Z}^2 \right\}, \quad Q_{\varepsilon}(x) = Q_{\text{cell}}\left(\frac{x}{\varepsilon} \mod \mathbb{Z}^2\right) \tag{4.16}$$

und deren Lösung u_{ε} , p_{ε} , m_{ε} .

Die Idee der Homogenisierung ist nun, im Grenzwert für $\varepsilon \to 0$ den Einfluss der Mikrostruktur von der makroskopischen Konfiguration (die Form von Ω und dem externen Feld H_{ext}) zu trennen. Dazu betrachten wir eine Folge von Lösungen $(u_{\varepsilon}, m_{\varepsilon}, \psi_{\varepsilon})$ für $\varepsilon \to 0$. Dabei kann der Phasenparameter p_{ε} für gegebene u_{ε} und m_{ε} durch punktweise Minimierung gewonnen werden und spielt daher in den folgenden Betrachtungen keine Rolle, die Behandlung des Demagnetisierungspotentials dagegen erfordert einige Sorgfalt, so dass wir es explizit in die Betrachtungen einschließen.

Für das beschriebene Problem ist noch kein Homogenisierungsresultat bekannt, es ist jedoch zu erwarten, dass schwache Grenzwerte (u_0, m_0, ψ_0) eine Energie der folgenden Art minimieren (vgl. [CLR07b]):

$$\mathscr{E}_{\text{eff}}[u_0, m_0, \psi_0] = \int_{\Omega} W_{\text{eff}}(m_0(x + u_0(x)), \nabla u_0(x)) \, dx \\ + \int_{\mathbb{R}^2} \frac{M_s^2}{2\mu_0} |\nabla \psi_0(y)|^2 - \frac{M_s}{\mu_0} H_{\text{ext}}(y) \cdot m_0(y) \, dy$$
(4.17)

Dabei seien für u_0 geeignete (makroskopische) Randwerte gefordert und ψ_0 sei das Demagnetisierungspotential zu m_0 gemäß Formulierung 2.2.1.

Die effektive Energiedichte W_{eff} wird über das Lösen eines Zellproblems berechnet. Wir müssen dabei für jeden Punkt $z \in \Omega$ der makroskopischen Konfiguration ein mikroskopisches bzw. Zellproblem lösen. Dazu suchen wir für jedes $z \in \Omega$ einen mikroskopischen Korrektor (u, m, ψ) auf $\Omega_{\text{cell}} = (0; 1)^2$, d. h.

$$\begin{split} u &: \Omega_{\text{cell}} \to \mathbb{R}^2, & \varphi &= \mathbb{I} + u, \\ m &: \varphi(\Omega_{\text{cell}}) \to S^1 \cup \{0\}, & \psi &: \varphi(\Omega_{\text{cell}}) \to \mathbb{R}. \end{split}$$

Dabei gehen die Werte der makroskopischen (gemittelten) Lösungen $F_0 = \nabla u_0(z)$ und $M_0 = m_0(z + u_0(z))$ sowie $H_0 = \nabla \psi_0(z + u_0(z))$ als Parameter in das Zellproblem ein.

Die Korrektoren u, m und ψ sind dabei Minimierer einer Energie wie in Formulierung 4.2.1 unter Randwerten bzw. Nebenbedingungen, die sich aus diesen Parametern ergeben: Für den mikroskopischen Korrektor u der Verschiebung fordern wir affin-periodische Randwerte

$$u(x+e_i) = u(x) + F_0 e_i \text{ für } x, x+e_i \in \partial \Omega_{\text{cell}},$$
(4.18)

bei der Magnetisierung entspreche das Integralmittel des Korrektors der makroskopischen Magnetisierung

$$\int_{\varphi(\Omega_{\text{cell}})} m(y) \, dy = M_0. \tag{4.19}$$

In nahe liegender Weise könnte man für das mikroskopische Demagnetisierungspotential analog zu *u* affin-periodische Randwerte

$$\tilde{\psi}(\varphi(x+e_i)) = \tilde{\psi}(\varphi(x)) + H_0 \cdot (\mathbb{I} + F_0)(e_i)$$

fordern. Dann wäre $\nabla \hat{\psi}$ das vollständige Demagnetisierungsfeld. Wir verwenden jedoch stattdessen periodische Randwerte

$$\psi(\varphi(x+e_i)) = \psi(\varphi(x)) \quad \text{für } x, x+e_i \in \partial \Omega_{\text{cell}}.$$
 (4.20)

Da in beiden Fällen Gleichung (2.19) gilt, ist $\Delta \tilde{\psi} = \Delta \psi$. Daher ist $\tilde{\psi}(y) = \psi(y) + H_0 \cdot y$, und wir können die Demagnetisierungsenergie wie folgt berechnen:

$$\begin{split} \int_{\varphi(\Omega_{\text{cell}})} |\nabla \tilde{\psi}(y)|^2 \, dy &= \int_{\varphi(\Omega_{\text{cell}})} |\nabla \psi(y) + H_0|^2 \, dy \\ &= \int_{\varphi(\Omega_{\text{cell}})} |\nabla \psi(y)|^2 + 2\nabla \psi(y) \cdot H_0 + |H_0|^2 \, dy \\ &= \int_{\varphi(\Omega_{\text{cell}})} |\nabla \psi(y)|^2 + |H_0|^2 \, dy + \int_{\partial \varphi(\Omega_{\text{cell}})} 2\psi(y) \nu(y) \cdot H_0 \, dy \\ &= \int_{\varphi(\Omega_{\text{cell}})} |\nabla \psi(y)|^2 + |H_0|^2 \, dy \end{split}$$

Im Randintegral addieren sich jeweils gegenüberliegende Seiten aufgrund der Periodizität von ψ und der unterschiedlichen Vorzeichen der Normalen zu Null. Der Term $\int |H_0|^2 = \int |\nabla \psi_0|^2$ ist bereits Teil der makroskopischen Energie in (4.17), als mikroskopische Demagnetisierungsenergie verbleibt also auch bei den hier gewählten periodischen Randwerten ohne Offset nur das Dirichlet-Integral von ψ . Der Vorteil dieser Vorgehensweise ist es, dass dadurch das Demagnetisierungspotential der beiden Probleme entkoppelt wird, H_0 geht gar nicht mehr als Parameter in das mikroskopische Problem ein. Damit ergibt sich

Formulierung 4.3.1 (Energie des Zellproblems) Seien $\Omega_{cell} = (0;1)^2$, $\omega_{cell} \subset \Omega_{cell}$ und $Q: \omega_{cell} \rightarrow SO(2)$. Gesucht sind

$$u: \Omega_{\text{cell}} \to \mathbb{R}^2, \qquad \varphi = \mathbb{I} + u, \qquad (4.21)$$

$$m:\varphi(\Omega_{\text{cell}}) \to S^1 \cup \{0\}, \qquad \qquad \psi:\varphi(\Omega_{\text{cell}}) \to \mathbb{R}.$$
(4.22)

mit supp $(m) \subset \varphi(\omega_{cell})$, und den Randwerten nach (4.18) und (4.20) so dass die folgende Energie minimal wird:

$$\mathscr{E}_{\varepsilon}[F_{0}, h_{\text{ext}}, u, m] = \mathscr{E}_{\text{elast}}^{\text{matr}}[u] + \mathscr{E}_{\text{demag}}[u, m] + \min_{p} \left(\mathscr{E}_{\text{elast}}^{\text{part}}[u, p] + \mathscr{E}_{\text{anis}}[u, m, p] \right) - \frac{M_{s}}{\mu_{0}} \int_{\varphi(\Omega_{\text{cell}})} h_{\text{ext}} \cdot m(y) dy.$$
(4.23)

Wir definieren nun die effektive Energiedichte über den Wert der minimalen Energie des Zellproblems

$$W_{\text{eff}}(M_0, F_0) = \sup_{b_{\text{ext}} \in \mathbb{R}^2} \left\{ \frac{M_s}{\mu_0} h_{\text{ext}} \cdot M_0 + \inf_{u, m} \mathscr{E}_{\varepsilon} [F_0, h_{\text{ext}}, u, m] \right\}.$$
(4.24)

Der lineare Term in h_{ext} darin erzwingt zusammen mit dem entsprechenden Teil der mikroskopischen Energie die Nebenbedingung (4.19) an die Magnetisierung: Für gegebenes F_0 ist inf_{*u*,*m*} $\mathscr{E}_{\varepsilon}[F_0, h_{\text{ext}}, u, m]$ in Bezug auf h_{ext} als Infimum einer Familie affiner Funktionen konkav. Addieren wir nun eine weitere affine Funktion von h_{ext} , so ergibt sich als Bedingung für das Supremum in Bezug auf h_{ext}

$$\frac{M_s}{\mu_0}M_0 - \frac{M_s}{\mu_0}\int_{\varphi(\Omega_{\text{cell}})} m(y)\,dy = 0\,.$$

Mit der verwendeten Skalierung hat der Term in $\mathscr{E}_{\varepsilon}$ die Form von \mathscr{E}_{ext} , man kann h_{ext} daher als effektives magnetisches Feld interpretieren.

Für konvexe Energien ist bekannt, dass es genügt das Zellproblem auf der Skala der Mikrostruktur zu betrachten. Im nichtkonvexen Fall (wie hier) kann es vorkommen, dass die Periodizität der Lösung ein beliebiges ganzzahliges Vielfaches der Periodizität der Mikrostruktur ist, siehe etwa [Bra85, Mül87], oder [BD98, Kap. 14]. Daher muss man für das oben diskutierte Zellproblem grundsätzlich über alle möglichen Periodizitätsskalen der Lösung minimieren, d. h. über alle Zellen der Form $(0;k)^2$, wenn die Geometrie modulo \mathbb{Z}^2 periodisch ist. In der Numerik beschränken wir uns dabei in der Regel auf k = 1, einige numerische Beispiele in Abschnitt 4.12 werden explizit mit zwei oder vier Perioden der Geometrie innerhalb des Zellproblems gerechnet.

Zur Illustration der Skalenentkopplung für das Demagnetisierungsfeld betrachten wir ein einfaches Beispiel, in dem sich das makroskopische Feld aus (4.17) analytisch berechnen lässt. Dazu sei Ω ein Kreis vom Radius *R*. (Ähnlich lässt sich auch für Ellipsen argumentieren, vgl. [Max04, Osb45].)

Unter einem gleichmäßigen magnetischen Feld $H_{\text{ext}} = \bar{h} \in \mathbb{R}^2$ stellt sich eine konstante Magnetisierung $m_0 = M_0 \in \mathbb{R}^2$ ein. (Das Demagnetisierungsfeld einer konstant magnetisierten Ellipse ist im Innern ebenso konstant.) Also hat (4.17) einen stationären Punkt, bei dem m_0 (und ebenso ∇u_0) konstant sind. Das vollständige Demagnetisierungsfeld ist dann

$$\psi_0(x) = \begin{cases} \bar{m}x_1/2 & \text{für } |x| < R, \\ \bar{m}x_1R^2/(2|x|^2) & \text{sonst,} \end{cases}$$

wenn O. B. d. A. $M_0 = \bar{m}e_1$. Damit ergibt sich für die effektive Energie

$$\mathscr{E}_{\rm eff} = \pi R^2 W^{\rm eff}(M_0, F_0) + \frac{M_s^2}{2\mu_0} \frac{\pi R^2 |M_0|^2}{2} - \frac{M_s}{\mu_0} \pi R^2 H_{\rm ext} \cdot M_0.$$
(4.25)

Minimierung nach M_0 ergibt

$$\nabla_{M_0} W^{\text{eff}}(M_0, F_0) + \frac{M_s^2}{2\mu_0} M_0 - \frac{M_s}{\mu_0} H_{\text{ext}} = 0,$$

während wir aus (4.24) folgendes erhalten:

$$\nabla_{M_0} W^{\text{eff}}(M_0, F_0) = \frac{M_s}{\mu_0} h_{\text{ext}}$$

Also ergibt sich für das effektive Feld in dieser Geometrie

$$h_{\rm ext} = H_{\rm ext} - \frac{M_s}{2} M_0.$$
 (4.26)

Dabei ist der Faktor 1/2 der so genannte Demagnetisierungsfaktor eines Kreises. Ein kreisförmiges Gebiet würde sich unter einem konstanten magnetischen Feld zu einer Ellipse verformen (vgl. Abschnitt 3.8), was zu einer geringen Korrektur dieses Faktors führen würde. Der Übersicht halber ignorieren wir diese Korrektur jedoch bei den Berechnungen in Abschnitt 4.12 – wir können etwa annehmen, dass sich ein ursprünglich ellipsoides Gebiet unter der umgekehrten Verschiebung in einen Kreis deformiert hat.

4.4 Mikrostruktur und Materialparameter

Wir betrachten Konfigurationen kleiner Partikel, die sehr viel härter als die umgebende Polymermatrix sind. Daher erlauben wir für die Partikel nur affine Deformationen. Für kleine, weit entfernte elliptische Partikel ist dies exakt [Esh57, Hil65], für die hier betrachteten Fällen hat sich diese Annahme in Vergleichsrechnungen als angemessen herausgestellt, siehe Abbildung 4.9.3. Insbesondere ist sie wesentlich besser als die Einschränkung auf rotierte Varianten der Eigenverzerrung.

Seien dazu ω_i die einzelnen Partikel. Diese mögen den Rand der periodischen Zelle $(0; 1)^2$ nicht schneiden. Auf jedem Partikel sei die Verschiebung als

$$u(x) = F_i x + b_i \quad \text{für } x \in \omega_i \tag{4.27}$$

gegeben. Im Polykristall (hier bezeichne ω_i ein Korn) ist diese Annahme selbstverständlich nicht gerechtfertigt, da sie in fast allen Fällen den Kompatibilitätsbedingungen an den Korngrenzen widerspricht. Hier schränken wir den Raum der erlaubten Verschiebungen nicht weiter ein.

In ähnlicher Weise wollen wir annehmen, dass sich die Partikel bzw. Körner in Bezug auf die Magnetisierung und den Phasenparameter als einzelne Domänen verhalten, d. h. m und p seien auf ω_i jeweils konstant. Weiterhin seien die Partikel tatsächlich Einkristalle, so dass auch Q auf ω_i einen konstanten Wert hat:

$$m(y) = m_i \qquad \text{für } y \in (\mathbb{I} + u)(\omega_i), \qquad (4.28)$$

$$p(x) = p_i \qquad \text{für } x \in \omega_i, \qquad (4.29)$$

$$Q(u) = Q \qquad \text{für } u \in \omega \qquad (4.30)$$

$$f \ddot{\mathrm{u}} r \ x \in \omega_i \,, \tag{4.29}$$

$$Q(x) = Q_i \qquad \qquad \text{für } x \in \omega_i \,. \tag{4.30}$$

Im Folgenden, insbesondere in Abschnitt 4.11, sollen physikalisch relevante effektive Größen berechnet werden. Dazu betrachten wir alle Längen als dimensionslos bzw. in Relation zum Einheitsquadrat $(0,1)^2$ gemessen, damit erhalten wir Energiedichten, die sich direkt auf jede makroskopische Konfiguration übertragen lassen. Wir messen diese Energiedichten in MPa = 10^6 J/m³. Das effektive Feld h_{ext} werde in Tesla gemessen, die in der Praxis (und in den numerischen Experimenten) benutzten Felder sind von der Größenordnung 1 T [LU00, SGS+05]. Die Konstante in \mathscr{E}_{ext} ist $\frac{M_s}{\mu_0} = 0,50 \frac{MPa}{T}$, wobei wir für Ni₂MnGa gemessene Werte verwenden [LU00]. Entsprechend lässt sich die Konstante aus $\mathscr{E}_{\text{demag}}$ durch $\frac{M_s^2}{\mu_0} = \mu_0 \left(\frac{M_s}{\mu_0}\right)^2$, ausdrücken, wobei $\mu_0 = \frac{4\pi}{10} \frac{T^2}{\text{MPa}}$ (wir verwenden die Näherung $M_c^2/\mu_0 = 0,31$ MPa). Als Anisotropie-Konstante wird der Wert $K_{\mu} = 0,13$ MPa benutzt [O'H98, SGS+05]. Die Eigenverzerrung von Ni₂MnGa sei $\varepsilon_0 = 0,058$ die elastischen Konstanten $c_{11} = 160 \text{ GPa}, c_{44} = 40 \text{ GPa}, c_{11} - c_{12} = 4 \text{ GPa} \text{ [SMP+04, DCCW05]}$ und [PJF⁺04]. Für das Polymer lassen wir mehr Variation zu, typisch ist die Größenordnung einiger GPa [KKCH05]. Falls nicht anders angegeben ist $\lambda = 50$ GPa, $\mu = 2$ GPa.

4.5 Diskretisierung der Elastizität in der Matrix

Die elastische Verschiebung und das magnetische Streufeld berechnen wir wieder mit der Methode der Randelemente. Die verwendeten Operatoren wurden in Abschnitt 3.4 eingeführt, ausführlichere Erläuterungen finden sich in Kapitel 5. Zu großen Teilen werden ähnliche Methoden wie in Abschnitt 3.5 verwandt.

In Abschnitt 4.4 haben wir das Modell soweit vereinfacht, dass sich zahlreiche Unbekannte stückweise durch Konstanten darstellen lassen. Dies sind für jedes Partikel ω_i die Parameter F_i und b_i einer affinen Verschiebung, der diskrete Phasenparameter p_i , die Magnetisierung m_i sowie der lineare Anteil F_0 des makroskopischen Verschiebungsgradienten. Für Polykristalle ergibt sich der gleiche Satz von Konstanten, lediglich die elastische Verschiebung in den Körnern lässt sich hier nicht auf affine Funktionen reduzieren. Als kontinuierliche Freiheitsgrade verbleiben die Verschiebung u im Polymer bzw. den Körnern des Polykristalls und das Demagnetisierungspotential ψ . Diese diskretisieren wir wie folgt:

Zunächst approximieren wir die Ränder der jeweiligen Teilgebiete durch Streckenzüge. Dabei seien die Diskretisierungen so gewählt, dass gemeinsame Teile zweier Ränder von beiden Seiten gleich diskretisiert sind – dies stellt bei eindimensionalen Rändern keine zusätzliche Schwierigkeit dar. Trotzdem werden die Teilgebiete zunächst separat betrachtet und anschließend durch geeignete Übergangsbedingungen gekoppelt. Die in Abschnitt 3.5 verwandte direkte Identifikation der Freiheitsgrade ist insbesondere bei Polykristallen, in denen sich jeweils nur Teile der Ränder überschneiden und die Kopplungsbedingungen zusätzlich die unterschiedliche Ausrichtung der Anisotropie berücksichtigen müssen, äußerst unhandlich. Man kann jedoch durch eine geeignete Implementierung die zusätzlichen Freiheitsgrade vor dem eigentlichen Invertieren der Matrix eliminieren, vgl. Abschnitt 6.2.

Seien nun $\Gamma^0 = \partial(\Omega \setminus \omega)$ der Rand der Polymer-Matrix und $\Gamma^j = \partial \omega_j$ die Ränder der Partikel bzw. Körner. Diese seien durch Polygone Γ_b^j aus Strecken der Länge $\mathcal{O}(b)$ approximiert. Dabei sei die Diskretisierung so gewählt, dass die Kollokationspunkte benachbarter Körner bzw. die von Partikeln und Matrix an ihren Grenzflächen übereinstimmen.

Zunächst betrachten wir die Elastizität des Polymers. Dabei sind an den Rändern der Partikeln durch F_i und b_i Dirichlet-Randwerte gegeben, an den Rändern von Ω periodische Randbedingungen mit einem affinen Offset F_0 . Damit erhalten wir die folgenden kontinuierlichen Gleichungen für die elastische Verschiebung u in $\Omega \setminus \omega$:

$$\begin{split} \operatorname{div} C_{\operatorname{matr}} \varepsilon \llbracket u \rrbracket = \mathsf{0}, & \text{in } \Omega \setminus \omega, \\ u(x) &= F_j x + b_j, & \operatorname{für} x \in \Gamma^j, \\ u(x + e_i) &= u(x) + F_0 e_i, & \operatorname{für} x, x + e_i \in \Gamma^0, \\ C_{\operatorname{matr}} \varepsilon \llbracket u \rrbracket (x + e_i) e_i &= C_{\operatorname{matr}} \varepsilon \llbracket u \rrbracket (x) e_i, & \operatorname{für} x, x + e_i \in \Gamma^0. \end{split}$$

Die Diskretisierung erfolgt nach dem in Kapitel 5 beschriebenen direkten Ansatz. Für die Elastizität werden stückweise affine Ansatzfunktionen verwendet. Dabei werden zunächst sowohl die Verschiebungen als auch die Normalenspannungen auf dem Rand als Unbekannte verwendet. Die Randbedingungen werden als weitere Gleichungen hinzugefügt, die aufgrund ihrer einfachen Gestalt jedoch wie in Abschnitt 6.2 beschrieben vor der eigentlichen Invertierung der Matrix eliminiert werden können.

In inneren Punkten der Kanten von $\partial \Omega$ werden die Bedingungen zur Periodizität ebenfalls direkt als zusätzliche Gleichungen modelliert. Die Behandlung der periodischen Randwerte in den Ecken erfordert jedoch besondere Sorgfalt: Für die Verschiebung sind in kanonischer Weise drei Bedingungen für die Periodizität erforderlich, dies ist jedoch eine mehr als die Anzahl der Unbekannten zulässt. Die zusätzliche Bedingung kann etwa mit einem Lagrange-Multiplikator hinzugefügt werden.

Für die Normalenspannungen ist zu beachten, dass die Normale in den Ecken springt. Also kann hier auch keine Stetigkeit der Normalenspannungen im üblichen Sinne (entlang von $\partial \Omega$) gefordert werden. Stattdessen erlaubt man in den Ecken zunächst Sprünge der Randspannungen. Nun ergeben sich für die doppelten Freiheitsgrade in den Eckpunkten jedoch auch zwei Periodizitätsbedingungen: Eine zum entsprechenden Punkt der gegenüberliegenden Kante, eine zum anderen Endpunkt derselben Kante. Letztlich erhält man dadurch genau zwei Freiheitsgrade für die Randspannungen in den Ecken, vgl. Abbildung 4.5.1.

Abbildung 4.5.1:

Periodische Randspannungen: Man verdoppelt die Freiheitsgrade in den Ecken. Jeweils an den roten und den blauen Freiheitsgraden müssen die Randspannungen übereinstimmen. Zur Unterscheidung der beiden Freiheitsgrade werden die diskreten Randspannungen t_h in zwei Teile t_h^1 und t_h^2 aufgeteilt.

Dazu bezeichne $\Gamma_{b}^{0;k}$ jeweils den Teil des Randes Γ_{b}^{0} des Einheitsquadrates, der senkrecht auf e_{k} steht – die Ecken werden zu beiden Teilen des Randes gezählt. Auf $\Gamma_{b}^{0;k}$ (das also aus zwei nicht zusammenhängenden Teilen besteht) sei dann die stückweise affine Funktion t_{b}^{k} definiert. Die Ecken des Quadrates sind Kollokationspunkte, die damit auf beiden Teilen des Randes liegen; die Freiheitsgrade von t_h^1 und t_h^2 an demselben Kollokationspunkt sind jedoch voneinander unabhängig. Stattdessen fordern wir

$$t_{b}^{k}(\xi_{i}+e_{j})=t_{b}^{k}(\xi_{i}) \quad \text{für } \xi_{i}, \xi_{i}+e_{j} \in \Gamma_{b}^{0;k}$$

d. h. das sowohl t_h^1 als auch t_h^2 entlang der Koordinatenachsen periodisch sind.

