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ABSTRACT. In this paper an evolving surface finite volume method is introduced for the numer-
ical resolution of a transport diffusion problem on a family of moving hypersurfaces. These
surfaces are assumed to evolve according to a given motion field. The ingredients of the method
are an approximation of the family of surfaces by a family of interpolating simplicial meshes,
where grid vertices move on motion trajectories, a consistent finite volume discretization of the
induced transport on the simplices, and a proper incorporation of a diffusive flux balance at
simplicial faces. Existence, uniqueness and a priori estimates are proved for the discrete so-
lution. Furthermore, a convergence result is formulated together with a sketch of the proof.
Finally, first numerical results are discussed.
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1. Introduction

In many applications in materials science, biology and geometric modeling evolu-
tion problems do not reside on a flat Euclidean domain but on curved surfaces, which
frequently evolve themselves over time. Furthermore, partial differential equations
on the surface are often coupled with the evolution of the geometry itself. Examples
are the spreading of thin liquid films or coatings on surfaces [ROY 02], transport and
diffusion of a surfactant on interfaces in multiphase flow [JAM 04], surfactant driven
thin film flow coupled on enclosed surface of lung alveoli coupled with the expan-
sion or contraction of the alveoli [GRÜ 02], diffusion induced grain boundary motion
[CAH 97], reaction diffusion equations for texture generation on surfaces [TUR 91].
Here, we suppose the evolution of the surface to be given a priori and study the finite
volume discretization of diffusion on the resulting family of evolving surfaces as a
model problem. This generalizes the already classical approach by Eymard, Gallouet



and Herbin [EYM 00] on fixed Euclidean domains. We do not restrict to a surface
propagation only in normal direction but allow for the practically relevant case of a
tangential velocity component corresponding to the motion of material points in the
surface. A finite volume approach is in particular beneficial in case of a later cou-
pling with strong advection as in the case of surface tension induced Marangoni flow
or density transport on interfaces. Finite volume methods on curved geometries have
been discussed recently in [CAL 07] but to the best of our knowledge they have so
far not been analysed on evolving surfaces. Our approach is closely related to the
finite element approach by Dziuk and Elliott [DZI 07]. They consider a moving tri-
angulation, where the nodes are propagating with the actual motion velocity, which
effectively leads to space time finite element basis functions similar to the ELLAM
approach [HER 90]. We consider as well a family of triangulated surfaces with nodes
located on motion trajectories where the triangles are treated as finite volume cells.
The resulting scheme immediately incorporates mass conservation. In this paper we
prove discrete counterparts of continuous energy estimates related to those in the case
of Euclidean domain in [EYM 00]. We also give a convergence result for the discrete
solution and show some numerical results.

Mathematical model. We consider a family of compact, smooth, and oriented hy-
persurfaces Γ(t) ⊂ Rn (n = 2, 3) for t ∈ [0, tmax] generated by a flux function
Φ : Γ0 × [0, tmax] → Rn with Φ(Γ0, t) = Γ(t) and Φ ∈ C1([0, tmax], C1(Γ0)) ∩
C0([0, tmax], C3(Γ0)). For simplicity we assume the reference surface Γ0 to coin-
cide with the initial surface Γ(0). We denote by v = ∂tΦ the velocity of material
points and assume the decomposition v = vnν + vtgl into a scalar normal velocity vn

in direction of the surface normal ν and a tangential velocity vtgl. The evolution of a
conservative material quantity u with u(·, t) : Γ(t) → R, which is propagated with the
surface and simultaneously undergoes a linear diffusion on the surface, is governed by
the parabolic equation

u̇ + u∇Γ · v − ∇Γ · (D0∇Γu) = 0 on Γ = Γ(t) [1]

where u̇ = d
dtu(t, x(t)) is the (advective) material derivative of u, ∇Γ · v the surface

divergence of the vector field v, ∇Γu the surface gradient of the scalar field u, and D0

a symmetric, coercive diffusion tensor on whole Rn, whose restriction on the tangent
plane is effectively incorporated in the model. For the ease of presentation we restrict
ourselves here to the case of a closed surface without boundary.
Our results can easily be generalized to surfaces with boundary, on which we either
impose Dirichlet or Neumann boundary conditions. For a discussion of existence,
uniqueness and regularity of solutions we refer to [DZI 07] and the references therein.

2. Derivation of the finite volume scheme

Following Dziuk and Elliott [DZI 07] we consider a sequence of regular, surface
triangulations {Γk

h}k=0,··· ,kmax with Γk
h interpolating Γ(tk) with tk = kτ . Here, h

indicates the maximal diameter of a triangle on the whole sequence of triangulations,
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Φ (·, tk)

Figure 1. Sketch of the reference triangulation Γ0
h interpolating Γ0 and time 0 (left)

and a triangulation Γk
h with the underlying continuous surface Γ(tk) (right).

