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Abstract. A finite volume scheme for transport and diffusion problems on evolving hypersur-
faces is discussed. The underlying motion is assumed to be described by a fixed, not necessarily
normal, velocity field. The ingredients of the numerical method are an approximation of the family
of surfaces by a family of interpolating simplicial meshes, where grid vertices move on motion tra-
jectories, a consistent finite volume discretization of the induced transport on the simplices, and a
proper incorporation of a diffusive flux balance at simplicial faces. The semi-implicit scheme is de-
rived via a discretization of the underlying conservation law, and discrete counterparts of continuous
a priori estimates in this geometric setup are proved. The continuous solution on the continuous
family of evolving surfaces is compared to the finite volume solution on the discrete sequence of
simplicial surfaces and convergence of the family of discrete solutions on successively refined meshes
is proved under suitable assumptions on the geometry and the discrete meshes. Furthermore, numer-
ical results show remarkable aspects of transport and diffusion phenomena on evolving surfaces and
experimentally reflect the established convergence results. Finally, we discuss how to combine the
presented scheme with a corresponding finite volume scheme for advective transport on the surface
via an operator splitting and present some applications.
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1. Introduction. In many applications in materials science, biology and geo-
metric modeling evolution problems do not reside on a flat Euclidean domain but
on a curved hypersurface. Frequently this surface is itself evolving in time driven by
some velocity field. In general the induced transport is not normal to the surface
but incorporates tangential motion of the geometry and thus a corresponding tan-
gential advection process on the evolving surface. In [10] Dziuk and Elliot proposed
a finite element scheme for the numerical simulation of diffusion processes on such
evolving surfaces. In this paper we pick up the finite volume methodology introduced
by Eymard, Gallouët and Herbin in [13] on fixed Euclidean domains and discuss a
generalization in case of transport and diffusion processes on curved and evolving
surfaces1. The general motivation for a finite volume formulation is the potential of
a further extension to coupled diffusion and dominating nonlinear advection models.
Here, we restrict to linear transport.

Applications of the considered model are the diffusion of densities on biological
membranes or reaction diffusion equations for texture generation on surfaces [21].
Frequently, partial differential equations on the surface are coupled to the evolution
of the geometry itself. Examples are the spreading of thin liquid films or coatings
on surfaces [20], transport and diffusion of a surfactant on interfaces in multiphase
flow [17], surfactant driven thin film flow [15] on the enclosed surface of lung alveoli
coupled with the expansion or contraction of the alveoli, and diffusion induced grain
boundary motion [3]. In this paper, we suppose the evolution of the surface to be
given a priori and study the finite volume discretization of diffusion on the resulting
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family of evolving surfaces as a model problem. The evolving surfaces are discretized
by simplicial meshes, where grid nodes are assumed to be transported along motion
trajectories of the underlying flow field. The approach applies to evolving polygonal
curves and triangulated surfaces. In the presentation we focus on the case of moving
two-dimensional surfaces. Finite volume methods on curved geometries have been
discussed recently in [4, 8], but to the best of our knowledge they have so far not been
analysed on evolving surfaces.

An alternative approach would be to consider a level set representation via an
evolving level set function. In this case, projections of the derivatives onto the embed-
ded tangent space provide a mechanism for computing geometric differential operators
[1] on fixed level set surfaces. Finite elements in this context are discussed in [2] and
a narrow band approach with a very thin fitted mesh is presented in [7], and in [14]
an improved approximation of tangential differential operators is presented. Fur-
thermore, in [11] a finite element level set method is introduced for the solution of
parabolic PDEs on a family of evolving implicit surfaces.

Our finite volume method is closely related to the finite element approach by
Dziuk and Elliott [10]. They consider a moving triangulation, where the nodes are
propagating with the actual motion velocity, which effectively leads to space time
finite element basis functions similar to the ELLAM approach [16]. We consider as
well a family of triangulated surfaces with nodes located on motion trajectories where
the triangles are treated as finite volume cells. The resulting scheme immediately
incorporates mass conservation. An overview on computational approaches which use
moving meshes to solve PDEs is given in [18]. Here, the moving mesh reflects the
Eulerian coordinates underlying the evolution problem but on a fixed computational
domain.

The paper is organized as follows. In Section 2 the mathematical model is dis-
cussed and in Section 3 we derive the finite volume scheme on simplicial grids. Discrete
a priori estimates consistently formulated in terms of the evolving geometry are es-
tablished in Section 4. In Section 5 we state and prove the main convergence result.
Finally, Section 6 discusses an operator splitting scheme for the coupling of diffusive
and advective transport so far not encoded in the surface motion itself and in Section
7 numerical results are presented.

2. Mathematical model. We consider a family of compact, smooth, and ori-
ented hypersurfaces Γ(t) ⊂ Rn (n = 2, 3) for t ∈ [0, tmax ] generated by an evolution
Φ : [0, tmax ]×Γ0 → Rn defined on a reference surface Γ0 with Φ(t,Γ0) = Γ(t). Let us
assume that Γ0 is C3 smooth and that Φ ∈ C1([0, tmax ], C3(Γ0)). For simplicity we
assume the reference surface Γ0 to coincide with the initial surface Γ(0) (cf. Figure
5.2).

We denote by v = ∂tΦ the velocity of material points and assume the decomposi-
tion v = vnν + vtgl into a scalar normal velocity vn in direction of the surface normal
ν and a tangential velocity vtgl . The evolution of a conservative material quantity
u with u(t, ·) : Γ(t) → R, which is propagated with the surface and simultaneously
undergoes a linear diffusion on the surface, is governed by the parabolic equation

u̇ + u∇Γ · v − ∇Γ · (D∇Γu) = g on Γ = Γ(t) , (2.1)

where u̇ = d
dtu(t, x(t)) is the (advective) material derivative of u, ∇Γ · v the surface

divergence of the vector field v, ∇Γu the surface gradient of the scalar field u, g a
source term with g(t, ·) : Γ(t) → R and D a diffusion tensor on the tangent bundle.
Here we assume a symmetric, uniformly coercive C2 diffusion tensor field on whole
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Rn to be given, whose restriction on the tangent plane is then effectively incorporated
in the model. With a slight misuse of notation, we denote this global tensor field
also by D. Furthermore, we impose an initial condition u(0, ·) = u0 at time 0. Let
us assume that the mappings (t, x) → u(t,Φ(t, x)), v(t,Φ(t, x)), and g(t,Φ(t, x)) are
C1([0, tmax ], C3(Γ0)), C0([0, tmax ], C3(Γ0)) and C1([0, tmax ], C1(Γ0)) regular, re-
spectively. For the ease of presentation we restrict here to the case of a closed surface
without boundary. Our results can easily be generalized to surfaces with boundary, on
which we either impose Dirichlet or Neumann boundary condition. For a discussion
of existence, uniqueness and regularity of solutions we refer to [10] and the references
therein.

3. Derivation of the finite volume scheme. For the ease of presentation we
restrict ourselves to the case of two dimensional surfaces in R3. A generalization of
the numerical analysis presented here is straightforward. We consider a sequence of
regular surface triangulations {Γkh}k=0,...kmax

with Γkh interpolating Γ(tk) for tk = kτ
and kmax τ = tmax (cf. Dziuk and Elliott [10] for the same set up with respect to a
finite element discretization). Here, h indicates the maximal diameter of a triangle on
the whole sequence of triangulations, τ the time step size and k the index of a time
step. All triangulations share the same grid topology, and given the set of vertices
x0
j on the initial triangular surface Γ0

h the vertices of Γkh lie on motion trajectories.
Thus, they are evaluated based on the flux function Φ, i. e. xj(tk) = Φ(tk, x0

j ) (cf.
Figure 3.1). Single closed triangles or edges of the topological grid Γh are denoted by
S and σ, respectively. Upper indices denote the explicit geometric realization at the
corresponding time step.

Figure 3.1. Sequence of triangulations Γkh interpolating a four-fold symmetric object in its
evolution.