Aus der Randelemente-Gleichung ergibt sich eine Approximation der Verschiebung und der Normalenspannungen auf dem Rand. Aus diesem Werten lässt sich nun die elastische Energie in der Polymer-Matrix berechnen. Dazu drücken wir zunächst auf kontinuierlicher Ebene die Energie mittels partieller Integration durch die Randwerte aus, und verwenden dann das diskrete Analogon dieser Darstellung zur Approximation der Energie:

$$\mathcal{E}_{\text{elast}}^{\text{matr}}[u] = \int_{\Omega \setminus \omega} \frac{1}{2} C_{\text{matr}} \varepsilon[u] : \varepsilon[u] \, dx = \int_{\Omega \setminus \omega} \frac{1}{2} C_{\text{matr}} \varepsilon[u] : \nabla u \, dx$$
$$= -\frac{1}{2} \int_{\Omega \setminus \omega} \text{div} \, C_{\text{matr}} \varepsilon[u] \cdot u \, dx + \frac{1}{2} \int_{\partial \Omega \cup \partial \omega} (C_{\text{matr}} \varepsilon[u]v) \cdot u \, d\mathcal{H}^{1}$$
$$= -\sum_{i=1,2} \frac{1}{2} \int_{E_{i}} (C_{\text{matr}} \varepsilon[u]v) \cdot (F_{0}e_{i}) \, d\mathcal{H}^{1} + \frac{1}{2} \int_{\partial \omega} (C_{\text{matr}} \varepsilon[u]v) \cdot u \, d\mathcal{H}^{1}.$$

Wegen der affinen Periodizität von u ergibt sich in der letzten Zeile schließlich nur die Integration entlang zweier Randkanten $E_i = \{x | x, x + e_i \in \partial \Omega\}$ des äußeren Randes.

Verfahren 4.5.1 (Elastizität in der Polymermatrix) Sei Γ_b^0 eine Diskretisierung des Randes der Polymer-Matrix, $(\xi_i)_i$ die Kollokationspunkte in den Segment-Endpunkten von Γ_b^0 , $(\varphi_i)_i$ die Ansatzfunktionen und $u_b, t_b \in \mathcal{V}_b$ die Approximation der elastischen Verschiebungen bzw. Normalenspannungen auf dem Rand. Die Diskretisierung sei so gewählt, dass $\xi_i \pm e_j$ auch ein Kollokationspunkt ist, falls es auch auf Γ_b^0 liegt, d. h. gegenüberliegende Seiten der Periodizitätszelle sind gleich diskretisiert. Für t_b fordern wir in den Ecken keine Stetigkeit, wir bezeichnen (nach Richtung der Normalen) die jeweiligen Teile von t_b mit t_b^k , die Teile von Γ_b^0 mit $\Gamma_b^{0;k}$, siehe Abbildung 4.5.1. Dann berechnen wir u_b und t_b durch

Sei nun $l_i = \int \varphi_i$ und $u_b = (u_i)_i$, $t_b = (t_i)_i$. Dann approximieren wir die elastische Energie durch

$$\mathscr{E}_{\text{elast};h}^{\text{matr}}[u_h;t_h] = \sum_j \sum_{\xi_i \in E_j} l_i t_i \cdot (F_0 e_j) + \sum_i l_i t_i \cdot u_i.$$

Dabei verwenden wir die gelumpte Massematrix für die Integrationen auf dem Rand.

4.6 Diskretisierung der Elastizität im Polykristall

Im Fall von Polykristallen ist das Vorgehen etwas anders. Hier muss das elastische Problem in allen Körnern mittels Randelementen approximiert werden, eine Reduktion auf affine Verschiebungen in den einzelnen Körnern ist hier wegen der Kompatibilitätsbedingungen an den Korngrenzen nicht sinnvoll. Dazu betrachten wir zunächst die folgenden Gleichungen für alle Körner ω_{α} :

$$\operatorname{div} C \varepsilon[u] = 0, \qquad \text{in } \omega_{\alpha},$$

$$\begin{bmatrix} C(\varepsilon[u] - \overline{\varepsilon}) \end{bmatrix}_{\alpha}^{\beta}(x) v(x) = 0 \qquad \text{auf } \partial \omega_{\alpha} \cap \partial \omega_{\beta}, \ \alpha \neq \beta,$$

$$u(x + e_{i}) = u(x) + F_{0}e_{i}, \qquad \text{für } x, x + e_{i} \in \Gamma^{0},$$

$$C \varepsilon[u](x + e_{i})e_{i} = C \varepsilon[u](x)e_{i}, \qquad \text{für } x, x + e_{i} \in \Gamma^{0}.$$

Bei der Diskretisierung ergibt sich nun ein ähnliches Problem für die Randspannungen, wie es im Komposit-Fall in den Ecken des Periodizitätsgebiets auftritt: In Tripelpunkten (oder natürlich auch Schnittpunkten höherer Ordnung) der Korngrenzen ist es nicht möglich *eine* Normale zu definieren. Im Gegensatz zu den Eckpunkten des Quadrates können hier aber beliebige Winkel auftreten, so dass die Identifikation verschiedener Normalenspannungen in der Regel nicht sinnvoll ist.

Stattdessen sind alle Normalenspannungen eines Eckpunktes jeweils entsprechende Komponenten *eines* matrixwertigen Spannungstensors. Wir führen also an jedem solchen Punkt die vier Komponenten des vollen Spannungstensors als weitere Freiheitsgrade ein und koppeln die Normalenspannungen über entsprechende Bedingungen an die volle Spannung, vgl. Abbildung 4.6.1. Ein geeignetes Verfahren für Gleichungssysteme mit solchen Nebenbedingungen wird in Abschnitt 6.2 beschrieben.

Dazu zerlegen wir den Rand Γ_h^{α} eines Korn ω_{α} in Teilstücke $\Gamma_h^{\alpha;k}$, die jeweils die Grenze zwischen zwei Körnern bezeichnen. Die Tripelpunkte sollen jeweils in allen betroffenen Teilrändern enthalten sein. Anstelle einer diskreten Funktion t_h^{α} für die Normalenspannungen auf Γ_h^{α} betrachten wir Funktionen $t_h^{\alpha;k}$, die jeweils auf den Teilen $\Gamma_h^{\alpha;k}$ des Randes definiert sind. Dabei fordern wir zwischen benachbarten oder gegenüberliegenden Funktionen t_h^{α} zunächst keine Stetigkeit.

Stattdessen soll für einen Kollokationspunkt $\xi_i \in \Gamma_h^{\beta;q}$ und sein periodisches Äquivalent $\xi_i + {n \choose m} \in \Gamma_h^{\alpha;p}$ mit $m, n \in \mathbb{N}_0$ das Kräftegleichgewicht in der Form

$$t_{b}^{\alpha;p}\left(\xi_{i}+\binom{n}{m}\right)-C\bar{\varepsilon}_{\alpha}\nu_{\alpha;p}\left(\xi_{i}+\binom{n}{m}\right)=C\bar{\varepsilon}_{\beta}\nu_{\beta;q}(\xi_{i})-t_{b}^{\beta;q}(\xi_{i}),\qquad(4.31)$$

gelten. Weiterhin bezeichnen wir die Menge der Tripelpunkte mit

$$T = \left\{ \xi_i \in N_h \mid \left| \left\{ \alpha \mid \xi_i + \binom{n}{m} \in \Gamma_h^{\alpha} \right\} \right| > 2 \right\}$$
(4.32)

Abbildung 4.6.1:

Randspannungen im Polykristall. Anstelle der Periodizitätszelle $(0; 1)^2$, deren Ränder in der Regel im Inneren einzelner Körner liegen, betrachten wir eine äquivalente nichtquadratische Zelle, die aus unzerteilten Körnern besteht. Der affine Anteil der makroskopischen Verschiebung ist dabei zwischen den außen liegenden Rändern der Körner in analoger Weise zu berücksichtigen, d. h. $u(x + \binom{n}{m}) = u(x) + F_0\binom{n}{m}$ falls x und $x + \binom{n}{m}$ Punkte auf äußeren Rändern sind und $n, m \in \mathbb{N}_0$. Die Normalenspannungen diskretisieren wir entlang der Randsegmente durch stetige, stückweise affine Ansatzfunktionen. In den Ecken fordern wir keine Stetigkeit. Stattdessen sollen in einer Ecke alle anliegenden Normalenspannungen der jeweiligen Normalkomponente eines matrixwertigen Spannungstensors entsprechen.

und betrachten einen solchen Punkt $\xi_i \in T$ und alle Teilstücke $\Gamma_h^{\alpha;p}$ des Randes, auf denen ein periodisches Äquivalent dieses Punktes liegt,

$$\xi_i + \binom{n}{m} \in \Gamma_b^{\alpha;p} \quad \text{mit } m, n \in \mathbb{N}_0.$$

Dann müssen für alle diese α und p die Normalenspannungen $t_b^{\alpha;p}$ an diesem Kollokationspunkt $\xi_i + {n \choose m}$ Komponenten *eines* matrixwertigen Spannungstensors S_i sein:

$$t_{b}^{\alpha;p}\left(\xi_{i}+\binom{n}{m}\right)-C\bar{\varepsilon}_{\alpha}\nu_{\alpha;p}\left(\xi_{i}+\binom{n}{m}\right)=S_{i}\nu_{\alpha;p}\left(\xi_{i}+\binom{n}{m}\right)$$
(4.33)

Ein weiteres Problem stellt die Tatsache dar, dass die Anisotropieachsen in benachbarten Körnern unterschiedlich ausgerichtet sind. Die in Abschnitt 5.1 beschriebene Fundamentallösung (insbesondere die Implementierung der Berechnung der Matrixeinträge nach Abschnitt 6.3) geht jedoch von der Ausrichtung der Anisotropie an den Koordinatenachsen aus. Die Transformation der Fundamentallösung in ein anderes Koordinatensystem kann dabei folgendermaßen erfolgen:

Lemma 4.6.1 (Transformation der Fundamentallösung) Sei Q eine Rotationsmatrix, die die Standardbasis $(e_i)_i$ auf Vektoren $(f_i)_i$ abbildet, C der Elastizitätstensor in Standardkoordinaten und u^* die zugehörige Fundamentallösung

$$\sum_{jkl} C_{ijkl} \partial_j \partial_l u_{km}^*(x, y) = \delta_{im} \delta(x - y)$$
(4.34)

sowie \tilde{C} der Elastizitätstensor im $(f_i)_i$ -Koordinatensystem und $\tilde{u^*}$ die diesem entsprechende Fundamentallösung

$$\sum_{\beta\gamma\delta} \tilde{C}_{\alpha\beta\gamma\delta} (\partial_{\beta}\partial_{\delta}\tilde{u}_{\gamma t}^{*}) (Q^{T}x, Q^{T}y) = \delta_{\alpha t} \delta(Q^{T}x - Q^{T}y).$$
(4.35)

Dann gilt

$$u_{km}^*(x,y) = \sum_{st} Q_{ks} Q_{mt} \tilde{u}_{st}^*(Q^T x, Q^T y).$$

Beweis: Da Q orthogonal ist gilt $Q^{-1} = Q^T$, also $\sum_i Q_{ij} Q_{ik} = \delta_{jk}$. Der Elastizitätstensor transformiert mittels

$$C_{ijkl} = \sum_{\alpha\beta\gamma\delta} \tilde{C}_{\alpha\beta\gamma\delta} Q_{i\alpha} Q_{j\beta} Q_{k\gamma} Q_{l\delta} .$$
(4.36)

Dann gilt für die Fundamentallösungen

$$\sum_{jkl} C_{ijkl} \partial_j \partial_l u_{km}^*(x,y) = \delta_{im} \delta(x-y)$$

$$\Leftrightarrow \sum_{\alpha\beta\gamma\delta jklstpq} \tilde{C}_{\alpha\beta\gamma\delta} Q_{i\alpha} Q_{j\beta} Q_{k\gamma} Q_{l\delta} Q_{ks} Q_{mt} (\partial_p \partial_q \tilde{u}^*_{st}) (Q^T x, Q^T y) Q_{jp} Q_{lq} = \delta_{im} \delta(Q^T x - Q^T y)$$

$$\Leftrightarrow \sum_{\alpha\beta\gamma\delta t} \tilde{C}_{\alpha\beta\gamma\delta} Q_{i\alpha} Q_{mt} (\partial_{\beta} \partial_{\delta} \tilde{u}^*_{\gamma t}) (Q^T x, Q^T y) = \delta_{im} \delta(Q^T x - Q^T y)$$

$$\Leftrightarrow \sum_{\beta\gamma\delta} \tilde{C}_{\alpha\beta\gamma\delta} (\partial_{\beta} \partial_{\delta} \tilde{u}^*_{\gamma t}) (Q^T x, Q^T y) = \delta_{\alpha t} \delta(Q^T x - Q^T y).$$

Der Elastizitätstensor \tilde{C} in an die Anisotropie angepassten Koordinaten lässt sich (bei kubischer Anisotropie) entsprechend (2.4) durch die Konstanten \tilde{c}_{11} , \tilde{c}_{12} und \tilde{c}_{44} darstellen, $\tilde{u^*}$ ist dann die in Abschnitt 5.1 und 6.3 beschriebene Fundamentallösung. Daraus lässt sich die Fundamentallösung u^* in Weltkoordinaten dann nach Lemma 4.6.1 berechnen. Um nun diese Fundamentallösung auszuwerten, müssen wir also die transformierte Lösung jeweils an den entsprechend rotierten Koordinaten auswerten und integrieren. Letztlich ist bei der Formulierung der Sprungbedingungen noch zu beachten, dass sich über Korngrenzen hinweg die Ausrichtung der Anisotropie ändert.

Die Energiedichte lässt sich in jedem Korn wie oben berechnen.

Verfahren 4.6.1 (Elastizität im Polykristall) Seien Γ_h^{α} Approximationen der Korngrenzen des Polykristalls und $(\varphi_i^{\alpha})_i$ die Ansatzfunktionen auf Γ_h^{α} ; weiterhin seien $u_h^{\alpha}, t_h^{\alpha} \in \mathcal{V}_h^{\alpha}$ die Approximation der elastischen Verschiebungen bzw. Normalenspannungen auf den Grenzflächen und $(\xi_i)_i$ die Kollokationspunkte in den Segment-Endpunkten. Die Diskretisierung sei so gewählt, dass $\xi_i + {n \choose m}$ für $n, m \in \mathbb{N}_0$ auch ein Kollokationspunkt ist, falls es auch auf einem Γ_h^{α} liegt, d. h. gegenüberliegende Seiten der Körner sind gleich diskretisiert. Für t_h^{α} fordern wir in den Tripelpunkten keine Stetigkeit entlang des Randes, wir bezeichnen die Abschnitte von t_h^{α} mit $t_h^{\alpha;k}$, die Teile von Γ_h^{α} mit $\Gamma_h^{\alpha;k}$ sowie die entsprechenden Normalen mit $v_{\alpha;k}$, vgl. Abbildung 4.6.1. Dann berechnen wir u_h^{α} und t_h^{α} durch

$$\begin{split} u_{b}^{\alpha} &= U_{b}^{\text{elast};\alpha} [t_{b}^{\alpha}] - V_{b}^{\text{elast};\alpha} [u_{b}^{\alpha}] + F_{b}^{\text{elast};\alpha} u_{b}^{\alpha}, \\ & f \ddot{u} r \, alle \, \alpha, \\ u_{b}^{\alpha} \left(\xi_{i} + {n \choose m} \right) = u_{b}^{\beta} (\xi_{i}) + F_{0} {n \choose m}, \\ & f \ddot{u} r \, \xi_{i} + {n \choose m} \in \Gamma_{b}^{\alpha}, \, \xi_{i} \in \Gamma_{b}^{\beta}, \\ t_{b}^{\alpha;p} \left(\xi_{i} + {n \choose m} \right) - C \bar{\varepsilon}_{\alpha} v_{\alpha;p} \left(\xi_{i} + {n \choose m} \right) = C \bar{\varepsilon}_{\beta} v_{\beta;q} (\xi_{i}) - t_{b}^{\beta;q} (\xi_{i}), \\ & f \ddot{u} r \, \xi_{i} + {n \choose m} \in \Gamma_{b}^{\alpha;p}, \, \xi_{i} \in \Gamma_{b}^{\beta;q}, \\ t_{b}^{\alpha;p} \left(\xi_{i} + {n \choose m} \right) - C \bar{\varepsilon}_{\alpha} v_{\alpha;p} \left(\xi_{i} + {n \choose m} \right) = S_{i} \, v_{\alpha;p} \left(\xi_{i} + {n \choose m} \right), \\ & f \ddot{u} r \, \xi_{i} + {n \choose m} \in T, \\ T = \left\{ \xi_{i} \in N_{b} \mid \left| \left\{ \alpha \mid \xi_{i} + {n \choose m} \in \Gamma_{b}^{\alpha} \right\} \right| > 2 \right\}. \end{split}$$

Sei nun $l_i^{\alpha} = \int \varphi_i^{\alpha}$ und $u_b^{\alpha} = (u_i^{\alpha})_i$, $t_b^{\alpha} = (t_i^{\alpha})_i$. Dann approximieren wir die elastische Energie durch

$$\mathscr{E}_{\text{elast};h}[u_h;t_h] = \sum_{\alpha} \sum_i l_i^{\alpha} t_i^{\alpha} \cdot u_i^{\alpha}.$$

Dabei verwenden wir die gelumpte Massematrix für die Integrationen auf dem Rand. Die Integraloperatoren $U_h^{\text{elast};\alpha}$ und $V_h^{\text{elast};\alpha}$ seien die entsprechend Q_{α} rotierten Varianten auf Γ_h^{α} .

4.7 Diskretisierung des Demagnetisierungspotentials

In ähnlicher Weise behandelt man das Demagnetisierungspotential, auch dabei ist die Gleichung in allen Partikeln bzw. Körnern und ggf. der nichtmagnetischen Matrix zu betrachten, die Sprungterme sind ähnlich denen der Elastizität. Im vorliegenden Fall beschränken wir uns auf die Diskretisierung mittels stückweise konstanter Basisfunktionen, so dass die oben beschriebene spezielle Behandlung von Eckpunkten des Rechengebietes und der Körner nicht notwendig ist.

Für gegebene Magnetisierungen $(m_i)_i$ – zusätzlich zu den Werten auf den Partikeln setzen wir im Komposit-Material $m_0 = 0$ im nichtmagnetischen Polymer – und eine elastische Deformation $\varphi = \mathbb{I} + u$ mit periodischem Offset $G_0 = \mathbb{I} + F_0$ ist das magnetische Potential ψ (dass zur Berechnung der Demagnetisierungsenergie benötigt wird) die Lösung von Formulierung 2.2.2, d. h.

$$\begin{split} \Delta \psi = 0, & \text{in } \varphi(\Omega \setminus \partial \omega), \\ \begin{bmatrix} \nabla \psi \end{bmatrix}_{\alpha}^{\beta} \cdot \nu = (m_{\beta} - m_{\alpha}) \cdot \nu, & \text{auf } \varphi(\partial \omega), \\ \psi(\cdot + G_0 e_i) = \psi, & \text{auf } \partial \varphi(\Omega), \\ \nabla \psi(\cdot + G_0 e_i) \cdot G_0 e_i = \nabla \psi \cdot G_0 e_i, & \text{auf } \partial \varphi(\Omega), \end{split}$$

wobei ν eine Normale an den deformierten Rand $\varphi(\partial \omega)$ ist. Die irrelevante additive Konstante legen wir mittels $\int_{\partial \omega} \psi = 0$ fest.

Wie oben lässt sich die Demagnetisierungsenergie anschließend allein aus den Randwerten von ψ berechnen. Dabei macht sich die Zerlegung des Randes in $\partial \Omega \cup \partial \omega$ im Fall eines Komposits die Tatsache zunutze, dass die Partikel den Rand der Periodizitätszelle nicht schneiden.

$$\begin{aligned} \mathscr{E}_{demag}[u,m] &= \frac{M_s^2}{\mu_0} \int_{\varphi(\Omega)} \frac{1}{2} |H_d|^2 \, dy = \frac{M_s^2}{\mu_0} \int_{\varphi(\Omega)} \frac{1}{2} |\nabla \psi|^2 \, dy \\ &= \frac{1}{2} \frac{M_s^2}{\mu_0} \left(-\int_{\varphi(\Omega \setminus \partial \omega)} \Delta \psi \, \psi \, dy + \int_{\varphi(\partial(\Omega \setminus \omega))} (\nabla \psi \cdot v) \psi \, d\mathcal{H}^1(y) \right) \\ &\quad + \sum_{\alpha} \int_{\varphi(\partial \omega_{\alpha})} (\nabla \psi \cdot v_{\alpha}) \psi \, d\mathcal{H}^1(y) \right) \\ &= \frac{1}{2} \frac{M_s^2}{\mu_0} \sum_{\alpha} \int_{\varphi(\partial \omega_{\alpha})} (m_{\alpha} \cdot v_{\alpha}) \psi \, d\mathcal{H}^1(y). \end{aligned}$$

Die Randintegrale über $\partial \Omega$ fallen im zusammengesetzten Material aufgrund der periodischen Randwerte weg, im Polykristall werden sie wie andere Korngrenzen behandelt. Die Sprungbedingung

$$\partial_{\nu_{\beta}}\psi + \partial_{\nu_{\alpha}}\psi = \left[\nabla\psi\right]_{\alpha}^{\beta} \cdot \nu = (m_{\beta} - m_{\alpha}) \cdot \nu = m_{\beta}\nu_{\beta} + m_{\alpha}\nu_{\alpha}$$

ermöglicht es dann, in der Summe (in der jede Grenzfläche von beiden Seiten betrachtet auftaucht) anstelle der Normalenableitung von ψ die stückweise konstanten Magnetisierungen einzusetzen.

Verfahren 4.7.1 (Demagnetisierungsfeld) Seien Γ_{b}^{α} Approximationen der deformierten Korngrenzen (bzw. der Ränder von Partikeln und Matrix) und $(\varphi_{i}^{\alpha})_{i}$ die Ansatzfunktionen auf Γ_{b}^{α} ; weiterhin seien $\psi_{b}^{\alpha}, \tilde{\psi}_{b}^{\alpha} \in \mathcal{V}_{b}^{\alpha}$ die Approximation des Demagnetisierungspotentials bzw. der Normalenableitungen auf den Grenzflächen und $(\xi_{i})_{i}$ die Kollokationspunkte in den Segment-Mittelpunkten. Die Diskretisierung sei so gewählt, dass $\xi_{i} + G_{0}\binom{n}{m}$ für $n, m \in$ \mathbb{N}_{0} auch ein Kollokationspunkt ist, falls es auch auf einem Γ_{b}^{α} liegt, d. h. gegenüberliegende Seiten sind gleich diskretisiert. Dann berechnen wir ψ_{b}^{α} und $\tilde{\psi}_{b}^{\alpha}$ durch

$$\begin{split} \psi_{b}^{\alpha} &= U_{b}^{\Delta;\alpha} [\tilde{\psi}_{b}^{\alpha}] - V_{b}^{\Delta;\alpha} [\psi_{b}^{\alpha}] + F_{b}^{\Delta;\alpha} \psi_{b}^{\alpha}, \\ & \text{für alle } \alpha, \\ \psi_{b}^{\alpha} \left(\xi_{i} + G_{0} \binom{n}{m} \right) = \psi_{b}^{\beta} (\xi_{i}), \\ & \text{für } \xi_{i} + G_{0} \binom{n}{m} \in \Gamma_{b}^{\alpha}, \, \xi_{i} \in \Gamma_{b}^{\beta}, \\ \tilde{\psi}_{b}^{\alpha;p} \left(\xi_{i} + G_{0} \binom{n}{m} \right) - m_{\alpha} v_{\alpha} \left(\xi_{i} + G_{0} \binom{n}{m} \right) = m_{\beta} v_{\beta} (\xi_{i}) - \tilde{\psi}_{b}^{\beta;q} (\xi_{i}), \\ & \text{für } \xi_{i} + G_{0} \binom{n}{m} \in \Gamma_{b}^{\alpha;p}, \, \xi_{i} \in \Gamma_{b}^{\beta;q}. \end{split}$$

Sei nun $l_i^{\alpha} = \int \varphi_i^{\alpha}$ und $\psi_h^{\alpha} = (\psi_i^{\alpha})_i$. Dann approximieren wir die Demagnetisierungsenergie durch

$$\mathscr{E}_{\text{demag};h}[\psi_h] = \frac{1}{2} \frac{M_s^2}{\mu_0} \sum_{\alpha} \sum_{i} l_i^{\alpha} \psi_i^{\alpha} m_{\alpha} \cdot v_{\alpha}(\xi_i).$$

Dabei verwenden wir die gelumpte Massematrix für die Integrationen auf dem Rand.

