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2 1 Introduction

1 Introduction

In recent years, the use of renewable energy sources has rapidly increased: The worldwide
wind electricity generation rose from 104 GWh in the year 2005 to 838 GWh in the year 2015
[IEAb]. This accounts for 3.7% of the world’s total electricity generation in the year 2015
[GWE]. Among renewable energy sources wind energy plays a significant role: Electricity
generated from wind turbines both off-and on-shore amounted to 15.7% of the global total of
electricity generated from renewable sources in the year 2015 [IEAa].

However, a drawback of using wind energy is that the energy source (wind) is inherently
intermittent and hard to predict. This makes it difficult to integrate wind energy into the electri-
city grid: Power producers have to commit to delivering a certain amount of electricity, the size
of which is determined in an auction well before delivery (for example the day before). Unlike
for traditional and controllable energy sources like coal, power producers using renewable and
stochastic energy sources like wind face the risk of not being able to deliver the required amount.

A possible solution is to use energy storage optimally to smoothen fluctuations in wind
energy. Excess energy can be stored for later use when demand exceeds currently available
wind energy. The goal is then to optimize this storage usage. "Optimizing" means from the
viewpoint of a wind farm operator to maximize profit while satisfying demand. This constitutes
the (wind) energy storage problem.

The canonical approach for solving general stochastic optimal control problems like this
is Dynamic Programming (DP), but it is computationally very expensive. It breaks a complex
optimization problem consecutively into smaller subproblems which are then solved exactly,
and was pioneered by Bellman in the 1950s [Bel57]. However, dynamic programming is only
applicable in restricted settings (for instance, it can not handle continuous state spaces) and
becomes computationally prohibitively expensive for large state spaces (it suffers from the "curse
of dimensionality": the computational costs grow exponentially with the number of states).

As a generalization of dynamic programming which aims to circumvent these shortcomings
by approximate computations, Approximate Dynamic Programming (ADP) (also called Rein-
forcement Learning, depending on the community) has gained significant popularity over the
last few decades [Pow07, SB17]. Spectacular successes such as the victories of the program Al-
phaGo over a Go world champion in 2016 have fuelled the increasing interest in the application
of ADP methods.

DP and ADP approaches have been applied to energy storage problems with mixed success
[KHH03, CBJK08, HD11, SS16, JPP�14]. In particular, Jiang et al. [JPP�14] compared vari-
ous ADP methods for a simple benchmark energy storage problem consisting of a single energy
storage device which interacts with the grid and wind to satisfy demand. They considered both
general-purpose methods (among them approximate policy iteration using Gaussian Process
Regression (GPR)) and approaches specifically designed for the problem (lookup table methods
exploiting properties like monotonicity [JP15] or concavity [SP17]). Their result was sobering
– they found that none of these methods worked well: the general-purpose methods performed
poorly, whereas the problem-specific approaches performed well but were not scalable and com-
putationally too expensive.

The contributions of this thesis are the following: Our numerical results suggest that general-
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purpose ADP methods might be a better method to solve energy storage problems than previ-
ously found. Specifically, we take one of the approaches from Jiang et al. [JPP�14] (approxim-
ate policy iteration using Gaussian Process Regression) and examine why it did not work well.
We find that with a suitable choice of parameters (in particular, with a suitable choice of initial
policy and a suitable choice of hyperparameters for the GPR) the approach does in fact perform
significantly better than found by Jiang et al. The results are encouraging and suggest that, with
further work on the optimal choice of parameters, even better results can be achieved. Fur-
thermore, we give an overview over the theory underlying the approach and provide a practical
analysis of the algorithm.

The rest of the thesis is organised as follows: In Chapter 2 we introduce the theoretical
framework of discrete time stochastic optimal control. In particular, we explain the Dynamic
Programming Principle and the policy iteration algorithm. In Chapter 3 we motivate and de-
scribe the model of the energy storage problem in detail. In Chapter 4 we present important
concepts of Approximate Dynamic Programming and use them in Chapter 5 to characterize the
approach in Jiang et al. [JPP�14]. Furthermore, we outline alternative approaches to the spe-
cific benchmark problem in [JPP�14] and provide a detailed introduction to Gaussian Process
Regression. Finally, we discuss our implementation and the numerical results in Chapter 6. We
analyse effectiveness and efficiency of the algorithm and suggest questions for further research.

Acknowledgements. First of all, I would like to express my deepest gratitude to my advisor
Prof. Jochen Garcke who suggested the topic of my thesis. I am indebted to Prof. Garcke for
his patient guidance throughout the last year as well as his insightful questions and excellent
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go to Jannik Schürg for his open door and his invaluable comments from which this thesis has
benefited tremendously.

My gratitude also goes to my family and my friends for supporting me throughout the thesis.
Special thanks go to Anna for proof-reading and her helpful comments.

Finally, I thank Rahul; for proof-reading large parts of this thesis, for his motivating encour-
agement, and for his support in every possible way.
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2 Theoretical framework

The energy storage problem we will consider is an optimal control problem that is continuous in
state space, discrete in time, finite horizon and undiscounted. This choice of modelling will be
motivated in the next chapter.

In this chapter we present the necessary theoretical groundwork to model the problem and
to design an algorithm solving this problem. The chapter is split into three parts: In Section
2.1 we introduce the fundamental components of discrete time stochastic optimal control the-
ory and present the Dynamic Programming Principle, which forms the basis for the algorithmic
framework necessary for the following chapters. This algorithmic framework is then presented
in Section 2.2, in particular we use Markov Decision Processes (which are a subclass of dis-
crete time stochastic optimal control problems). This is the classical framework for the central
Dynamic Programming algorithms. We will explain how they work and discuss important prop-
erties. In Section 2.3 we briefly introduce the concept of post-decision states, which we will
need later on for the algorithm.

2.1 Discrete Time Stochastic Optimal Control Theory

In the following section we loosely follow the presentation in [Ber17] (especially Chapter 1 and
5 in Vol. I and Chapter 1 in Vol. II) which deals with both finite and infinite horizon stochastic
optimal control problems, as well as discounted and undiscounted problems. In [Ber17], the
author offers a technically precise approach and covers a breadth of algorithms.

In optimal control we aim to find a control policy for a given system such that a given
optimality criterion is achieved. Optimality is often defined as minimizing or maximizing a
certain reward function. The central components in the optimal control framework are the state
dynamics, the admissible control policies, the rewards and the value function.

The first step is to model the underlying system and to understand how it behaves under a
given control policy. We denote the set of potential states at time t by St and the set of potential
actions at time t by At. However, at each state st in St only a subset of actions is available.
We call it the set of admissible actions or admissible decisions Atpstq � At. As an example,
later on in our energy storage problem, the state will consist among other things of the given
energy storage and the available wind energy. For states with differing storage or wind energy,
the admissible action set will look different: We can only sell what is either available in the
storage or currently available in wind energy. Our admissible action sets will be constrained and
of the form

Atpstq ..�

"
at P R

m
���� gipst, atq � 0, @i � 1, . . . , I

h jpst, atq ¥ 0, @ j � 1, . . . , J

*
,

where gi and h j are scalar real functions respectively representing the equality or inequality
constraints which define admissibility.

Control policies (later on just called control or policy) are rules determining for every poten-
tial state what action is to be taken; thus a policy is a sequence of functions mapping each state
to a decision. Control policies can either be a function of time (open-loop control) or a func-
tion of space (feedback control). In this case we consider feedback controls, that is, a function
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of the state st. A admissible control policy maps for every time step each possible state to an
admissible action.

We write a policy as π � pπtq0¤t¤T , where 0   T ¤ 8 is our finite time horizon, and

πt P Πt
..� tq : St Ñ At | @st P St : qpstq P Atpstqu .

The set of admissible policies is then defined as Π ..� Π0 � . . . � ΠT . 1 A policy with time-
invariant mapping is called stationary policy and is of the form π � pµq0¤t¤T . We identify it
with µ and will denote the induced cost function by Vµ.

In most applications (ranging from engineering to economics), the behaviour of the system is
governed by partial differential equations. In the discrete time case we consider difference equa-
tions. As we consider the stochastic case, the transition consists of two parts: the deterministic
one determined by our control and a stochastic one determined by some random disturbance.
The system dynamics then are

st�1 � st � f pst, atq � ξt�1loooooooooomoooooooooon
..�gpst ,at ,ξt�1qq

, (2.1)

where f is a deterministic function, and ξt�1 is a random variable containing noisy information
("disturbance") arriving between time t and t � 1. The disturbance ξt�1 takes on values in some
space Ξt and is characterized by a probability distribution Ptp�|st, atq, where at P At is the action
at time t (if we use a policy, then at � πtpstq). Thus, both the states st and the disturbances ξt

are random variables, their distributions are governed by p2.1q.

Remark 2.1. We adapt the convention here that any variable indexed by t is known at time t.
Hence, the stochastic information has the subscript t � 1 instead of t.

We will also sometimes use the notation of a general transition function g, which combines
the stochastic and the deterministic transition. Later on, we will sometimes use the expected
value of some function h where the expectation is over the possible future states. For ease of
notation we will often write E rhpst�1q|sts instead of Eξt�1 rhpgpst, at, ξt�1qqs.

In optimal control, "optimal" is defined by satisfying a reward criterion, or more specifically,
by optimizing a certain reward function.

Remark 2.2. (Notation)

(i) Notation in and connection between different communities: There are several different
communities doing similar work, but with differing notations. These are mainly three
communities: the optimal control community (coming from engineering, physics or eco-
nomics), the reinforcement learning community using Markov Decision Process (MDP)
models (coming from computer science), and operations research. For example, in the
control theory context we typically speak of "costs" and aim to minimize the total cost.