τ the time step size and k the index of a time step. All triangulations share the same
grid topology, and given the set of vertices x0

j on the initial surface Γ0
h the vertices on

Γk
h lie on motion trajectories. Thus, they are evaluated based on the flux function Φ,

i.e. xj(tk) = Φ(x0
j , tk) (cf. Figure 1). In what follows a simplex of the triangulated

surface Γk
h (a line segment for n = 2 or a triangle for n = 3) is denoted by Sk.

As in the Euclidean case discussed in [EYM 00] we also assume that for all tk for
k = 0, · · · , kmax and all simplices Sk ⊂ Γk

h there exists a point Xk
S ∈ Sk and for each

boundary simplex σk ⊂ ∂Sk a point Xk
σ ∈ σk such that

−−−−→
Xk

S Xk
σ is perpendicular

to σk with respect to the scalar product induced by the inverse of the diffusion tensor
on the simplex Sk. Furthermore, we assume that these points can be chosen such
that for two adjacent simplices Sk and Lk the corresponding points on the common
edge σk = Sk|Lk = σk coincide (cf. Figure 2). For a later comparison of discrete

Xk
L

Sk
Lk

σ
Xk

S

Xk
σ

Figure 2. A sketch of the local configuration of points Xk

S , Xk

L, and Xk
σ on two adja-

cent simplices Sk and Lk, which in general do not lie in the same plane.

quantities on the triangulation Γk
h and continuous quantities on Γ(tk) we define a

lifting operator from Γk
h onto Γ(tk) via the orthogonal projection Pk onto Γ(tk) in

direction of the surface normal ν. For sufficiently small h this projection is uniquely
defined and smooth. By Sl, k := PkSk we define the projection of a simplex Sk ⊂ Γk

h

and by Sl, k(t) := Φ(Φ−1(Sl, k, tk), t) the propagation of Sl, k during the (k + 1)th
time interval [tk, tk+1]. Furthermore, let us denote by mk

S the (n − 1) dimensional
measure of Sk. Then there exists a constant C depending on the smoothness of the
flux function Φ such that

(
1−mk

S (mk+1
S )−1

)
≤ C τ for all simplices Sk and all k.

Based on these notational preliminaries we can now derive a suitable finite volume
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discretization. Thus, let us integrate [1] on {(x, t) | t ∈ [tk, tk+1], x ∈ Sl, k(t)}.
Using the Leibniz formula (cf. [DZI 07]), we obtain for the material derivative

tk+1∫
tk

∫
Sl, k(t)

u̇+ u∇Γ ·v =
∫

Sl, k(tk+1)

u−
∫

Sl, k(tk)

u ≈ mk+1
S u(Xk+1

S )−mk

Su(Xk

S) . [2]

Next, on each simplex Sk we approximate the diffusion tensor D0 by Dk
S := D0(Xk

S).
Integrating the elliptic term again over the temporal evolution of a lifted simplex patch
and applying the Gauss theorem we derive the following approximation:

tk+1∫
tk

∫
Sl, k(t)

∇Γ · (D0∇Γu) =

tk+1∫
tk

∫
∂Sl, k(t)

D0∇Γu · µ∂Sl, k(t)

≈ τ
∑

σk+1⊂Sk+1

mk+1
σ λk+1

S|σ

u(Xk+1
σ )− u(Xk+1

S )
dk+1

S|σ

[3]

where µ∂Sl, k(t) is the co-normal on ∂Sl, k(t) tangential to Γ(t), σk+1 a boundary sim-
plex of Sk+1, mk+1

σ the (n − 2)-dimensional Hausdorff measure of the edge σk+1,
dk+1

S|σ = ‖Xk+1
S − Xk+1

σ ‖, and λk+1
S|σ = ‖Dk+1

S µk+1
S ‖. Now, we introduce discrete de-

grees of freedom uk
S and uk

σ for u(Xk
S) and u(Xk

σ), respectively. Then the discrete
counterpart of the continuous flux balance∫

Sl,k(t)∩Ll, k(t)

(D0∇Γu)|Sl,k(t) · µ∂Sl, k(t) = −
∫

Sl,k(t)∩Ll, k(t)

(D0∇Γu)|Ll,k(t) · µ∂Ll, k(t)

on Sl,k(t) ∩ Ll, k(t) for two adjacent simplices Sk and Lk is given by

mk+1
σ

uk+1
σ − uk+1

S

dk+1
S|σ

λk+1
S|σ = −mk+1

σ

uk+1
σ − uk+1

L

dk+1
L|σ

λk+1
L|σ

for the edge σ = Sk ∩ Lk. Hence, we can cancel out the degrees of freedom uk+1
σ on

edges and based on the approximations for the parabolic term in [2] and the elliptic
term in [3] we obtain the finite volume scheme

mk+1
S uk+1

S −mk

Suk

S − τ
∑

σk+1⊂Sk+1

mk+1
σ λk+1

S|σ λk+1
L|σ

dk+1
L|σ λk+1

S|σ + dk+1
S|σ λk+1

L|σ

(uk+1
L − uk+1

S ) = 0 , [4]

which requires the solution of a linear system of equations for the cell-wise solution
values uk+1

S for k = 0, · · · ,K − 1 and for given initial data u0
S at time t0 = 0.