4.8 Abstiegsverfahren

Nachdem wir die Verfahren zur Berechnung der elastischen Verschiebung u und des magnetischen Potentials ψ diskutiert haben, verbleibt zur Bestimmung der Gleichgewichtskonfiguration nur noch die Minimierung über die wenigen verbleibenden Freiheitsgrade, das sind im zusammengesetzten Material

$$(F_0, (F_i)_i, (b_i)_i, (m_i)_i, (p_i)_i) \in \mathbb{R}^{4+4N+2N+N} \times \{1, 2\}^N,$$

bzw. im Polykristall

$$(F_0, (m_i)_i, (p_i)_i) \in \mathbb{R}^{4+N} \times \{1; 2\}^N$$

Wenn wir nämlich für einen gegebenen Satz dieser Parameter u und ψ berechnen, können wir diese beiden Unbekannten aus den Parametern der Energie eliminieren und die Energie nun als Funktion lediglich von $\mathbb{R}^M \times \{1;2\}^N$ (mit M = 4 + 7N im Komposit bzw. M = 4 + N im Polykristall) nach \mathbb{R} auffassen. Dazu müssen wir für jeden Auswertung der Energie nur die beiden Randintegralgleichungen lösen und deren Ergebnis in die Gesamtenergie einsetzen.

Zur Minimierung der Energie verwenden wir einen Gradientenabstieg im \mathbb{R}^{M} mit dem gewöhnlichen Euklidischen Skalarprodukt. Unter Umständen ist eine Skalierung einzelner Komponenten hilfreich, um die Konvergenzgeschwindigkeit zu verbessern. In der Regel wurden dabei die Magnetisierungen $(m_i)_i$ mit dem Faktor 100 gewichtet. Dies ist insbesondere in den Fällen angebracht, in denen aufgrund eines starken externen Feldes a priori eine gute Schätzung für die $(m_i)_i$ bekannt ist.

Der Gradient wird durch zentrale Differenzenquotienten im \mathbb{R}^M mit Schrittweite δ approximiert. Die Schrittweite τ des Abstiegs wird mittels der Armijo-Regel bestimmt, zusätzlich stellen wir $\delta \ll \tau$ sicher. Dazu wird δ verkleinert, falls die gewählte Schrittweite dies erforderlich macht. Eine untere Schranke garantiert außerdem, dass δ dabei in dem Bereich bleibt, in dem die Berechnung der Differenzenquotienten numerisch stabil ist.

Der Raum der diskreten Phasenparameter kann in den betrachteten Konfigurationen aus relativ wenigen Partikeln vollständig exploriert werden, dabei genügt in der Regel eine grobe Diskretisierung, um ungünstige Parameter schnell auszuschließen. Anschließend kann man die wenigen verbleibenden Kandidaten für die $(p_i)_i$ auf einer feineren Diskretisierung vergleichen.

4.9 Validierung

Zur Orientierung zeigen wir zunächst einen Schnitt durch die Energielandschaft. Abbildung 4.9.1 zeigt die Energie als Funktion der Magnetisierung eines Partikels ohne elastische Deformationen. Das Umschalten zwischen den beiden Varianten lässt sich am Verhalten der Anisotropie-Energie ablesen.

Um die Implementierung zu verifizieren, vergleichen wir ein Partikel in einer quadratischen Zellen mit vier identischen Partikeln in einer viermal so großen Zelle. Beide Konfigurationen repräsentieren die gleiche globale Geometrie, der einzige Unterschied ist die Diskretisierung des periodischen Randes.

Für ein kreisförmiges Partikel mit Radius 0,4 in einem Quadrat mit Seitenlänge 1, diskretisiert mit 32 Punkten, erhalten wir eine makroskopische Verzerrung von 0,0735537 und eine Energie von 2,21812 MPa pro Volumeneinheit. Die Rechnung mit vier Partikeln ergibt eine Verzerrung von 0,0735533 und eine makroskopische Energiedichte von 2,21845 MPa, in sehr guter numerischer Übereinstimmung.

Um die Konvergenzrate zu überprüfen, berechnen wir Energiediagramme für unterschiedlich feine Diskretisierungen, siehe Abbildung 4.9.2. Für eine vorgegebene Verzerrung konvergiert die Energie quadratisch, wie man anhand der experimentellen Konvergenzordnung $\operatorname{eoc}[\mathscr{E}](N) := \log(\frac{\mathscr{E}_{N/4} - \mathscr{E}_{N_{\max}}}{\mathscr{E}_{N} - \mathscr{E}_{N_{\max}}})/\log(4)$ in Tabelle 4.9.1 ablesen kann. Die Konvergenz in Bezug auf die Minimalstelle (d. h. die Größe der makroskopischen Verzerrung) ist sogar noch besser, vgl. Tabelle 4.9.2.

Um die Modellannahme zu verifizieren, dass die Verschiebung der Partikel durch eine affine approximiert werden kann, betrachten wir eine Konfiguration mit fast rechtecki-

Abbildung 4.9.1:

Schnitt durch die Energielandschaft für eine feste Deformation, entlang der Magnetisierung m. Dabei betrachten wir ein elliptisches, horizontal ausgerichtetes Partikel und setzen die elastische Deformation auf Null. Wir variieren die Magnetisierung des Partikels $m = (\cos \theta, \sin \theta)$. Die Abbildung zeigt \mathcal{E}_{demag} (rot, durchgezogen), \mathcal{E}_{ext} (grün, lange Striche) \mathcal{E}_{anis} (blau, kurze Striche) und die Gesamtenergie (magenta, gepunktet) als Funktionen von θ . Das globale Minimum liegt bei $\theta = 180^{\circ}$, die Funktionen sind 360°-periodisch. Das effektive Feld $h_{ext} = 0,1$ T in horizontaler Richtung ist hier relativ schwach, um die Energiebeiträge in vergleichbaren Größenordnungen zu halten, der Volumenanteil des Partikels 40%, das Seitenverhältnis 1,6 : 1. die restlichen Parameter entsprechen Abschnitt 4.4.

gen, ungleichmäßig verteilten Partikeln. Dabei vergleichen wir das Ergebnis einer Rechnung mit affin deformierten Partikeln mit einer Simulation, die die elastische Deformation nicht weiter beschränkt. Die gute Übereinstimmung (insbesondere im Vergleich zu der noch stärkeren Restriktion auf starre Partikel, die neben der Realisierung der Eigenverzerrung nur Rotation und Translation erlaubt) zeigt Abbildung 4.9.3.

Abbildung 4.9.2:

(a) Elastische Energie des Polymers und (b) Demagnetisierungsenergie als Funktion der Partikelrotation. Für die gleiche Situation wie in Abbildung 4.9.1 halten wir nun die Magnetisierung fest und verändern den schiefsymmetrischen Anteil von F_1 . Die Abbildung zeigt den jeweiligen Teil der Energie über der Rotation ($(G_1)_{12} - (G_1)_{21}$)/2 für unterschiedlich feine Diskretisierungen. Der symmetrische Anteil von G_1 wird mit (-0,04,0,04) festgehalten.

N	$\operatorname{eoc}[\mathscr{E}_{\operatorname{matr}}^{\operatorname{elast}}]$	$\operatorname{eoc}[\mathscr{E}_{\operatorname{demag}}]$	$\operatorname{eoc}[\mathscr{E}]$	€ in MPa
32	1,19	0,68	1,11	89,9175
128	2,23	1,19	2,22	91,1056
512	2,23	2,26	2,24	91,1850
1024				91,1888

Tabelle 4.9.1:

Experimentelle Konvergenzordnung für die Teile der Energie, die mit der Methode der Randelemente berechnet werden. Die Konfiguration ist wie oben, die Energie wird in der deformierten Konfiguration (die noch signifikant vom Minimum entfernt ist) berechnet. Die Energie der feinsten Rechnung, die als Referenz für die eoc verwandt wurde, war 91,1888 MPa (bei N = 1024 Kollokationspunkten).

N	$\lambda_2 - \lambda_1$	$\min \mathscr{E}$
32	0,0197835	3,30766
64	0,0198949	3,31424
128	0,0198934	3,31583

Tabelle 4.9.2:

Konvergenz von Position und Wert des Minimums. Wir betrachten ein kreisförmiges Partikel mit Volumenanteil 20%, $\mu = 2$ GPa und $h_{ext} = 1$ T. Wir berechnen die Differenz der beiden Eigenwerte von F_0 , das in dieser Situation aus Symmetriegründen diagonal ist.

Abbildung 4.9.3:

Testrechnung mit und ohne affine Approximation. Die Abbildung zeigt jeweils die Minimalstelle (inkl. Ausschnittvergrößerung), für das volle Problem ohne Restriktion der Deformation der Partikel (blau, kurze Striche), die affine Approximation (grün, lange Striche), die starre Approximation (magenta, gepunktet) im Vergleich zur undeformierten Konfiguration (rot, durchgezogen). Der relative Unterschied in F₀ zwischen dem vollen Problem und der affinen Approximation ist 11%; zur starren Approximation 68%. Der relative Abstand der optimalen Verschiebung vom Raum der affinen Verschiebungen in L²($\partial \omega$) ist 13%, vom Raum der starren Deformationen 60%. Der Unterschied zwischen affiner Approximation (grün) und unrestringierter Deformation (blau) ist erst in der Vergrößerung tatsächlich zu erkennen.

4.10 Polykristalle und Komposite

In den folgenden Abschnitten betrachten wir einige Ergebnisse des beschriebenen Verfahrens. Wir beginnen mit einem Vergleich der beiden diskutierten Materialklassen, Polykristalle und zusammengesetzte Materialien. Zur besseren Vergleichbarkeit halten wir die Geometrie der Körner und Partikel fest und variieren nur die Ausrichtung der Kristallgitter bzw. der ganzen Partikel.

Dabei berechnen wir in einer gegebenen Konfiguration für ein effektives Magnetfeld von $h_{\text{ext}} = 1T$ die Energie als Funktion der makroskopischen Verzerrung $\mathscr{E}[F_0]$. Die beobachtete makroskopische Verzerrung \bar{F}_0 ist dann in diesem Sinne die Minimalstelle von \mathscr{E} . Da der Phasenübergang das Volumen unverändert lässt, bleibt die Volumenänderung det F_0 immer nahe bei 0. Als skalaren Wert listen wir jeweils die Differenz der beiden Singulärwerte von \bar{F}_0 , d. h.

Makroskopische Verzerrung =
$$(\lambda_2 - \lambda_1)(F_0)$$
, (4.37)

wenn $\lambda_i(F)$ für die der Größe nach sortierten Singulärwerte von F (d. h. Eigenwerte von $(F^T F)^{1/2}$) steht. Für Einkristalle ergibt sich dabei der Wert 11,6%. In allen Grafiken vergleichen wir die Referenzkonfiguration (d. h. u = 0 und $F_0 = 0$) mit der beobachteten Deformation $F_0 = \overline{F_0}$.

Im Fall des Polykristalls bleiben die ω_i unverändert, und wir variieren nur die Rotationen Q_i . In Abbildung 4.10.1 sehen wir drei solcher Konfigurationen für verschiedene Orientierungen Q_i , von fast gleich orientiert (durchschnittlicher Unterschied der Orientierungen an einer Korngrenze 2°) über mäßig unterschiedlich (durchschnittlicher Unterschied der Orientierungen an einer Korngrenze 8°) bis zu völlig zufällig (durchschnittlicher Unterschied der Orientierungen etwa 22,5°) Man beachte, dass wegen der kubischen Symmetrie des Materials alle Gitter-Orientierungen modulo 90° zu betrachten sind, 45° also der maximal mögliche Unterschied zweier Orientierungen ist. Die makroskopische Verzerrung in den drei Konfigurationen ist 11,2%, 8,4% bzw. 3,2%. Dabei ist die Verzerrrung bei einer Fehlorientierung von 2° noch sehr nahe an dem Wert für Einkristalle, jedoch bereist bei relativ geringen Unterschieden in der Orientierung nimmt die Verzerrung stark ab. In der völlig zufälligen Konfiguration verbleibt nur etwa ein Viertel des maximalen Wertes.

Auch im Fall der Komposit-Materialien halten wir Form und Größe der Partikel fest, und variieren die Orientierung des Kristallgitters (und damit auch der Partikel). Wir betrachten einen Volumenanteil von 50% mit mehreren unterschiedlich großen, mehr oder weniger zufällig verteilten Partikeln. Die Orientierungen wählen wir jeweils entsprechend einer Konfiguration des Polykristalls in Abbildung 4.10.1 (d. h. Orientierungsunterschiede von durchschnittlich 2°, 8° bzw. völlig zufällig). Abbildung 4.10.2 zeigt die Verzerrung für jede dieser Konfigurationen, sie ergibt sich zu 7,4%, 7,8% und 5,8%. Für kleine Unterschiede in den Orientierungen ergibt sich nur eine geringe Variation der Verzerrung, in etwa vergleichbar dem mittleren Fall des Polykristalls. In diesem Bereich spielt die genaue Anordnung der Partikel eine ähnlich große Rolle wie die Orientierung des Gitters. Bei einer regelmäßigeren Anordnung der Partikel beobachtet man jedoch die erwartete monotone Abnahme der Verzerrung bei zunehmend schlechterer Orientierung, siehe Abbildung 4.11.6 im übernächsten Kapitel. Aber selbst in der völlig zufälligen Ausrichtung erhält man noch fast die Hälfte des Verzerrung des Einkristalls.

Im Weiteren vergleichen wir nun vier Partikel mit unterschiedlicher Orientierung, wobei der Volumenanteil gering genug ist, so dass wir die Position der Mittelpunkte der Partikel unverändert lassen können. Zunächst zeigt Abbildung 4.10.3 vier Partikel mit nahezu korrekt zum effektiven Feld ausgerichteter Orientierung. Dabei erhalten wir selbst mit diesem geringen Volumenanteil von 29,1% fast die Hälfte der im Falle eines Einkristalls auftretenden Verzerrung. Die Spannungen im Polymer konzentrieren sich in den Regionen zwischen vier Partikeln. Die gesamte Deformation enthält nahezu keinen Rotationsanteil.

Bei sehr stark unterschiedlichen Orientierungen wie in Abbildung 4.10.4 sinkt die Verzerrung um einen Faktor 5. Jedes Partikel transformiert sich immer noch wie im vorigen Fall, die bevorzugte Verzerrung der Partikel ist

$$\varepsilon^{(i)} = Q_i \varepsilon_1 Q_i^T, \qquad Q_i = \begin{pmatrix} \cos\theta & \pm \sin\theta \\ \mp \sin\theta & \cos\theta \end{pmatrix},$$

mit $\theta = 36^{\circ}$ und ε_1 aus (4.3). Der Durchschnitt dieser Verzerrungen ist $\langle \varepsilon^{(i)} \rangle = \cos \theta \varepsilon_1$, was nun 20% geringer als in der gut ausgerichteten Konfiguration aus Abbildung 4.10.3 ist, die beobachtete Reduktion der makroskopischen Verzerrung ist jedoch deutlich stärker. Die verschiedenen Verzerrungen sind nämlich inkompatibel, und das Polymer muss diese Inkompatibilitäten ausgleichen. Die dazu notwendige Verformung des Polymers um die einzelnen Partikel reduziert den makroskopischen Effekt. Wenn man ein weicheres Polymer betrachtet, ist das Ausgleichen der verschiedenen Verzerrungen leichter, und die makroskopische Verzerrung steigt, wie die untere Zeile der Abbildung zeigt. Für sehr weiche Polymere erreicht man leicht große makroskopische Verzerrungen, aber die übertragene Kraft wird sehr klein; dies betrachten wir detaillierter im folgenden Kapitel.

Schließlich zeigt Abbildung 4.10.5 zwei zufällige Rotationen dieser Partikel, die zu mittleren Werten für die beobachtete makroskopische Verzerrung führen.

Abbildung 4.10.1:

Deformation eines Polykristalls mit fester Geometrie und unterschiedlicher Orientierung in den Körnern. Die Darstellung zeigt eine kleine Umgebung einer Periodizitätszelle. (Der Ausschnitt bleibt zwischen Referenz- und deformierter Konfiguration in Bezug auf Weltkoordinaten konstant, die Bilder zeigen also unterschiedliche Teile des Materials.) Die linke Spalte enthält die Referenzkonfiguration, das Schachbrettmuster zeigt dabei die Ausrichtung des Kristallgitters. Die mittlere Spalte zeigt die Deformation im Vergleich zwischen Referenzkonfiguration (schwarz) und deformierter Konfiguration (rot) bei einem effektiven Feld von $h_{ext} = 1T$, die rechte Spalte zeigt die elastische Energiedichte W_{matr} von hell (0 MPa) bis schwarz (5 MPa) in der deformierten Konfiguration.

Abbildung 4.10.2:

Deformation eines zusammengesetzten Materials mit denselben Partikeln in unterschiedlicher Anordnung. Die Darstellung zeigt eine Periodizitätszelle. Die linke Spalte enthält die Referenzkonfiguration, das Schachbrettmuster zeigt dabei die Ausrichtung des Kristallgitters. Die mittlere Spalte zeigt die Deformation im Vergleich zwischen Referenzkonfiguration (schwarz) und deformierter Konfiguration (rot), die rechte Spalte zeigt die elastische Energiedichte W_{matr} von gelb (0 MPa) bis rot (5 MPa) in der deformierten Konfiguration.

Abbildung 4.10.3:

Deformation von vier nahezu gleich ausgerichteten Partikeln mit Volumenanteil 29,1%. (a) Referenzkonfiguration und (b) deformierte Konfiguration. Die makroskopische Verzerrung ist 4,8%. Das Schachbrettmuster in der Polymermatrix und in den Partikeln illustriert die elastische Deformation, die Farbkodierung zeigt im Polymer die elastische Energiedichte W von gelb (0 MPa) bis rot (5 MPa). In den Partikeln zeigt das Schachbrettmuster außerdem die Orientierung des Kristallgitters.

Abbildung 4.10.4:

Deformation zweier stark unterschiedlich ausgerichteter Partikel. (a) Referenzkonfiguration und (b) deformierte Konfiguration. Die makroskopische Verzerrung ist 0,9%. In der unteren Zeile zeigen wir dieselbe Situation mit einem Polymer, dass um den Faktor 2 (c) weicher bzw. (d) härter ist, und erhalten eine Verzerrung von 1,4% bzw. 0,5%.

Zwei verschiedene zufällige Konfigurationen. (a), (c) Referenzkonfiguration und (b), (d) deformierte Konfiguration. Die makroskopische Verzerrung ist 2,8% im ersten und 3,7% im zweiten Fall.
4.11 Systematische Untersuchung einzelner Parameter

Abbildung 4.11.1:

Auswirkung des Volumenanteils. Für ein Partikel mit Seitenverhältnis 1 : 1 variieren wir den Volumenanteil, die restlichen Parameter sind wie in Abschnitt 4.4. (a) Makroskopische Verzerrung und (b) geleistete Arbeit, jeweils als Funktion des Volumenanteils.

Nun wollen wir die Auswirkung einzelner Parameter auf das Verhalten des zusammengesetzten Materials systematisch untersuchen. Dabei betrachten wir zwei verschiedene Größen zur Bewertung der Konfiguration, die beobachtete makroskopische Verzerrung (siehe (4.37)) und die geleistete Arbeit, definiert durch

Geleistete Arbeit =
$$\mathscr{E}[0] - \mathscr{E}[\bar{F}_0]$$
. (4.38)

Alle Energiewerte werden pro Einheitsvolumen angegeben und in MPa gemessen.

Wir beginnen mit dem einfachsten Parameter, dem Volumenanteil. Abbildung 4.11.1 zeigt die beobachtete Verzerrung und die geleistete Arbeit für kreisförmige Partikel mit unterschiedlichem Volumenanteil. Wir vergleichen das Ergebnis der numerischen Simulation mit zwei einfachen Näherungsverfahren die in der Homogenisierungsliteratur häufig verwendet werden, nämlich die Annahme konstanter Verzerrung (uniform strain) bzw. konstanter Spannung (uniform stress).

Der Ansatz mit konstanter Verzerrung bedeutet in unserem Fall, dass $\nabla u(x) = F_i = F_0$ für alle *i* und *x*. Die elastische Energie hat dann die Gestalt

$$\mathscr{E}_{u.strain}[F_0] = |\Omega \setminus \omega| W_{matr}^{lin}(F_0) + \sum_i |\omega_i| W_{part}^{lin}(Q_i^T F_0 Q_i - \varepsilon_{p_i}).$$
(4.39)

Dabei verschwindet die Geometrie der Mikrostruktur völlig aus der Betrachtung. Die Kopplung an das magnetische Feld reduziert sich – bis auf den minimalen Einfluss von F_0 auf die Demagnetisierungsenergie – auf die Werte der Phasenparameter p_i . Daher genügt eine einfache quadratische Minimierung in (4.39) zur Berechnung des optimalen F_0 .

Beim zweiten Ansatz nehmen wir die Spannung als konstant an und ignorieren die Kompatibilitätsbedingungen; d. h. die Spannung entspricht überall der makroskopischen Spannung, die im Gleichgewichtszustand Null ist. Daher ist $\nabla u = 0$ in der Matrix, in den Partikeln entspricht es der bevorzugten Verzerrung. Damit ergibt sich die beobachtete makroskopische Verzerrung als arithmetisches Mittel

$$\bar{F}_0 = \sum_i |\omega_i| Q_i^T \varepsilon_{p_i} Q_i.$$
(4.40)

Ahnliche Näherungen wurden in der Literatur zu magnetoelastischen Kompositen bereits benutzt [CSS⁺99, KSL04]. Abbildung 4.11.1 zeigt dass für die hier gewählten Parameter beide Ansätze das gleiche Ergebnis liefern, der den Anstieg der makroskopischen Verzerrung bei wachsendem Volumenanteil qualitativ korrekt wiedergibt.

Abbildung 4.11.2:

Auswirkung des Seitenverhältnisses für Partikel mit Volumenanteil 15%, die restlichen Parameter wie oben. (a) Energie als Funktion der makroskopischen Verzerrung, für verschiedene Seitenverhältnisse. (b) Deformierte Konfigurationen für die diskutierten Geometrien. (c) Makroskopische Verzerrung und geleistete Arbeit als Funktion des Seitenverhältnisses. Zusätzlich zeigt die grüne Kurve in (c) dieselbe Abhängigkeit für eine fünfmal weichere Matrix.

Nun betrachten wir das Seitenverhältnis der Partikel und halten das Volumen fest. In Abbildung 4.11.2 sehen wir, dass extreme Werte des Seitenverhältnisses (also langgestreckte Partikel, unabhängig davon, ob die lange Achse entlang des Magnetfeldes oder senkrecht dazu steht) sowohl zur stärksten makroskopischen Verzerrung als auch zur meisten geleisteten Arbeit führen.

Abbildung 4.11.3:

Auswirkung des Elastizitätsmoduls des Polymers, Seitenverhältnisse 4 : 1, 3 : 1, 2 : 1 und 1 : 1, die restlichen Parameter wie oben. (a) Makroskopische Verzerrung und (b) geleistete Arbeit, jeweils als Funktion des Elastizitätsmoduls $E = \mu(3\lambda + 2\mu)/(\lambda + \mu)$. Dabei halten wir das Verhältnis von λ zu μ konstant wie bisher, die Skala für E ist logarithmisch.