1We will use Π to refer to the space of admissible policies in general, in particular also when we speak of truncated
policies starting from time t on, where the space is Πt � . . .�ΠT . We use this abuse of notation to avoid an excessive
use of indices, the meaning of each Π will be evident in context.
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In reinforcement learning, we typically speak of "rewards" which we aim to maximize.
In operations research, both is used, depending on the context. Similarly, we speak of an
action a in the reinforcement learning context or a decision x in operations research, while
x typically denotes the state in control theory and the state is denoted as S in operations
research.

What is more: While it might seem as if only the notation differs, this actually represents
the fact that the different communities look at different problems and algorithmic strategies.
In operations research the problems tend to be very high-dimensional (up to the thousands)
but discrete, typically considering resource allocation problems (such as managing invent-
ory, or people). In reinforcement learning the state and the action space are typically small,
famous examples are board games. The system dynamics and the reward function are often
not known. In control theory, the control is typically low-dimensional (under ten), but the
state and action spaces are continuous.

(ii) Notation in this thesis: In this case, we use a hybrid of notation: We mainly use the notation
of discrete time stochastic optimal control, but also use terms from reinforcement learning
and operations research, in order to have a suitable and unified notation. For example,
since we will later on maximize the profit in our energy storage problem, we already speak
of "rewards" here instead of "costs". The goal is to have a consistent notation throughout
the different parts of this thesis and to not change notation between chapters.

As a reward function we consider

Ct : St �At � Ξt Ñ R.

We model the rewards as additive.

Remark 2.3. We will assume in the following that we have perfect state information. It means
that we observe all necessary information we need to compute transition or rewards.

Given a policy π, the sequence of events at time t is thus as follows:

1. The decision-maker observes the state st and chooses the action at (potentially based on
some policy).

2. The disturbance ξt�1 is generated according to the probability distribution Pp�|st, atq.

3. The decision-maker collects the reward Ctpst, at, ξt�1q and adds it to the previous rewards.

4. The next state st�1 is generated according to the system dynamics p2.1q.

5. If t   T , go to time t � 1. Otherwise, the process terminates.

We aim to optimize the total reward over all time periods. However, since the reward function
is influenced by the random variable ξ, it is a random variable itself. We can therefore only
optimize in expectation.
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For a given policy π we denote the expected reward from time t on as

Vπ
t pstq ..� E

ξ1,...,ξT�1

�
Ţ

τ�t

Cτpsτ, πτpsτqq

�����st

�
, (2.2)

where st P St is an initial state at time t and π � pπτqt¤τ¤T as before. For t � 0 we omit the
subscript zero and just write Vπps0q ..� Vπ

0 ps0q. In (2.2), st depends on ξt�1 via the transition
function (2.1). We can consider Vπ

t as a measure of how good a policy is.
Then we can define the optimal expected reward from time t on as

Vtpstq � sup
πPΠ

Vπ
t pstq,

where st P St is an initial state at time t. Our objective function is then V0, as above we will just
use V ..� V0. 2

An optimal policy π�, if it exists, is a policy that maximizes the expected reward:

Vπ�

t pstq � sup
πPΠ

Vπ
t pstq � Vtpstq.

This policy may depend on the state st, but we find that often the same policy is optimal for all
states. We will call V the value function3 and Vt the value function from time t on. In words,
Vpsq denotes the reward we would obtain starting in state s if we chose an optimal policy from
then on. In this way, it denotes the value of a state. (We can consider Vt, for 0 ¤ t   T , as a
kind of truncated value function.)

Discount. A more general form of p2.2q would be

Vπ
t pstq ..� E

ξ1,...,ξT�1

�
Ţ

τ�t

ατCτpsτ, πτpsτqq

�����st

�
,

where 0   α ¤ 1 is a discount factor. It represents the case where, for a fixed reward R, the
decision-maker values obtaining R in the present more than obtaining R in the future. A typical
example is for example the depreciation of money: Let r be the rate of interest. A dollar at time

0 is worth p1� rqt dollars at time t. Reversely, a dollar at time t is worth
�

1
1�r

	t
dollars at time

0. In this case we then have α � 1
1�r .

If α   1, we speak of a discounted problem, if α � 1 we speak of an undiscounted problem.
In the finite horizon literature, we normally have α � 1. In the infinite horizon case, we often
have α   1. This is to ensure (along with other assumptions) that the limit in the definition of
the value function is finite.

2We assume here that the expectation is well-defined, see the following paragraph on measure theoretic issues.
3In the literature the value function is sometimes also called cost-to-go-function.
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The Dynamic Programming Algorithm. We will now describe the Dynamic Programming
Principle, also called Bellman equation or Principle of Optimality. It is a necessary condition
for optimality.

In Bellman’s own words, the Dynamic Programming Principle signifies that:

"An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision." [Bel57, p.83]

It states that the value function V can be computed via the value functions Vt:

Theorem 2.4. (Dynamic Programming Principle/ Bellman equation)

Vtpstq � sup
atPAtpstq

rCtpst, atq � E rVt�1pst�1q|st, atss , (2.3)

where VT psT q � 0 for all st and st�1 implicitly depends on st via the transition function p2.1q.

The intuition behind Dynamic Programming (DP) is simple: Let π� � pπ�0 , . . . , π
�
T q be an

optimal policy. Recall that Vt�1 is the expected value of an optimal policy from time t � 1
on. The Bellman equation (2.3) then expresses that, if the policy pπ�t , . . . , π

�
T q is optimal for the

truncated problem from time t on, then for the truncated problem from time t � 1 on the policy
pπ�t�1, . . . , π

�
T q must still be optimal. The original optimization problem is then consecutively

broken down in a sequence of smaller subproblems. Consider a shortest path example: If the
shortest path between some points A and B, denoted by P, goes through C, then the part of P|BC
must also be the shortest path between B and C.

This directly translates into an algorithm - we just need to follow this logic and starting from
the last stage T go backwards in time:

The Dynamic Programming Algorithm

(1) Set vT psT q ..� 0, for all sT P ST .

(2) Repeat for all t � T � 1, . . . , 0:

vtpstq ..� sup
atPAtpstq

rCtpst, atq � E rvt�1pst�1q|st, atss , for all st P St (2.4)

We will in general denote by vt the approximation of the value function Vt, where vt is
obtained in an algorithm or through some iteration (in some special cases, vt may be accurate
and coincide with Vt).

Then we can reformulate the Dynamic Programming Principle:

Proposition 2.5. For every initial state s0 we have V0ps0q � v0ps0q, where v0 is obtained after
the last step of the algorithm above.
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Proof : See [Ber17, pp.25-26, Vol.I], for a slightly informal proof. A rigorous mathematical
proof can be found on [Ber17, pp.46-48] for the case where the stochastic factor ξ only takes on
a countable number of values and where all expected values are finite.

The Dynamic Programming Principle is despite its conceptual simplicity immensely power-
ful. It has been applied in various disciplines, a prominent example is economics. There it is
used for example in consumption theory, growth theory or asset pricing 4.

Remark 2.6. In the continuous time deterministic case the equivalent of the Bellman equation
is the Hamilton-Jacobi-Bellman equation. It is a partial differential equation characterizing the
value function as its unique viscosity solution (viscosity solutions are a generalization of the clas-
sical solution concepts for partial differential equations). An introduction to Hamilton-Jacobi-
Bellman equations can be found in [ES98], for a more detailed presentation on this as well as
approximation schemes we refer to [FF13].

This can be extended to the stochastic optimal control case where we now consider stochastic
processes instead of functions. A main application for stochastic Hamilton-Jacobi-Bellman
equations is in finance. A thorough presentation of stochastic differential equation as well as
a discussion of stochastic optimal control can be found in [Øk00].

For finite horizon problems, we can theoretically always use the Dynamic Programming
Principle to find the exact solution. In many applications however, exact computations are im-
possible or too expensive. The natural next step is to build concrete algorithms build on the
Dynamic Programming Principle for these cases and to examine their properties. The two most
popular of these algorithms (value iteration and policy iteration) will be presented and discussed
in detail.

In order to do that we will focus on a subcategory of discrete time stochastic optimal control
problems which are called Markov Decision Processes. They provide the original and intuitive
framework in which the classical DP algorithms value iteration and policy iteration were de-
veloped. In themselves, the pure form of both value iteration and policy iteration are of limited
utility for our application. This is because they require a perfect model and are computationally
expensive. However, they are of fundamental theoretical importance and are the building blocks
for the algorithms to come.

In the following section we will focus on finite state and finite horizon problems. In the
later chapter on Approximate Dynamic Programming (ADP) we will deal with the case when
the state space is continuous or too big for exact computation.

Before we proceed, however, some notes on technical precision:

Measure theoretic issues. For general state spaces we have to deal with several technical
issues to ensure that all terms are well-defined and that the DP Algorithm is still valid. For that
reason we need to introduce additional (measurability) assumptions.

4An good introduction to DP methods in the context of economics can be found in [Rus96].
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The two main problems that we face when developing DP theory for general state spaces
are:

(1) The value function p2.2q needs to be well-defined for all policies π. The expected value is an
integral and this integral needs to be defined. Not only this, we also need to have sufficient
assumptions, such that the DP results below also hold.

(2) The optimal expected total reward is V�psq � supπPΠ Vπpsq. We want to ensure that V� is
actually attained at the end of the DP Algorithm.