Thus, a closed triangle of the triangulated surface geometry Γkh is denoted by Sk.
We assume that the triangulations Γkh are regular, i. e. there exist constants c, C > 0
such that ch2 ≤ mk

S ≤ Ch2 for all S and all k, where mk
S denotes the area of Sk. As

in the Euclidean case discussed in [13] we also assume that for all time steps tk where
k = 0, . . . kmax and all simplices Sk ⊂ Γkh there exists a point Xk

S ∈ Sk and for each

edge σk ⊂ ∂Sk a point Xk
σ ∈ σk such that the vector

−−−−→
Xk
S X

k
σ is perpendicular to σk

with respect to the scalar product induced by the inverse of the diffusion tensor on
the triangle Sk at the point Xk

σ , i.e.(
D(Xk

σ)
)−1(Xk

S −Xk
σ) · V = 0, (3.1)

where V is a vector parallel to the edge σk. Furthermore, we assume that these points
can be chosen such that for two adjacent simplices Sk and Lk the corresponding points
on the common edge σk = Sk ∩ Lk coincide (cf. Figure 3.2). The point Xk+1

S at the
following time step need not be the consistently transported point Xk

S under the
flow Φ. It will turn out that for the error analysis the later stated condition (5.1) is
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sufficient. This allows to choose the points Xk
S in a way that fulfills these requirements

without changing the grid topology between time steps, as described in the paragraph
after equation (5.1).

Sk Lk

Xk
LXk

S

σ

Xk
σ

Figure 3.2. A sketch of the local configuration of points Xk
S , Xk

L, and Xk
σ on two adjacent

simplices Sk and Lk, which in general do not lie in the same plane.

For a later comparison of discrete quantities on the triangulation Γkh and con-
tinuous quantities on Γ(tk) we define a lifting operator from Γkh onto Γ(tk) via the
orthogonal projection Pk onto Γ(tk) in direction of the surface normal ν of Γ(tk). For
sufficiently small h this projection is uniquely defined and smooth; we also assume it
to be bijective. By Sl,k := PkSk we define the projection of a triangle Sk on Γ(tk)
and by Sl,k(t) := Φ(t,Φ−1(tk, Sl,k)) the temporal evolution of Sl,k, which we will take
into account for t ∈ [tk, tk+1]. Furthermore, we can estimate the relative change of
area of triangles by mk+1

S = mk
S

(
1 + O(τ)

)
for all simplices Sk and all k because of

the smoothness of the flux function Φ.
Based on these notational preliminaries we can now derive a suitable finite volume

discretization. Thus, let us integrate (2.1) on {(t, x) | t ∈ [tk, tk+1], x ∈ Sl,k(t)}.

∫ tk+1

tk

∫
Sl,k(t)

g da dt ≈ τmk+1
S Gk+1

S , (3.2)

where Gk+1
S = g(tk+1,Pk+1Xk+1

S ). Using the Leibniz formula d
dt

∫
Sl,k(t)

u da =∫
Sl,k(t)

u̇+ u∇Γ · v da (cf. [10]), we obtain for the material derivative

∫ tk+1

tk

∫
Sl,k(t)

u̇+ u∇Γ · v da dt =
∫
Sl,k(tk+1)

u da−
∫
Sl,k(tk)

u da

≈ mk+1
S u(tk+1,Pk+1Xk+1

S )−mk
Su(tk,PkXk

S) .
(3.3)

Next, integrating the elliptic term again over the temporal evolution of a lifted
triangular patch and applying Gauss’s theorem we derive the following approximation:

∫ tk+1

tk

∫
Sl,k(t)

∇Γ · (D∇Γu) da dt =
∫ tk+1

tk

∫
∂Sl,k(t)

D∇Γu · µ∂Sl,k(t) dl dt (3.4)

≈ τ
∑
σ⊂∂S

mk+1
σ λk+1

S|σ
u(tk+1,Pk+1Xk+1

σ )− u(tk+1,Pk+1Xk+1
S )

dk+1
S|σ

,

where µ∂Sl,k(t) is the outer co-normal on ∂Sl,k(t) tangential to Γ(t), σk+1 an edge of
Sk+1, mk+1

σ the length of σk+1, dk+1
S|σ := ‖Xk+1

S −Xk+1
σ ‖, and λk+1

S|σ := ‖Dk+1
S|σ µ

k+1
S|σ ‖.
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The discrete diffusion tensor is defined by Dk+1
S|σ :=

(
P k+1
S

)T D(Xk+1
σ )P k+1

S , where

P k+1
S is the orthogonal projection onto the plane given by Sk+1, and µk+1

S|σ is the outer
co-normal to Sk+1 on the edge σ. Indeed, the orthogonality assumption (3.1) implies
that (Xk+1

σ −Xk+1
S ) is parallel to Dk+1

S|σ µ
k+1
S|σ . Hence, ∇Γu · µ∂Sl,k(t) can consistently

be approximated by the difference quotient λk+1
S|σ

u(tk+1,Pk+1Xk+1
σ )−u(tk+1,Pk+1Xk+1

S )

dk+1
S|σ

.

Alternatively, one could introduce a diffusion tensor Dk+1
S :=

(
P k+1
S

)T D(Xk+1
S )P k+1

S

on triangles and modify (3.1) and the definition of λk+1
S|σ accordingly. We will comment

on this alternative approach in the context of the convergence analysis in Section 5.2.
Now, we introduce discrete degrees of freedom UkS and Ukσ for u(PkXk

S) and
u(PkXk

σ), respectively. The values UkS are the actual degrees of freedom; they will be
compiled into a function Uk that is constant on each cell Sk and is an element of the
discrete solution space Vkh which is defined in (3.7) below. The Ukσ are only auxiliary
degrees of freedom, cf. (3.5). Then the discrete counterpart of the continuous flux
balance∫

Sl,k(t)∩Ll,k(t)

(D∇Γu)|Sl,k(t) · µ∂Sl,k(t) da = −
∫
Sl,k(t)∩Ll,k(t)

(D∇Γu)|Ll,k(t) · µ∂Ll,k(t) da

on Sl,k(t) ∩ Ll,k(t) for two adjacent simplices Sk and Lk is given by

mk+1
σ

Uk+1
σ − Uk+1

S

dk+1
S|σ

λk+1
S|σ = −mk+1

σ

Uk+1
σ − Uk+1

L

dk+1
L|σ

λk+1
L|σ

for the edge σk = Sk∩Lk. Let us emphasize that this flux balance holds independently
of the tilt of Sk and Lk at σk. Hence, we can cancel out the degrees of freedom

Uk+1
σ =

Uk+1
S dkL|σλ

k
S|σ + Uk+1

L dkS|σλ
k
L|σ

dkL|σλ
k
S|σ + dkS|σλ

k
L|σ

(3.5)

on edges and based on the approximations for the parabolic term in (3.3) and the
elliptic term in (3.4), we finally obtain the finite volume scheme

mk+1
S Uk+1

S −mk
SU

k
S − τ

∑
σ⊂∂S

mk+1
σ Mk+1

σ

Uk+1
L − Uk+1

S

dk+1
S|L

= τmk+1
S Gk+1

S , (3.6)

where Mk
σ :=

λkS|σλ
k
L|σ d

k
S|L

dkL|σλ
k
S|σ + dkS|σλ

k
L|σ

, dkS|L := dkS|σ + dkL|σ .

This requires the solution of a linear system of equations for the cell-wise solution
values Uk+1

S for k = 0, . . . kmax − 1 and for given initial data U0
S at time t0 = 0.

Remark. Different from the finite volume method on Euclidean domains in
[13] all coefficients depend on the geometric evolution, and thus in particular change
in time. A comparison of the discrete and continuous solution requires a mapping
from the sequence of triangulations {Γkh} onto the continuous family of surfaces
{Γ(t)}t∈[0,tmax ].

Figure 3.3 shows two different triangulations of a (rotating) torus (cf. Figure 7.2,
7.3 and 7.4 below for corresponding numerical results). In the first case the underlying
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Figure 3.3. On the left an isotropic mesh for a torus is shown together with a zoom in
with indicated points Xk

S on the triangles and Xk
σ on edges. On the right an anisotropic mesh

corresponding to an anisotropic diffusion tensor D = diag ( 1
25
, 1, 1) is rendered together with the

corresponding zoom. One observes in the blow up of the anisotropic mesh geometry a transition
from the strongly anisotropic regime close to the center plane of the torus on the right and the more
isotropic mesh on the left.

diffusion is isotropic, hence an isotropic mesh is used for the simulation of the evolution
problem. In the second case an anisotropic diffusion tensor D = diag( 1

25 , 1, 1) is taken
into account. To enable the definition of consistent triangle nodes Xk

S and edge nodes
Xk
σ , an anisotropic mesh has been generated. Even though D is constant on R3,3

the induced tangential diffusivity varies on the surface. This variation is properly
reflected by the generated mesh. We refer to Section 7 for some remarks on the mesh
generation.