Remark: Different from the finite volume method on Euclidean domains in [EYM 00],
all coefficients depend on the geometric evolution, and thus in particular change over
time. A comparison of the discrete and continuous solution requires a mapping from
the sequence of triangulations {Γk

h} onto the continuous family of surfaces {Γ(t)}t∈[0,tmax]

Let us associate with the components uk
S on the simplices Sk of the triangulation Γk

h

a piecewise constant function uk with uk|Sk = uk
S and let Vk

h be the space of these
functions on Γk

h. On this function space, we can define a discrete energy semi-norm:
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Definition 2.1 (Discrete energy semi-norm) For uk ∈ Vk
h we define

‖uk‖2
1, Γk

h
=

∑
σ=Sk∩Lk

Sk, Lk∈Γk
h

mσ(dk

S|L)−1Mk

σ (uk

L − uk

S)2 [5]

where Mk
σ =

λk
S|σλk

L|σ dk
S|L

dk
L|σλk

S|σ + dk
S|σλk

L|σ
, dk

S|L = dk
S|σ + dk

L|σ.

Before we prove suitable a priori estimates, let us verify existence and uniqueness of
the discrete solution.

Theorem 2.2 The discrete problem [4] has a unique solution.

Proof System [4] has a unique solution uk+1, if the kernel of the corresponding linear
operator is trivial. To see this, we assume uk = 0 in [4] and multiply the equation
by uk

S for each simplex Sk ⊂ Γk
h. Summing up over all simplices and taking into

account the symmetry of the second term in [4] with respect to the two simplices Sk,
Lk intersecting at the edge σ = Sk ∩ Lk we obtain

‖uk+1‖2

L2(Γk+1
h ) + τ‖uk+1‖2

1, Γk+1
h

= 0

from which uk+1 = 0 immediately follows. �

3. A priori estimates and convergence

In what follows we will prove an energy estimate and a H1(L2) and L∞(H1) a
priori estimate.

Theorem 3.1 (discrete L∞(L2), L2(H1) energy estimate) Let {uk}k=1,··· ,kmax be
the discrete solution fulfilling [4] with given initial data u0, then there exists a constant
C, such that

sup
k
‖uk+1‖2

L2(Γk+1
h ) +

∑
k

τ‖uk+1‖2

1, Γk+1
h

≤ C‖u0‖2

L2(Γ0
h). [6]

Proof For every cell Sk ∈ Γk+1
h , multiply the corresponding equation [4] by uk+1

S and
thereafter, sum the new equations over all Sk ∈ Γk

h to obtain∑
Sk∈Γk

h

(
mk+1

S (uk+1
S )2−mk

Suk

Suk+1
S

)
+τ

∑
σk=Sk∩Lk

Sk, Lk∈Γk
h

mk+1
σ dk+1

S|LMk+1
σ

(
uk+1

L − uk+1
S

dk+1
S|L

)2

= 0

which leads to

1
2
‖uk+1‖2

L2(Γk+1
h

)
+ τ‖uk+1‖2

1, Γk+1
h

≤ 1
2
‖uk‖2

L2(Γk
h) +

1
2
δ(h, τ)τ‖uk+1‖2

L2(Γk+1
h

)
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where δ(h, τ) = supk supS

∣∣mk
S (mk+1

S )−1 − 1
∣∣ τ−1. Due to the smoothness of the

flux function, we observe that δ(h, τ) is uniformly bounded by some δ for sufficiently
small h and τ . Finally, we apply a Gronwall type argument and achieve

sup
k

‖uk‖2
L2(Γk

h) +
∑

k

τ‖uk+1‖2

1, Γk+1
h

≤ 3
2
e2δtmax‖u0‖2

L2(Γ0
h)

which proves the claim. �

Theorem 3.2 (discrete H1(L2), L∞(H1) energy estimate) For the discrete solution
{uk}k=1,··· ,kmax of [4] with given initial data u0, then there exist a constant C, such
that∑

k

τ‖∂τ

t uk+1‖2

L2(Γk+1
h ) + sup

k
‖uk+1‖2

1, Γk+1
h

≤ C
(
‖u0‖2

L2(Γ0
h) + ‖u0‖2

1, Γ0
h

)
, [7]

where ∂τ
t uk+1 := uk+1−uk

τ is defined as a difference quotient in time.