For p1q there are two options to ensure that the integrals are meaningful: One option is
to expand the notion of integrals, that is, use outer integrals. The basic DP results still hold,
however, this framework has some limitations inherent to outer integrals. The second option
is to place measurability constraints on the reward function C, the probability distribution of
the disturbances ξ and the policies. Specifically, for the policies we need a class of measur-
able functions which is closed under some key operations, particularly under partial optimiz-
ation (since the value function is obtained by partial minimization; we only optimize over the
policies/actions, not over the possible states). This property is not satisfied by Borel measurable
functions. Instead, one can use universally measurable functions, which are a related class of
lower semianalytic functions.

In order to ensure p2q it suffices to be able to approximate the supremum arbitrarily close.
Stated explicitly: It suffices to have ε-optimal policies for every ε ¡ 0, where a policy π is
ε-optimal if

Vπpsq ¥ Vpsq � ε @s P S.

One can show that this holds for the class of universally measurable policies. With these as-
sumptions the essential DP results carry over: The DP Algorithm generates the value function,
and also an ε-optimal policy. If the supremum is attained for all states, then there exists an
optimal policy.

However, these technical issues do not contribute significantly to the understanding of the
central concepts. Apart from that, we will also typically deal with finite spaces in practice. We
will therefore not go further into the technical details and implicitly assume that everything is
well-defined. For a detailed analysis and treatment of the measure theoretic issues mentioned
above, we refer to [BS07, Chapter 7-8]. We also note that in the finite horizon finite spaces case
as in the section on MDPs below, additional assumptions are unnecessary since the expectation
can be simply computed as a finite sum and thus no measurability framework is necessary.

2.2 Markov Decision Processes

Markov Decision Processes (MDPs) developed out of the study of sequential decision processes
(the study of sequential decisions under uncertainty), where each decision possibly depends
on the previous decisions and their outcomes. They have been considered to be first studied
systematically as a tool for optimization by Bellman in the late 1950s. In his book "Dynamic
programming" [Bel57] Bellman famously coined the term "Principle of Optimality", which is
the basis of value iteration and which is formalized in the Bellman equation. Actually a couple
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of years earlier, Shapley [Sha53] developed value iteration as a special case in his paper on
stochastic games, but that was only recognized some decades later (an MDP can be seen as a
stochastic game with only one player). Some also consider Howard [How60] to have started
the systematic study of MDPs. In his seminal work, "Dynamic Programming and Markov Pro-
cesses", he introduced the concept of policy iteration (which is therefore sometimes also called
Howard’s algorithm).

Since then, MDPs have become increasingly popular and have been studied extensively in
countless books and articles. At this point the existence theory is fairly complete and numerous
algorithms for computing optimal policies with respect to different objectives (maximizing for
instance expected discounted reward, limiting expected average reward, or total reward) are es-
tablished. MDPs have found many applications in operations research, economics, engineering
and computer science. They are extensively used in reinforcement learning. From the 1950s
to the 1980s, MDP mainly dealt with optimality equations and how to solve them, particularly
using value iteration and policy iteration algorithms.From the 1980s on, a major methodological
advance was the development of approximations of DP for large-scale problems. A classic on
MDPs is also [Put94], for many more references we refer to [FS02].

The "Markov" in Markov Decision Processes derives from the fact that for a fixed policy,
the MDP behaves like a Markov chain. MDPs can thus be considered as an extension of Markov
Chains. What distinguishes them is the addition of actions and rewards (that is, allowing control
over the process, and an explicit measure of how "good" an outcome is). Then Markov Chains
are the special case when the rewards are constant and there is only one possible action for each
state.

We focus on finite state MDPs. The theory does not require state or action spaces to be
finite, but exact algorithms require this. The main goal of this chapter is to illustrate how policy
iteration and value iteration work because they form the foundation of ADP and the algorithms
to come. It is therefore not a significant restriction to focus on finite state MDPs 5. For an
in-depth treatment of MDPs for general state spaces we refer to [BR11].

Since Markov Decision Processes are a subclass of discrete time stochastic control prob-
lems, they are characterized by the same components, albeit with slightly different names in the
literature. Traditionally, in MDPs the system is stationary: The system dynamics, the set of
states, the set of actions, and the reward function stay the same over time. Thus we modify the
setup from before slightly, we now consider:

• a finite set of states, written as S � t1, . . . , nu

• a finite set of actionsA

• a reward Cpi, aq for transitioning from i via a, for all states i P S and all actions a P A

• a (time independent) transition probability pi jpaq � Probpsk�1 � j|sk � i, ak � aq for
the probability of transitioning from i to j via a, for all states i, j P S and all actions a P A
(These are now the system dynamics.) Per definition it must hold that

°
jPS pi jpaq � 1.

5As implied, there are many other types of MDPs: continuous-time MDPs, MDPs with incomplete information
(that is, some model parameters, such as transition probabilities, are not known),...
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The definition of the expected total reward for a given policy and the definition of the value
function stay the same.

Considering that we used the transition function with a stochastic disturbance p2.1q before,
it might seem like a different theoretical approach to use transition probabilities. However, the
notations are equivalent. The only reason for the different notation is that it is sometimes simply
more convenient or common to use one instead of the other.

We can quickly see the equivalence [Ber17, Vol.I, p.8]: Let pi jpaq be the transition probab-
ility that the next state is j, when i is the current state and a the selected action. Then we can
alternatively describe the system as

st�1 � wt,

where wt is a random parameter distributed according to

Ppwt � j|st � i, at � aq � pi jpaq.

On the other hand, let st�1 � gpst, at,wtq be the system equation, where wt is distributed ac-
cording to Ppwt|st, atq. Then the transition probability is simply

pi jpaq � Pptw| j � gpi, a,wqu|st � i, at � aq.

Remark 2.7. (i) We see the Markov property: The transition to a new state only depends on
the current state and action.

(ii) The most general form of the reward function includes the next state, as in Cpi, a, jq. How-
ever, in practice this is rarely needed. We will omit this here, the results can easily be
transferred to the more general case. We also note that in the case where the reward func-
tion does depend on the successor state j, using Cpi, aq amounts to using the expectation
of the reward over all possible states.

Note that if an action a is not available in state i (a < Apiq), then we simply have pi jpaq � 0
for all j P S ztiu. Thus, we omit the state dependence and always use the whole state spaceA.

Type of policies. In this paragraph we follow the presentation in [Ber17, Vol.II, Section 1.1.4].
So far we have only considered Markov policies, that is, policies that at time t only depend on the
current state st and not on past states. Furthermore, we have so far only considered deterministic
policies, where the policy always yields the same action for the same state. However, one might
wonder if we can obtain better results by considering a bigger set of policies. In this paragraph,
we consider two extensions:

Firstly, we include policies which depend on the past history. We call a policy history-
dependent if at time t it depends on the history ht up to that point, where ht

..� ts0, . . . , stu.
Secondly, we include randomized policies where instead of one action we choose a probabil-

ity distribution over the action set. We will thus consider randomized, history-dependent policies
π � tµ0, . . . , µtu, where µt is a function that maps a history ht onto a probability distribution
µtpat|htq over A. For simplicity, we will assume that the action space A and the disturbance
space Ξ are countable. (As we have seen before, the notation using a disturbance space and the
notation with transition probabilities are equivalent.)



2.2 Markov Decision Processes 13

Proposition 2.8. (Adequacy of Markov Policies) [Ber17, Vol.II, Proposition 1.1.1]
Assume that the action space is countable, and consider an initial state distribution that takes
values over a countable set. The probability distribution of each pair pst, atq and the expec-
ted reward of each stage corresponding to a randomized history-dependent policy can also be
obtained with a randomized Markov policy.

Moreover, in many cases we can even restrict ourselves to deterministic Markov policies
(that is, in those cases we can obtain the same optimal cost using deterministic Markov policies
as when using randomized Markov policies). This holds for example for finite space stochastic
shortest path problems. What is more, as we will see, in the finite horizon version of the finite
space stochastic shortest path problem we can even restrict our attention to stationary determin-
istic Markov policies.

Dynamic Programming Algorithms: Policy iteration and value iteration. The key idea
of Dynamic Programming algorithms is to use value functions to find good policies. This is
achieved by turning the Bellman equation into an update rule. We will now prepare the intro-
duction of the policy iteration and the value iteration algorithm.

For that purpose, we will now consider stochastic shortest path problems of which our finite
horizon problem is a special case of.

Stochastic shortest path problems are undiscounted, finite state, infinite horizon problems.
In a sense they are a hybrid of finite and infinite horizon problems: There are effectively only
finitely many time steps, but the length is random. Particularly, there is a unique cost-free
termination state t P S. We will denote all other states as 1, . . . , n, so that S � t1, . . . , n, tu.
Whenever the termination state t is reached, the process stops. Put formally,

pttpaq � 1 and Cpt, aq � 0 for all a P A.

Every (finite state) finite horizon problem can be cast as a stochastic shortest path problem:
We just need to include the time index in the state formulation. Let S be our original state space,
and let T be the time horizon. Then we consider as our new state space

S1 �

�
T�1¤
t�0

S t

�
Y ttu, where S t

..� tps, tq | s P Su and t ..�
¤
sPS

ps,T q. (2.5)

That is, we consider all state-time pairs for the last time step together as our termination state,
termination is therefore guaranteed after t � T .