Abbildung 4.11.3 illustriert die Auswirkung des Elastizitätstensors des Polymers. Zunächst halten wir die Poissonzahl fest und skalieren nur den Elastizitätsmodul, d. h. wir skalieren λ und μ mit dem gleichen Faktor. Wie erwartet führen weiche Polymere zu großen makroskopischen Verzerrungen und geringer geleisteter Arbeit. Die Berechnungen zeigen jedoch auch, dass die Arbeit bei einem Elastizitätsmodul ihr Maximum erreicht, der um ein bis zwei Größenordnungen weicher als derjenige der Partikel ist; insbesondere bei sehr langgestreckten Partikeln sollte das Polymer deutlich weicher sein.

Anschließend variieren wir in Abbildung 4.11.4 die Poissonzahl. Dabei beobachten wir ein vergleichbares Verhalten wie in Abbildung 4.11.3, wobei der Einfluss der Poissonzahl deutlich geringer als der der Partikelform ist.

Schließlich kehren wir zu den Überlegungen zur Ausrichtung und Orientierung der Partikel aus dem vorigen Abschnitt zurück, und wollen nun auch diese Abhängigkeit systematischer untersuchen. Zunächst betrachten wir Partikel die immer noch zum Magnetfeld orientiert sind, aber nicht mehr hintereinander zu Ketten ausgerichtet. In Abbildung 4.11.5 sieht man das die beschriebenen Effekte auch bei nicht aneinander ausgerichteten Partikeln zu beobachten sind, erst bei starkem Versatz reduziert sich die beobachtete Verzerrung deutlich.

Die Abhängigkeit von der Orientierung der Partikel (im Verhältnis zum magnetischen Feld) zeigt Abbildung 4.11.6. Der Graph zeigt eine starke Abnahme sowohl der beobachteten Verzerrung als auch der geleisteten Arbeit bei schlechterer Orientierung.

Um die diskutierten Auswirkungen der Geometrie im Modell abzubilden, ist die Berücksichtigung der elastischen Deformation des Polymers notwendig. Die beiden oben

Abbildung 4.11.4:

Auswirkung des Elastizitätsmoduls des Polymers, Seitenverhältnis 3 : 1, Poissonzahl des Polymers 0,49, 0,48, 0,45, 0,4 und 0,25, die restlichen Parameter wie oben. (a) Makroskopische Verzerrung und (b) geleistete Arbeit, jeweils als Funktion des Elastizitätsmoduls des Polymers, vgl. Abbildung 4.11.3.

Abbildung 4.11.5:

Auswirkung des Elastizitätsmoduls des Polymers für zum Magnetfeld orientierte, aber zueinander versetzte Partikel mit Seitenverhältnis 4 : 1 und Volumenanteil 14%, die restlichen Parameter wie oben. Wir betrachten verschieden starken Versatz der Partikel zueinander, wobei die Partikel einer Spalte im Vergleich zur nächsten verschoben sind. 100% bedeutet maximalen Versatz. (a) Konfiguration bei 50% Versatz. (b) Makroskopische Verzerrung und (c) geleistete Arbeit, jeweils als Funktion des Elastizitätsmoduls des Polymers, vgl. Abbildung 4.11.3.

erwähnten einfachen Approximationen (uniform strain bzw. uniform stress) können Auswirkungen von Partikelform, Ausrichtung und Orientierung nicht abbilden.

Abbildung 4.11.6:

Auswirkung der Orientierung für zwei Partikel mit Volumenanteil 22% und Seitenverhältnis 3 : 1. Wir variieren den Winkel der beiden Partikel zum effektiven Magnetfeld, dabei rotieren wir die beiden Partikel in entgegengesetzter Richtung. (a) Geometrie, (b) Makroskopische Verzerrung und (c) geleistete Arbeit, jeweils als Funktion des Rotationswinkels.

4.12 Das Demagnetisierungsfeld auf der Makroskala

Wir bemerken zunächst, dass die beschriebenen Effekte nahezu vollständig auf den Phasenübergang zurückzuführen sind, die Verschiebungen aufgrund der Dipol-Dipol-Wechselwirkung der magnetisierten Partikel sind vernachlässigbar gering. Betrachten wir etwa die Partikelkonfiguration aus Abbildung 4.10.4, dann ist die Rotation der Partikel aufgrund der magnetischen Kräfte kleiner als 10⁻³ (und damit an der Grenze des Auflösungsvermögens der Numerik), der Beitrag zur makroskopischen Verzerrung liegt in einer ähnlichen Größenordnung.

Dies gilt für ein effektives Magnetfeld der Größe $h_{\text{ext}} = 1$ T, wie wir es in allen Rechnungen zugrunde gelegt haben. Im Experiment verwendet man externe Felder der Größenordnung $H_{\text{ext}} \approx 1$ T um eine möglichst vollständige Phasenumwandlung zu erreichen. Das effektive Feld h_{ext} unterscheidet sich in der Regel vom externen Feld H_{ext} . Die folgenden Überlegungen illustrieren jedoch dass der Effekt für die betrachteten Parameterwerte (im Fall von zusammengesetzten Materialen mit einer nichtmagnetischen Hintergrundmatrix) nahezu vernachlässigbar ist.

Für eine einfache Geometrie wird der Unterschied zwischen makroskopischem externem Feld und mikroskopischem effektivem Feld durch (4.26) beschrieben. Zumindest in diesem Fall sieht man leicht, dass der Unterschied relativ gering ist: Da $|M_0|$ kleiner oder gleich dem Volumenanteil des aktiven Materials ist, und $M_s \approx 0.6$ T ergibt sich für den Term $M_s M_0/2$ mit unseren Materialparametern und einem typischen Volumenanteil von z. B. 0,15 die Größenordnung 0,05 T. Dies ist deutlich kleiner als die Größenordnung des externen Magnetfeldes $H_{ext} \approx 1$ T, für sehr schwache Magnetfelder (oder besondere Geometrien) wird die Korrektur natürlich wichtiger.

Um dies weiter zu illustrieren führen wir die Berechnungen für eine Beispielkonfiguration aus. Dazu betrachten wir ein kreisförmiges makroskopisches Gebiet Ω , für das man das magnetische Streufeld analytisch berechnen kann, wie in Abschnitt 4.3 beschrieben. Wir betrachten eine Mikrostruktur länglicher, am Magnetfeld ausgerichteter Partikel. Der Volumenanteil wurde relativ hoch gewählt, denn bei konstanter Magnetisierung aller Partikel ist $|M_0|$ proportional zum Volumenanteil und der Einfluss des Demagnetisierungsfeldes auf das effektive Magnetfeld skaliert hier ebenfalls linear mit $|M_0|$.

Wir vergleichen dabei den Fall dass alle Partikel einheitlich in Richtung des externen Feldes magnetisiert sind (die Konfiguration die von Zeeman-Energie \mathscr{E}_{ext} bevorzugt wird) mit einer Konfiguration, in der die Partikel abwechselnd in entgegengesetzte Richtungen magnetisiert sind (was von der Demagnetisierungsenergie \mathscr{E}_{demag} bevorzugt wird). Abbildung 4.12.1 zeigt Energiegraphen für diese beiden Konfigurationen abhängig vom tatsächlichen externen magnetischen Feld. Darin sieht man auch einen Fall, in dem die Periodizität der Lösung ein nichttriviales Vielfaches der Periodizität der Mikrostruktur ist, wir betrachten daher das Zellproblem mit vier bzw. sechzehn Partikeln in der Periodizitätszelle.

Wenn benachbarte Partikel in unterschiedliche Richtungen magnetisiert sind (vgl. Situation (a) in Abbildung 4.12.1) verschwindet die makroskopische Magnetisierung m_0 und der einzige Beitrag zur Demagnetisierungsenergie kommt vom mikroskopischen Anteil. Diesen berechnen wir numerisch und erhalten 5,5 k Pa. Wenn alle Partikel entsprechend dem externen Feld magnetisiert sind, (vgl. Situation (c) in Abbildung 4.12.1) entspricht die makroskopische Magnetisierung m_0 der mikroskopischen multipliziert mit dem Volumenanteil. der mikroskopische Anteil der Demagnetisierungsenergie beträgt hier (numerisch berechnete) 12 k Pa, für die Makroskala erhält man 19 k Pa pro Einheitsvolumen. (Die Demagnetisierungsenergie insgesamt skaliert linear mit dem Volumen des Werkstücks.) Davon zieht die Interaktion mit dem externen Feld 250 k Pa pro Tesla ab (der Volumenanteil beträgt hier nahezu 50%). Daher ist die einheitlich am externen Feld ausgerichtete Magnetisierung ab ca. 100 m T günstiger als die alternierend magnetisierte.

Wenn man alle weiteren Möglichkeiten in einer Periodizitätszelle mit vier Partikeln betrachtet, ergibt sich zusätzlich eine Konfiguration zwischen diesen beiden Regimes, in der nur ein Partikel von vieren entgegengesetzt zum externen Feld magnetisiert ist (vgl. Situation (b) in Abbildung 4.12.1). Die anderen Situationen sind niemals energetisch günstiger. Ein externes Feld von weniger als 200 m T genügt schließlich, damit die einheitliche Magnetisierung aller Partikel günstiger als alle anderen Varianten ist.

Wie in Abschnitt 4.3 erläutert, erhöht die Vergrößerung der Periodizitätszelle die Anzahl der möglichen Zustände, und da das Energiefunktional nicht konvex ist, ist zu erwarten dass darunter im Allgemeinen energetisch günstigere Zustände sind. Verdoppelt man das Rechengebiet im obigen Beispiel etwa in beide Richtungen (d. h. wir betrachten nun sechzehn statt vier Partikel), so erhalten wir eine Vielzahl weiterer möglicher Magnetisierungen; die rechte Spalte in Abbildung 4.12.1 zeigt beispielhaft 3 von den insgesamt $2^{16} - 2^4 = 65520$ (ohne Berücksichtigung der Tatsache, dass aufgrund der Periodizität des Materials stets *bis zu* 16 verschiedene Zustände äquivalent sind) möglichen neuen Zuständen. Eine Situation mit nur einem von sechzehn Partikeln entgegen dem Magnetfeld (f) etwa hat aufgrund der entgegengesetzten Ausrichtung der der nebeneinander liegenden Partikel eine relativ große Demagnetisierungsenergie, diese Situation ist nie optimal. Betrachtet man jedoch weitere Konfigurationen, in denen ganze Zeilen von Partikeln entgegengesetzt zum externen Feld magnetisiert sind (d. h. Situationen die horizontal analog zu den bisher betrachteten Situationen aussehen, während in der Vertikalen die Anteile der unterschiedlich magnetisierten Partikeln Werte annehmen, die mit der kleineren Periodizitätszelle nicht zu realisieren waren, nämlich 6 : 10 und 2 : 14) so erhält man zwei Situationen (d) und (e), die in Bereichen zwischen den bisher diskutierten Varianten (a) und (b) bzw. (b) und (c) die Energie minimieren, vgl. die entsprechenden Linien in Abbildung 4.12.1. Es ist zu erwarten, dass sich mit einer weiteren Vergrößerung des Rechengebietes noch weitere Zwischenzustände finden lassen, dabei wird die numerische Berechnung jedoch zunehmend aufwändiger.

Abbildung 4.12.1:

Auswirkung des makroskopischen Anteils der Demagnetisierungsenergie, für eine Periodizitätszelle mit vier identischen länglichen Partikeln des Seitenverhältnisses 7 : 2 mit einem Volumenanteil von etwa 50%. Dabei berücksichtigen wir den makroskopischen Anteil des Demagnetisierungsfeldes für ein kreisförmiges Gebiet nach Gleichung (4.25). Der Graph zeigt die Energie & als Funktion des externen Feldes H_{ext} , und die drei mikroskopischen Magnetisierungsmuster (a) – (c) die für einen bestimmten Bereich von H_{ext} optimal sind. Es ist nabeliegend, bei einem größeren Rechengebiet weitere dazwischenliegende Konfigurationen zu erwarten. Betrachtet man etwa die Situationen (d) – (f) in einem in beiden Richtungen verdoppelten Rechengebiet, so findet man in (d) und (e) zusätzliche Energieminimierer die in Bereichen zwischen (a) und (b) bzw. (b) und (c) optimal sind.

4.13 Ausblick: Phasengrenzen in Partikeln

Ein offensichtlicher Nachteil der beschriebenen Implementierung ist die Beschränkung auf Partikel bzw. Körner, die sowohl in Bezug auf den Phasenübergang als auch in Bezug auf die Magnetisierung keine Domänengrenzen beinhalten. Insbesondere die Berücksichtigung von Zwillingsgrenzen zwischen den verschiedenen Varianten würde die Modellierung zahlreicher weiterer interessanter Effekte erlauben, wie etwa die von Energiebarrieren für den Phasenübergang und daraus resultierenden Hysterese-Effekten.

Dabei geht man davon aus, dass beim Phasenübergang eine gewisse Energiemenge dissipiert wird; die nötige Energie, um einen Teil des Materials in eine andere Variante zu überführen ist demnach proportional zu dessen Volumen

$$\mathscr{D}(p_0;p_1) \sim \int_{\omega} |p_0 - p_1|$$

Die Grenzfläche bewegt sich nun, wenn die Energiedifferenz zwischen altem und neuem Zustand größer als die zur Transformation nötige Energie ist.

Abbildung 4.13.1:

Beweglichen Phasengrenzen innerhalb eines Partikels. Die Phasengrenzen werden (a) durch einige zusätzliche Freiheitsgrade diskretisiert und (b) bewegen sich nur, wenn die durch Umschalten der Varianten dissipierte Energie kleiner oder gleich der Energiedifferenz zur neuen Konfiguration ist.

Ein solcher Ansatz zur Modellierung von Zwillingsgrenzen erfordert (bei einer entsprechend geringen Anzahl von Zwillingsgrenzen) nur wenige zusätzliche Freiheitsgrade und passt sich damit problemlos in das diskutierte Verfahren ein. Im einfachsten Fall genügen zur Beschreibung einer geraden Zwillingsgrenze zwei Skalare, die die Position der beiden Endpunkte auf dem Rand beschreiben – gekrümmte Phasengrenzen lassen sich ggf. als Graph über einer solchen Linie mit einigen wenigen weiteren Freiheitsgraden darstellen.

5 Referenz zur Randelemente-Methode

Die Methode der Randelemente [Atk97, GKW03, SS04, Ste03, Hac95] ist ein numerisches Verfahren zum Lösen linearer elliptischer partieller Differentialgleichungen. Sie basiert darauf die Gleichung mittels der Fundamentallösung des elliptischen Operators in eine Integralgleichung auf dem Rand des Gebietes zu transformieren und diese dann zu diskretisieren. Die verwendeten Verfahren und die entsprechende Notation werden in diesem Kapitel zusammengestellt.

Die Methode der Randelemente wird hier ebenfalls nur in zwei Raumdimensionen beschrieben. Insbesondere die Darstellung der Fundamentallösung der anisotropen Elastizität in der komplexen Ebene ist im Dreidimensionalen so nicht möglich, und die Integration der Integralkerne über Dreiecke im \mathbb{R}^3 ist nur noch in wenigen Spezialfällen oder mit unverhältnismäßig hohem Aufwand analytisch durchführbar.

Sei dazu also $\Omega = \Omega_1 \subset \mathbb{R}^2$ ein beschränktes Gebiet mit stückweise glattem Rand, das Komplement wollen wir hier mit $\Omega_0 = \mathbb{R}^2 \setminus \Omega_1$ bezeichnen. Weiterhin bezeichne $\Gamma = \partial \Omega$ den Rand und $\nu = \nu_1$ die äußere Normale aus Sicht von Ω .

Abbildung 5.1: Bezeichnungen für die Herleitung der Randintegralgleichungen.

Zunächst diskutieren wir die Transformation der partiellen Differentialgleichung in Ω in eine Integralgleichung auf dem Rand Γ . Dabei wollen wir eine einheitliche Notation sowohl für skalare als auch für vektorwertige Gleichungen verwenden. Sei dazu u die Lösung einer elliptischen Differentialgleichung, d. h.

$$u: \Omega \to \mathbb{R}^d, \quad d \in \{1; 2\} \quad \text{erfülle} \quad Lu = 0 \quad \text{in } \Omega$$

$$(5.1)$$

mit geeigneten Randwerten und einem symmetrischen linearen elliptischen Operator zweiter Ordnung L mit konstanten Koeffizienten.

5.1 Fundamentallösungen

Als Fundamentallösung bezeichnen wir eine Funktion

$$u^*: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^{d \times d} \tag{5.2}$$

die im Sinne von Distributionen die Gleichung

$$L_x u^*(x, y) = \delta(x - y)\mathbb{I}$$
(5.3)

erfüllt, wobei L_x den Differentialoperator L in Bezug auf die Variable x bezeichnet und δ die Diracsche Delta-Distribution am Nullpunkt ist. Im Fall eines vektorwertigen Problems sei die Gleichung spaltenweise zu verstehen, d. h. die Spalten u_m^* von u^* erfüllen $L_x u_m^*(x,y) = \delta(x-y)e_m$.

In den hier diskutierten Fällen fallen die Terme mit Ableitungen niedrigerer Ordnung weg, d. h. *L* hat die Form

$$Lf(x) = \left(\sum_{jkl} a_{ijkl} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_l} f_k(x)\right)_i$$
(5.4)

für vektorwertige f. Die linearisierte Elastizität lässt sich aufgrund der Symmetrieeigenschaften des Elastizitätstensors in der oben beschriebenen Form darstellen. Im skalaren Fall beschränken wir uns auf den Laplace-Operator.

Für $L = \Delta$ ist die Fundamentallösung und deren Richtungsableitung wohlbekannt:

$$u^{*}(x,y) = -\frac{1}{2\pi} \log|x-y|$$
(5.5)

$$v^*(x,y,\nu) = \sum_i \nu_i \frac{\partial}{\partial y_i} u^*(x,y) = \frac{1}{2\pi} \frac{(x-y) \cdot \nu}{|x-y|^2}$$
(5.6)

Der vektorwertige Fall ist etwas aufwändiger. Im Zweidimensionalen lässt sich das Problem jedoch in die komplexe Ebene transferieren. Dort entspricht die Fundamentallösung wiederum einem Logarithmus mit geeigneten Koeffizienten [CR78, Cle87]. Dazu identifizieren wir einen Punkt $x = (x_i)_i \in \mathbb{R}^2$ mit einer komplexen Zahl $z = x_1 + px_2$ vermittels einer (echt komplexen) Konstante p.

Für eine vektorwertige elliptische Gleichung hat (5.3) dann die Form

$$\sum_{jkl} a_{ijkl} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_l} u_{km}^*(x,y) = \delta_{im} \delta(x-y).$$

Die Fundamentallösung und deren Richtungsableitung ergeben sich zu

$$u_{km}^{*}(x,y) = \frac{1}{2\pi} \sum_{j} \operatorname{Re}\left\{\sum_{n} A_{kn} N_{nj} \ln\left(z_{n}(x-y)\right)\right\} d_{jm},$$
(5.7)

$$v_{im}^*(x,y,v) = \sum_{jkl} a_{ijkl} \frac{\partial}{\partial y_l} u_{km}^*(x,y) v_j = -\frac{1}{2\pi} \sum_{jt} \operatorname{Re}\left\{\sum_n \frac{D_{ijn} N_{nt}}{z_n(x-y)}\right\} d_{tm} v_j.$$
(5.8)

wobei $z_n(x) = x_1 + p_n x_2$. Dabei ergeben sich die Konstanten folgendermaßen: Die p_n sind zwei Lösungen von

$$\det \left(a_{i1k1} + a_{i1k2}p + a_{i2k1}p + a_{i2k2}p^2 \right)_{ik} = 0$$
(5.9)

mit unterschiedlichem Realteil [Str58], $(A_{kn})_{kn}$ kann dann derart ungleich Null gewählt werden, dass

$$\sum_{kn} \left(a_{i1k1} + a_{i1k2} p_n + a_{i2k1} p_n + a_{i2k2} p_n^2 \right) A_{kn} = 0$$

 $(N_{nj})_{nj}$ ist die Inverse von $(A_{kn})_{kn}$:

$$\sum_{n} A_{kn} N_{nj} = \delta_{kj}$$

Die reellen Koeffizienten $(d_{im})_{im}$ sind schließlich durch

$$\delta_{im} = \sum_{t} Z_{it} \cdot d_{tm}$$

gegeben, wobei

$$Z_{it} = \frac{1}{\pi} \sum_{n} \operatorname{Re} \left\{ N_{nt} \left[\frac{D_{i1n}}{p_n} \left(\ln(1+p_n) - \ln(1-p_n) \right) - D_{i2n} \left(\ln(1-p_n) - \ln(-1-p_n) \right) \right] \right\}$$

und

$$D_{ijn} = \sum_{k} \left(a_{ijk1} + p_n a_{ijk2} \right) A_{kn}.$$

Diese Konstruktion ist im Fall isotroper Elastizität nicht möglich, da dann alle Nullstellen von (5.9) denselben Realteil besitzen. In diesem Fall kann man wahlweise die übliche Konstruktion der isotropen Fundamentallösung nach Kelvin verwenden. Andererseits verhält sich die Darstellung ausreichend stabil unter Änderungen der Konstanten a_{ijkl} , so dass man als Approximation auch eine Fundamentallösung zu leicht gestörten Koeffizienten verwenden kann, siehe dazu auch [Str58].

5.2 Randintegraloperatoren

Zunächst definieren wir die Operatoren γ^{α} und $\gamma^{\alpha}_{\partial_{\gamma}}$ als einseitige Limites der Funktionswerte bzw. der Normalenableitung aus Richtung von Ω_{α} für stetige bzw. stetig differenzierbare Funktionen:

$$\gamma^{\alpha}[f](x) = \lim_{\Omega_{\alpha} \to \xi \to x} f(\xi) \qquad \qquad \text{für } f: \Omega_{\alpha} \to \mathbb{R}^{m}, x \in \Gamma, \qquad (5.10)$$

$$\gamma^{\alpha}_{\partial_{\nu}}[f](x) = \lim_{\Omega_{\alpha} \ni \xi \to x} \nabla f(\xi) \cdot \nu \qquad \qquad \text{für } f: \Omega_{\alpha} \to \mathbb{R}, x \in \Gamma, \qquad (5.11)$$

$$\left(\gamma_{\partial_{\nu}}^{\alpha}[f](x)\right)_{i} = \lim_{\Omega_{\alpha} \ni \xi \to x} \sum_{jkl} a_{ijkl} \partial_{l} f_{k}(\xi) \nu_{j} \qquad \text{ für } f: \Omega_{\alpha} \to \mathbb{R}^{2}, x \in \Gamma.$$
 (5.12)

Dabei ist zu beachten, dass für die Normalenableitung von beiden Seiten dieselbe Normale $v = v_1$ verwendet wird.

Im Fall der Elastizität entsprechen die Normalenableitungen (mit der oben diskutierten Identifikation der elastischen Konstanten) den Kräften auf dem Rand $\sigma v = C \varepsilon [u] v$. In diesem Sinne handelt es sich bei v^* um die Normalenableitung von u^* in Bezug auf die Variable y. Zur Bezeichnung der Randwerte aus Richtung $\Omega = \Omega_1$ lassen wir den Index α auch weg, wenn nicht die Gefahr von Missverständnissen besteht.