Let us associate with the components UkS on the simplices Sk of the triangulation
Γkh a piecewise constant function Uk with Uk|Sk = UkS and let

Vkh :=
{
Uk : Γkh → R

∣∣∣ Uk|Sk = const ∀ Sk ⊂ Γkh
}

(3.7)

be the space of these functions on Γkh. Analogously, we denote byGk the corresponding
piecewise constant function withGk|Sk = GkS . On the function space Vkh , we can define
a discrete energy semi norm based on a weighted sum of squared difference quotients:

Definition 3.1 (Discrete energy semi norm). For Uk ∈ Vkh we define

‖Uk‖1,Γkh :=

( ∑
σ=S∩L

mk
σMk

σ

(
UkL − UkS

)2
dkS|L

) 1
2

. (3.8)

Before we prove suitable a priori estimates, let us verify existence and uniqueness
of the discrete solution.

Proposition 3.2. The discrete problem (3.6) has a unique solution.

Proof: The system (3.6) has a unique solution Uk+1, if the kernel of the correspond-
ing linear operator is trivial. To prove this, we assume Uk ≡ 0 and Gk+1 ≡ 0 in
(3.6); then multiply each equation by the the corresponding Uk+1

S for the triangle
Sk+1 ⊂ Γk+1

h . Summing up over all simplices and taking into account the symmetry
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of the second term in (3.6) with respect to the two simplices Sk and Lk intersecting
at the edge σk+1 = Sk+1 ∩ Lk+1 we obtain

‖Uk+1‖2
L2(Γk+1

h ) + τ‖Uk+1‖2
1,Γk+1

h

= 0,

from which Uk+1 = 0 follows immediately. �
Indeed, Proposition 3.2 is a direct consequence of Theorem 4.1 to be proved in

the next section.

4. A priori estimates. In what follows we will prove discrete counterparts of
continuous a priori estimates. They are related to the discrete energy estimates given
in [13] in the case of finite volume methods on fixed Euclidean domains.

Theorem 4.1 (discrete L∞(L2), L2(H1) energy estimate). Let {Uk}k=1,...kmax

be the discrete solution of (3.6) for given discrete initial data U0 ∈ V0
h, then there

exists a constant C depending solely on tmax , such that

max
k=1,...kmax

‖Uk‖2
L2(Γkh) +

kmax∑
k=1

τ‖Uk‖21,Γkh ≤ C

(
‖U0‖2

L2(Γ0
h) + τ

kmax∑
k=1

‖Gk‖2L2

)
. (4.1)

Proof: As in the proof of Proposition 3.2, we multiply the equation (3.6) by Uk+1
S

for every cell Sk ∈ Γkh, and sum over all Sk ∈ Γkh to obtain (again using the symmetry
of the second term in (3.6))

∑
S

(
mk+1
S

(
Uk+1
S

)2−mk
SU

k
SU

k+1
S

)
+ τ

∑
σ=S∩L

mk+1
σ Mk+1

σ

(
Uk+1
L − Uk+1

S

)2
dk+1
S|L

= τ
∑
S

mk+1
S Gk+1

S Uk+1
S , (4.2)

which leads to

‖Uk+1‖2
L2(Γk+1

h )
+ τ‖Uk+1‖2

1,Γk+1
h

≤ ‖Uk‖L2(Γkh) max
S

(
mk
S

mk+1
S

) 1
2

‖Uk+1‖L2(Γk+1
h ) + τ‖Gk+1‖L2(Γk+1

h )‖U
k+1‖L2(Γk+1

h ).

Then, by Young’s inequality and the estimate maxk maxS
∣∣∣ mkS
mk+1
S

− 1
∣∣∣ ≤ C τ , one

obtains
1
2
‖Uk+1‖2

L2(Γk+1
h )

+ τ‖Uk+1‖2
1,Γk+1

h

(4.3)

≤ 1
2
‖Uk‖2L2(Γkh) +

C

2
τ‖Uk+1‖2

L2(Γk+1
h )

+
1
2
τ‖Gk+1‖2

L2(Γk+1
h )

.

Using the notation ak = ‖Uk‖2
L2(Γkh)

and bk = ‖Gk‖2
L2(Γkh)

, one can deduce from
ak ≤ ak−1 + Cτak + τbk that

ak ≤ (1− Cτ)−1(ak−1 + τbk) ≤ · · · ≤ (1− Cτ)−k(a0 + τ

k∑
j=1

bj) .
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Since

(1− Cτ)−k =

((
1− Ctk

k

)− k
Ctk

)Ctk

is bounded from above by 2eCtk for sufficiently small τ , we immediately get the
desired bound for ‖Uk‖2

L2(Γkh):

‖Uk‖2
L2(Γkh) ≤ 2eCtk

‖U0‖2
L2(Γ0

h) + τ

k∑
j=1

‖Gj‖2L2

 .

We sum (4.3) over k = 0, . . . kmax − 1 and compensate the terms ‖Uk‖2
L2(Γkh)

on
the right hand side for k = 1, . . . kmax −1 with those on the left, and using the already
established estimate for the L2-norm gives the bound for

∑kmax

k=1 τ‖Uk‖21,Γkh . �

Theorem 4.2 (discrete H1(L2), L∞(H1) energy estimate). Let {Uk}k=1,...kmax

be the discrete solution of (4.2) with given initial data U0, then there exist a constant
C, such that

kmax∑
k=1

τ‖∂τt Uk‖2L2(Γkh) + max
k=1,...kmax

‖Uk‖21,Γkh

≤ C

(
‖U0‖2

L2(Γ0
h) + ‖U0‖21,Γ0

h
+ τ

kmax∑
k=1

‖Gk‖2
L2(Γkh)

)
, (4.4)

where ∂τt U
k := Uk−Uk−1

τ is defined as a difference quotient in time.

Proof: We multiply (3.6) by ∂τt U
k+1 for every triangle Sk ∈ Γkh and sum over all

simplices to obtain

τ
∑
S

mk+1
S

(
Uk+1
S − UkS

τ

)2

+
∑

σ=S∩L
mk+1
σ Mk+1

σ

(
dk+1
S|L

(
Uk+1
L − Uk+1

S

dk+1
S|L

)2

−

(
Uk+1
S − Uk+1

L

dk+1
S|L

)(
UkS − UkL

))

=
∑
S

(
mk
S −mk+1

S

)
UkS

(
Uk+1
S − UkS

τ

)
+ τ

∑
S

mk+1
S Gk+1

S

(
Uk+1
S − UkS

τ

)
.

Using the notation

akS|L :=
√
dkS|Lm

k
σMk

σ

(
UkS − UkL
dkS|L

)
, bk+1

S :=
√
mk+1
S

(
Uk+1
S − UkS

τ

)
,

ckS|L :=

√√√√dkS|Lm
k+1
σ Mk+1

σ

dk+1
S|Lm

k
σMk

σ

,



A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces 9

this can be written as

τ
∑
S

(
bk+1
S

)2
+
∑

σ=S∩L

((
ak+1
S|L

)2

− ak+1
S|L c

k
S|La

k
S|L

)

=
∑
S

(
mk
S

mk+1
S

− 1

) √
mk+1
S√
mk
S

√
mk
SU

k
Sb
k+1
S + τ

∑
S

√
mk+1
S Gk+1

S bk+1
S .

Noting that

(
ak+1
S|L

)2

−ak+1
S|L c

k
S|La

k
S|L ≥

1
2

((
ak+1
S|L

)2

−
(
akS|L

)2
)

+(1−ckS|L)


(
ak+1
S|L

)2

2
+

(
akS|L

)2

2


and ∑

σ=S∩L

(
akS|L

)2

= ‖Uk‖21,Γkh ,
∑
S

(
bkS
)2

= ‖∂τt Uk+1‖2
L2(Γk+1

h )
,

we apply Cauchy’s and Young’s inequality and we finally obtain

τ ‖∂τt Uk+1‖2
L2(Γk+1

h ) +
1
2
‖Uk+1‖2

1,Γk+1
h

− 1
2
‖Uk‖21,Γkh

≤ Cτ
(
‖Uk+1‖2

1,Γk+1
h

+ ‖Uk‖21,Γkh
+
(
‖Uk‖L2(Γkh) + ‖Gk+1‖L2(Γk+1

h )
)
‖∂τt Uk+1‖L2(Γk+1

h )
)
. (4.5)

Here, we have taken into account that |1− ckS|L| ≤ Cτ and
∣∣∣1− mkS

mk+1
S

∣∣∣ √mk+1
S√
mkS

≤ Cτ .