In the general infinite horizon case, we need an additional assumption to ensure that termin-
ation eventually occurs for all policies:

Assumption 1. ([Ber17], Vol. I, Assumption 5.2.1) There exists an integer m such that regard-
less of the policy used and the initial state, there is positive probability that the termination state
will be reached after no more than m stages; i.e., for all admissible policies π we have

ρπ � max
i�1,...,n

Ppsm , t | s0 � i, πq   1
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(For instance, this precludes cycles with only negative costs.) A stationary policy with this
property is called proper. For the stochastic shortest path problems induced by finite horizon
problems as above, this trivially holds, in fact ρπ � 0.

Proposition 2.9. ([Ber17], Proposition 5.2.1) 6

Under Assumption 1, the following hold for the stochastic shortest path problem:

(a) Given any initial conditions v0p1q, . . . , v0pnq, the sequence vkpiq generated by the iteration

vk�1piq � max
aPA

�
Cpi, aq �

ņ

j�1

pi jpaqvkp jq

�
, i � 1, . . . , n (2.6)

converges to the value function (the optimal expected total reward) Vpiq for each i.

(b) The value function Vp1q, . . . ,Vpnq satisfies the Bellman equation

Vpiq � max
aPA

�
Cpi, aq �

ņ

j�1

pi jpaqVp jq,

�
i � 1, . . . , n (2.7)

and is the unique solution of this equation.

(c) For any stationary policy π � pµq0¤t¤T the expected total rewards Vµp1q, . . . ,Vµpnq are the
unique solution of the equation

Vµpiq � Cpi, µpiqq �
ņ

j�1

pi jpµpiqqVµp jq, i � 1, . . . , n (2.8)

Furthermore, given any initial conditions v0p1q, . . . , v0pnq, the sequence vkpiq generated by
the DP iteration

vk�1piq � Cpi, µpiqq �
ņ

j�1

pi jpµpiqqvkp jq, i � 1, . . . , n (2.9)

converges to Vµpiq for each i.

(d) A stationary policy µ is optimal if and only if for every state i, µpiq attains the maximum in
the Bellman equation (2.7).

Here, the superscript k only denotes the iteration number and is not to be confused with a
time index. Note that in this section we can write max and min instead of sup and inf because
the state space is finite. There may be more than just one optimizing policy (that is, it may not
be unique), then we simply arbitrarily choose one of the optimizing policies.

6Bertsekas originally considers a minimization problem. The results from the original proposition can be trans-
ferred to the maximization formulation as above by reversing the sign of the costs (minimizing �C instead of C).
The sign reversal preserves Assumption 1 for the stochastic shortest path problem 2.5 induced by the original max-
imization problem of finding the value function.
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All these results hold for our finite horizon MDP problem: As noted above we can consider
it as a stochastic shortest path problem. Note also that in the Dynamic Programming Algorithm
(adjusted for the MDP setting) we can just reverse the time indices of the approximations v in
(2.4):

vk�1piq ..� max
aPA

�
Cpi, aq � E

�
vkp jq | i, a

��
, for all i P S

Then vT piq � Vpiq for all states i.
Thus, we see that the iteration in (2.6) is the same as the Dynamic Programming Algorithm

in the finite horizon case and that the iteration will terminate if and only if t � T . With this
indexation we also see that vkpiq is the optimal expected total reward for k-stage problem starting
from the state i.

Remark 2.10. Many algorithms in the area of DP, in particular also in the area of ADP, are not
necessarily backed up by theoretical results. Their popularity often stems from their performance
in practice, but not rigorous mathematical arguments.

Proposition 2.9 above is the basis for the two most fundamental classical DP algorithms:
Value iteration and policy iteration. A central difference to the DP algorithm (2.4) is that we
now step forward in time instead of backward. Note that as a consequence we now do not work
anymore with the exact ("real") value function but only with some approximation.

Value iteration. The iteration (2.6)

vk�1piq � max
aPA

�
Cpi, aq �

ņ

j�1

pi jpaqvkp jq

�
, i � 1, . . . , n

is also called value iteration. Value iteration is known under many names; it is sometimes also
called successive approximation, backward induction, or sometimes even dynamic program-
ming.

In the DP algorithm (2.4), we computed the value function exactly by computing success-
ively all possible trajectories and by taking the reward-maximizing trajectory for each initial
state. In essence, the value iteration extends the Dynamic Programming Algorithm by applying
it to cases where exact computation is not feasible, in particular infinite horizon problems. The
difference is that we now do not compute the value function exactly, but iteratively. Additionally,
we do not explicitly compute the value of a policy for every state, but only calculate it within
the value function whenever it is needed (whenever we come upon a state). Again the Bellman
equation is crucial, here it is used as an update rule.

The hope is now that with enough number of iterations, the right-hand side converges against
the Bellman operator. In general, this requires infinitely many steps. Convergence towards the
true value function is only guaranteed in some cases, such as in this finite horizon finite state
case.

In the case of stochastic shortest path problems as above, Bertsekas [Ber17, Vol. II, Section
3.4] showed that the value iteration method will end after |S| iterations, if the transition probab-
ility graph corresponding to some optimal stationary policy is acyclic. In the discounted case,



16 2 Theoretical framework

monotonic error bounds for value iteration can be proved, using contraction properties due to
the discount factor [Ber17, pp. 86 ff.].

Policy iteration. An alternative to value iteration is the closely related policy iteration. In-
stead of improving the value function approximation directly, we focus on iteratively producing
improved policies. The iteration consists of two steps, which are

Vµkpiq � Cpi, πpiqq �
ņ

j�1

pi jpµkpiqqVµkp jq, i � 1, . . . , n, (policy evaluation) (2.10)

and

µk�1piq � max
aPA

�
Cpi, aq �

ņ

j�1

pi jpaqVµkp jq

�
, i � 1, . . . , n, (policy improvement). (2.11)

The algorithm works as follows: We start with a stationary policy µ0 and then iteratively
produce new stationary policies µ1, µ2 and so on, in the following way: Given a policy µk,
we find the corresponding true value function Vµk for µk in the policy evaluation step (2.10)
(= solving an equation) based on (2.8). That is why we can write Vµk in p2.10q and p2.11q
instead of vk. Then, using that updated value function, we obtain a new policy µk�1 in the policy
improvement step (2.11) (= optimization, for each state we choose an action that yields the best
expected reward) and return to the policy evaluation step. The algorithm terminates when the
policy improvement step does not yield a new policy anymore, that is, when

µk � µk�1.

In fact, in our case (and in many other cases, too) policy iteration is guaranteed to terminate
with an optimal policy. We adapt the theorem in [Ber17, Vol. I, pp.246-247] to our case. We
will prove the modified version by adapting the original proof as it illustrates well how policy
iteration works and represents a typical proof in dynamic programming:

Proposition 2.11. (Convergence of policy iteration) In a finite horizon finite state problem, the
policy iteration algorithm generates an improving sequence of policies µk, that is,

Vµkpiq ¤ Vµk�1piq, i � 1, . . . , n,

and terminates with an optimal policy.

Proof : Let the iteration step k be fixed. First, we want to show:

Vµk�1 ¥ Vµk (pointwise) (2.12)

In order to compare successive Vµk , we express Vµk�1 differently, using the proposition from
before: Consider the sequence from (2.9),

vl�1piq � Cpi, µk�1piqq �
ņ

j�1

pi jpµk�1piqqvlp jq, i � 1, . . . , n. (2.13)
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We know that for any initial conditions v0p1q, . . . , v0pnq the sequence generated in (2.13) con-
verges to Vµk�1 . We set v0piq � Vµkpiq for all i. The idea is to infer (2.12) by inequalities between
the elements of the sequence vl.

By definition of the policy evaluation (2.10) we have for all i, since v0 � Vµk ,

v0piq � Cpi, µkpiqq �
ņ

j�1

pi jpµkpiqqv0p jq

¤ Cpi, µk�1piqq �
ņ

j�1

pi jpµk�1piqqv0p jq � v1piq.

(2.14)

The inequality holds by definition of the policy improvement step (2.11).
Using the inequality v0piq ¤ v1piq from (2.14) we see that

v1piq � Cpi, µk�1piqq �
ņ

j�1

pi jpµk�1piqq v0p jqloomoon
¤v1p jq

¤ Cpi, µk�1piqq �
ņ

j�1

pi jpµk�1piqqv1p jq � v2piq

By iterating this we obtain for all i

v0piq ¤ v1piq ¤ v2piq ¤ . . . ¤ vlpiq ¤ . . . . (2.15)

Thus we have

Vµkpiq � v0piq ¤ vlpiq @l ñ Vµkpiq ¤ lim
lÑ8

vlpiq � Vµk�1piq.

The last equation follows from pcq in Proposition 2.9. Thus the policy iteration algorithm for the
finite horizon finite state problem generates an improving sequence of policies.

It remains to show that the algorithm terminates with an optimal policy. This follows easily
from the fact that, since we only have finite states, there are only finitely many stationary policies.
Since the sequence improves, we will have reached equality after finitely many steps. That
means there exists some k such that

Vµkpiq � Vµk�1piq.

Then by definition of the policy improvement p2.11q we must already have

Vµkpiq � max
aPA

�
Cpi, aq �

ņ

j�1

pi jpaqVµkp jq

�
.