Nun definieren wir das Einfachschicht-Potential \hat{U} und das Doppelschicht-Potential \hat{V} und die zugehörigen Randintegraloperatoren U und V als

$$\tilde{U}[f](x) = \int_{\Gamma} \left(u^*(x, y) \right)^T f(y) d\mathcal{H}^1(y) \qquad \text{für } x \in \mathbb{R}^2 \setminus \Gamma, \qquad (5.13)$$

$$\tilde{V}[f](x) = \int_{\Gamma} \left(v^*(x, y, \nu(y)) \right)^T f(y) d \mathscr{H}^1(y) \qquad \text{für } x \in \mathbb{R}^2 \setminus \Gamma, \qquad (5.14)$$

$$U[f](x) = \int_{\Gamma} \left(u^*(x, y) \right)^T f(y) d \mathcal{H}^1(y) \qquad \text{für } x \in \Gamma, \qquad (5.15)$$

$$V[f](x) = \int_{\Gamma} \left(v^*(x, y, \nu(y)) \right)^T f(y) d\mathcal{H}^1(y) \qquad \text{für } x \in \Gamma.$$
(5.16)

Dabei ist $(u^*)^T f$ im vektorwertigen Fall als Matrix–Vektor-Produkt zu verstehen, im skalaren Fall als gewöhnliches Produkt reeller Zahlen. Die Integrale existieren für stückweise glattes Γ und f, wie sie letztlich in der Implementierung vorkommen, als uneigentliche Integrale.

Das Einfachschicht-Potential \tilde{U} ist auf ganz \mathbb{R}^2 stetig fortsetzbar, daher kann man \tilde{U} und U auf dem Rand identifizieren. \tilde{V} springt jedoch über Γ , man erhält

$$\left[\tilde{V}[f]\right]_{1}^{0} = \gamma^{0}\tilde{V}[f] - \gamma^{1}\tilde{V}[f] = f.$$
(5.17)

An glatten Randpunkten ist dabei V[f] das arithmetische Mittel der beiden einseitigen Grenzwerte von $\tilde{V}[f]$. Um festzustellen wie sich dies an Punkten verhält, an denen Γ

Abbildung 5.2.1: Modifikation des Randes um einen Punkt $x \in \Gamma$.

nicht differenzierbar ist, modifizieren wir Γ so (vgl. Abbildung 5.2.1), dass ein Punkt $x \in \Gamma$ anschließend auf der Innenseite des modifizieren Randes $\Gamma_{\varepsilon} \cup \Gamma_{\varepsilon}^{1}$ liegt: Der Rand wird dazu mittels

$$\Gamma_{\varepsilon} = \Gamma \setminus B_{\varepsilon}(x), \quad \Gamma_{\varepsilon}^{1} = \partial B_{\varepsilon}(x) \setminus \Omega$$
(5.18)

in einem Kreisbogen um x herumgeführt. Damit können wir das Potential \tilde{V} im Punkt x auswerten, wenn wir über den modifizierten Rand integrieren. Im Grenzwert erhalten wir zwei Terme: Das Integral über $\Gamma \setminus B_{\varepsilon}(x)$ konvergiert gegen den Cauchyschen Hauptwert, also den Wert des Doppelschichtoperators auf dem unmodifizierten Rand. Das Integral über $\partial B_{\varepsilon}(x) \setminus \Omega$ ergibt (für an der Stelle x Hölder-stetiges f) die Multiplikation mit einem konstanten (skalaren bzw. matrixwertigen) Faktor F(x), der von der Fundamentallösung und den Winkeln der beiden Tangenten im Punkt x abhängt.

$$F(x) = -\lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}^{1}} \left(v^{*}(x, y, \frac{x - y}{|x - y|}) \right)^{T} d\mathcal{H}^{1}(y).$$
(5.19)

Der Grenzwert des Integrals über das vollständige $\partial B_{\varepsilon}(x)$ ist wegen der Skalierung der Fundamentallösung stets I. Aufgrund der Spiegelsymmetrien der Fundamentallösung erhält man also in Punkten in denen Γ glatt ist für F den Wert $\frac{1}{2}$ I, an rechtwinkligen Ecken entsprechend die Faktoren $\frac{1}{4}$ bzw. $\frac{3}{4}$. Im rotationssymmetrischen Fall ist F(x) für beliebige Winkel proportional zum Öffnungswinkel, für anisotrope Fundamentallösungen muss es jedoch (außer für die beschriebenen Konfigurationen) abhängig von den Richtungen der beiden Tangenten berechnet werden, vgl. Abschnitt 6.4. Damit ist

$$U[f] = \gamma \circ \tilde{U}[f], \quad V[f] = \gamma \circ \tilde{V}[f] + Ff.$$
(5.20)

Nach Testen von (5.1) mit der Fundamentallösung erhalten wir mittels partieller Integration eine Darstellung der Lösung u über diese beiden Potentiale

$$u = \tilde{U} \circ \gamma_{\partial_{u}}[u] - \tilde{V} \circ \gamma[u] \quad \text{in } \Omega_{1}, \qquad (5.21)$$

$$0 = \tilde{U} \circ \gamma_{\partial_{\nu}}[u] - \tilde{V} \circ \gamma[u] \quad \text{in } \Omega_0.$$
(5.22)

Auf (5.21) wenden wir nun den Spuroperator γ^1 an, um eine Gleichung auf dem Rand Γ zu erhalten,

$$\gamma[u] = U \circ \gamma_{\partial_{\nu}}[u] - V \circ \gamma[u] + F \gamma[u] \quad \text{auf } \Gamma, \qquad (5.23)$$

oder mit den Bezeichnungen $u = \gamma[u]$ und $t = \gamma_{\partial_u}[u]$ für die Randwerte von u

$$u = U[t] - V[u] + Fu \quad \text{auf } \Gamma.$$
(5.24)

Dies ergibt also eine Integralgleichung auf Γ , die die Dirichlet- und die Neumann-Randwerte miteinander in Beziehung setzt (die so genannte direkte Formulierung) und die Berechnung einer Sorte von Randwerten aus der anderen erlaubt. Für eine Funktion u, die (5.1) in Ω_0 erfüllt, erhalten wir analog die Gleichung mit umgekehrten Vorzeichen

$$u = -U[t] + V[u] + (\mathbb{I} - F)u \quad \text{auf } \Gamma.$$
(5.25)

Dabei ist $\mathbb{I} - F$ der Koeffizient, der sich in (5.19) ergibt, wenn man das Integral über den verbleibenden Kreisbogen durchführt.

Für ein in ganz \mathbb{R}^2 stetiges *u*, dass in beiden Teilgebieten (5.1) erfüllt, können wir nun (5.24) und (5.25) addieren und erhalten eine Darstellung von *u* auf dem Rand, sowie über die Darstellungsformeln auf Ω_0 und Ω_1 auch auf dem Rest des Gebietes:

$$u = U[t_1 - t_0] \quad \text{auf } \Gamma, \tag{5.26}$$

$$u = \tilde{U}[t_1 - t_0] \quad \text{in } \mathbb{R}^2 \setminus \Gamma.$$
(5.27)

5.3 Berechnung von Gradienten

Zur Berechnung des Eshelby-Tensors in Kapitel 3 benötigt man den vollen Gradienten der elastischen Verschiebung *u*. Aus der Randintegralgleichung erhält man jedoch nur die Randspannungen in Normalenrichtung, was zur Rekonstruktion des vollen Gradienten nicht ausreichend ist.

Die Berechnung des Gradienten kann nun auf verschieden Arten erfolgen: Im einfachsten Fall berechnet man tangentiale Ableitungen von u durch das Ableiten der Ansatzfunktionen und kombiniert diese mit den aus der Randintegralgleichung berechneten $\gamma_{\partial_v}[u]$ zum vollständigen Gradienten. Eine genauere Methode [Gui94, CS93, GKRR92, RCH97] verwendet jedoch die Differentiation der Fundamentallösungen.

Dazu betrachten wir die Darstellungsformel (5.21) von u im Inneren, und leiten diese nach x ab. Damit erhalten wir sofort eine Darstellung von ∇u im Inneren von Ω mittels der Randwerte $\gamma[u]$ und $\gamma_{\partial_v}[u]$. Wenn wir ∇u auf dem Rand benötigen, müssen wir zur Spurbildung ähnlich wie oben einen Grenzprozess in Bezug auf den modifizierten Rand $\Gamma_{\varepsilon} \cup \Gamma_{\varepsilon}^{1}$ aus Abbildung 5.2.1 durchführen. Wir beginnen mit der Definition der entsprechenden Integralkerne und der zugehörigen Potentiale. Um die Darstellung für den vektorwertigen Fall klarer zu machen, werden dabei die Indizes des Komponenten der Integralkerne jeweils mitgeführt. Der skalare Fall ergibt sich durch Weglassen der entsprechenden Indizes.

$$u_{km,q}^*(x,y) = \frac{\partial}{\partial x_q} u_{km}^*(x,y), \qquad (5.28)$$

$$v_{im,q}^{*}(x,y,\nu) = \frac{\partial}{\partial x_{q}} v_{im}^{*}(x,y,\nu), \qquad (5.29)$$

$$\tilde{U}_{m,q}'[f](x) = \sum_{k} \int_{\Gamma} u_{km,q}^*(x,y) f_k(y) d\mathcal{H}^1(y) \qquad \text{für } x \in \mathbb{R}^2 \setminus \Gamma, \qquad (5.30)$$

$$\tilde{V}'_{m,q}[f](x) = \sum_{i} \int_{\Gamma} v^*_{im,q}(x, y, \nu(y)) f_i(y) d\mathcal{H}^1(y) \qquad \text{für } x \in \mathbb{R}^2 \setminus \Gamma.$$
(5.31)

Die Randintegraloperatoren lassen sich nicht analog zu (5.15) und (5.16) definieren, da $v_{im,q}^*$ für $x \in \Gamma$ eine nicht integrierbare Singularität besitzt. Um nun doch eine Darstellung durch geeignete Randintegrale herzuleiten, beginnen wir mit der nach x differenzierten Form von (5.21) auf dem modifizierten Rand:

$$u_{m,q}(x) = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon} \cup \Gamma_{\varepsilon}^{1}} \sum_{k} u_{km,q}^{*}(x,y) t_{k}(y) - \sum_{i} v_{im,q}^{*}(x,y,v(y)) u_{i}(y) d\mathcal{H}^{1}(y)$$
(5.32)

Um diesen Grenzwert in einzelne berechenbare Teile aufzuspalten, approximieren wir u und t auf $\Gamma_{\varepsilon}^{1} = \partial B_{\varepsilon}(x) \setminus \Omega$ durch Werte an der Stelle x. Wir setzen dazu voraus, dass die Ableitung von u an der Stelle x Hölder-stetig zum Exponenten δ sei, dann können wir u und t auf $\partial B_{\varepsilon}(x)$ für kleines ε folgendermaßen entwickeln:

$$\begin{split} u_i(y) &= u_i(x) + \sum_j u_{i,j}(x)(y_j - x_j) + r_i^{[u]}(y - x), \qquad r_i^{[u]}(\varepsilon) = \mathcal{O}(\varepsilon^{1+\delta}), \\ t_k(y) &= \sum_{lij} a_{klij} u_{i,j}(y) v_l(y) \\ &= \sum_{lij} a_{klij} u_{i,j}(x) v_l(y) + r_k^{[t]}(y - x), \qquad r_k^{[t]}(\varepsilon) = \mathcal{O}(\varepsilon^{\delta}). \end{split}$$

Diese Approximation können wir in dem Teil des Integrals über $\Gamma_{\varepsilon}^{1} = \partial B_{\varepsilon}(x) \setminus \Omega$ verwenden, da der Fehler im Integral für $\varepsilon \to 0$ gegen 0 konvergiert:

$$\int_{\Gamma_{\varepsilon}^{1}} \sum_{k} u_{km,q}^{*}(x,y) r_{k}^{[t]}(y-x) - \sum_{i} v_{im,q}^{*}(x,y,\nu(y)) r_{i}^{[u]}(y-x) d \mathcal{H}^{1}(y)$$
$$= \mathcal{O}(\varepsilon) \big(\mathcal{O}(\varepsilon^{-1}) \mathcal{O}(\varepsilon^{\delta}) - \mathcal{O}(\varepsilon^{-2}) \mathcal{O}(\varepsilon^{1+\delta}) \big) = \mathcal{O}(\varepsilon^{\delta}) \to 0 \quad \text{für } \varepsilon \to 0$$

Mit diesem Bezeichnungen können wir nun das Integral in (5.32) in geeignete Teile aufspalten und damit die Randintegraloperatoren und den integralfreien Term definieren.

$$\begin{split} u_{m,q}(x) &= \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon} \cup \Gamma_{\varepsilon}^{1}} \sum_{k} u_{km,q}^{*}(x,y) t_{k}(y) - \sum_{i} v_{im,q}^{*}(x,y,v(y)) u_{i}(y) d\mathcal{H}^{1}(y) \\ &= \lim_{\varepsilon \to 0} \left(\int_{\Gamma_{\varepsilon}} \sum_{k} u_{km,q}^{*}(x,y) t_{k}(y) - \sum_{i} v_{im,q}^{*}(x,y,v(y)) u_{i}(y) d\mathcal{H}^{1}(y) \\ &+ \int_{\Gamma_{\varepsilon}^{1}} \sum_{k} u_{km,q}^{*}(x,y) (\sum_{lij} a_{klij} u_{i,j}(x) v_{l}(y)) \\ &- \sum_{i} v_{im,q}^{*}(x,y,v(y)) (u_{i}(x) + \sum_{j} u_{i,j}(x) (y_{j} - x_{j})) d\mathcal{H}^{1}(y) \right) \\ &= \lim_{\varepsilon \to 0} \left(\int_{\Gamma_{\varepsilon}} \sum_{k} u_{km,q}^{*}(x,y) t_{k}(y) - \sum_{i} v_{im,q}^{*}(x,y,v(y)) u_{i}(y) d\mathcal{H}^{1}(y) \\ &- \sum_{i} u_{i}(x) \int_{\Gamma_{\varepsilon}^{1}} v_{im,q}^{*}(x,y,v(y)) d\mathcal{H}^{1}(y) \\ &+ \sum_{ij} u_{i,j}(x) \int_{\Gamma_{\varepsilon}^{1}} \sum_{kl} u_{km,q}^{*}(x,y) a_{klij} v_{l}(y) \\ &- v_{im,q}^{*}(x,y,v(y)) (y_{j} - x_{j}) d\mathcal{H}^{1}(y) \right) \end{split}$$

Dabei konvergieren die Koeffizienten von $u_{i,j}$, der Grenzwert werde mit G_{mqij} bezeichnet. Das Integral von $v_{im,q}^*$ über Γ_{ε}^1 divergiert jedoch für sich betrachtet für $\varepsilon \to 0$, nur zusammen mit dem Integral über Γ_{ε} hat es einen endlichen Grenzwert. Diese Betrachtungen motivieren für $x \in \Gamma$ die Definitionen

$$U'_{m,q}[f](x) = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}} \sum_{k} u^*_{km,q}(x,y) f_k(y) d\mathcal{H}^1(y), \qquad (5.33)$$

$$V'_{m,q}[f](x) = \lim_{\varepsilon \to 0} \left(\int_{\Gamma_{\varepsilon}} \sum_{i} v^*_{im,q}(x, y, v(y)) f_i(y) d\mathcal{H}^1(y) + \sum_{i} f_i(x) \int_{\Gamma_{\varepsilon}^1} v^*_{im,q}(x, y, v(y)) d\mathcal{H}^1(y) \right),$$
(5.34)

$$G_{mqij}(x) = \lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}^{1}} \sum_{kl} u_{km,q}^{*}(x,y) a_{klij} v_{l}(y) - v_{im,q}^{*}(x,y,v(y))(y_{j} - x_{j}) d\mathcal{H}^{1}(y), \quad (5.35)$$
$$\nabla u = U'[t] - V'[u] + G \nabla u. \quad (5.36)$$

Aus Symmetriegründen ergibt sich wieder $G\nabla u = \frac{1}{2}\nabla u$ an glatten Stellen des Randes. Für ein stetiges u, dass beiderseits des Randes die Differentialgleichung (5.1) mit dem gleichen Differentialoperator erfüllt, erhalten wir analog zu (5.26) eine Darstellung von ∇u über den Sprung der Normalenableitungen. Der Gradient ist jedoch über Γ nicht stetig, wir erhalten hier den mittels G gewichteten Mittelwert der beidseitigen Grenzwerte, d. h. an glatten Stellen

$$\frac{1}{2}(\gamma^{1}[\nabla u] + \gamma^{0}[\nabla u]) = U'[t_{1} - t_{0}].$$
(5.37)

Insbesondere ist in diesem Fall die Berechnung des gemittelten Gradienten mittels des nur Cauchy-singulären U' möglich.

5.4 Diskretisierung mittels Kollokation

Sei nun zunächst Γ_b eine Approximation von Γ durch Geradensegmente der Länge $\mathcal{O}(b)$. Die Approximation sei genügend fein, so dass sich Γ über Γ_b mittels der in beide Richtungen Lipschitz-stetigen orthogonalen Projektion $l_b : \Gamma_b \to \Gamma$ darstellen lässt. Auf Γ_b betrachten wir dann Ansatzfunktionen φ , die entweder stückweise konstant oder stückweise affin und global stetig sind. Dazu seien φ_i entsprechende Basisfunktionen, vgl. Abbildung 5.4.1. Weiterhin gebe es Punkte $\xi_j \in \Gamma_b$, so dass $\varphi_i(\xi_j) = \delta_{ij}$. Die ξ_j liegen also im ersten Fall innerhalb der Segmente (üblicherweise die Mittelpunkte), im zweiten Fall in den Endpunkten der Segmente. Die Menge der Kollokationspunkte bezeichnen wir mit N_b .

Abbildung 5.4.1: (a) Stückweise konstante bzw. (b) stückweise affine Ansatzfunktionen.

Damit können wir eine Interpolationsabbildung von $\mathcal{V} = C(\Gamma_b)$ nach $\mathcal{V}_b = \operatorname{span}\{\varphi_i\}$ $\mathscr{I}_b : C(\Gamma_b) \to \mathcal{V}_b, \quad \mathscr{I}_b[f](x) = \sum_i f(\xi_i)\varphi_i(x)$ (5.38)

definieren, die stetige Funktionen durch Funktionen des gewählten Ansatzraumes \mathcal{V}_b auf Γ_b interpoliert. Dabei sei bemerkt, dass im Falle stückweise konstanter Ansatzfunktionen $\mathcal{V}_b \not\subset \mathcal{V}$ gilt.

Zur Diskussion der Diskretisierung betrachten wir eine Integralgleichung der Form

$$K[u] + Fu = f \tag{5.39}$$

mit einem Integraloperator K, integralfreien Koeffizienten F (d. h. die Multiplikation mit einer in vielen Fällen – aber nicht notwendigerweise – konstanten Funktion) und einer rechten Seite f. Dabei sei die Unbekannte u und die rechte Seite f zunächst als skalare Funktion vorausgesetzt. Wir ersetzen nun diese durch eine Integralgleichung auf der stückweise affinen Approximation des Randes, indem wir in der Definition des Operators K und der Koeffizienten F den Rand Γ durch seine Approximation Γ_b ersetzen und f nach Γ_b liften.

$$K_{(b)}[u] + F_{(b)}u = f_{(b)} = f \circ l_b$$
(5.40)

Im Rahmen eines Kollokationsansatzes betrachten wir nun die Projektion dieser Gleichung auf \mathscr{V}_{h} mittels des Interpolationsoperators \mathscr{I}_{h} , d. h. wir suchen

$$u_{b} \in \mathscr{V}_{b}, \quad \mathscr{I}_{b}\left[K_{(b)}\left[u_{b}\right]\right] + \mathscr{I}_{b}\left[F_{(b)}u_{b}\right] = \mathscr{I}_{b}\left[f_{(b)}\right].$$
(5.41)

Offenbar genügt es, eine Gleichheit in \mathcal{V}_h an allen Kollokationspunkten ξ_i zu fordern. Wenn wir außerdem u_h in der Basis $\{\varphi_j\}$ von \mathcal{V}_h darstellen und $f_{(h)}$ mit \mathscr{I}_h auf \mathcal{V}_h projizieren,

$$u_b(x) = \sum_j u_j \varphi_j(x), \quad f_b(x) = \mathscr{I}_b \left[f_{(b)} \right](x) = \sum_i \left(f \circ l_b \right)(\xi_i) \varphi_i(x), \tag{5.42}$$

so erhalten wir aus (5.41):

$$K_{(b)}[u_{b}](\xi_{i}) + F_{(b)}(\xi_{i})u_{b}(\xi_{i}) = f_{b}(\xi_{i}) \quad \text{für alle } i \text{, bzw.}$$
(5.43)

$$\sum_{j} K_{(b)}[\varphi_{j}](\xi_{i})u_{j} + F_{(b)}(\xi_{i})u_{i} = f_{b}(\xi_{i}) \quad \text{für alle } i.$$
(5.44)

In diesem Sinne kann man die Projektionen von $K_{(b)}$ und $F_{(b)}$ als lineare Abbildungen K_b und F_b auf \mathscr{V}_b betrachten, wir schreiben kurz

$$K_h[u_h] + F_h u_h = f_h \text{ in } \mathscr{V}_h.$$
(5.45)

Dabei können wir K_h auf \mathscr{V}_h durch die Matrix $(K_{(h)}[\varphi_j](\xi_i))_{ij}$ darstellen. Die Einträge dieser Matrix bestehen aus Integralen der Form

$$K_{ij} = K_{(b)}[\varphi_j](\xi_i) = \int_{\Gamma_b} k(\xi_i, y)\varphi_j(y) d\mathcal{H}^1(y), \qquad (5.46)$$

d. h. die Integration des Integralkernes k multipliziert mit einer Basisfunktion φ_j über den Träger dieser Funktion. Diese Integrale lassen sich für die vorkommenden Kerne analytisch berechnen, vgl. Abschnitt 6.3. Bei vektorwertigen Problemen kann die Gleichung in die folgende Blockstruktur zerlegen, indem man vektorwertige Funktionen als Vektoren skalarer Funktionen betrachtet und die Integraloperatoren und die freien Koeffizienten entsprechend zerlegt:

$$\begin{pmatrix} K^{11} & K^{12} \\ K^{21} & K^{22} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} u^1 \\ u^2 \end{pmatrix} \end{bmatrix} + \begin{pmatrix} F^{11} & F^{12} \\ F^{21} & F^{22} \end{pmatrix} \begin{pmatrix} u^1 \\ u^2 \end{pmatrix} = \begin{pmatrix} f^1 \\ f^2 \end{pmatrix}$$
(5.47)

Die Diskretisierung der Funktionen f^k und u^l , der Koeffizienten F^{kl} und der Operatoren K^{kl} erfolgt dann wie im skalaren Fall. Dabei ist zu beachten, dass es sich bei $F^{kl}u^l$ um das Produkt zweier skalarer Funktionen handelt. Dies ist die komponentenweise Darstellung des Produktes Fu, in dem F eine matrixwertige, u eine vektorwertige Funktion ist.

Im Unterschied zu dem bisher diskutierten Vorgehen ist es ebenfalls möglich, die Integralgleichung durch Multiplikation mit einer Testfunktion und eine weitere Integration in eine schwache Form zu bringen. Auf dieser schwachen Form aufbauend kann man eine Galerkin-Approximation [SS04] durchführen. Der Galerkin-Ansatz hat analytische Vorteile (man kann eine umfangreiche Konvergenztheorie analog zur Methode der Finiten Elemente aufbauen), jedoch lässt sich die dort auftretende zweifache Integration nur in den seltensten Fällen analytisch durchführen, so dass geeignete numerische Quadraturverfahren nötig sind.

5.5 Beschleunigung durch hierarchische Matrizen

Ein wesentlicher Nachteil der Methode der Randelemente ist die Gestalt der auftretenden Matrizen. Da der Träger der Integralkerne u^* und v^* der ganze \mathbb{R}^2 ist, ist die entstehende Matrix (im Gegensatz zu anderen Diskretisierungsverfahren für partielle Differentialgleichungen) nahezu vollständig besetzt.