Next, as in Theorem 4.1 we apply Young’s inequality, sum over all time steps and
obtain

kmax∑
k=1

(
τ

2
‖∂τt Uk‖2L2(Γkh) +

1
2
‖Uk‖21,Γkh −

1
2
‖U0‖21,Γ0

h

)

≤ C

2
τ

kmax∑
k=1

(
‖Uk‖21,Γkh + ‖Uk−1‖2

1,Γk−1
h

+ ‖Uk−1‖2
L2(Γk−1

h ) + ‖Gk‖2
L2(Γkh)

)
. (4.6)

Finally, an application of Theorem 4.1 leads us to the desired estimate. �

5. Convergence. In this section we will prove an error estimate for the finite
volume solution Uk ∈ Vkh . At first, we have to state how to compare a discrete solution
defined on the sequence of triangulations Γkh and the continuous solution defined on the
evolving family of smooth surfaces Γ(t). Here, we will take into account the lifting
operator from the discrete surfaces Γkh onto the continuous surfaces Γ(tk) already
introduced in Section 3. As for the error analysis of a finite element approach in [10]
we use a pull back from the continuous surface onto a corresponding triangulation
to compare the continuous solution u(tk) at time tk with the discrete solution Uk =∑
S U

k
S χSk , where χ

Sk
indicates the characteristic function of the triangle Sk. In

explicit, we consider the pull back of the continuous solution u at time tk under this
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lift u−l(tk, Xk
S) := u

(
tk,Pk(Xk

S)
)

and investigate the error u−l
(
tk, X

k
S

)
− UkS at the

cell nodes Xk
S as the value of a piecewise constant error function on the associated

cells Sk.
Obviously, the consistency of the scheme depends on the behavior of the mesh

during the evolution and a proper, in particular time coherent choice of the nodes
Xk
S . Let us assume that

|Υk,k+1(Xk
S)−Xk+1

S | ≤ Chτ , (5.1)

where Υk,k+1(Xk
S) denotes the point on Sk+1 with the same barycentric coordinates

on Sk+1 as the node Xk
S on Sk. (cf. (5.4) below). This condition is obviously

true for Xk
S being the orthocenter of Sk, which is admissible for D = Id on acute

meshes. In case of an anisotropic diffusivity or non acute meshes, one chooses nodes
Xk
S close to the barycenters in the least square sense, given the orthogonality relation

(3.1). Algorithmically, a mesh optimization strategy enables a corresponding choice
of nodes (cf. Section 7).

Finally, the following convergence theorem holds:
Theorem 5.1 (error estimate). Suppose that the assumptions listed in Section 2

and 3 and in (5.1) hold and define the piecewise constant error functional on Γkh for
k = 1, . . . kmax

Ek :=
∑
S

(
u−l

(
tk, X

k
S

)
− UkS

)
χ
Sk

measuring the defect between the pull back u−l(tk, ·) of the continuous solution u(tk, ·)
of (2.1) at time tk and the finite volume solution Uk of (3.6). Thus, the error function
Ek is actually an element of the same space Vkh of piecewise constant functions on Γkh
as the discrete solutions Uk, cf. (3.7). Furthermore, let us assume that ‖E0‖L2(Γkh) ≤
C h, then the error estimate

max
k=1,...kmax

‖Ek‖2
L2(Γkh) + τ

kmax∑
k=1

‖Ek‖21,Γkh ≤ C (h+ τ)2 (5.2)

holds for a constant C depending on the regularity assumptions and the time tmax .

This error estimate is a generalization of the estimate given in [13], where the
same type of first order convergence with respect to the time step size and the grid
size are established for a finite volume scheme on a fixed planar domain. As usual in
the context of finite volume schemes the convergence proof is based on consistency
estimates for the difference terms in the discrete scheme (3.6). In the context of evolv-
ing surfaces considered here, these consistency errors significantly rely on geometric
approximation estimates. Thus, in the next Paragraph 5.1 we first investigate a set
of relevant geometric estimates. Afterwards, in Paragraph 5.2 these estimates will be
used to establish suitable consistency results. Finally, the actual convergence result
is established in Paragraph 5.3.

5.1. Geometric approximation estimates. In this paragraph, we first extend
the definition of the projection Pk to a time continuous operator P(t, ·) which, for each
t ∈ [0, tmax ], projects points orthogonally onto Γ(t) (cf. Figure 5.1). This operator is
well defined in a neighborhood of Γ(t).

We denote by p0, p1, p2 the vertices of a triangle Sk, and we consider ξ0(x), ξ1(x),
ξ2(x) the barycentric coordinates of a point x on Sk, i. e. x = ξ0(x)p0 + ξ1(x)p1 +
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Φ(t, p0)
Φ(t, p1)

P(t,X(t))

Φ(t, p2)

X(t)

Figure 5.1. In a sketch we depict here a fan of evolving triangles, the transported vertices
Φ(t, p0), Φ(t, p1), and Φ(t, p2) of one specific moving triangle Sk(t), and the projection P(t,X(t))
of a point X(t) in Sk(t) onto Γ(t).

ξ2(x)p2 and ξ0(x) + ξ1(x) + ξ2(x) = 1. Furthermore, let us now introduce the time
continuous lift

Ψk(t, ·) : Sk −→ Sl,k(t), x 7−→ Ψk(t, x) = Φ(t,Φ−1(tk,Pk(x))) (5.3)

and the discrete surface evolution

Υk(t, ·) : Sk −→ Sk(t), x 7−→
2∑
i=0

ξi(x)Ψk(t, pi) (5.4)

which will be used to go back and forth between evolving domains Γ(t) and the
evolving discrete surface Γh(t), where Sk(t) is the triangle generated via the motion
of the vertices p of Sk along the trajectories Φ(·, p), and Γh(t) the time continuous
triangular surface consisting of these simplices.

Let us remark that Υk,k+1(Xk
S) in condition (5.1) equals Υk(tk+1, X

k
S). Figure

Sk

Φ−1(tk, ·)

Γ0 Γk Γtk+1

Φ(tk+1, ·)

Sk(tk+1)

Figure 5.2. A single triangle and the nearby surface patch are shown in the initial configuration
and at two consecutive time steps.

5.1 depicts a sketch of the involved geometric configuration. It is also important to
notice here that the smoothness of these functions depends only on the regularity of
Φ(·, ·).

We now introduce an estimate for the distance between the continuous surface
and the triangulation and for the ratio between cell areas and their lifted counterparts:
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Lemma 5.2. Let d(t, x) be the signed distance from a point x to the surface Γ(t),
taking to be positive in the direction of the surface normal ν and let ml,k

S denote the
measure of the lifted triangle Sl,k, ml,k

σ the measure of the lifted edge σl,k, then the
estimates

sup
0≤t≤tmax

‖ d(t, ·) ‖L∞(Γh(t))≤ Ch2 , sup
k,S

∣∣∣∣∣1− ml,k
S

mk
S

∣∣∣∣∣ ≤ Ch2 , sup
k,σ

∣∣∣∣1− ml,k
σ

mk
σ

∣∣∣∣ ≤ Ch2

hold for a constant C depending only on the regularity assumptions.

Proof: Notice that the function d(t, ·) is zero at vertices of the triangulation. Thus
the piecewise affine Lagrangian interpolation of d(t, ·) vanishes and the first estimate
immediately follows from standard interpolation estimates. Using the smoothness of d
and the fact that, because of the regularity of the mesh, the normal direction on each
triangle differs from the normals to the respective curved triangle only to the order
h, we deduce from ∇Γ(t)d(t, ·) = 0 on Γ(t) that ‖∇Sk(t)d(t, ·)‖L∞(Γh(t)) ≤ Ch, where
∇Sk(t)d(t, ·) is the component of ∇d(t, ·) tangential to Sk(t). For the second estimate,
we fix a triangle Sk and assume without any restriction that Sk ⊂ {(ξ, 0) | ξ ∈ R2}.
Furthermore, we extend the projection Pk onto a neighborhood of Sk in the following
way:

Pkext(ξ, ζ) = (ξ, 0) + (ζ − d (tk, (ξ, 0)))∇dT (tk, (ξ, 0)) .

Obviously, Pkext = Pk on Sk. From |d (tk, (ξ, 0))| ≤ Ch2 and |∇Skd (tk, (ξ, 0))| ≤ Ch,
we deduce that ∣∣ ∣∣det

(
DPkext(ξ, 0)

)∣∣− 1
∣∣ ≤ Ch2 ,

where DPkext denotes the Jacobian of Pkext. Hence, taking into account that the third
column of the Jacobian ∂ζPkext(ξ, 0) = ∇dT (tk, (ξ, 0)) has length 1 and is normal to
Γ(tk) at Pk(ξ, 0), we observe that

∣∣det
(
DPkext(ξ, 0)

)∣∣ controls the transformation of
area under the projection Pk from Sk to Sl,k, which proves the claim.