By Proposition 2.9 (b) and (d) Vµk is then the value function V and µk is optimal. �
In each iteration, we have to solve a linear system in the policy evaluation step, formed by

the Bellman equations for each state i. In practice this is often a bottleneck and computationally
expensive. Instead of solving this via direct methods (which would require Opn3q arithmetic
operations), we typically approximate the solution. We will address this in the later chapters.
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Algorithm 1: Policy iteration
Input: tolerance θ, reward function C, transition probabilities p
Output: an approximation v of the value function V , an approximation π of the optimal

policy π�

1 Initialize vpsq and πpsq for all s P S;
2 while not policy-stable do
3 while ∆ ¥ θ do
4 ∆ Ð 0 ;
5 foreach s P S do
6 w Ð vpsq ;
7 vpsq Ð Cps, πpsqq �

°
s1 pss1pπpsqqvps1q;

8 ∆ Ð maxp∆, |w� vpsq|q;
9 end

10 end
11 policy-stable Ð true ;
12 foreach s P S do
13 old-action Ð πpsq ;
14 πpsq Ð arg maxa Cps, aq �

°
s1 pss1paqqvps1q ;

15 if old-action , πpsq then
16 policy-stable Ð false
17 end
18 end
19 if policy-stable then
20 return v and π;
21 end
22 end

See Algorithm 1 for a specific implementation of the policy iteration algorithm (adapted from
[SB17, p.65]). Here the policy evaluation is solved approximately in an in-place iteration.

As we have seen above, policy iteration converges globally. However, we would like to have
some results on the convergence rate, too. In order to do that, we can alternatively define the
problem we want to solve as

Find v P RNs. t. min
aPAN

pBpaqv� cpaqq � 0, (2.16)

where A is our finite action set as before, Bpaq is a monotone N � N- matrix for every a P AN

and cpaq P RN . 7 The policy iteration algorithm solves 2.16 (analogous to before) by iterating
policy improvement and policy evaluation. These two steps now take on the following form:

Solve ak�1 � arg min
aPAN

�
Bpaqvk � cpaq

�
(policy improvement) (2.17)

7A matrix is monotone if and only if its inverse exists and is positive.
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Find vk�1 s.t. Bpak�1qvk�1 � cpak�1q � 0 (policy evaluation) (2.18)

We arrive at (2.16) by using the notation from before; a is the policy vector, c is the vector
of rewards, and B is the matrix necessary for policy evaluation: As an illustration we can rewrite
2.10 as

pvµkpiqqiloomoon
..�vkpµkq

� pCpi, πpiqqiloooomoooon
..�Cpµkq

�

�
�� ņ

j�1

pi jpµkpiqqloooomoooon
..�pi jpµkq

vµkp jq

�
�

i

.

Then we have, for Ppµkq ..�
�

pi jpµkq
�

i j the matrix of transition probabilities,

vkpµkq � Cpµkq � Ppµkqvkpµkq ñ p1� Ppµkqqlooooomooooon
..�Bpµkq

vkpµkq �Cpµkq � 0.

Renaming the policy, we obtain the formula for the policy evaluation (2.18):

Bpaqvk �Cpaq � 0.

As for the policy improvement, we want to minimize the term in (2.17) because

min
aPAN

pBpaqvk � cpaqq � min
aPAN

pvk � pPvk �Cpaqqq � max
aPAN

p�vk � pPvk �Cpaqqq

� max
aPAN

pPvk �Cpaqqq,
(2.19)

as vk is constant (independent of a). The last expression in (2.19) is then equivalent to (2.11).
The idea behind expressing the problem as (2.16) is that it is then in the right form to apply
Newton’s method to it.

Puterman and Brumelle [PB79] were among the first to show that under certain conditions
policy iteration is equivalent to Newton’s method. However, they used hard-to-verify Lipschitz
order conditions and also required the exact computation of the value functions. Bokanowski et
al. [BMZ09] followed this up with a global superlinear convergence result for easier-to-verify
assumptions, in particular a monotonicity assumption on the matrices B. They compare policy
iteration to a semismooth Newton method based on the concept of slant differentiability. We
note that in the discounted case, B always satisfies this assumption. However, this does not
necessarily hold for the undiscounted case.

Unfortunately, there is evidence that not all MDPS fulfill either of these assumptions men-
tioned above. There are examples where a finite state MDP problem with N states requires about
N policy iteration steps to converge to the optimal policy - and there might even be less-behaved
examples [SR04, pp.4-5]. So there is no general result that policy iteration can converge in a
small number of steps, that is, policy iteration is only efficient in some cases.

Comparison of value and policy iteration. We can actually view value iteration as a form
of policy iteration: It equals policy iteration with a truncated policy evaluation, where we just
have one update per step. Value iteration combines both steps (policy evaluation and policy
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improvement) in one update rule by directly maximizing in the policy evaluation step. Instead
of computing the policy explicitly for each i, we just compute it within the right-hand side of
(2.10) whenever needed, that is, whenever we come upon state i.

This leads to different convergence behaviour: Policy iteration tends to converge fast in
number of iterations, but each iteration takes much longer and is much more expensive. In
the discounted infinite horizon case, policy iteration is guaranteed to find an optimal stationary
policy in a finite number of steps, while value iteration generally needs infinitely many.

Remark 2.12. A question that naturally arises: Why do we need value or policy iteration at
all? After all, for the finite horizon finite state MDP problem from above, we can just use
the DP Algorithm to solve it exactly. Furthermore, as we have seen in Proposition 2.9 and the
considerations preceding Remark 2.10, value iteration is basically the same as the DP Algorithm
(for finite horizon finite state MDPs). We have also seen that policy iteration converges after
finitely many steps. One might wonder, therefore, why we introduced them, considering that
they are very similar to the DP Algorithm and are also not in any way less computationally
expensive.

Indeed, for finite horizon finite state MDPs, policy iteration and value iteration are somewhat
trivial. Nevertheless, we chose the framework of finite horizon finite state MDPs as it is well
suited for demonstrating how these algorithms work. Moreover, value and policy iteration are
useful because they can be applied in settings where the DP Algorithm is not applicable anymore.
An example of this is the infinite horizon case, which we briefly discuss below.

Convergence for the infinite horizon case. As we will later on consider the finite horizon
case, we only considered the finite horizon cases for the DP algorithms. Of course, for a finite
horizon we technically do not need either value or policy iteration, we can simply use exact
recursion. The DP algorithms were originally developed for the infinite horizon case where exact
recursion (and going through all stages) is impossible. One might wonder why it is interesting to
consider the infinite horizon case at all, because in practice horizons are always finite. However,
as it turns out, modelling with an infinite horizon can be a better representation for very long
planning periods or when the termination is contingent on the achievement of some goal where
the achievement of the goal is not associated to a certain time stage (as with stochastic shortest
path algorithms).

Classical DP results for policy iteration and value iteration are centered upon the infinite
horizon case. We outline key results. We first make some general remarks and classifications
and then present the convergence results for certain classes in both the cases with finitely many
and infinitely many states.

In the following we assume a stationary system (no time-dependence). The infinite horizon
reward (in this paragraph we will just use "reward" instead of "total expected reward") of a given
policy is defined as the limit of its corresponding N-stage rewards where N goes to infinity:
Vπpsq � limNÑ8 Vπ

Npsq.
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We would like the following results to hold:

(A) Convergence of the DP Algorithm: The optimal infinite horizon reward is the limit of the
corresponding N-stage optimal rewards,

Vpsq � lim
NÑ8

VNpsq.

(B) Bellman equation: The optimal reward satisfies the Bellman equation,

Vpsq � sup
aPA

E
ξ
rCps, aq � Vpgps, a, ξqqs .

(C) Characterization of optimal stationary policies: If µ : S Ñ A attains the optimum on the
right-hand side of the Bellman equation for all states s, the stationary policy π � tµ, µ, . . .u
should also be optimal.

As we will see, these results only hold for some cases.
Bertsekas [Ber17, Vol.I, p.235] classifies infinite horizon total reward problems as follows

(using the terminology of costs):

• contractive problems (including discounted problems with bounded cost per stage) - they
are "well-behaved"),

• noncontractive problems, and

• semicontractive problems (including the stochastic shortest path problems from above8)-
here the contraction property is only valid for a subclass of policies satisfying additional
constraints, in the best cases we can restrict the search for an optimal policy to this sub-
class.

First, we consider the convergence results for the case with a finite number of states. For
stochastic shortest path problems, the results (A) - (C) hold. Value iteration only terminates
finitely for some special cases and needs in general infinitely many iterations. As we have seen
(the proof of Proposition 2.11 is the same for the infinite horizon case), we have finite termination
for policy iteration. Discounted problems can just be converted into stochastic shortest path
problems (by suitably adding the discount factor to the transition probabilities), therefore the
same results hold.

Now we consider the case with an infinite number of states. The discounted case with
bounded reward per stage is the "well-behaved" case, the results (A) - (C) hold. The undis-
counted case with unbounded reward per stage (as we have in our energy storage model, though
with a finite horizon) is much more complicated as the value function can now also be infinity
for some states. These problems do not have a contraction property, instead we need additional
assumptions which enforce monotonicity properties. The Bellman equation (B) still holds, and
value iteration is valid (under additional assumptions). However, policy iteration is not valid
anymore (the main problem is that (C) does not hold anymore).

For an in-depth analysis of the infinite horizon case with many more results and examples
we refer to [Ber17, Vol. II].

8While not fully contractive such as discounted problems, here ρ performs a similar function to a discount factor.
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Operator notation. Another way to express DP results is to write them down in operator form.
This shorthand notation is often found in books, and can simplify expressions especially for the
infinite horizon case. The central component is the mapping T , which is motivated by the DP
Algorithm. It is defined by:

@s P S : pT pVqqpsq ..� sup
aPA

�
Cps, aq � E

ξ
rVpgps, a, ξqqs

�
,

where g is the transition function from p2.1q and V : S Ñ R is a scalar function (the value
function)9. For readability, we will just write TV instead of T pVq in the following.