Andererseits lassen sich die Integralkerne jedoch für genügend weit entfernte Punkte x und y gut durch eine Entwicklung mit Tensorprodukt-Struktur

$$k(x,y) \approx \sum_{m} k_{m}^{X}(x) k_{m}^{Y}(y)$$

approximieren. Insbesondere kann man sogar für ganze Gruppen von Kollokationspunkten $X_I = \{\xi_i | i \in I\}$ und Integrationsbereichen $Y_J = \bigcup_{j \in J} \operatorname{supp} \varphi_j$ – so genannte Clusterpaare (X_I, Y_J) – dieselbe Entwicklung verwenden, solange die Cluster genügend weit voneinander entfernt sind, d. h.

$$\max\{\operatorname{diam} X_I, \operatorname{diam} Y_I\} \le \eta \operatorname{dist} (X_I, Y_I)$$
(5.48)

Dies ist die grundsätzliche Idee der Panel-Clustering-Methode [HN89, Sau00]. Verwendet man als Basisfunktionen die für das Laplace-Problem besonders geeigneten sphärisch-harmonischen Funktionen, so spricht man auch von der schnellen Multipol-Methode [GR97]. Weitere, in allgemeineren Kontexten anwendbare Möglichkeiten sind die Taylor-Entwicklung oder Interpolation durch Polynome, jeweils unter geeigneten Glattheitsvoraussetzungen des Integralkerns.

Hierarchische Matrizen [BGH03] sind eine Methode, die Systemmatrix in einer dieser Entwicklung entsprechenden Struktur zu speichern und mit solchen Matrizen unter Berücksichtigung ihrer Struktur arithmetische Operationen durchzuführen. Dabei werden Blöcke, die weit entfernten Kollokationspunkten und Integrationsbereichen entsprechen, durch Matrizen niedrigen Ranges dargestellt, vgl. Abbildung 5.5.1. Für einen zulässigen Cluster (X_I, Y_I) können die Matrixeinträge folgendermaßen dargestellt werden:

$$K_{ij} = K_b[\varphi_j](\xi_i) = \int_{\Gamma_b} k(\xi_i, y)\varphi_j(y) d\mathcal{H}^1(y)$$

$$\approx \int_{\Gamma_b} \sum_m k_m^{X_I}(\xi_i) k_m^{Y_J}(y)\varphi_j(y) d\mathcal{H}^1(y)$$

$$= \sum_m \left(k_m^{X_I}(\xi_i)\right) \left(\int_{\Gamma_b} k_m^{Y_J}(y)\varphi_j(y) d\mathcal{H}^1(y)\right)$$

$$= \sum_m L_{im}^I R_{mj}^J$$

Das heißt eine Matrix niedrigen Ranges wird durch ein Produkt zweier rechteckiger Matrizen *L* und *R* dargestellt. Nur im Nahbereich (wo keine zulässigen Clusterpaare existieren) werden vollbesetzte Matrizen gespeichert.

Eine solche Approximation der Matrix lässt sich (nachdem die Blockstruktur aufgrund der Geometrie des diskreten Randes gebildet wurde) auch durch rein algebraische Operationen berechnen, die in jedem Block nur wenige Einträge der Originalmatrix benötigen. Dies bezeichnet man als adaptive Kreuzapproximation (ACA) [Beb00]. Dabei wird ein Matrixblock zunächst anhand einer Zeile und Spalte durch eine Rang-1-Matrix approximiert. Auf die nach Subtraktion der Näherung verbleibende Matrix wendet man das Verfahren rekursiv an, die entstehenden Rang-1-Matrizen addiert man zu einer Niedrigrang-Approximation. Bei geeigneter Wahl der verwendeten Matrixeinträge und des Abbruchkriteriums lässt sich dadurch dieselbe Approximationsqualität wie durch Panel-Clustering erreichen [Beb00].

Auf diese Weise lässt sich die Speicherung der Systemmatrix effizient organisieren. Weiterhin ist die Matrix-Vektor-Multiplikation schnell durchführbar, so dass iterative Verfahren zum Lösen des linearen Gleichungssystems in Betracht kommen.

Allerdings ist das Gleichungssystem insbesondere für komplizierte Randgeometrien weiterhin schlecht konditioniert, so dass viele Iterationen nötig sind. Einen Ausweg bietet die approximative LR-Zerlegung durch hierarchische Matrizen. Dabei führt man blockweise eine gewöhnliche LR-Zerlegung durch, approximiert jedoch die auftretenden Ma-

Abbildung 5.5.1:

Hierarchische Zerlegung der Matrix in Blöcke niedrigen Ranges (weiß, die Zahl beschreibt den Rang) und voll besetze Blöcke (rot).

trizenprodukte durch solche niedrigeren Ranges [BGH03]. Dadurch erhält man mit nahezu linearem Aufwand eine approximative Inverse, die gut zur Vorkonditionierung geeignet ist [Beb05].

Für die Methoden zu hierarchischen Matrizen fand in der vorliegenden Arbeit die Bibliothek AHMED von Dr. habil. Mario Bebendorf Verwendung, vgl. Abschnitt 6.5.

	Vollbesetz	zte Matrix	Hierarchische Matrix							
	QR-Ze	rlegung	Stabilisiertes BiCG							
	_		keine Vor	konditionie	erung	hierarchische LR-Vorkond.				
Partikel	Speicher	Laufzeit	Speicher	Laufzeit	Iter.	Speicher	Laufzeit	Iter.		
100	40 MB	1 s	22 MB	< 1 s	120	24 MB	< 1 s	2		
400	379 MB	65 s	29 MB	4 s	247	36 MB	4 s	4		
1600			72 MB	44 s	451	112 MB	29 s	5		
6400			324 MB	461 s	886	532 MB	176 s	7		

Tabelle 5.5.1:

Speicherverbrauch, Laufzeit und Iterationszahlen für die Invertierung des Einfachschichtoperators des Laplace. Vergleich zwischen der direkten Lösung mit dem QR-Verfahren und der iterativen Invertierung einer hierarchischen Approximation mit dem stabilisierten BiCG-Verfahren, mit und ohne Vorkonditionierung.

Tabelle 5.5.1 zeigt das Laufzeit- und Konvergenzverhalten der hierarchischen Approximation im Vergleich zu einer vollbesetzten Matrix. Dabei betrachten wir die Invertierung des Einfachschichtoperators zum Laplace, bei der die hierarchische Vorkonditionierung verwendet wurde. Während bei der expliziten Speicherung der Matrix bereits in der Größenordnung von circa eintausend Partikeln der Speicherbedarf an seine Grenzen stößt und daher keine weiteren Vergleichsrechnungen zur Verfügung stehen, skaliert der Speicherverbrauch der hierarchischen Matrizen nahezu linear, so dass deutlich größere Probleme handhabbar sind. Die Vorkonditionierung hält die Anzahl der nötigen Iterationen niedrig, ab einigen tausend Partikeln zahlt sie sich auch in Hinblick auf die Gesamtlaufzeit aus.

6 Implementation der numerischen Verfahren

Die Implementierung der beschriebenen numerischen Methoden erfolgte in C++. Dabei fanden Methoden der generischen Programmierung Anwendung [Vel00], die die abstrakte Programmierung der zentralen Algorithmen über eine allgemeine Schnittstelle zu den entsprechenden Datenstrukturen erlaubte. Im Gegensatz zum eigentlich in C++ üblichen Laufzeit-Polymorphismus mittels virtueller Funktionen, die bei jedem Zugriff auf die Schnittstelle eine Pointer-Indirektion zum Auffinden der Schnittstellenimplementierung erfordert, lässt sich mit dem Template-Konzept von C++ die zu verwendende Implementierung der Schnittstelle bereits zur Übersetzungszeit festlegen. Damit ist nicht nur ein Zeiger-Zugriff weniger erforderlich, sondern dies erlaubt beispielsweise auch in abstrakten Methoden die inline-Expansion der Implementierung.

Ein wesentlicher Teil der abstrakten Schnittstelle besteht darin, den Zugriff auf die Geometriebeschreibung in Konzepte der C++ Standardbibliothek STL zu kleiden. Dabei zeichnet sich ein Objekt zur Geometriebeschreibung im Wesentlichen dadurch als so genannter Container aus, dass es einen oder mehrere Iteratoren zur Verfügung stellt. Iteratoren sind dabei abgeleitete Objekte, mit denen man alle Elemente eines Containers (d. h. die Elemente einer Diskretisierung) in geeigneter Weise aufzählen kann.

Als Rahmen für die Implementierung findet die QuocMesh-Bibliothek Verwendung. Die Methoden für hierarchische Matrizen stammen aus der Bibliothek AHMED von Dr. habil. Mario Bebendorf, vgl. Abschnitt 6.5. Die wesentlichen Teile der Implementierung sind die im folgenden beschriebenen Klassen zur Beschreibung des diskretisierten Randes und der diskretisierten Integraloperatoren.

6.1 Gitterverwaltung

Die wesentlichen Elemente der Diskretisierung sind die Klassen Segment, Particle und Boundary zur Beschreibung einer Strecke, eines geschlossenen Streckenzuges (als Rand eines Partikels) und einer Menge solcher Partikel, sowie weiterhin die Klassen SegmentIterator, ParticleIterator und AllSegmentIterator die das Iterieren über die jeweils enthaltenen Objekte erlauben. Die Schnittstellen haben im Wesentlichen die folgende Form, der Template-Parameter Implementation verweist jeweils (nach dem Trick von Barton und Nackman, vgl. [Vel00]) auf die konkrete Implementierung:

Abbildung 6.1.1: Abstrakte Gitterschnittstelle.

::

::

Die Unterklasse **ReferenceSegment** stellt die wesentlichen Methoden der Schnittstelle **Segment** bereit. Diese repräsentiert eine Strecke durch den Verweis auf ein Partikel und den Index des entsprechenden Segments, die eigentlichen Daten werden in den Instanzen der Partikel-Klasse gespeichert.

Für Ränder von Partikeln (oder Körnern in einem Polykristall) existieren zwei Implementierungen, die allgemeine Klasse **ParametricParticle**, die Ränder als Streckenzüge über die Koordinaten der Punkte speichert, sowie die Klasse **RectParticle** für rechteckige, an den Koordinatenachsen ausgerichtete Partikel, die dadurch einige Optimierungen in Speicherung und Zugriff erlaubt. Dabei sei zur Illustration im Wesentlichen die tatsächliche Speicherung der Partikel und Segmente dargestellt, die Implementierung der oben beschriebenen Schnittstellen erfolgt in naheliegender Art und Weise.

```
//! A segment that is described by a reference to a particle and an index
template <class Implementation, class ParticleType>
class ReferenceSegment
       : public Segment<Implementation, typename ParticleType::DataType> {
public:
   typedef typename ParticleType::DataType DataType
  typedef typename ParticleType::IndexType IndexType;
   //! Is this the next segment of the same particle?
  bool isFollowedBy ( const ReferenceSegment& segment ) const;
  //! Is this another segment of the same particle?
bool sameParticle ( const ReferenceSegment& segment ) const;
protected:
   //! Reference to the particle
  ParticleType* _particle;
//! Segment index
  IndexType _index;
};
 //! Parametrized particle
template <class DataType = double, class IndexType = int>
class ParaParticle
      : public Particle <ParaParticle<DataType, IndexType>,
ParaSegmentIterator<DataType, IndexType>,
                              ParaSegment<DataType, IndexType>,
                              DataType> {
private:
    //! List of points, counter-clockwise
  std::vector<Vec2<DataType> > _points;
1:
//! Index type for rectangular particles
enum Side {TOP, LEFT, BOTTOM, RIGHT, UNDEFINED};
Side& operator ++ ( Side& side );
//! Rectangular particle
template <class DataType = double>
class RectParticle
       : public Particle <RectParticle<DataType>,
                              RectSegmentIterator<DataType>,
                              RectSegment<DataType>,
                              DataType > {
private:
   //! Two points defining the rectangle
Vec2<DataType> _lowerLeft, _upperRight;
};
```

<pre>//! Implementation of single layer operator for elasticity template <class particletype=""> class ElasticSolution pe::bataType> {</class></pre>	<pre>public: typedef typename ParticleType::DataType DataType; typedef typename ParticleType::SegmentType SegmentType;</pre>	ElasticSolution (const ElasticGreen <datatype>k greenCoeffs, int ev : LocalOperator<elasticsolution<particletype>, ParticleType> (greenCoeffs (greenCoeffs), _evalComp (evalComp), _intComp</elasticsolution<particletype></datatype>	<pre>)) { DataType evaluateLocally (const SegmentType& integrate, const SegmentType& collocate) const {</pre>); std::complexCbtaType> jsum = 0, c1, c2, c_start, c_end,); DataType t0, arg_start, arg_end; result = 0;);	<pre>/ ++iIt) Vec2<datatype> dir, dirs, dire; +j, ++jIt) { for (alpha = 0; alpha < 2; alpha++) { for (j = 0, jsum = 0; j < 2; j++) jsum += _greenCoeffs.A [_intComp][alpha] * _greenCoeffs.M [al</datatype></pre>	<pre>Vec2<datatype> collpt = 0.5 * (collocate.getStart () + collocat dirs = integrate.getStart () - collpt; dire = integrate.getEnd dir = integrate.getDirection (); dir.normalize (); Vec2<complex<datatype> > pav (1, _greenCoeffs.p [alpha]);</complex<datatype></datatype></pre>	<pre>c_start = pav * dirs; c_end = pav * dirs; log_start = log (c_start); arg_start = imag (log_start); log_end = log (c_end); arg_end = imag (log_end);</pre>	<pre>c1 = c_start; c2 = pav * dir; t; result += (c_end * log_end - c_start * log_start)</pre>	<pre>/ c2 - integrate.get.engtr () * jsum; leLayerPotential // Jump dv to sign change of the imag part of the log argument if (arg_start >= 0) & (arg_end < 0)) {</pre>) if (arg_start < 0) & (arg_end >= 0)) { t 0 = - imag (c1) / imag (c2); if (real (c1 + c2 * t0) < 0) result -= 2 * I * PI * (c1 + c2 * t0) / c2 * jsum;	<pre>grate.getStart ();</pre>	private: BlasticGreen <datatype> _greenCoeffs;</datatype>
// Collocation discretized integral operator mplate <class localoperatortype=""> lass IntegralOperator : public FullMatrix<typename localoperatortype::particlety<="" p=""></typename></class>	<pre>iblic: typedef typename IocalOperatorType::DataType DataType; typedef typename LocalOperatorType::ParticleType ParticleType.</pre>	<pre>//! Construct from boundaries and local evaluation IntegralOperator (const LocalOperatorType& localOp, const BoundarY<particletype>& boundary)</particletype></pre>	<pre>: FullMatrix<datatype> (boundary.getNumberOfSegments (),</datatype></pre>	ur 1, 0; AllSegmentTterator <particletype> iIt = boundary.beginSegment AllSegmentIterator<particletype> jIt = boundary.beginSegment AllSegmentIterator<particletype> endIt = boundary.endSegment</particletype></particletype></particletype>	<pre>for (i = 0, iIt = boundary.beginSegment (); iIt != endIt; ++: for (j = 0, jIt = boundary.beginSegment (); jIt != endIt; . DataType val = localOp.evaluateLocally (*jIt, *iIt); set (i, j, val); }</pre>	! Abstract integral operator interface mplate <class class="" implementation,="" particletype=""> ass LocalOperator {</class>	blic: typedef typename ParticleType::DataType DataType; typedef typename ParticleType::SegmentType SegmentType;	<pre>//! Evaluates operator locally for given element pair DataType evaluateLocally (const SegmentType& integrate, const SegmentType& collocate) con</pre>	<pre>/! Implementation of evaluatelocally for concrete subclass Dout mplate <class particletype=""> pename ParticleType::DataType DoubleLayerPotential<particletyp (const SegmentType& integrate, const SegmentType& collocate)</particletyp </class></pre>	<pre>if (integrate == collocate) return 0; Vec2<datatype> a, dir, normal; dir = integrate.getDirection (); normal = integrate.getDirection ();</datatype></pre>	<pre>a = 0.5 * (collocate_getStart () + collocate.getEnd ()) - into DataType len = integrate.getLength (); DataType atilde = a * dir / len, c = fabs (a * normal); DataType atibha = atan2 (- atilde, c), beta = atan2 (len - a</pre>	Detarge result = beta - alpha; if (a * normal > 0) result *= -1;

136

6.2 Integraloperatoren

In ähnlicher Weise sind die diskretisierten Integraloperatoren implementiert: Die Schnittstelle LocalOperator enthält die Methode, um einem Matrixeintrag zu berechnen. Die konkreten Unterklassen für die jeweiligen Integraloperatoren erhalten beim Konstruktor-Aufruf die Parameter des Operators. Die einfache Darstellung der Integraloperatoren durch vollbesetzte Matrizen ist als Unterklasse von FullMatrix implementiert, die im Konstruktor mittels einer Implementation von LocalOperator die Matrix berechnet. Eine Implementierung der hierarchischen Approximation wird in Abschnitt 6.5 beschrieben. Das folgende Beispiel beschreibt exemplarisch die Implementierung des Doppelschichtoperators des Laplace sowie des Einfachschichtoperators der Elastizität. Dabei beschränken wir uns im obigen Beispiel auf den übersichtlicheren Fall stückweise konstanter Ansatzfunktionen.

Bei den semiimpliziten Verfahren zur Krümmungsdiskretisierung werden die Matrixeinträge für nahe beieinander liegende Segmente noch durch entsprechende Koeffizienten modifiziert, auch dafür ist eine allgemeine Schnittstelle für die verschiedenen Krümmungsbegriffe bereitzustellen:

```
//! Integral operator constructed from a full operator plus a band diagonal structure
template <class GlobalOperatorType, class LocalOperatorType, class CyclicBandType>
class IntegralOperatorPlusCyclicBand : public GlobalOperatorType {
public:
   typedef typename LocalOperatorType::DataType DataType;
   typedef typename LocalOperatorType::ParticleType ParticleType;
   //! Construct from boundaries and local evaluation plus step times bidiagonal
  IntegralOperatorPlusCyclicBand ( const LocalOperatorType& localOp,
     const Boundary<ParticleType>& boundary, DataType step )
: GlobalOperatorType ( localOp, boundary ) {
     CyclicBandType band;
     int pos = 0;
     for ( typename std::list<ParticleType>::const_iterator it = boundary.begin (); it != boundary.end (); ++it ) {
        int size = it->getNumberOfSegments ();
       MultiVector<DataType> temp ( 2 * band.diags + 1, size );
band.computeLocally ( *it, temp, step );
addCyclicBand ( pos, temp );
       pos += size;
     }
  ł
private:
        Adds a cyclic band subblock
   void addCvclicBand ( int start. const MultiVector<tvpename LocalOperatorTvpe::ParticleTvpe::DataTvpe>& vec ) {
     int size = vec [0].size ();
     int offset = ( vec.numComponents () - 1 ) / 2;
     for ( int i = 0; i < size; ++i )
    for ( int j = - offset; j < offset + 1; ++j ) {</pre>
          int r = start + i;
int c = start + ( i + j + size ) % size;
this->set ( r, c, this->get ( r, c ) + vec [j+offset][i] );
        }
  }
1:
```

Durch Nebenbedingungen gekoppelte lineare Gleichungssysteme, wie sie bei der Diskretisierung der Polykristalle in Kapitel 4.5 auftreten (d. h. mehrere einzelne lineare Gleichungssysteme, deren Unbekannte durch lineare Nebenbedingungen zwischen jeweils maximal zwei Variablen gekoppelt sind) kann man auf ein kleineres, vollbesetztes System zurückführen: Dabei speichert man die einzelnen Gleichungssysteme und die Nebenbedingungen zunächst separat. Das entstehende große Gleichungssystem (mit zunächst zahlreichen Null-Blöcken) kann man nun durch Spaltenoperationen anhand der Nebenbedingungen schrittweise zusammen schieben, so dass sich wieder ein vollbesetztes Gleichungssystem ergibt, dass nur die tatsächliche (nicht durch die Verdopplung aufgeblähte) Anzahl an Unbekannten enthält. Nachdem man dieses Gleichungssystem numerisch gelöst hat, kann man schließlich die Darstellung der Lösung in den ursprünglichen Freiheitsgraden anhand der Kopplungsbedingungen rekonstruieren. Abbildung 6.2.1 illustriert dieses Vorgehen. Das Verfahren ist in dieser Form durchführbar, solange die Kopplungsbedingungen keine Zyklen enthalten.

Abbildung 6.2.1:

(a) Eine lineare Spaltenoperation. Dabei kann der eliminierte Freiheitsgrad später mittels $y = -\frac{\alpha}{\beta}x + \frac{\gamma}{\beta}$ rekonstruiert werden. (b) Dadurch schiebt sich die ursprüngliche Matrix mit großen Null-Blöcken schrittweise zu einer kleineren vollbesetzten Matrix zusammen.

Dieser Ansatz ist vorteilhaft, wenn man das entstehende Gleichungssystem direkt (etwa durch eine LR-Zerlegung) invertiert. Beim Einsatz eines iterativen Lösers (ggf. in Zusammenhang mit einer hierarchischen Approximation der Randintegral-Operatoren nach Abschnitt 5.5) bringt ein solches Vorgehen keine Vorteile, hier kann man die ursprüngliche blockweise dünn besetzte Struktur der Matrix beibehalten.

```
//! Stores an number of separate linear equation systems
//: and separate coupling conditions
template <class DataType = double, class IndexType = int>
class BlockSolver : public Op<Vector<DataType> >
public:
   struct Line {
     struct Entry {
   IndexType block, var;
   DataType fac;
      };
     Entry a, b;
DataType rhs;
   };
private:
   std::vector<const FullMatrix<DataType>* > _mat;
   std::vector<const Vector<DataType>* > _rhs;
std::vector<Line> _line;
public:
   void appendLine ( const Line& line );
   void appendEqualBlock ( IndexType blocka, IndexType froma, IndexType toa, IndexType blockb, IndexType fromb ) {
   Line line ( typename Line::Entry ( blocka, froma, 1 ), typename Line::Entry ( blockb, fromb, -1 ), 0 );
     for ( int a = froma, b = fromb; a < toa; ++a, ++b ) {</pre>
        line.a.var = a;
        line.b.var = b;
appendLine ( line );
     }
  }
};
```

6.3 Berechnung der Matrixeinträge

Zunächst betrachten wir den Einfachschichtoperator des Laplace. Dessen Matrixeinträge haben nach (5.46) die Form

$$U_{ij} = \int_{\Gamma_h} -\frac{1}{2\pi} \log |\xi_i - y| \varphi_j(y) d \mathcal{H}^1(y).$$

Für stückweise konstante Ansatzfunktionen muss also der Logarithmus über das einzelne Randsegment $\Gamma_j = \operatorname{supp} \varphi_j$ integriert werden:

$$U_{ij} = \int_{\Gamma_j} -\frac{1}{2\pi} \log|\xi_i - y| \, d \,\mathcal{H}^1(y)$$

Dazu parametrisieren wir Γ_j mittels des Bogenlängenparameters t. Unter Verwendung der Parameter aus Abbildung 6.3.1 können wir nun $|\xi_i - y|$ als Funktion von t ausdrücken und berechnen anschließend die Stammfunktion von $\log |\xi_i - y|$ durch

$$|\xi_i - y|^2 = t^2 + a^2 - 2at \cos \alpha$$
,

$$\int \log |\xi_i - y| \, d\mathcal{H}^1(y) = \frac{1}{2} \int \log(t^2 + a^2 - 2at \cos \alpha) dt$$
$$= -t + a \sin \alpha \arctan\left(\frac{t - a \cos \alpha}{a \sin \alpha}\right)$$
$$+ \frac{1}{2}(t - a \cos \alpha) \log\left(t^2 + a^2 - 2at \cos \alpha\right)$$

Setzen wir nun die Integralgrenzen ein (für i = j, d. h. $\xi_i \in \Gamma_j$, existiert das Integral im uneigentlichen Sinne), so erhalten wir

$$U_{ij} = -\frac{1}{2\pi} \begin{cases} -b + c\varphi + \tilde{a}\log a + \tilde{b}\log b & \text{für } i \neq j, \\ -b + \tilde{a}\log a + \tilde{b}\log b & \text{für } i = j. \end{cases}$$

Abbildung 6.3.1: Bei der Integration der Matrixeinträge verwendete Bezeichnungen.