The third estimate follows along the same line as the second estimate based on a
straightforward adaptation of the argument. �

Next, we control the area defect between a transported lifted versus a lifted trans-
ported triangle:

Lemma 5.3. For each triangle Sk on Γkh and all x in Sk the estimate∣∣P(t,Υk(t, x))−Ψk(t, x)
∣∣ ≤ Cτ h2

holds for a constant C depending only the regularity assumptions. Furthermore, for
the symmetric difference between Sl,k(tk+1) and Sl,k+1 with A4B := (A\B)∪(B\A)
one obtains

Hn−1
(
Sl,k(tk+1)4Sl,k+1

)
≤ Cτ hmk+1

S ,

where Hn−1 is the (n−1)-dimensional Hausdorff measure of the considered continuous
surface difference.
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Proof: At first, we notice that the function Ψk(t, ·) defined in (5.3) parametrizes
the lifted and then transported triangle Sl,k(t) over Sk and P(t,Υk(t, ·)) with Υk(t, ·)
defined in (5.4) parametrizes the transported and then lifted triangle P(t, Sk(t)) over
Sk . These two functions share the same Lagrangian interpolation Υk(t, ·) for any t ,
which implies the estimate∣∣P(t,Υk(t, x))−Ψk(t, x)

∣∣ ≤ β(t)h2

for every x ∈ Sk. Here, β(t) is a non negative and smooth function in time. From
Sl,k(tk) = Sl,k one deduces that β(·) can be chosen such that β(t) ≤ C|t − tk|
holds. Furthermore, Cτh2 is also a bound for the maximum norm of the displacement
function P(t,Υk(t, ·))−Ψk(t, ·) on edges σk. Thus, taking into account that hmk

σ ≤
Cmk

S , we obtain as a direct consequence the second claim. �
Based on this estimate, we immediately obtain the following corollary:

Corollary 5.4. For any triangle Sk on Γkh and any Lipschitz continuous func-
tion ω(t, ·) defined on Γ(t) one obtains∣∣∣∣∣

∫
Sl,k(tk+1)

ω(tk+1, x) da−
∫
Sl,k+1

ω(tk+1, x) da

∣∣∣∣∣ ≤ Cτ hmk+1
S

for a constant C depending only on the regularity assumptions.

5.2. Consistency estimates. Next, with these geometric preliminaries at hand,
we are able to derive a priori bounds for various consistency errors in conjunction with
the finite volume approximation (3.6) of the continuous evolution (2.1).

Lemma 5.5. Let Sk be a triangle in Γkh and t ∈ [tk, tk+1], then for

R1

(
Sl,k(t)

)
:=
∫
Sl,k(t)

∇Γ(t) ·
(
D∇Γ(t)u(t, ·)

)
da

−
∫
Sl,k(tk+1)

∇Γ(tk+1) ·
(
D∇Γ(tk+1)u(tk+1, ·)

)
da

we obtain the estimate
∣∣R1

(
Sl,k(t)

)∣∣ ≤ C τ (1 + C h2)mk+1
S .

Proof: We recall that ∇Γ(t)u(t, x) = ∇uext(t, x)−(∇uext(t, x) · ν(t, x)) ν(t, x) where
uext(t, ·) is a constant extension of u(t, ·) in the normal direction ν(t, ·) of Γ(t). Any
continuous and differentiable vector field v(t, ·) on Γ(t) can be extended in the same
way for each component. Then, we obtain for the surface divergence of v(t, ·) at a point
x on Γ(t) the representation ∇Γ(t) · v(t, a) = tr ((Id− ν(t, x)⊗ ν(t, x))∇vext(t, x)) .
Thus, we deduce from our regularity assumptions in Section 2 that the function
(t, x) 7→ ∇Γ(t) ·

(
D∇Γ(t)u(t, x)

)
is Lipschitz in the time and space variable. This

observations allows us to estimate
∣∣R1

(
Sl,k(t)

)∣∣ by C τ ml,k+1
S . Finally, taking into

account Lemma 5.2 we obtain the postulated estimate. �

Lemma 5.6. For the edge σk between two adjacent triangles Sk and Lk the term

R2

(
Sl,k|Ll,k

)
:=
∫
σl,k

(
D∇Γ(tk)u(tk, ·)

)
·µ∂Sl,k dl−m

k
σMk

σ

dkS|L

(
u−l(tk, Xk

L)− u−l(tk, Xk
S)
)
,
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with σl,k = Sl,k ∩ Ll,k, obeys the estimated
∣∣R2

(
Sl,k|Ll,k

)∣∣ ≤ Cmk
σh.

Proof: At first, we split the error term R2

(
Sl,k|Ll,k

)
into corresponding consistency

errors on the two adjacent triangles Sk and Lk taking into account the flux condition

at the edge σl,k, the definition of Mk
σ =

λkS|σλ
k
L|σ d

k
S|L

dk
L|σλ

k
S|σ+dk

S|σλ
k
L|σ

and the identity dkS|L =

dkS|σ + dkL|σ. In fact, we obtain

R2

(
Sl,k|Ll,k

)
=
mk
σMk

σ

dkS|L

(
dkS|σ

mk
σλ

k
S|σ
R2

(
Sl,k|σl,k

)
−

dkL|σ

mk
σλ

k
L|σ
R2

(
Ll,k|σl,k

))
,

where

R2

(
Sl,k|σl,k

)
:=
∫
σl,k

(
D∇Γ(tk)u(tk, ·)

)
·µ∂Sl,k dl−mk

σ

u−l(tk, Xk
σ)− u−l(tk, Xk

S)
dkS|σ

λkS|σ.

(5.5)

Next, we estimate these error terms separately and obtain

R2

(
Sl,k|σl,k

)
=∫

σl,k

((
D∇Γ(tk)u(tk, ·)

)
· µ∂Sl,k −

[(
D∇Γ(tk)u

)
· µ∂Sl,k

]
(P(tk, Xk

σ))
)

dl

+
([(
D∇Γ(tk)u

)
· µ∂Sl,k

]
(P(tk, Xk

σ))−
[(
D∇Γ(tk)u

−l) · µ∂Sl,k] (tk, Xk
σ)
)
ml,k
σ

+
[(
D∇Γ(tk)u

−l) · µ∂Sl,k] (tk, Xk
σ)
(
ml,k
σ −mk

σ)
)

+
([(
D∇Γ(tk)u

−l) · µ∂Sl,k] (tk, Xk
σ)−

[(
D∇Γ(tk)u

−l) · µkS|σ] (tk, Xk
σ)
)
mk
σ

+
([(
D∇Γ(tk)u

−l) · µkS|σ] (tk, Xk
σ)−

[(
D∇Sku−l

)
· µkS|σ

]
(tk, Xk

σ)
)
mk
σ

+

(
∇Sku−l(tk, Xk

σ) ·
(
DkS|σµ

k
S|σ

)
− u−l(tk, Xk

σ)− u−l(tk, Xk
S)

dkS|σ
‖ DkS|σµ

k
S|σ ‖

)
mk
σ .

Taking into account our regularity assumption from Section 2, Lemma 5.2, and
the fact that DkS|σµ

k
S|σ is imposed to be parallel to

−−−−→
Xk
SX

k
σ by (3.1) – indeed, even

DkS|σµ
k
S|σ

‖Dk
S|σµ

k
S|σ‖

= Xkσ−X
k
S

dk
S|σ

– we finally observe that each term can be estimated from above

by Cmk
σh for a constant C which only depends on the regularity assumptions. This

proves the claim. �
The proof can be easily adapted to the case where the discrete diffusion tensor is

defined on triangles as mentioned in section 3.