The operator T is a transformation of V . It is an application of the DP Algorithm: TV is the
optimal expected reward for the two-stage problem with reward C in the first stage and reward
V in the second stage. Similarly, we can define an operator T µ for a given stationary policy µ:

@s P S : pT µpVqqpsq ..� Cps, µpsqq � E
ξ
rVpgps, µpsq, ξqqs ,

We define for T (and similarly for Tµ)

T kV ..� T pT k�1Vq, T 0V ..� V.

Using induction, one can easily show the following monotonicity property, which plays a
crucial role in convergence proofs in Dynamic Programming:

Theorem 2.13 (Monotonicity Lemma). [Ber17, Vol.II, Lemma 1.1.1]
For any functions J, J1 : SÑ R, such that J ¥ J1 pointwise for all s P S and any stationary
policy µ : SÑ A, we have for k P N

T kJ ¥ T kJ1, T k
µJ ¥ T k

µJ1 (pointwise).

In the case with finitely many states, S � t1, . . . , nu, we can write down the expectation
explicitly:

@i P S : pTVqpiq ..� max
aPA

�
Cpi, aq �

¸
jPS

pi jpaqVp jq

�

We can now use these operators to simplify the notation for value and policy iteration:

• We can express value iteration as starting with an initial value function guess V0 and then
just successively computing TV0,T 2V0,T 3V0, . . ..

• In policy iteration we start with a stationary policy µ0. Then we iterate the following two
steps:

1) determine Vµk as the solution of T µk J � J (policy evaluation)

2) determine the new policy µk�1 which is defined by T µk�1Vµk � TVµk (policy improve-
ment)

9We implicitly add sufficient assumptions such that the term is well-defined.
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The DP results (A) - (C) from before can also be simplified:

(A’) Convergence of the DP Algorithm: The optimal infinite horizon reward satisfies
Vpsq � limkÑ8 T kVpsq.

(B’) Bellman equation: The optimal reward satisfies the Bellman equation V � TV.

(C’) Characterization of optimal stationary policies: A stationary policy µ : SÑ A is optimal
if and only if T µV � TV.

2.3 Post-Decision States

In this section we explain the method of post-decision states. They are an alternative way to
formulate the Bellman equation and are used in (Approximate) Dynamic Programming. In par-
ticular, we will use them later in the algorithm for our energy storage problem.

Recall that the central relation between the value functions is the Bellman equation

Vtpstq � max
xtPXt

rCpst, xtq � E rVt�1pst�1q|stss . (2.20)

Note that the expectation is inside the maximization operator. Unfortunately, the expectation
can be difficult or even impossible to compute. Consequently, this makes the optimization more
difficult.

A trick to avoid this is to use post-decision states (sometimes also called afterstates, see for
example [SB17]). The idea is to use the fact that the transition function consists of a deterministic
and a stochastic component. Considering the discrete system dynamics 2.1, we define the post-
decision state as

sat
t

..� st � f pst, atq, (2.21)

where at is the decision taken at time t based on knowledge of the state st. Powell [Pow07,
Section 4.6] accordingly calls the "normal" state (that is, st, or what we called state before),
the pre-decision state. With post-decision states we separate the effect of the decisions and the
incoming stochastic information: We see in (2.21) that the post-decision state captures only the
deterministic effect of the decision at. Then, by definition, the difference between being in the
post-decision-state sat

t and the state st�1 is the exogenous information that has arrived between
time t and t � 1:

st�1 � sat
t � ξt�1 (2.22)

We can now formulate the optimality equation using post-decision states. Equivalently to
Vt, we now define V p

t , the post-decision value function: By 2.22 we have

V p
t ps

at
t q � E

ξt�1

�
��Vt�1ps

at
t � ξt�1loooomoooon
�st�1

q|sat
t

�
�� . (2.23)
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Plugging 2.23 into the Bellman equation we obtain

Vtpstq � max
atPAt

rCpst, atq � E rVt�1pst�1q|stss

� max
atPAt

rCpst, atq � E rVt�1pst�1q|s
at
t ss

� max
atPAt

�
Cpst, atq � V p

t ps
at
t q
� (2.24)

We can use sat
t instead of st in the second equation because in the first equation we already

implicitly condition on at in the computation of the expectation E rVt�1pst�1q|sts (due to being
in the maximization operator).

Instead of plugging 2.23 into the Bellman equation we can also plug the last equation in 2.24
into 2.23 to obtain the post-decision version of the Bellman equation. Reducing the time index
by one we obtain

V p
t�1ps

at�1
t�1 q � E

�
max
atPAt

�
Cpst, atq � V p

t ps
at
t q
�
|sat

t

�
. (2.25)

The equations 2.23 and 2.24 show that the Bellman equation for the pre-decision state and the
Bellman equation for the post-decision state are equivalent.

The main advantage of using post-decision states is the computational benefit: We avoid
the repeated computation of the expectation within the optimization. Instead, we only need to
compute the expectation once in 2.25, that is, once after we have solved the optimization. This
is beneficial if the computation of the expectation is difficult or impossible (for example the case
when the outcome space is very large, or when the transition probabilities are unknown). (2.25)
also means that we now have a deterministic optimization.

Even in the deterministic optimal control case it can be beneficial to use post-decision states.
We illustrate this with the board game tic-tac-toe: We define the pre-decision state as the state
of the board we see before we make a move, the post-decision state is then the state of the board
our opponent sees when he or she makes a move. For a fixed state, there are more actions than
post-decision states, because multiple actions can lead to the same post-decision state:

Figure 2.1: Figure from [SB17, p.112]

We thus see that an advantage of post-decision states is that, compared to the optimization in
(2.20), we only have to optimize over a potentially much smaller set in (2.25). This is another
computational benefit and holds in the stochastic case as well. Related to this, the post-decision
state variable often has a smaller dimension than the pre-decision state variable.
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Despite these benefits, post-decision states are not very common in the approximate dynamic
programming literature. Powell [Pow07] attributes this to the fact that historically in the devel-
opment of Markov Decision Processes the ability to compute the expectation exactly was taken
for granted. We refer to [Pow07] or [SB17] for more details on post-decision states as well as
example applications.
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3 Model of the energy storage problem

In this chapter we present the Approximate Dynamic Programming (ADP) model of the energy
storage problem and motivate the modelling decisions.

3.1 The ADP model

The following model of energy storage is taken from Jiang et al. [JPP�14], with minor modific-
ations.

We now apply the concepts from Chapter 2 to our specific application: We model the energy
storage problem as a discrete time, finite horizon, and undiscounted stochastic optimal control
problem. We consider the optimization problem of a firm which operates an electric utility
based on wind energy. Given generated electricity, the firm faces two options: it can either use
the electricity directly to satisfy demand or the firm can store it for later use at a certain cost.
The firm’s objective is to maximize its profit, therefore "optimally controlled" equals maximal
profit here.

The state variable consists of the four factors that influence which decisions the firm can
make at time t:

• rt, the storage level at time t

• wt, the amount of energy available from wind at time t

• pt, the price of energy at time t

• dt, the size of demand that must be satisfied at time t

As units we choose megawatt hour (MWh) for rt, wt and dt as well as $ / MWh for pt, but the
exact units are not of importance. All of the four variables are modelled as non-negative and
bounded at every time (xt P rxmin, xmaxs for x P tr,w, p, du). The bounds are modelled both
for computational purposes as well as real-world constraints (such as that storage facilities have
limited capacity).

Our state at time t is then
st � prt,wt, pt, dtq.

The state st consists of two parts: rt, and pwt, pt, dtq. The storage rt constitutes the endogenous
part, it is the only one we can control. Wind energy, price and demand constitute the exogenous
information; they develop stochastically. An example of actual whole-sale electricity prices for
an interval in July can be seen in Figure 3.1 (figure taken from [Sma]).
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Figure 3.1: Example for actual whole-sale electricity prices on the day-ahead market for July
2018 (taken from [Sma])

Formally, we define the random variable zt
..� pwt, pt, dtq (the exogenous information), and

the random variable ẑt�1 as the incremental change in wind energy, price and demand between
times t and t � 1:

zt�1 � zt � ẑt�1.

We define Ft
..� σpẑ1, . . . , ẑtq. Then F0 � F1 . . . � FT is a filtration. We adopt the convention

that all variables with index t are Ft-measurable. Our problem is then defined on a probability
space pΩ,F , Pq, where F ..� FT . Furthermore we assume that wt, pt, and dt develop independ-
ently of each other and independently of rt.

In the numerical implementation, different processes and functions were used to model avail-
able wind energy, price and demand. For an example of how sample paths of these processes
looked like in the implementation, see Figure 3.2.

(a) Price (b) Energy (c) Demand

Figure 3.2: Example samplepaths (over the full time period, T � 100)

Apart from the capacity constraints the storage device is also characterized by its (dis)charge
efficiency, its maximal (dis)charge and the holding cost. The (dis)charge efficiency is denoted
by βd and βc, where βd, βc P p0, 1s, and the maximal amount that can be (dis)charged is denoted
by γd and γc. The holding cost is denoted by ch per stored unit of energy. The existence of the
(dis)charge efficiency and the holding cost together represent that storage is costly. Storing in
itself incurs costs (for instance rent or maintaining the storage facility), and we additionally face
conversion losses when we store energy (represented by the efficiencies).

Considering this, the firm has six decisions to make at time t, denoted as

at � pawd
t , ard

t , a
gd
t , a

wr
t , agr

t , a
rg
t q. (3.1)
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The double indices denote the origin i and the destination j of the energy amount xi j. Here
r stands for storage (repository), d for demand, w for wind energy and g for grid. Figure 3.3
depicts how storage, wind, demand and grid are related through the possible decisions: Demand
can be satisfied by either of the other three, wind energy can be used for demand or for storage,
storage and grid can interact in both ways.