Für stückweise affine Ansatzfunktionen genügt es bei geeigneter Parametrisierung der beiden betroffenen Segmente und anschließender Skalierung des Integrals, Integranden der Form $\log |\xi_i - y|t(y)$ für den Bogenlängenparameter t(y) zu betrachten. Dazu parametrisieren wir die beiden Teile Γ_j^+ und Γ_j^- des Trägers von φ_j so, dass in beiden Fällen $\xi_j = y_b$ gilt. Dadurch hat die Basisfunktion φ_j in beiden Fällen die Darstellung $\varphi_j(y) = t(y)/h$. Wir berechnen nun die Stammfunktion

$$\int \log |\xi_i - y| t(y) d\mathcal{H}^1(y) = \frac{1}{2} \int t \log (t^2 + a^2 - 2at \cos \alpha) dt$$
$$= \frac{1}{4} \left(-t(2\tilde{a} + t) + 4\tilde{a}c \arctan\left(\frac{t - \tilde{a}}{c}\right) + (a^2 - 2\tilde{a}^2 + t^2) \log (t^2 + a^2 - 2\tilde{a}t) \right)$$

Auch hierbei müssen wir die Fälle, in denen der Kollokationspunkt im Integrationssegment liegt, besonders berücksichtigen. Wenn wir außerdem die korrekte Skalierung vornehmen, erhalten wir

$$U_{ij}^{\pm} = -\frac{1}{2\pi b} \begin{cases} -h(2\tilde{a}+b) + 4\tilde{a}c\varphi + (c^2 - \tilde{a}^2)\log(a^2b^2) + b^2\log b^2 & \text{für } \xi_i \notin \Gamma_j^{\pm}, \\ -h(2\tilde{a}+b) + (c^2 - \tilde{a}^2 + b^2)\log b^2 & \text{für } \xi_i = y_a, \\ -h(2\tilde{a}+b) + (c^2 - \tilde{a}^2)\log a^2 & \text{für } \xi_i = y_b. \end{cases}$$

Daraus ergeben sich schließlich die Matrixeinträge mittels $U_{ij} = U_{ij}^+ + U_{ij}^-$.

Für die Integraloperatoren der linearisierten Elastizität identifizieren wir zunächst \mathbb{R}^2 mit \mathbb{C} durch eine \mathbb{R} -lineare Abbildung wie in Abschnitt 5.1. Dadurch genügt es offenbar, entlang von Strecken in \mathbb{C} zu integrieren, wir können also das Integrationssegment durch

$$z(x-y) = c_1 + c_2 t$$

mittels zweier komplexer Konstanten parametrisieren. Damit ergeben sich für stückweise konstante Ansatzfunktionen (bis auf einen komplexen Faktor) die folgenden Integrale für die Diskretisierung von Einfach- und Doppelschichtoperator:

$$\int_{0}^{b} \log(c_{1} + c_{2}t) dt = \frac{1}{c_{2}} ((c_{1} + c_{2}b)\log(c_{1} + c_{2}b) - c_{1}\log c_{1}) - b$$
$$\int_{0}^{b} \frac{1}{c_{1} + c_{2}t} dt = \frac{1}{c_{2}} (\log(c_{1} + c_{2}b) - \log(c_{1}))$$

Wählt man den Kollokationspunkt in der Mitte des Integrationssegments, so existieren diese Integrale als uneigentliche Integrale bzw. im Sinne des Cauchyschen Hauptwertes, das obige Ergebnis bleibt auch für diesen Fall gültig. Mit anderen Konstanten erhalten wir aus dem Doppelschichtoperator auch die Diskretisierung des Operators U' zur Berechnung der Gradienten.

Für die stückweise affinen Ansatzfunktionen besteht der Träger wie oben aus zwei Randsegmenten. Hier wählen wir die Parametrisierung jeweils so, dass auf beiden Segmenten $\varphi_j(y) = 1 - t(y)/h$. Dann erhalten wir für jeden der Summanden (mit den jeweiligen Konstanten) die Darstellung

$$\int_{0}^{b} (1 - t/b) \log(c_{1} + c_{2}t) dt = \frac{1}{c_{2}} \left(\left(c_{1} + \frac{c_{1}^{2}}{2c_{2}b} \right) \log \left(1 + \frac{c_{2}b}{c_{1}} \right) \right) + \frac{c_{2}b}{2} \log(c_{1} + c_{2}b) - \left(\frac{c_{1}}{2} + \frac{3}{4}c_{2}b \right) \right).$$

Liegt der Kollokationspunkt ξ_i in der Mitte des Trägers von φ_j , so erhalten wir auf den beiden Segmenten jeweils

$$b\left(\frac{1}{2}\log(c_2b)-\frac{3}{4}\right),\,$$

während wir in dem Fall, dass ξ_i am Rand des Trägers der Basisfunktion liegt, auf dem betroffenen der beiden Segmente als Ergebnis des Integrals den folgenden Wert erhalten:

$$b\left(-\frac{5}{4}\log(-c_2b)-\frac{1}{4}\right)$$

Für den Doppelschichtoperator ergibt sich

$$\int_{0}^{b} (1-t/b) \frac{1}{c_{1}+c_{2}t} dt = \frac{1}{c_{2}} \left(\left(1+\frac{c_{1}}{bc_{2}}\right) \log \left(1+\frac{c_{2}b}{c_{1}}\right) - 1 \right).$$

Für i = j verschwindet das Integral aus Symmetriegründen. Falls ξ_i nur den Rand des Trägers berührt, verbleibt für das Integral über das betroffene Segment der Wert $-\frac{1}{c_i}$.

6.4 Berechnung der integralfreien Koeffizienten

Der integralfreie Koeffizient ergibt sich im Fall der Elastizität nach (5.19) aus dem Grenzwert des Integrals

$$F(x) = -\lim_{\varepsilon \to 0} \int_{\Gamma_{\varepsilon}^{1}} \left(v^{*}(x, y, v) \right)^{T} d \mathscr{H}^{1}(y).$$

Wenn wir dieses Integral über den Winkel θ parametrisieren und alle Konstanten ausklammern, so verbleibt für jede Komponente eine Integration der Form

$$\int_{\theta_0}^{\theta_1} \frac{\nu_j}{\varepsilon \nu \cdot \begin{pmatrix} 1\\ p \end{pmatrix}} \varepsilon \, d\theta$$

Die Normale ist nun $\nu = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$, so dass wir für die Komponenten der Koeffizientenmatrix die folgenden beiden Integrale auswerten müssen:

$$\int \frac{\cos\theta}{\cos\theta + p\sin\theta} d\theta = \frac{p\log(-\cos\theta - p\sin\theta) + \theta}{1 + p^2}$$
$$\int \frac{\sin\theta}{\cos\theta + p\sin\theta} d\theta = \frac{-\log(-\cos\theta - p\sin\theta) + p\theta}{1 + p^2}$$

Eine andere Möglichkeit, die integralfreien Koeffizienten zu bestimmen, ergibt sich aus der Beobachtung, dass alle Kombinationen von u = const und t = 0 die Randintegralgleichung (5.24) im Innenraum lösen. Indem wir für u die Konstanten e_j einsetzen, erhalten wir direkt die folgende Gleichung zur Bestimmung der Spalten der Koeffizientenmatrix F:

$$Fe_j = V[e_j] + \mathbb{I}e_j \tag{6.1}$$

Damit genügt eine Anwendung des Integraloperators, um die Koeffizienten zu bestimmen. Die Methode ist in Bezug auf die Laufzeit etwas ungünstiger als die direkte Berechnung, dies fällt jedoch im Vergleich zum Aufwand für das Lösen des Gleichungssystems nicht ins Gewicht. Andererseits ist sie nicht auf die spezielle Form der Fundamentallösung zugeschnitten, und hat sich in der hier beschriebenen Implementierung als numerisch stabiler erwiesen.

6.5 Schnittstelle zu AHMED

Die Schnittstelle zur Bibliothek AHMED für die hierarchische Approximation der Randintegraloperatoren besteht im Wesentlichen aus der Übersetzung der Geometrierepräsentation (durch Implementationen von **Segment**) und der Bereitstellung von Blöcken von Matrixeinträgen (mittels **LocalOperator**). Eine weitere Klasse übernimmt die Kapselung der Clusterungsoperationen, dabei ist die unterschiedliche Nummerierung der Freiheitsgrade zu berücksichtigen. Das folgende Beispiel zeigt die Schnittstelle für den Fall stückweise konstanter Ansatzfunktionen, wobei der Kollokationspunkt jeweils in der Mitte des Randsegmentes liegt:

```
//! Interface class for bm::Segment subclasses with collocation node in the center
template <class SegmentType>
class centralCollNode : public dof {
private:
   const SegmentType seg;
public:
   centralCollNode ( const SegmentType& s ) : seg ( s ) {}
  centralcollNode ( const segmentTypes s ) : seg ( s ) {}
unsigned getdim () const { return 2; }
double getcenter ( const unsigned i ) const { return 0.5 * ( seg.getStart () [i] + seg.getEnd () [i] ); }
double getradius2 () const { return 0.25 * seg.getDirection ().normSqr (); }
const SegmentType& getSegment () const { return seg; }
vistual vectors[out]Nede () ()
   virtual ~centralCollNode () {}
};
//! Interface class for bm::LocalOperator subclasses with central collocation
template <class LocalOperatorType>
class centralMatrixEntry {
public:
   typedef typename LocalOperatorType::ParticleType::SegmentType SegmentType;
private:
   const LocalOperatorType op;
public:
   centralMatrixEntry ( const LocalOperatorType& o ) : op ( o ) {}
  void operator () ( unsigned int n1, dof** segs1, unsigned int n2, dof** segs2, DataType* res ) const {
  for ( unsigned int j = 0; j < n2; ++j ) {
    SegmentType seg2 = static_cast <centralCollNode <SegmentType>* > ( segs2 [j] ) -> getSegment ();
        for ( unsigned int i = 0; i < n1; ++i ) {
   SegmentType seg1 = static_cast <centralCollNode <SegmentType>* > ( segs1 [i] ) -> getSegment ();
           *res++ = op.evaluateLocally ( seg2, seg1 );
       }
     }
  ł
};
//! Block cluster tree
template <class ParticleType>
class centralClusterTree {
private:
  dof** segs;
cluster2d_pca* tree;
  blcluster* blocktree;
   int numsegs;
   unsigned int numclus, numblock;
public:
   typedef typename ParticleType::DataType DataType;
   typedef typename ParticleType::SegmentType SegmentType;
   centralClusterTree ( const bm::Boundary<ParticleType>& bnd, double clustereta = 1.1, int minclussize = 4 ) {
```

```
numsegs = bnd.getNumberOfSegments ();
segs = new dof* [numsegs];
bm::AllSegmentIterator<ParticleType> it = bnd.beginSegment ();
for ( int i = 0; i < numsegs; +ti, +tit ) {
   segs [i] = new bm::centralCollNode<SegmentType> ( *it );
   segs [i]->idx = segs [i]->vidx = i;
   }
   tree = new cluster2d_pca ( segs, 0, numsegs );
   tree->subdivide ( segs, minclussize, numclus );
   blocktree = genblcltree ( tree, tree, clustereta, numblock );
   }
   void mapBtoH ( const Vector<DataType>& bvec, Vector<DataType>& hvec ) const {
    int i;
    for ( i = 0; i < numsegs; +ti ) hvec [i] = bvec [ getDoF ( i ) ];
    for ( i = i; i < bvec.size (); +ti ) hvec [i] = bvec [i];
   }
   void mapHtoB ( const Vector<DataType>& hvec, Vector<DataType>& bvec ) const {
    int i;
    for ( i = 0; i < numsegs; +ti ) bvec [ getDoF ( i ) ] = hvec [i];
    for ( i = 0; i < numsegs; +ti ) bvec [ getDoF ( i ) ] = hvec [i];
    for ( i = 0; i < numsegs; +ti ) bvec [ getDoF ( i ) ] = hvec [i];
    for ( i = 1; i < bvec.size (); +ti ) bvec [ i] = hvec [i];
    };
};
```

Damit ist der wesentliche Teil der Schnittstelle realisiert, zur Einbettung in das Operator-Konzept der QuocMesh-Bibliothek sind lediglich noch Kapselungen der benötigten Aufrufe von Funktionen aus AHMED durch die Klassen HMatrixOp für einen durch hierarchische Matrizen approximierten Operator und HLUPreconditionerOp für eine approximative LR-Zerlegung bereitzustellen. Die Verarbeitung von Nebenbedingungen und vektorwertigen Problemen erfordert außerdem noch einfache Modifikationen des (in AHMED berechneten) Clusterbaums, nämlich das Hinzufügen einer einzelnen Zeile bzw. Spalte und das Vervierfachen des gesamten Baumes.

Zentrale Teile des Verfahrens (die Kreuzapproximation der Matrizen sowie die Matrix-Vektor-Multiplikation) lassen sich auf einem PC mit mehreren Prozessorkernen in einfacher Weise parallelisieren: Die Kreuzapproximationen einzelner Blöcke sind völlig unabhängig, so dass sie sich problemlos auf eine gegebene Anzahl von Prozessorkernen verteilen lassen. Bei der Matrix-Vektor-Multiplikation kann man durch eine horizontale Unterteilung der Matrix alle Schreibkonflikte auf dem Zielvektor vermeiden, so dass auch hier keine Kommunikation der Prozesse erforderlich ist. Aufgrund der Blockstruktur der Elastizitätsoperatoren ist zumindest bei diesem (in Bezug auf die Laufzeit bedeutenderen) Fall die Balancierung der parallelen Programmfäden automatisch nahe am Optimum.
```
{
    multa_H_vec ( 1, tree->son3, blocks, x1, y2 );
    multa_H_vec ( 1, tree->son4, blocks, x2, y2 );
    }
    #else
    matrix.amux ( 1, x1, y1 );
#endif
}
```

Das Erzeugen und Anwenden eines Integraloperators im Hauptprogramm hat dann schließlich die folgende Form:

```
// Create operator
bm::SingleLayerPotential<bm::RectParticle<double> > pot;
bm::centralMatrixEntry<bm::SingleLayerPotential<bm::RectParticle<double> > > entry ( pot );
bm::centralClusterTree<bm::RectParticle<double> > tree ( boundary, clusterEta, minCluster );
bm::HMatrixOp<bm::centralMatrixEntry<bm::SingleLayerPotential<bm::RectParticle<double> > > mat ( entry, tree, HEpsilon, maxRank );
// Apply operator
tree.mapBtoH ( arg, arg_h );
mat.apply ( arg_h, dest_h );
tree.mapHtoB ( dest_h, dest );
```

7 Schlussbemerkungen

In den diskutierten Anwendungen hat sich die Methode der Randelemente als effizientes Verfahren zur Simulation von Phasenübergängen in Materialien mit scharf definierten Grenzflächen erwiesen. Die Herleitung eines angemessenen reduzierten Modells sowie die Verwendung hierarchischer Approximationstechniken und lokalisierter Zeitschrittverfahren erlaubt die Simulation von Partikelmengen, die ausreichend groß für anwendungsrelevante statistische Untersuchungen sind. Andererseits lässt sich durch einen Homogenisierungsansatz das effektive Verhalten mikrostrukturierter Materialien mittels der Simulation kleiner Zellprobleme berechnen.

Das numerische Verfahren für die Ostwald-Reifung wurde hier nur für den Fall homogener Elastizität implementiert, die Erweiterung auf den inhomogenen Fall wäre ein natürlicher nächster Schritt (vgl. Abschnitt 3.12). Die wesentlichste Einschränkung der Verfahren zur Simulation magnetischer Formgedächtnis-Materialien ist der pro Partikel oder Korn konstante Phasenparameter, die in Abschnitt 4.13 beschriebene Erweiterung mit einer beweglichen Grenzfläche innerhalb der Partikel würde hierbei die Modellierung weiterer in der Anwendung bedeutender Phänomene ermöglichen.

Teile dieser Arbeit wurden bereits in den folgenden Artikeln in wissenschaftlichen Zeitschriften bzw. Büchern veröffentlicht:

- [CLR07a] CONTI, SERGIO, MARTIN LENZ, und MARTIN RUMPF: Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. In: proceedings of the 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, Materials Science and Engineering: A, erscheint 2007.
- [CLR07b] CONTI, SERGIO, MARTIN LENZ, und MARTIN RUMPF: Modeling and simulation of magnetic shape-memory polymer composites. Journal of Mechanics and Physics of Solids, 55:1462–1486, 2007.
- [GLN⁺06] GARCKE, HARALD, MARTIN LENZ, BARBARA NIETHAMMER, MAR-TIN RUMPF, und ULRICH WEIKARD: Multiple scales in phase separating systems with elastic misfit. In: MIELKE, ALEXANDER (Herausgeber): Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. Abschlussbericht des DFG Schwerpunktprogramms 1095.

Die Implementierung der numerischen Verfahren erfolgte im Rahmen der Bibliothek QuocMesh, die in der Arbeitsgruppe von Prof. Dr. Martin Rumpf am Institut für Numerische Simulation entwickelt wird. Zur hierarchischen Approximation der Randelemente-Matrizen und zur Vorkonditionierung wurden Funktionen aus der AHMED-Bibliothek von Dr. habil. Mario Bebendorf benutzt, welche für grundlegende Funktionen der linearen Algebra auf LAPACK [ABB+99] zurückgreift. Zur Visualisierung wurden teilweise die am Sonderforschungsbereich 256 entwickelte Bibliothek GRAPE [GHK+99] verwendet, die Fouriertransformation benutzte FFTW [FJ05], während zur Erstellung der zahlreichen Graphen das Programm GnuPlot Verwendung fand.

Die Erstellung dieser Arbeit wurde zu großen Teilen durch die Deutsche Forschungsgemeinschaft innerhalb der Schwerpunktprogramme 1095 Analysis, Modellierung und Simulation von Multiskalenproblemen und 1239 Änderung von Mikrostruktur und Form fester Werkstoffe durch äußere Magnetfelder gefördert.

Neben der finanziellen Unterstützung bin ich dankbar für zahlreichen Kooperationsmöglichkeiten innerhalb der beiden Schwerpunktprogramme, die sich in Form von Kontakten zu Mitarbeitern anderer Projekten in den Programmen ergeben haben.

Mein besonderer Dank gilt Prof. Dr. Martin Rumpf für die Betreuung und Unterstützung beim Anfertigen dieser Arbeit, Prof. Dr. Sergio Conti für viele geduldige Erklärungen, insbesondere in Bezug auf die Modellierung von Formgedächtnis-Materialien sowie Prof. Dr. Barbara Niethammer für viele hilfreiche Gespräche zu Gradientenfluss-Modellen für die Ostwald-Reifung und der geeigneten Formulierung der Randbedingungen. Weiterhin möchte ich mich bei Dr. Christian Ospelkaus bedanken, der mich für die Eleganz der Methode der Randelemente begeistert hat (und auf dessen Implementierung viele der verwendeten Randintegral-Operatoren basieren, auch wenn sie mittlerweile mehrfach neu geschrieben wurden), bei Dr. Ulrich Weikard für viele Diskussionen über die verschiedenen Methoden zur Modellierung von Grenzflächen bei Phasenübergängen, bei Dr. habil. Mario Bebendorf für seine Hilfe bei der Benutzung der hierarchischen Matrizen und die Möglichkeit, seine Bibliothek AHMED zu verwenden, sowie bei Prof. Dr. Harald Garcke insbesondere für hilfreiche Erklärungen zum Mullins–Sekerka-Modell.

Dr. Marc Droske und Dr. Jürgen Becker haben die Arbeit Korrektur gelesen und viele nützliche Anmerkungen gemacht, weiterhin haben Benjamin Berkels, Helene Horn, Simplice Nemadjieu, Oliver Nemitz, Nadine Olischläger und Ole Schwen einzelne Kapitel gelesen und zahlreiche hilfreiche Verbesserungsvorschläge gemacht. Ihnen gilt mein Dank für all ihre nützlichen Bemerkungen und Vorschläge. Schließlich danke ich allen gegenwärtigen und ehemaligen Mitgliedern der Arbeitsgruppe von Prof. Dr. Martin Rumpf für die ständige Bereitschaft zu informativen mathematischen Diskussionen.

Literaturverzeichnis

- [ABB+99] ANDERSON, ED, ZHAOJUN BAI, CHRISTIAN BISCHOF, SUSAN BLACK-FORD, JAMES DEMMEL, JACK DONGARRA, JEREMY DU CROZ, ANNE GREENBAUM, SVEN HAMMARLING, ALAN MCKENNEY, and DANNY C. SORENSEN: LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, 1999.
- [AFK04] ALIKAKOS, NICHOLAS D., GIORGIO FUSCO, and GEORGIA KARALI: Ostwald ripening in two dimensions - the rigorous derivation of the equations from the Mullins-Sekerka dynamics. Journal of Differential Equations, 205:1-49, 2004.
- [AMA+01] ALBERTINI, FRANCA, LUIS MORELLON, PEDRO A. ALGARABEL, MANUEL R. IBARRA, LUIGI PARETI, ZDENEK ARNOLD, and GI-ANLUCA CALESTANI: Magnetoelastic effects and magnetic anisotropy in Ni₂MnGa polycrystals. Journal of Applied Physics, 89:5614–5617, 2001.
- [ASAV99] ALKEMPER, JENS, VICTORIA A. SNYDER, NORIO AKAIWA, and PE-TER W. VOORHEES: *Dynamics of late-stage phase separation: A test of theory*. Physical Review Letters, 82:2725–2728, 1999.
- [Atk97] ATKINSON, KENDALL E.: *The Numerical Solution of Integral Equations of the Second Kind*. Cambridge University Press, 1997.
- [ATV01] AKAIWA, NORIO, KATSUYO THORNTON, and PETER W. VOORHEES: Large-scale simulations of microstructural evolution in elastically stressed solids. Journal of Computational Physics, 173:61–86, 2001.
- [AV00] AKAIWA, NORIO and PETER W. VOORHEES: Large-scale numerical simulations of microstructural evolution in elastically stressed solids. Materials Science and Engineering A, 285:8-12, 2000.
- [BD98] BRAIDES, ANDREA and ANNELIESE DEFRANCESCHI: Homogenization of Multiple Integrals. Claredon Press, Oxford, 1998.
- [Beb00] BEBENDORF, MARIO: *Approximation of boundary element matrices*. Numerische Mathematik, 86:565–589, 2000.
- [Beb05] BEBENDORF, MARIO: *Hierarchical LU decomposition based preconditioners for BEM.* Computing, 74:225–247, 2005.

[Ber98]	BERTOTTI, GIORGIO: Hysteresis in Magnetism for Physicists, Materials Sci- entists, and Engineers. Academic Press, 1998.
[Bet93]	BETTEN, JOSEF: Kontinuumsmechanik. Springer, Berlin, 1993.
[BG02]	BECKER, WILFRIED und DIETMAR GROSS: Mechanik elastischer Körper und Strukturen. Springer, Berlin, 2002.
[BGH03]	BÖRM, STEFFEN, LARS GRASEDYCK, and WOLFGANG HACKBUSCH: <i>Hierarchical matrices</i> . Technical Report 21, Max-Planck-Institut für Mathe- matik in den Naturwissenschaften Leipzig, 2003.
[Bha03]	BHATTACHARYA, KAUSHIK: <i>Microstructure of Martensite: Why it Forms and how it Gives Rise to the Shape-Memory Effect.</i> Oxford Series on Materials Modelling. Oxford University Press, 2003.
[Bra85]	BRAIDES, ANDREA: <i>Homogenization of some almost periodic coercive func-</i> <i>tionals</i> . Accademia Nazionale delle Scienze detta dei XL. Rendiconti. Serie V. Memorie di Matematica e Applicazioni, 9:313–321, 1985.
[CD99]	CIORANESCU, DOINA and PATRIZIA DONATO: An Introduction to Ho- mogenization. Oxford University Press, Oxford, 1999.
[Cia97]	CIARLET, PHILIPPE G.: <i>Mathematical Elasticity</i> , Vol. I: Three-Dimensional <i>Elasticity</i> . Studies in Mathematics and its Applications. Elsevier, Amsterdam, 1997.
[Cle87]	CLEMENTS, DAVID L.: Green's functions for the boundary element method. In Boundary Elements IX: Proceedings of the 9th International Conference on Boundary Elements, 1987.
[CLR07a]	CONTI, SERGIO, MARTIN LENZ, and MARTIN RUMPF: Macroscopic be- haviour of magnetic shape-memory polycrystals and polymer composites. In proceedings of the 7th European Symposium on Martensitic Transformations and Shape Memory Alloys, Materials Science and Engineering A, 2007. Ac- cepted.
[CLR07b]	CONTI, SERGIO, MARTIN LENZ, and MARTIN RUMPF: <i>Modeling and simulation of magnetic shape-memory polymer composites</i> . Journal of Mechanics and Physics of Solids, 55:1462–1486, 2007.
[CR78]	CLEMENTS, DAVID L. and FRANK J. RIZZO: A method for the numerical solution of boundary value problems governed by second-order elliptic systems. Journal of the Institute of Mathematics and its Applications, 22:197–202, 1978.