Lemma 5.7. For a cell Sk and the residual error term

R3

(
Sl,k|Sl,k+1

)
=
∫
Sl,k(tk+1)

uda−
∫
Sl,k(tk)

uda

−
(
mk+1
S u−l

(
tk+1, X

k+1
S

)
−mk

S u
−l (tk, Xk

S

))
one obtains the estimate

∣∣R3

(
Sl,k|Sl,k+1

)∣∣ ≤ Cτhmk+1
S .
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Proof: At first, let us recall that Ψk(t, ·), Υk(t, ·), and P
(
tk+1,Υk(tk+1, ·)

)
parame-

trize Sl,k(t), Sk(t), and Sl,k+1 over the triangle Sk. Via standard quadrature error
estimates and due to the regularity assumptions on Φ and u given in Section 2, we
obtain for the smooth quadrature error function

Q(t) :=
∫
Sl,k(t)

u(t, x) da− u(t,P(t,Υk(t,Xk
S)))Hn−1

(
Sl,k(t)

)
the estimate |Q(t)−Q(tk)| ≤ β̃(t)hHn−1

(
Sl,k(t)

)
, where β̃ is a smooth, non negative

function in time. From Q(tk)−Q(tk) = 0 we deduce that β̃(t) ≤ C |t−tk| (cf. also the
proof of Lemma 5.3). Based on an analogous argument we obtain for the continuity
modulus of Q̃(t) :=

∫
P(t,Sk(t))

da−
∫
Sk(t)

da that

Q̃(tk+1)− Q̃(tk) ≤ Cτ h2mk
S .

Making use of our notation we observe that the left hand side equals (ml,k+1
S −mk+1

S )−
(ml,k

S −mk
S). We now split the residual into

R3

(
Sl,k|Sl,k+1

)
= Q(tk+1)−Q(tk)

+u(tk+1,P(tk+1,Υk(tk+1, X
k
S)))

(
Hn−1

(
Sl,k(tk+1)

)
−ml,k+1

S

)
+
(
u(tk+1,P(tk+1,Υk(tk+1, X

k
S)))− u−l(tk+1, X

k+1
S )

)
ml,k+1
S

+u−l(tk+1, X
k+1
S )

[(
ml,k+1
S −mk+1

S

)
−
(
ml,k
S −m

k
S

)]
+
(
u−l(tk+1, X

k+1
S )− u−l(tk+1,Υk(tk+1, X

k
S))
) (
ml,k
S −m

k
S

)
+
(
u−l(tk+1,Υk(tk+1, X

k
S))− u−l(tk, Xk

S)
) (
ml,k
S −m

k
S

)
.

Finally, applying the above estimates, (5.1), Lemma 5.2, and Lemma 5.3, we get

∣∣R3

(
Sl,k|Sl,k+1

)∣∣ ≤ C (τ h2mk+1
S + τ hmk

S + τ hmk+1
S + τ h2mk+1

S + τ h3mk
S + τ h2mk

S

)
≤ Cτ hmk+1

S .

�

Lemma 5.8. For a cell Sk and the residual error term

R4

(
Sl,k|Sl,k+1

)
=
∫ tk+1

tk

∫
Sl,k(t)

g dadt− τmk+1
S g−l

(
tk+1, X

k+1
S

)
one achieves the estimate

∣∣R4

(
Sl,k|Sl,k+1

)∣∣ ≤ Cτ(τ + h)mk+1
S .

Proof: We expand the residual by
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R4

(
Sl,k|Sl,k+1

)
=
∫ tk+1

tk

(∫
Sl,k(t)

g(t, x) da−
∫
Sl,k(tk+1)

g(tk+1, x) da

)
dt

+ τ

(∫
Sl,k(tk+1)

g(tk+1, x) da−
∫
Sl,k+1

g(tk+1, x) da

)

+ τ

(∫
Sl,k+1

g(tk+1, x) da− g−l(tk+1, X
k+1
S )ml,k+1

S

)
+ τ

(
ml,k+1
S −mk+1

S

)
g−l(tk+1, X

k+1
S ).

Now we use a standard quadrature estimate, Lemma 5.2, Lemma 5.3, and Corollary
5.4, which yields∣∣R4

(
Sl,k|Sl,k+1

)∣∣ ≤ C(τ2Hn−1(Sl,k(tk+1)) + τ2 hmk+1
S + τ hmk+1

S + τ h2mk+1
S )

≤ Cτ(τ + h)mk+1
S .

�

5.3. Proof of Theorem 5.1. As in Section 2 (cf. (3.2), (3.3), and (3.4)) let us
consider the following triangle wise flux formulation of the continuous problem (2.1):

∫
Sl,k(tk+1)

u da−
∫
Sl,k(tk)

u da−
∫ tk+1

tk

∫
∂Sl,k(t)

D∇Γu·µ∂Sl,k(t) dl dt =
∫ tk+1

tk

∫
Sl,k(t)

g dadt

From this equation we subtract the discrete counterpart (3.6)

mk+1
S Uk+1

S −mk
SU

k
S − τ

∑
σ⊂∂S

mk+1
σ Mk+1

σ

Uk+1
L − Uk+1

S

dk+1
S|L

= τmk+1
S Gk+1

S

and multiply this with Ek+1
S = u−l

(
tk+1, X

k+1
S

)
− Uk+1

S . Hence, we obtain

R3

(
Sl,k|Sl,k+1

)
Ek+1
S +mk+1

S

(
Ek+1
S

)2 −mk
SE

k+1
S EkS

−
(∫ tk+1

tk

R1

(
Sl,k(t)

)
dt
)
Ek+1
S − τ

∑
σ⊂∂S

R2

(
Sl,k+1|Ll,k+1

)
Ek+1
S

−τ
∑
σ⊂∂S

mk+1
σ Mk+1

σ

dk+1
S|L

(Ek+1
L − Ek+1

S )Ek+1
S = R4

(
Sl,k|Sl,k+1

)
Ek+1
S .

Now, we sum over all simplices and obtain∑
S

mk+1
S

(
Ek+1
S

)2
+ τ

∑
σ=S∩L

mk+1
σ Mk+1

σ

dk+1
S|L

(Ek+1
L − Ek+1

S )2 =
∑
S

mk
SE

k+1
S EkS

−
∑
S

(
R3

(
Sl,k|Sl,k+1

)
−
∫ tk+1

tk

R1

(
Sl,k(t)

)
dt−R4

(
Sl,k|Sl,k+1

) )
Ek+1
S

+τ
∑
S

∑
σ⊂∂S

R2

(
Sl,k+1|Ll,k+1

)
Ek+1
S .
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Observing that R2

(
Sl,k+1|Ll,k+1

)
= −R2

(
Ll,k+1|Sl,k+1

)
the last term on the

right hand side can be rewritten and estimated as follows

∑
σ=S∩L

R2

(
Sl,k+1|Ll,k+1

)√ dk+1
S|L

mk+1
σ Mk+1

σ

√
mk+1
σ Mk+1

σ (Ek+1
L − Ek+1

S )√
dk+1
S|L

≤

( ∑
σ=S∩L

R2

(
Sl,k+1|Ll,k+1

)2 dk+1
S|L

mk+1
σ Mk+1

σ

) 1
2

‖Ek+1‖1,Γk+1
h

≤ C

(∑
S

mk+1
S h2

) 1
2

‖Ek+1‖1,Γk+1
h
≤ C hHn−1(Γk+1

h )
1
2 ‖Ek+1‖1,Γk+1

h
.

Here, we have used Lemma 5.6 and the estimate mk+1
σ h ≤ Cmk+1

S for σ ⊂ ∂S. Now,
we take into account the consistency results from Corollary 5.4, Lemma 5.5, Lemma
5.7, Lemma 5.8, apply Young’s and Cauchy’s inequality and achieve the estimate

‖Ek+1‖2
L2(Γk+1

h )
+ τ‖Ek+1‖2

1,Γk+1
h

≤ 1
2
‖Ek+1‖2

L2(Γk+1
h )

+
1
2
‖Ek‖2L2(Γkh) +

1
2

max
k

max
S

∣∣∣∣∣1− mk
S

mk+1
S

∣∣∣∣∣ ‖Ek‖2L2(Γkh)

+C (τ h+ τ2(1 + C h2) + τ(τ + h))Hn−1(Γk+1
h )

1
2 ‖Ek+1‖L2(Γk+1

h )

+C τhHn−1(Γk+1
h )

1
2 ‖Ek+1‖1,Γk+1

h
.

Based on our assumption that the triangulation is advected in time we can estimate∣∣∣1− mkS
mk+1
S

∣∣∣ ≤ C τ . Again applying Young’s inequality to the last two term on the
right hand side we get

C (τ h+ τ2(1 + C h2) + τ(τ + h))Hn−1(Γk+1
h )

1
2

1
2
‖Ek+1‖L2(Γk+1

h )

≤ Cτ‖Ek+1‖2
L2(Γk+1

h )
+ Cτ(τ + h)2Hn−1(Γk+1

h ) ,

C τhHn−1(Γk+1
h )

1
2 ‖Ek+1‖1,Γk+1

h
≤ τ

2
‖Ek+1‖2

1,Γk+1
h

+
τC2h2

2
Hn−1(Γk+1

h ) .