Wind Demand

Storage Grid

awd

awr
ard

agd

arg

agr

Figure 3.3: The relation between the state components

A decision at at time t is admissible if it fulfills the following constraints:

awd
t � βdard

t � agd
t � dt,

awr
t � awd

t ¤ wt,

ard
t � arg

t ¤ mintrt, γdu,

awr
t � agr

t ¤ mintrmax � rt, γcu.

(3.2)

In words: The first constraint states that demand must always be satisfied, either from the energy
source, the storage or the grid (and for the storage we have to factor in the conversion loss).
The second constraint implements the definition of the variables awr

t and awd
t by limiting their

sum to the available wind energy. The last two constraints express the constraints of the storage
device; we can only discharge what is stored and we can only charge till the maximal capacity
is reached, while simultaneously being bound by the (dis)charge limitations.

We defineAtpstq as the space of all admissible decisions at time t given state st,

Atpstq ..� tat : at satisfies (3.2)u.

Each decision potentially affects the current storage. We describe this deterministic part of the
system dynamics in the transition function:

T pst, atq ..� rt � βcawr
t � βcagr

t � ard
t � arg

t .

We obtain it by simply adding energy coming from the energy source or grid, and subtracting
energy sold to the grid or to satisfy demand. Note that awr

t and arg
t are not multiplied by βd, since
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here only the extracted amount matters, not the delivered amount. Then the storage in the next
time period can be written as rt�1 � T pst, atq. Alternatively, in order to see the structure clearer,
we can also write

T pst, atq ..� rt � φ � at, (3.3)

where φ � p0,�1, 0, βc, βc,�1q is the fixed transition vector.
Then the system dynamics for all four state components are

st�1 � gpst, at, ξt�1q ..� st � f pst, atq � ξt�1,

where ξt�1 � p0, ŵt�1, p̂t�1, d̂t�1q � p0, ẑt�1q are the independently distributed shocks for wind,
price and demand, and

f pst, atq �

�
���

T pst, atq
0
0
0

�
��.

Here, the post-decision state is simply

sa
t � st � f pst, atq � prt � T pst, atq,wt, pt, dtq.

That is, the only difference between the pre-decision state st and the post-decision state sa
t is the

difference in storage.
In this optimal control problem, the reward function is the profit:

Cpst, atq ..� ptpdt � βdarg
t � agr

t � agd
t q � ch prt � βcawr

t � βcagr
t � ard

t � arg
t qlooooooooooooooooooomooooooooooooooooooon

�Tpst ,atq�rt�1

.

The profit is obtained in the following way:

C � profit

� revenue � costs

� sold electricity� pbought electricity� storage costsq.

The goal is to find an admissible policy which maximizes expected profits, the objective
function to be optimized is therefore the expected cumulated profit

E

�
Ţ

t�0

Cpst, atq

�
.

Note that we do not discount future rewards since we optimize over a finite time horizon.
Only the total sum of rewards matters for the firm. Having a finite time horizon also allows the
policies to be time-dependent.
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Properties of the ADP energy storage problem. From the application perspective, our prob-
lem belongs to dynamic resource allocation and inventory problems. This includes problems
such as scheduling people and machines or supply chain management. Related problems are
optimization of financial portfolios, demand management or engineering control problems such
as optimizing the flight of an aircraft (see [Pow11] for a concise general overview).

Furthermore, we can see that the (post-decision) value function has two important features,
namely concavity and monotonicity:

Proposition 3.1. For each time t ¤ T �1, the post-decision value function V p
t pr

p, ztq is concave
in rp

t , where rp
t is the post-decision storage variable and zt � pwt, pt, dtq.

Proof : Using the post-decision value function and (2.24) we can write our problem as

Vtpstq � max
atPAt

Cpst, atq � V p
t ps

at
t q @t P T .

This in turn can be written as a deterministic maximization of a linear program where the con-
straints 3.2 are written in the form Ax ¤ b. Then the resource variable is part of the right-hand
side constraint b. For maximizing linear programs the objective value function (in this case Vt)
is concave in the right-hand side constraints b [Van01]. �

Proposition 3.2. [JPP�14] For each time t ¤ T �1, the post-decision value function V p
t pr

p, ztq
is nondecreasing in rp

t , where rp
t is the post-decision resource variable and zt � pwt, pt, dtq.

Note however, that the proof of Proposition 3.2 in [JPP�14] only holds if there are no holding
costs10.

3.2 Modelling the energy trade and storage

In this subsection, we motivate the model and explain how it relates to energy storage in practice.

Energy market and trade. We first need to gain an understanding of how the general wind
energy market works. The exact design of energy markets varies slightly across the world. We
therefore focus on the main characteristics which most energy markets share, to allow for a wide
applicability.

In a electrical power system, also called (power) grid, there are three main processes: gen-
eration, transmission and distribution. All these processes can be carried out by separate firms.
After generation, the generated energy can be traded on the whole-sale electricity market. There,
electricity generators can sell their output to retailers who in turn sell the electricity to end-users.
The electricity is then delivered to the end-users via transmission and distribution. Trade takes
place in large part over-the-counter transactions, the rest is traded on the power exchange. Trade

10In the respective proof (proof of Proposition 1 in [JPP�14]) the argument for both inclusions relies on the fact
that the contributions CpS t, xtq � CpS̄ t, xtq and CpS t, xtq ¤ CpS̄ t, x̄tq which both break down if there is a holding
cost: Then CpS t, xtq ¡ CpS̄ t, xtq and in the relation the inequality can go in either direction, depending on the size of
the storage and the holding cost.
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at the power exchange is organized into two distinct groups: long-term delivery (futures market)
and short-term delivery (spot market).

On the futures market long-term contracts are traded which specify the constant amount of
electricity the seller provides each day for a certain amount of time, usually months or years.

The spot market is further divided into intra-day trade and day-ahead trade. The intra-day
ahead takes place continuously. Its main function is compensatory; it can compensate deviations
from the original schedule. For example, firms can buy electricity to satisfy demand despite
sudden and unexpected shortages. In the day-ahead market electricity is typically sold in hour-
blocks for the following day. Demand and supply are matched once a day via a blind auction
11, the electricity price is then determined as the the market clearing price for each hour of the
following day (that is, the market clearing price is the price for which supply equals demand).
The same categories exist for over-the-counter trades. The only difference is that the products
traded there tend to be less-standardized and that trade takes place directly between the trade
partners, that is, without the power exchange as an intermediary [PIB, WID].

For renewable energies the futures market does not play a significant role as renewable en-
ergy sources like wind are inherently volatile and unpredictable. Trading of energy from renew-
able sources thus takes place on the spot market. We therefore focus on the spot market, which
is also a common choice in the literature [KP11, HD11]. As trade takes place only once a day in
the day-ahead market and only in hour blocks, we model time discretely.

Note that here, that the demand dt from above equals the commitment that has been made in
the auction of the day-ahead trade the day before. This commitment has to be fulfilled (thus also
the binding equality constraint in (3.2)). If the current energy production is too low, we have to
buy compensatory energy on the intra-day market which is denoted as the grid g in the model
above.

Energy storage devices. In our model we characterize energy storage devices by five paramet-
ers: its charge and discharge efficiency, the maximal amount of charge and discharge (injection
and withdrawal capacity), as well as its maximum capacity. The model is therefore not limited
to a specific application and can be used for all kinds of storage devices. Common energy stor-
age devices are hydroelectricity in the form of pumped storage or dams, batteries or hydrogen
in compressed or liquid form. Their energy efficiency (i.e., the ratio of energy out per energy
in, also known as round-trip efficiency) varies hugely, hydroelectricity and batteries have an
efficiency of 70%-80%, while hydrogen only has an efficiency of 20%-45%. They also vary
strongly in capacity and costs.

Modelling decisions. We make the following modelling decisions and assumptions:

• In optimal control the state space is typically modelled as continuous. Here our state rep-
resents the physical state - storage level, available wind energy, demand, price - which in
practice develops continuously (in space) and which we therefore also model continuously
(but still discrete in time).

11In a blind auction all bids are given simultaneously, so that no bidder knows the bid of any other bidder.
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• We assume that the day-ahead and the intra-day ahead price are the same.

• We assume that there is some distribution modelling how much energy we will commit to
for each time period. Additionally, uncertainty of the commitment has to be factored in,
as we only make a commitment if the price in our bid is lower than the market clearing
price. Therefore, the demand or commitment dt can be modelled stochastically.

• We assume that the firm is only a small player in a large market. This means that its bid
has only a negligible influence on the overall price. We therefore consider it as a price
taker and model the price as an exogenous factor. (In other words, we consider the market
to be competitive and to consist of many market participants.)

• We make the simplifying assumption that all the exogenous information components are
independently distributed. In particular, price and energy are modelled as independent, as
well as price and demand (commitment). In reality however, prices on the spot market are
also influenced by physical circumstances such as available wind energy. Kim and Powell
[KP11] argue that price and wind energy can be modelled as independent because the
electricity price is mainly influenced by controllable energy sources such as coal plants.