- [CS93] CRUSE, THOMAS A. and WAN SUWITO: On the Somigliana stress identity in elasticity. Computational Mechanics, 11:1–10, 1993.
- [CSS⁺99] CHEN, YUHANG, JOHN E. SNYDER, CARL R. SCHWICHTENBERG, KEVIN W. DENNIS, D. K. FALZGRAF, R. WILLIAM MCCALLUM, and DAVID C. JILES: Effect of the elastic modulus of the matrix on magnetostrictive strain in composites. Applied Physics Letters, 74:1159–1161, 1999.
- [CV93] CHEN, M. K. and PETER W. VOORHEES: *The dynamics of transient Ostwald ripening*. Modelling and Simulation in Materials Science and Engineering, 1:591–612, 1993.
- [DCCW05] DAI, LIYANG, JAMES CULLEN, JUN CUI, and MANFRED WUTTIG: Anomalous behavior of the elastic constants in NiMnGa. Preprint, 2005.
- [DJ97] DESIMONE, ANTONIO and RICHARD D. JAMES: A theory of magnetostriction oriented towards applications. Journal of Applied Physics, 81:5706–5708, 1997.
- [DJ02] DESIMONE, ANTONIO and RICHARD D. JAMES: A constrained theory of magnetoelasticity. Journal of the Mechanics and Physics of Solids, 50:283–320, 2002.
- [DKMO04] DESIMONE, ANTONIO, ROBERT V. KOHN, STEFAN MÜLLER, and FE-LIX OTTO: *Recent analytical developments in micromagnetics*. Technical Report 80, Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, 2004.
- [Dzi94] DZIUK, GERHARD: Convergence of a semi-discrete scheme for the curve shortening flow. Mathematical Models and Methods in Applied Sciences, 4:589-606, 1994.
- [Esh57] ESHELBY, JOHN D.: *The determination of the elastic field of an ellipsoidal inclusion, and related problems.* Proceedings of the Royal Society of London. Series A, 241:376–396, 1957.
- [FFH04] FENG, XUE, DAI-NING FANG, and KEH-CHIH HWANG: Closed-form solutions for piezomagnetic inhomogeneities embedded in a non-piezomagnetic matrix. European Journal of Mechanics A/Solids, 23:1007–1019, 2004.
- [FGH+04] FEUCHTWANGER, JORGE, KELLI GRIFFIN, JIANKANG HUANG, DAVID BONO, ROBERT C. O'HANDLEY, and SAMUEL M. ALLEN: Mechanical energy absorption in Ni-Mn-Ga polymer composites. Journal of Magnetism and Magnetic Materials, 272:2038–2039, 2004.
- [FJ05] FRIGO, MATTEO and STEVEN G. JOHNSON: *The design and implementation of FFTW3*. Proceedings of the IEEE, 93:216–231, 2005.

- [FMJ⁺03] FEUCHTWANGER, JORGE, SADIE MICHAEL, JIANKANG JUANG, DAVID BONO, ROBERT C. O'HANDLEY, SAMUEL M. ALLEN, CATHERINE JENKINS, JAMES GOLDIE, and AMI BERKOWITZ: Energy absorption in Ni-Mn-Ga polymer composites. Journal of Applied Physics, 93:8528–8530, 2003.
- [FPL99] FRATZL, PETER, OLIVER PENROSE, and JOEL L. LEBOWITZ: *Modeling* of phase separartion in alloys with coherent elastic misfit. Journal of Statistical Physics, 95:1429–1503, 1999.
- [Gar03] GARCKE, HARALD: On mathematical models for phase separation in elastically stressed solids, 2003. Habilitation Thesis, Bonn.
- [GHK+99] GESSNER, THOMAS, BERNARD HAASDONK, ROBERT KENDE, MARTIN LENZ, RALF NEUBAUER, MARTIN METSCHER, MARIO OHLBERGER, WOLFRAM ROSENBAUM, MARTIN RUMPF, RALPH SCHWÖRER, MICHAEL SPIELBERG, and ULRICH WEIKARD: A procedural interface to hierarchical grids. Technical report, Sonderforschungsbereich 256, Universität Bonn, 1999.
- [GKRR92] GUIGGIANI, MASSIMO, GUNA KRISHNASAMY, THOMAS J. RUDOLPHI, and FRANK J. RIZZO: A general algorithm for the numerical solution of hypersingular boundary integral equations. Journal of Applied Mechanics, 59:604–614, 1992.
- [GKW03] GAUL, LOTHAR, MARTIN KÖGL, and MARCUS WAGNER: Boundary Element Methods for Engineers and Scientists. Springer, Berlin, 2003.
- [GLN⁺06] GARCKE, HARALD, MARTIN LENZ, BARBARA NIETHAMMER, MAR-TIN RUMPF, and ULRICH WEIKARD: *Multiple scales in phase separating* systems with elastic misfit. In MIELKE, ALEXANDER (editor): Analysis, Modeling and Simulation of Multiscale Problems. Springer, 2006. Final report of DFG priority program 1095.
- [GMPW03] GARCKE, HARALD, STANISLAUS MAIER-PAAPE, and ULRICH WEIKARD: Spinodal decomposition in the presence of elastic interactions. In HILDEBRANDT, STEFAN and HERMANN KARCHER (editors): Geometric Analysis and Nonlinear Partial Differential Equations. Springer, 2003.
- [GR97] GREENGARD, LESLIE and VLADIMIR ROKHLIN: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.
- [Gui94] GUIGGIANI, MASSIMO: *Hypersingular formulation for boundary stress evaluation*. Engineering Analysis with Boundary Elements, 13:169–179, 1994.

- [Gur93] GURTIN, MORTON E.: *Thermomechanics of Evolving Phase Boundaries in the Plane*. Oxford Mathematical Monographs, New York, 1993.
- [GV93] GURTIN, MORTON E. and PETER W. VOORHEES: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proceedings of the Royal Society of London. Series A, 440:323-343, 1993.
- [GV98] GURTIN, MORTON E. and PETER W. VOORHEES: On the effects of elastic stress on the motion of fully faceted interfaces. Acta Materialia, 46:2103–2112, 1998.
- [Hac95] HACKBUSCH, WOLFGANG: Integral Equations: Theory and Numerical Treatment. Birkhäuser, Basel, 1995.
- [Hil65] HILL, RODNEY: *Continuum micro-mechanics of elastoplastic polycrystals*. Journal of the Mechanics and Physics of Solids, 13:89–101, 1965.
- [HLS01] HOU, THOMAS Y., JOHN S. LOWENGRUB, and MICHAEL SHELLEY: Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics, 169:302–362, 2001.
- [HN89] HACKBUSCH, WOLFGANG and ZENON P. NOWAK: On the fast matrix multiplication in the boundary element method by panel clustering. Numererische Mathematik, 54:463–491, 1989.
- [HS99] HUBERT, ALEX and RUDOLF SCHÄFER: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin, 1999.
- [Hum97] HUMMEL, ROLF E.: Understanding Materials Science: History, Properties, Applications. Springer, New York, 1997.
- [HV88] HARDY, S. C. and PETER W. VOORHEES: Ostwald ripening in a system with a high volume fraction of coarsening phase. Metallurgical Transactions A, 19:2713–2721, 1988.
- [JLL97] JOU, HERNG-JENG, PERRY H. LEO, and JOHN S. LOWENGRUB: *Microstructural evolution in inhomogeneous elastic media*. Journal of Computational Physics, 131:109–148, 1997.
- [JW98] JAMES, RICHARD D. and MANFRED WUTTIG: Magnetostriction of martensite. Philosophical Magazine A, 77:1273–1299, 1998.
- [KKCH05] KWON, OH YEOUL, HEE YEOUN KIM, SEUNG IL CHA, and SOON HYUNG HONG: Magnetostriction and magnetomechanical coupling of grain-aligned TbDyFe/epoxy-filled composites. Journal of Applied Physics, 97:113905–1.4, 2005.

- [KSL04] KIM, JONG CHUL, OH YEOUL SWON, and ZIN HYOUNG LEE: *Unidirectional magnetostrictive Terfenol/epoxy composite*. Applied Physics Letters, 84:2130–2132, 2004.
- [LJH06] LIU, LIPING, RICHARD D. JAMES, and LEO PERRY H.: *Magnetostrictive composites in the dilute limit*. Journal of the Mechanics and Physics of Solids, 54:951–974, 2006.
- [LMSV90] LEO, PERRY H., WILLIAM W. MULLINS, ROBERT F. SEKERKA, and JORGE VIÑALS: *Effect of elasticity on late stage coarsening*. Acta Metallurgica et Materialia, 38:1573–1580, 1990.
- [LTN+04] LI, XIAOFAN, KATSUYO THORNTON, QING NIE, PETER W. VOORHEES, and JOHN S. LOWENGRUB: Two- and three-dimensional equilibrium morphology of a misfitting particle and the gibbs-thomson effects. Acta Materialia, 52:5829–5843, 2004.
- [LU00] LIKHACHEV, ALEXANDER A. and KARI ULLAKKO: *Quantitative model* of large magnetostrain effect in ferromagnetic shape memory alloys. European Physical Journal B, 14:263–267, 2000.
- [LV02] LUND, ALAN C. and PETER W. VOORHEES: *The effects of elastic stress on coarsening in the Ni-Al system*. Acta Materialia, 50:2085–2098, 2002.
- [Max04] MAXWELL, JAMES C.: *A Treatise on Electricity and Magnetism*, volume 2. Claredon Press, Oxford, 1904.
- [Mil02] MILTON, GRAEME W.: *The Theory of Composites*. Cambridge University Press, 2002.
- [MMA⁺00] MURRAY, STEVEN J., MIGUEL MARIONI, SAMUEL M. ALLEN, ROBERT C. O'HANDLEY, and THOMAS A. LOGRASSO: 6% magneticfield-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Applied Physics Letters, 77:886–888, 2000.
- [MS63] MULLINS, WILLIAM W. and ROBERT F. SEKERKA: *Morphological stability of a particle growing by diffusion and heat flow*. Journal of Applied Physics, 34(2):323–329, 1963.
- [MS64] MULLINS, WILLIAM W. and ROBERT F. SEKERKA: *Stability of a planar interface during solidification of a dilute binary alloy*. Journal of Applied Physics, 35:444–451, 1964.
- [Mül87] MÜLLER, STEFAN: Homogenization of nonconvex integral functionals and cellular elastic materials. Archive for Rational Mechanics and Analysis, 99:189–212, 1987.

- [Mül99] MÜLLER, STEFAN: Variational models for microstructure and phase transitions. In BETHUEL, FABRICE et al. (editors): Calculus of Variations and Geometric Evolution Problems, Lecture Notes in Mathematics, pages 85–210, Berlin, 1999. Springer.
- [NO01a] NIETHAMMER, BARBARA and FELIX OTTO: *Domain coarsening in thin films*. Communications on Pure and Applied Mathematics, LIV:361–384, 2001.
- [NO01b] NIETHAMMER, BARBARA and FELIX OTTO: Ostwald ripening: The screening length revisited. Calculus of Variations and Partial Differential Equations, 13(1):33–68, 2001.
- [NV06] NIETHAMMER, BARBARA and JUAN J. L. VELÁZQUEZ: Screening in interacting particle systems. Archive for Rational Mechanics and Analysis, 180(1):493-506, 2006.
- [OE97] OTTO, FELIX and WEINAN E: *Thermodynamically driven incompressible fluid mixtures*. Journal of Chemical Physics, 107:10177–10184, 1997.
- [O'H98] O'HANDLEY, ROBERT C.: *Model for strain and magnetization in magnetic shape-memory alloys.* Journal of Applied Physics, 83:3263–3270, 1998.
- [OMM⁺00] O'HANDLEY, ROBERT C., STEVEN J. MURRAY, MIGUEL MARIONI, HANS NEMBACH, and SAMUEL M. ALLEN: *Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials*. Journal of Applied Physics, 87:4712–4717, 2000.
- [ONMC03] OR, SIU-WING, NERSESSE NERSESSIAN, GEOFFREY P. MCKNIGHT, and GREGORY P. CARMAN: Dynamic magnetomechanical properties of [112]-oriended Terfenol-D/epoxy 1-3 magnetostrictive particulate composites. Journal of Applied Physics, 93:8510-812, 2003.
- [Osb45] OSBORN, J. A.: Demagnetizing factors of the general ellipsoid. Physical Review, 67:351–357, 1945.
- [OSSR99] ORLIKOWSKI, DANIEL, CELESTE SAGUI, ANDRÉS SOMOZA, and CHRISTOPHER ROLAND: Large-scale simulations of phase separation of elastically coherent binary alloy systems. Physical Review B, 59:8646–8659, 1999.
- [OSSR00] ORLIKOWSKI, DANIEL, CELESTE SAGUI, ANDRÉS M. SOMOZA, and CHRISTOPHER ROLAND: Two- and three-dimensional simulations of the phase separation of elastically coherent binary alloys subject to external stresses. Physical Review B, 62:3160–3168, 2000.

- [OSY92] OLEINIK, OLGA A., ALEXEI S. SHAMAEV, and GRIGORIJ A. YOSIFIAN: *Mathematical Problems in Elasticity and Homogenization*. Studies in Mathematics and its Applications. North-Holland, Amsterdam, 1992.
- [Peg89] PEGO, ROBERT L.: Front migration in the nonlinear Cahn-Hilliard equation. Proceedings of the Royal Society of London. Series A, 422:261–278, 1989.
- [Peg07] PEGO, ROBERT L.: Lectures on dynamics in models of coarsening and coagulation. In BAO, WEIZHU and JIAN-GUO LIU (editors): Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization, Lecture Notes of the Institute for Mathematical Sciences, National University of Singapore. World Scientific Publishing, 2007.
- [Phi01] PHILLIPS, ROBERT: Crystals, Defects and Microstructure: Modeling Across Scales. Cambridge University Press, 2001.
- [PJF⁺04] PENG, ZHIMING, XUEJUN JIN, YONGZHONG FAN, T. Y. HSU, SAMUEL M. ALLEN, and ROBERT C. O'HANDLEY: Internal friction and modulus changes associated with martensitic and reverse transformations in a single crystal Ni_{48.5}Mn_{31.4}Ga_{20.1} alloy. Journal of Applied Physics, 95:6960– 6962, 2004.
- [PW95] PONTE CASTAÑEDA, PEDRO and JOHN R. WILLIS: *The effect of spatial distribution on the effective behavior of composite materials and cracked me-dia.* Journal of Mechanics and Physics of Solids, 43:1919–1951, 1995.
- [RCH97] RICHARDSON, JOSEPH D., THOMAS A. CRUSE, and QINGPING HUANG: On the validity of conforming BEM algorithms for hypersingular boundary integral equations. Computational Mechanics, 20:213–220, 1997.
- [Sau00] SAUTER, STEFAN: Variable order panel clustering. Computing, 64:223–261, 2000.
- [SBA04] SHANMUGHAM, MANIKANTAN, HAROLD BAILEY, and WILLIAM D. ARMSTRONG: Comparison of magnetostrictive performance loss of particulate $Tb_{0,3}Dy_{0,7}Fe_2$ epoxy composites prepared with different matrix polymers. Journal of Materials Research, 19:795–805, 2004.
- [SFC⁺94] SANDLUND, LARS, MIRKA FAHLANDER, TORD CEDELL, ARTHUR E. CLARK, JAMES B. RESTORFF, and WUN-FOGLE MARILYN: Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. Journal of Applied Physics, 75:5656–5658, 1994.
- [SGS⁺05] SÖDERBERG, OUTI, YANLING GE, ALEXEI SOZINOV, SIMO-PEKKA HANNULA, and VEIKKO K. LINDROOS: *Recent breakthrough development*

of the magnetic shape memory effect in NiMnGa alloys. Smart Materials and Structures, 14:223–235, 2005.

- [SHG+07] SCHEERBAUM, NILS, DIETRICH HINZ, OLIVER GUTFLEISCH, KARL-HARTMUT MÜLLER, and LUDWIG SCHULTZ: *Textured polymer bonded composites with Ni-Mn-Ga magnetic shape memory particles*. Acta Materialia, 55:2707–2713, 2007.
- [SMP⁺04] STIPCICH, MARCELO, LLUÌS MAÑOSA, ANTONI PLANES, MICHEL MORIN, JEREL ZARESTKY, THOMAS LOGRASSO, and CONSTANTINE STASSIS: *Elastic constants of Ni-Mn-Ga magnetic shape memory alloys*. Physical Review B, 70:054115, 2004.
- [SS04] SAUTER, STEFAN und CHRISTOPH SCHWAB: *Randelementmethoden*. B. G. Teubner, Wiebaden, 2004.
- [Ste03] STEINBACH, OLAF: Numerische Näherungsverfahren für elliptische Randwertprobleme: Finite Elemente und Randelemente. B. G. Teubner, Wiesbaden, 2003.
- [Sto96] STOTH, BARBARA E. E.: Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. Journal of Differential Equations, 125:154–183, 1996.
- [Str58] STROH, ALAN N.: *Dislocations and cracks in anisotropic elasticity*. Philosophical Magazine, 7:625–646, 1958.
- [SV96a] SU, CHING-HUA and PETER W. VOORHEES: The dynamics of precipitate evolution in elastically stressed solids – I. Inverse coarsening. Acta Materialia, 44:1987–1999, 1996.
- [SV96b] SU, CHING-HUA and PETER W. VOORHEES: The dynamics of precipitate evolution in elastically stressed solids – II. Particle alignment. Acta Materialia, 44:2001–2016, 1996.
- [TAV99] THORNTON, KATSUYO, NORIO AKAIWA, and PETER W. VOORHEES: Morphology development during Ostwald ripening in elastically stressed solids. In CHUNG, YIP-WAH, DAVID C. DUNAND, PETER K. LIAW, and GRE-GORY B. OLSON (editors): Advanced Materials for the 21st Century: The 1999 Julia R. Wertmann Symposium, pages 205–212, 1999.
- [TAV01] THORNTON, KATSUYO, NORIO AKAIWA, and PETER W. VOORHEES: *Dynamics of late-stage phase separation in crystalline solids*. Physical Review Letters, 86:1259–1262, 2001.

- [TAV04a] THORNTON, KATSUYO, NORIO AKAIWA, and PETER W. VOORHEES: Large-scale simulation of Ostwald ripening in elastically stressed solids: I. Development of microstructure. Acta Materialia, 52:1353–1364, 2004.
- [TAV04b] THORNTON, KATSUYO, NORIO AKAIWA, and PETER W. VOORHEES: Large-scale simulation of Ostwald ripening in elastically stressed solids: II. Coarsening kinetics and particle size distribution. Acta Materialia, 52:1365– 1378, 2004.
- [Tay78] TAYLOR, JEAN E.: *Crystalline variational problems*. Bulletin of the American Mathematical Society, 84:568–588, 1978.
- [TJS⁺99] TICKLE, ROBERT, RICHARD D. JAMES, THOMAS SHIELD, MANFRED WUTTIG, and VOLODYMYR V. KOKORIN: *Ferromagnetic shape memory in the NiMnGa system*. IEEE Transactions on Magnetics, 35:4301–4310, 1999.
- [TSV94] THOMPSON, M. E., CHING-HUA SU, and PETER W. VOORHEES: *The equilibrium shape of a misfitting precipitate*. Acta Metallurgica et Materialia, 42:2107–2122, 1994.
- [TV99] THOMPSON, M. E. and PETER W. VOORHEES: Equilibrium particle morphologies in elastically stressed coherent solids. Acta Materialia, 47:983–996, 1999.
- [UES+01] ULLAKKO, KARI, YOSSEF EZER, ALEXEI SOZINOV, GIORA KIMMEL, PETER YAKOVENKO, and VEIKKO K. LINDROOS: *Magnetic-field-induced strains in polycrystalline Ni-Mn-Ga at room temperature*. Scripta Materialia, 44:475–480, 2001.
- [UHK+96] ULLAKKO, KARI, JIANKANG HUANG, CHRIS KANTNER, ROBERT C. O'HANDLEY, and VOLODYMYR V. KOKORIN: Large magnetic-fieldinduced strains in Ni₂MnGa single crystals. Applied Physics Letters, 69:1966-1968, 1996.
- [UY04] USHIJIMA, TAKEO K. and SHIGETOSHI YAZAKI: *Convergence of a crystalline approximation for an area-preserving motion*. Journal of Computational and Applied Mathematics, 166:427–452, 2004.
- [Vel00] VELDHUIZEN, TODD: *Techniques for scientific C++*. Technical Report 542, Indiana University Department of Computer Science, 2000.
- [VG84a] VOORHEES, PETER W. and MARTIN E. GLICKSMAN: Solution to the multi-particle diffusion problem with applications to Ostwald ripening I. Theory. Acta Metallurgica, 32:2001–2011, 1984.

- [VG84b] VOORHEES, PETER W. and MARTIN E. GLICKSMAN: Solution to the multi-particle diffusion problem with applications to Ostwald ripening II. Computer simulations. Acta Metallurgica, 32:2013–2030, 1984.
- [VMBM88] VOORHEES, PETER W., GEOFFREY B. MCFADDEN, RONALD F. BOISVERT, and DANIEL I. MEIRON: Numerical simulation of morphological development during Ostwald ripening. Acta Metallurgica, 36:207–222, 1988.
- [VMJ92] VOORHEES, PETER W., GEOFFREY B. MCFADDEN, and WILLIAM C. JOHNSON: On the morphological development of second phase particles in elastically stressed solids. Acta Metallurgica, 40:2979–2992, 1992.
- [Voo85] VOORHEES, PETER W.: *The theory of Ostwald ripening*. Journal of Statistical Physics, 38:231–252, 1985.
- [V0092] VOORHEES, PETER W.: Ostwald ripening of two-phase mixtures. Annual Review of Materials Science, 22:197–215, 1992.
- [VS87] VOORHEES, PETER W. and ROBERT J. SCHAEFER: In situ observation of particle motion and diffusion interactions during coarsening. Acta Metallurgica, 35:327–339, 1987.
- [WCS03] WANG, DONGDONG, JIUN-SHYAN CHEN, and LIZHI SUN: Homogenization of magnetostrictive particle-filled elastomers using an interfaceenriched reproducing kernel particle method. Finite Elements in Analysis and Design, 39:765–782, 2003.
- [Wei02] WEIKARD, ULRICH: Numerische Lösungen der Cahn-Hilliard-Gleichungen und der Cahn-Larché-Gleichungen. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2002.
- [Wil81] WILLIS, JOHN R.: Variational and related methods for the overall properties of composites. Advances in Applied Mechanics, 21:1–78, 1981.
- [ZCH96] ZHU, JINGYI, XINFU CHEN, and THOMAS Y. HOU: An efficient boundary integral method for the Mullins-Sekerka problem. Journal of Computational Physics, 127:246–267, 1996.

Literaturverzeichnis