Hence, taking into account that Hn−1(Γk+1
h ) is uniformly bounded we obtain the

estimate

(1−Cτ)‖Ek+1‖2
L2(Γk+1

h )
+
τ

2
‖Ek+1‖2

1,Γk+1
h

≤ (1+Cτ)‖Ek‖2L2(Γkh) + Cτ(τ+h)2.(5.6)

At first, we skip the second term on the left hand side, use the inequality (1+C τ)
(1−C τ) ≤

(1+c τ) for sufficiently small time step τ and a constant c > 0, and obtain via iteration
(cf. also the proof of Theorem 4.1):

‖Ek+1‖2
L2(Γk+1

h )
≤ (1 + c τ)‖Ek‖2L2(Γkh) + C τ(τ + h)2

≤ · · · ≤ (1 + c τ)k+1‖E0‖2L2(Γ0
h) +

k∑
i=1

τ(1 + c τ)i−1(τ + h)2

≤ ec tk
(
‖E0‖2L2(Γ0

h) + tk (τ + h)2
)
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This implies the first claim of the theorem:

max
k=1,...kmax

‖Ek‖2L2(Γkh) ≤ C (τ + h)2

Finally, taking into account this estimate and summing over k = 0, . . . kmax − 1
in (5.6) we obtain also the claimed estimate for the discrete H1-norm of the error:∑

k=1,...kmax

τ‖Ek‖21,Γkh ≤ C (τ + h)2

�

6. Coupled reaction diffusion and advection model. In what follows we
will generalize our finite volume approach by considering a source term g which de-
pends on the solution and an additional tangential advection term ∇Γ · (wu). Here,
w is an additional tangential transport velocity on the surface, which transports the
density u along the moving interface Γ instead of just passively advecting it with in-
terface. We assume the mapping (t, x)→ w(t,Φ(t, x)) to be in C1([0, tmax ], C1(Γ0)).
Furthermore, we suppose g to be Lipschitz continuous. An extension to a reaction
term which also explicitly depends on time and position is straightforward. Hence,
we investigate the evolution problem

u̇+ u∇Γ · v −∇Γ · (D∇Γu) +∇Γ · (wu) = g(u) on Γ = Γ(t) . (6.1)

In what follows, let us consider an appropriate discretization for both terms. For the
reaction term, we consider the time explicit approximation∫ tk+1

tk

∫
Sl,k(t)

g(u(t, x)) dadt ≈ τmk
Sg(u(tk,PkXk

S)) (6.2)

and then replace u(tk,Pk(Xk
S)) by UkS in the actual numerical scheme. Furthermore,

we take into account an upwind discretization of the additional transport term to
ensure robustness also in a regime where the transport induced by w dominates the
diffusion. Here, we confine to a classical first order upwind discretization. Thus, on
each edge σk = Sk∩Lk of a triangle Sk facing to the adjacent triangle Lk we define an
averaged outward pointing co-normal µkS|L = |µ∂S−µ∂L|−1(µ∂S−µ∂L). In particular
µkS|L = −µkL|S holds. If µkS|L ·w

−l(tk, Xk
σ) ≥ 0 the upwind direction is pointing inward

and we define u+(tk, Xk
σ) := u−l(tk, Xk

S), otherwise u+(tk, Xk
σ) := u−l(tk, Xk

L). Once,
the upwind direction is identified, we take into account the classical approach by
Enquist and Osher [12] and obtain the approximation:∫ tk+1

tk

∫
Sl,k(t)

∇Γ · (wu) da dt ≈ τ
∑
σ⊂∂S

mk
σ

(
µkσ,S · w−l(tk, Xk

σ)
)
u+(tk, Xk

σ) (6.3)

Finally, we again replace u−l(tk, Xk
S) by the discrete nodal values UkS and denote these

by Uk,+σ . For the sake of completeness let us resume the resulting scheme:

mk+1
S Uk+1

S −mk
SU

k
S = τ

∑
σ⊂∂S

mk+1
σ Mk+1

σ

Uk+1
L − Uk+1

S

dk+1
S|L

+τ mk
S g(UkS)− τ

∑
σ⊂∂S

mk
σ

(
µkS|L · w

−l(tk, Xk
σ)
)
Uk,+σ (6.4)
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Obviously, due to the fully explicit discretization of the additional terms Propo-
sition 3.2 still applies and guarantees existence and uniqueness of a discrete solution.
Furthermore, the convergence result can be adapted and the error estimate postulated
in Theorem 5.1 holds. To see this, let us first consider the nonlinear source term g(u)
and estimate

∫ tk+1

tk

∫
Sl,k(t)

g(u(t, x)) da dt− τmk
Sg(UkS)

≤
∫ tk+1

tk

(∫
Sl,k(t)

g(u(t, x)) da−
∫
Sl,k

g(u(tk, x)) da
)

dt

+τ
(∫

Sl,k
g(u(tk, x)) da−ml,k

S g(u−l(tk, Xk
S)
)

dt+ τ (ml,k
S −m

k
S)g(u−l(tk, Xk

S))

+τ mk
S

(
g(u−l(tk, Xk

S))− g(UkS)
)

≤ C
(
τ2Hn−1(Sl,k) + τ hmk

S + τ h2mk
S + CLip(g) τ mk

SE
k
S

)
,

where CLip(g) denotes the Lipschitz constant of g. In the proof of Theorem 5.1 we
already have treated terms identical to the first three on the right hand side. For the
last term we obtain after multiplication with the nodal error Ek+1

S and a summation
over all cells S

CLip(g) τ
∑
S

mk
SE

k
SE

k+1
S ≤ CLip(g) τ max

S

(
mk
S

mk+1
S

) 1
2

‖Ek‖L2(Γh(tk))‖Ek+1‖L2(Γh(tk))

≤ C τ
(
‖Ek‖2L2(Γh(tk)) + ‖Ek+1‖2L2(Γh(tk+1))

)
.

Taking into account these additional error terms the estimate (5.6) remains unaltered.
Next, we investigate the error due to the additional advection term and rewrite

∫ tk+1

tk

∫
Sl,k(t)

∇Γ · (wu) dadt− τ
∑
σ⊂∂S

mk
σ

(
µkσ,S · w−l(tk, Xk

σ)
)
Uk,+σ

=
∫ tk+1

tk

∫
Sl,k(t)

∇Γ · (wu) da dt− τ
∫
Sl,k
∇Γ · (wu) da

+
∑
σ⊂∂S
σ=S∩L

(
τR5

(
Sl,k|Ll,k

)
+ τF

(
Sl,k|Ll,k

)
Ek,+σ

)
,

where R5

(
Sl,k|Ll,k

)
=
∫
σl,k

µ∂Sl,k · w u dl −mk
σw
−l(tk, Xk

σ) · µkS|Lu
+(tk, Xk

σ) is an
edge residual, F

(
Sl,k|Ll,k

)
= mk

σw
l(tk, Xk

σ) · µkS|L a flux term on the edge σl,k =
Sl,k ∩Ll,k, and Ek,+σ = u+(tk, Xk

σ)−Uk,+σ a piecewise constant upwind error function
on the discrete surface Γkh. The first term in the above error representation can
again be estimates by C τ2Hn−1(Sl,k). From |u+(tk, Xk

σ) − u−l(tk, Xk
σ)| ≤ C h, we

deduce by similar arguments as in the proof of Lemma 5.6 that |R5

(
Sl,k|Ll,k

)
| ≤

C hmk
σ. Furthermore, the antisymmetry relations R5

(
Sl,k|Ll,k

)
= −R5

(
Ll,k|Sl,k

)
and F

(
Sl,k|Ll,k

)
= −F

(
Ll,k|Sl,k

)
hold (cf. the same relation for R2

(
Sl,k|Ll,k

)
).
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After multiplication with the nodal error Ek+1
S and summation over all cells S we

obtain

τ
∑
S

∑
σ⊂∂S
σ=S∩L

(
R5

(
Sl,k|Ll,k

)
+ τF

(
Sl,k|Ll,k

)
Ek,+σ

)
Ek+1
S

≤ τ
∑

σ=S∩L

(
R5

(
Sl,k|Ll,k

)
(Ek+1

S − Ek+1
L ) + F

(
Sl,k|Ll,k

)
Ek,+σ (Ek+1

S − Ek+1
L )

)
≤ τ

( ∑
σ=S∩L

(
R5

(
Sl,k|Ll,k

)
+ F

(
Sl,k|Ll,k

)
Ek,+σ

)2 dk+1
S|L

mk+1
σ Mk+1

σ

) 1
2 ‖Ek+1‖1,Γk+1

h

≤ C τ
(
hHn−1(Γkh)

1
2 +

( ∑
σ=S∩L

mk
S(Ek,+σ )2

) 1
2
)
‖Ek+1‖1,Γk+1

h

≤ τ

4
‖Ek+1‖2

1,Γk+1
h

+ C τ h2 + C τ ‖Ek‖2L2(Γkh) .