Proof For every simplex Sk ∈ Γk+1
h , multiply [4] by ∂τ

t uk+1 and thereafter, sum over
all simplices to obtain

0 = τ
∑

S

mk+1
S

(
uk+1

S − uk
S

τ

)2

+
∑

S

(mk+1
S −mk

S) uk

S

(
uk+1

S − uk
S

τ

)

+
∑

σk=Sk∩Lk

Sk, Lk∈Γk
h

(
mk

σ dk+1
S|L Mk+1

σ

(
uk+1

L − uk+1
S

dk+1
S|L

)2

−mk

σ Mk+1
σ

(
uk+1

S − uk+1
L

dk+1
S|L

)
(uk

S − uk

L)
)
.

which is equivalent to

τ
∑

S

mk+1
S

(
uk+1

S − uk
S

τ

)2

+
(
‖uk+1‖1, Γk+1

h

)2

=
∑

σk=Sk∩Lk

Sk, Lk∈Γk
h

√
dk

S|Lmk
σMk

σ

(
uk

S − uk
L

dk
S|L

)
·√

dk
S|Lmk+1

σ Mk+1
σ

dk+1
S|L mk

σMk
σ

√
dk+1

S|L mk+1
σ Mk+1

σ

(
uk+1

S − uk+1
L

dk+1
S|L

)

−
∑
Sk

(
1− mk

S

mk+1
S

)
τ−1

√
mk+1

S√
mk

S

τ
√

mk
Suk

S

(√
mk+1

S

uk+1
S − uk

S

τ

)
Applying the Cauchy and the Young inequality, we finally obtain

τ ‖∂τ

t uk+1‖2

L2(Γk+1
h ) +

1
2
‖uk+1‖2

1, Γk+1
h

− 1
2
‖uk‖2

1, Γk
h

≤ 1
2

γ τ‖uk+1‖2

1, Γk+1
h

+ ατ‖uk‖L2(Γk
h)‖∂

τ

t uk+1‖L2(Γk+1
h ) [8]
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with γ = sup
k

sup
σk=Sk∩Lk

Sk, Lk∈Γk
h

∣∣∣∣mk+1
σ Mk+1

σ

mk
σ Mk

σ

dk
S|L

dk+1
S|L

− 1
∣∣∣∣ τ−1 and α = δ(h, τ) sup

k
sup
Sk

√
mk+1

S

mk
S

.

Next, we apply again Young inequality on equation [8] and sum over all time steps.
Finally, an application of Theorem 3.1 lead us to the desired estimate. �

Now, we consider error estimates for the finite volume solution uk ∈ Vk
h . Al-

ready in the derivation of the scheme we made use of a lifting operation from the
discrete surfaces Γk

h onto the continuous surfaces Γ(tk). Here, we use the pull back
of the continuous solution u at time tk under this lift u−l(Xk

S , tk) := u(Pk(Xk
S), tk).

The consistency of the scheme depends on the proper choice of the nodes Xk
S and

in particular their relation in time. Let us assume that ‖Φ(Φ−1(Pk(Xk
S), tk), tk+1) −

Pk+1(Xk+1
S )‖ ≤ Chτ . This condition can easily be verified for constant diffusivity

and acute meshes with Xk
S being the orthocenter of Sk. Then the following conver-

gence theorem holds.

Theorem 3.3 (error estimate) Under the assumptions listed above, the error Ek :=∑
S

(u−l (Xk
S , tk)− uk

S) χ
S

between the above pull back of the continuous solution
u(·, tk) of [1] at time tk and the finite volume solution uk of [4] is estimated by

‖Ek‖2
L2(Γh(tk)) ≤ C(h + τ)2 [9]

for a constant C and all k = 0, · · · , kmax.

Sketch of Proof Following the finite element error analysis in [DZI 07] we consider
the pull back of a simplex wise flux formulation of [1] (cf. the middle term in [2] and
[3]) onto the discrete surface Γk

h and subtract from this the discrete problem [4]. Then
we multiply this by the error u−l (Xk

S , tk) − uk
S and sum over all simplices Sk ⊂ Γk

h.
Now, we combine techniques from [EYM 00] and estimates based on our geometric
assumptions to establish an estimate of the error term ‖Ek+1‖2L2(Γk+1

h )
by ‖Ek‖2L2(Γk

h)

plus consistency terms involving τ and h. Using a similar Gronwall type argument as
in the proof of Theorem 3.1 we establish the stated estimate. �

4. Numerical results

In Figure 3 we depict some numerical results obtained by our finite volume al-
gorithm., which demonstrate the interplay between diffusion and advection due to
geometric deformation.
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