Here, we have applied the straightforward estimate ‖Ek,+‖L2(Γkh) ≤ C‖Ek‖L2(Γkh) and
Young’s inequality. Again, taking into account these error terms due to the added
advection in the original error estimate (5.6) solely the constant in front of the term
‖Ek+1‖2

1,Γk+1
h

on the left hand side of (5.6) is slightly reduced.

Thus, both the explicit discretization of a nonlinear reaction term and the upwind
discretization of the additional tangential advection still allow us to establish the error
estimate postulated in Theorem 5.1.

7. Numerical results. To numerically simulate the evolution problem (2.1)
we first have to set up a family of triangular meshes, which are consistent with the
assumption made above. We generate these meshes based on an implicit description of
the underlying initial surface and apply an adaptive polygonization method proposed
by de Araújo and Pires in [6, 5]. This method polygonizes implicit surfaces along an
evolving front with triangles whose sizes are adapted to the local radius of curvature.
Afterwards, using a technique similar to the one developed by Persson in [19] we
modify triangles to ensure the orthogonality condition (3.1). We refer also to [9] for a
computational approach to anisotropic centroidal Voronoi meshes. Already in Figures
3.1 and 3.3 we have depicted a corresponding family of meshes.

As a first example, we consider a family of expanding and collapsing spheres
with radius r(t) = 1 + sin2(πt), and a function u(t, θ, λ) = 1

r2(t) exp
(
−6
∫ t

0
1

r2(τ)dτ
)
·

sin(2θ) cos(λ) where θ is the inclination and λ the azimuth. The function u solves
(2.1) on this family of spheres for D = Id and g = 0. We compute the numerical solu-
tion on successively refined surface triangulations on the time interval [0, 1]. Table 7.1
presents the different grids and the errors in the discrete L∞(L2) norm and discrete
energy semi norm (3.8), respectively. Indeed, the observed error decay is consistent
with the convergence result in Theorem 5.1.
Next, we consider on the same geometry the advection vector ω(t, x) = (0, 0, 30) −
(ν(t, x) · (0, 0, 30)) ν(t, x) with ν(t, x) being the normal to the surface Γ(t), and the
source term g(t, θ, λ) = 2c(t) (− sin(2θ) cos(λ)(ω(t, x) · ν(t, x)) + cos(2θ) cos(λ) (ω · eθ)
− cos(θ) sin(λ) (ω · eλ)) where eθ =

(
cos(θ) cos(λ), cos(θ) sin(λ), − sin(θ)

)
, eλ =

(
−

sin(λ), cos(λ), 0
)

and c(t) = 1
r3(t) exp

(
−6
∫ t

0
1

r2(τ)dτ
)
. The function u(t, θ, λ) =

1
r2(t) exp

(
−6
∫ t

0
1

r2(τ)dτ
)
· sin(2θ) cos(λ) now solves 6.1. In fact ω has been chosen

to be at the limit of the CFL-condition on the finest grid, characterizing the strength
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of the advection. Table 7.2 presents the errors in the discrete L∞(L2) norm and dis-
crete energy semi norm (3.8), using the same triangulations as above. The observed
error decay is again consistent with the convergence result in Theorem 5.1.

In fact, even though the solution – and thus its interpolation properties – are
identical to the previous example, we see a reduced order of convergence due to the
transport part of the equation. In general we could improve the order of convergence
by using a higher order slope limiting and replacing condition (5.1) by

|Υk,k+1(Xk
S)−Xk+1

S | ≤ Ch2τ .

norm of the error
h(0) max

t∈[0,1]
h(t) L∞(L2) L∞(H1)

0.2129 0.4257 32.941 · 10−4 22.999 · 10−3

0.1069 0.2138 8.036 · 10−4 8.348 · 10−3

0.0535 0.1070 1.764 · 10−4 2.950 · 10−3

0.0268 0.0536 0.423 · 10−4 1.047 · 10−3

Table 7.1
On the left, the different triangulations used for the convergence test are depicted. The table on

the right displays the numerical error on these grids in two different norms, when compared to the
explicit solution. The time discretization was chosen as τ = 1/32000� h2 in all four computations.

norm of the error
h(0) max

t∈[0,1]
h(t) L∞(L2) L∞(H1)

0.2129 0.4257 25.53 · 10−2 11.615 · 10−1

0.1069 0.2138 14.26 · 10−2 7.089 · 10−1

0.0535 0.1070 7.61 · 10−2 3.985 · 10−1

0.0268 0.0536 3.95 · 10−2 2.125 · 10−1

Table 7.2
The table displays the numerical error when compared to the explicit solution, in the advection

dominated setting on the same grids as in Table 7.1. The time discretization was chosen as τ =
1/32000� h2 in all four computations.

Figure 7.1 shows the finite volume solution for the heat equation without source
term. In the first row the sphere expands with constant velocity in normal direction,
and the initial data has local support, while in the second row the sphere expands
into an ellipsoid and the initial data is constant. Furthermore, we have computed
isotropic and anisotropic diffusion on a rotating torus with zero initial data and time
constant or time periodic source term, respectively. Figures 7.2 and 7.3 demonstrate



22 M. Lenz, S. F. Nemadjieu, and M. Rumpf

Figure 7.1. In the top row the heat equation (D = Id) is solved on an expanding sphere for
initial data with local support on a relatively coarse evolving grid consisting of 956 triangles. The
density is color coded from blue to red at different time steps. In the bottom row, an anisotropic ex-
pansion and later reverse contraction of a sphere with constant initial data computed on an evolving
surface is depicted. Here a significantly finer discretization consisting of 18462 triangles is taken
into account. Again we plot the density at different time steps. One clearly observes an inhomo-
geneous density with maxima on the less stretched poles during the expansion phase followed by an
advective concentration of density close to the symmetry plane during the contraction phase.

Figure 7.2. The solution of the isotropic heat equation is computed on a torus with smaller
radius 1 and larger radius 4. The torus is triangulated with 21852 triangles and 10926 points, and it
rotates around its center twice during the evolution process. As initial data we consider u0 = 0 and
take into account a source term g with local support inside a geodesic ball of radius 0.5. The source
term is considered to be time independent. The surface velocity implies a transport which together
with the source term and the isotropic diffusion leads to the observed trace type solution pattern.

the different joint effects of transport and isotropic diffusion, similar to Figure 2 and
3 in [11]. In Figure 7.4 we consider the same problem as in Figure 7.3 except that

Figure 7.3. A similar computation as in Figure 7.2 has been performed, but with a pulsating
source g with a 10 pulses during a complete rotation of the torus. The source is located at a slightly
different position, and in order to pronounce the effect of the dynamics, the color scale is logarithmic.

this time the underlying is diffusion tensor is anisotropic, i. e. we have chosen the
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tensor

D =

 1
25 0 0
0 1 0
0 0 1


in R3,3 whose restriction on the tangent bundle is considered as the diffusion in (2.1).
The underlying grids have already been rendered in Figure 3.3. Finally, we combine

Figure 7.4. As in Figure 7.3 diffusion on a rotating torus with a pulsating sources is inves-
tigated. This time the diffusion is anisotropic with a smaller diffusion coefficient in the direction
perpendicular to the torus’ center plane. Again the color scale is logarithmic. The different diffusion
lengths in the different directions can be clearly observed in the shape and distance of the isolines at
later times and further away from the source.

the diffusion process on evolving surfaces with an additional (gravity type) advection
term. As evolving geometry we have selected one with an initial four-fold symmetry
undergoing a transition to the sphere (cf. Figure 3.1 for an corresponding triangular
mesh, which is further refined for the actual computation). The advection direction is
the projection of a downward pointing gravity vector along the symmetry line on the
tangent plane. Figure 7.5 shows the results on the evolving geometry, whereas Figure
7.6 allows a comparison of the same evolution law on a fixed surface. One clearly
notices the impact of the surface evolution on the diffusion and advection process
caused by the temporal variation of the angle of attack of the gravity force.
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