• In general, costs are composed of variable and fixed costs. We neglect fixed costs as they
do not affect the behaviour of an optimal policy ("sunk costs"). The only variable costs
we consider are the holding costs for storing electricity. While wind turbines are capital-
intensive, they require only a negligible amount of maintenance once installed (unlike for
example coal which needs to be extracted at a cost).
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4 Approximate Dynamic Programming

The Dynamic Programming Principle (2.3) is the central building block of Dynamic Program-
ming algorithms, as it breaks the original optimizing problem into smaller subproblems which
are much easier to solve. Specifically, as introduced in Chapter 2, we can simply solve the
problem by backward induction in the discrete time case with finite horizon. That means, since
VT � 0, we can solve the equation for VT�1 for every state. Knowing VT�1, we can in turn
solve the equation for VT�2 for every state. We do this iteratively till we reach the initial time
t � 1. In the infinite horizon case we can often use policy iteration or value iteration to obtain
the optimal value functions.

However, in practice this is often not computationally tractable - if possible at all! Spe-
cifically, solving the problem via backward induction requires computing the value function for
every single state and computing the expectation. Solving the problem with the classical DP
algorithms at least requires a finite state space and we still need to repeatedly update the values
for every single state.

For our energy storage problem, this poses a problem:

• We do not know the underlying distribution of the exogenous information (wind, energy,
demand), therefore we can not compute the expectation.

• We have a continuous state space. It is consequently impossible to compute the value
function exactly for every state via backwards induction.

The natural approach is then to approximate both the expectation and the update of the value
function. The development of approximate versions of the classical DP algorithms constitutes
the field of Approximate Dynamic Programming12 (ADP). 13

In this chapter, we mainly use [Pow07] as a rough guideline, in particular Chapters 6 and 8.

4.1 Approximating the components of DP

There is of course a multitude of ways in which the DP methods can be approximated and gen-
eralized; we can approximate the value function, the policy, the computation of the expectation,
and much more. Arguably the central question in ADP is in general how to approximate the
value function.

In the first section, we will go through some common ways to approximate the DP com-
ponents and some crucial features to consider when designing ADP algorithms: model-based
versus model-free, problem approximation, policy types, on-policy and off-policy learning, ap-
proximating the value function, and obtaining value estimates on which these value function
approximations are based on. In the second section we will discuss the properties of such an
ADP algorithm and how to evaluate its quality.

12Depending on the literature, it is also called neuro-dynamic programming, reinforcement learning or adaptive
dynamic programming.

13As an alternative approach to ADP, a lot of DP problems can also be equivalently reformulated as nonlinear
(stochastic) programming problems. Nonlinear programming is often used in practice, especially in the deterministic
case with continuous states and controls.
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What we want or need to approximate also depends heavily on the specific problem and how
much we know. Reasons for using ADP can be like above that the state space is too large or that
we do not know the distribution of the exogenous information. It can also be that some of the
other components are unknown, for example the transition function. Each of these cases requires
a specific kind of approximation. If the state space is too large, reducing the dimensionality of the
problem or the state space is an option, while this does not help in the case where the transition
function is unknown. If the transition function is unknown, we might either try to model it or
simply work with samples.

Model-based and model-free. Depending on we what we know, we talk about model-based
or model-free algorithms. As the name suggest, model-free methods are not based on a specific
model and work on a trial-and-error basis. Instead of working with the transition function and the
reward function, they only work with samples (however, some model-free methods try to learn
(approximate) the model based on the samples). Prominent model-free examples are Monte
Carlo methods and temporal difference methods. Model-based algorithms, such as dynamic
programming, "plan"; that is they use and improve a certain policy. Model-free methods can be
useful for complex problems where finding a sufficiently accurate model is difficult.

The two approaches share many similarities, in particular the approximation of the value
functions is a central component for both. Sutton and Barto discuss the similarities between
model-based and model-free algorithms and unify both methods in a certain framework [SB17,
Chapter 8].

Problem Approximation. In problem approximation we simplify the structure of the original
problem. We discuss two ways: discretization and aggregation.

If we discretize the state space, then we can solve the discretized problem exactly. A problem
however is that this approach is quickly affected by the curse of dimensionality: Adding more
dimensions or expanding the state space leads to an exponential increase in its states. The
approach therefore does not scale well and quickly becomes computationally intractable.

For example, let us consider a finite horizon optimization problem with T stages and con-
tinuous state, control and exogenous information space Rn,Rm,Rr. We can then for example
discretize these spaces as grids, with d points in every dimension. Let us consider the costs of ex-
actly computing an optimal policy for the discretized problem with the Dynamic Programming
Principle. For every stage and for every state we have to solve a minimization problem over all
possible actions, that is, we have to compare dm values. Each of these values is an expectation
that has to be computed; we have to sum up over dr numbers. As this optimization has to be
computed for every stage and every state, we can end up with up to Tdn�m�r operations, with
the lower bound of Ndn operations. There are of course also other discretization methods like
sparse grids which require considerably less points. Still, the curse of dimensionality affects all
discretization methods.

In aggregation we simply combine states into aggregate states. Again, the goal is to obtain
a system of smaller dimension which we can solve exactly. While discretization transforms
continuous models into discrete ones, we can also apply aggregation to already discrete spaces
in order to reduce their size. In aggregation methods, we choose certain probability distributions
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(called dis-/aggregation probabilities) to relate the original state space with the aggregate state
space. For more details we refer to [Ber17, Section 6.2.3].

Value Function Approximation (VFA). Arguably the most popular approach for solving
complex ADP problems is to approximate the value function by some function Ṽ . There are
many different types, they can be broadly sorted into three categories: lookup table methods,
parametric models, and non-parametric models.

Lookup table methods are the simplest way of representing value functions. They assume
no model or structure, and instead explicitly store a value Ṽpsq for each state s individually. In
particular, they are only applicable to discrete state spaces. As another consequence, the update
of a state does not contain any information on the value of any other state. We therefore need to
visit each state often enough, in order to obtain a good approximation of the true value function.
As a drawback, the method becomes computationally expensive as we estimate as much para-
meters as we have states (as with discretization in general, lookup tables are vulnerable to the
curse of dimensionality). An advantage is however that we can approximate any value function
arbitrarily well if we only update the states enough.

In parametric models the value function is approximated by a linear combination of basis
functions. We first identify a set of features F . That is, we reduce our potentially high-
dimensional state variable to its values with regard to certain properties (features) we consider
important. We use the basis functions tφ f u fPF to draw the feature information from the states.
Then the value function approximation is of the general form

Ṽpsq �
¸
fPF

θ fφ f pS q, (4.1)

where the θ f are the weights of the basis functions. The goal is then to estimate the parameter
vector θ. The idea is that the number of features is much lower than the number of states
(|F | ! |S|) and we thus need only few observations to estimate the parameters. Thus, especially
in contrast to lookup tables, parametric models are computationally comparatively cheap. A
drawback is however that we can only achieve an accurate approximation if we have chosen the
right basis functions. Additionally, there is no canonical way to choose the right features. Powell
[Pow07, p.236] calls choosing the features an "artform" and "finding θ [...] the science within
the art".

An approximation such as in (4.1) is called linear. Note however that the the approximation
is not linear in the states themselves - rather, it is only linear in the basis functions (that is,
the basis function may be nonlinear). Examples for parametric models are for example linear
regression or support vector regression. Parametric models are widely used because they are a
simple and compact form of representation.

Nonparametric models are basically applications of nonparametric statistics. Examples here
are k-nearest neighbour, kernel regression, (local) polynomial regression or neural networks. In
a sense, we can generally consider VFAs as statistical models that we update using statistical
techniques. For the statistical methods mentioned here and in the paragraph above we mention
[HTF09] for further reference, which covers a breadth of statistical methods.
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Nonparametric models are fundamentally different from parametric models: Instead of fix-
ing one model for all states, we have in some sense a different function for every state. In
nonparametric models, "the data forms the model". The approximation of the value function at
a state s is computed as a weighted estimate of local observations. That means, given our ob-
servations up till this point, where we denote the observations as tv̂N

i�1u corresponding to some
states tsuN

i�1, we approximate the value function at s using

Ṽpsq �

°N
i�1 whps, siqv̂i°N
i�1 whps, siq

.

Here wh is the weighting function, which specifies how much the observation from a specific
state enters into the approximated value Ṽpsq. It is parameterized by a bandwidth h which
determines the range of states that influence Ṽpsq. A typical choice is the Gaussian density

whps, siq � exp�
�

s� si

h


2

.

Compared to parametric models, nonparametric models are much more flexible since they
do not fixate any kind of structure. However, as with lookup tables the other side of the coin is
that they are computationally expensive (for every new point we have to compute the weights
anew).

Remark 4.1. With regard to the labelling: As lookup tables are not parametric, they are of
course only a subcategory of non-parametric methods. But we consider them separately as they
are fundamentally different from the non-parametric statistical methods mentioned above: They
are not based on a model of any kind.

As a specific example for a nonparametric model we discuss Gaussian Process Regression
in the next chapter. This is done in great detail, as it will be our specific choice for the value
function approximation in the algorithm.

Policies. A few general remarks on policies: So far we have only considered policies implicitly
defined by the maximization of the value function (approximation). But there are also other ways
to define policies, we can divide them roughly into three groups: myopic policies, lookahead
policies and policy function approximations.

Myopic policies are the most elementary: They are greedy functions and do not consider the
future in any way, the prototype of a myopic policy is simply

πpsq � arg max
aPApsq

Cps, aq.

Remark 4.2. Depending on the problem, we might have time indices Ct or πt. In the following
we will generally omit time indices as they only clutter the notation and distract from the essence
of the concepts.
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Lookahead policies are more advanced in that they actually factor in the future. The main
idea is to simplify the problem by optimizing over some horizon shorter than the full time ho-
rizon. This simplified problem is then solved exactly. Despite this simplification, however,
lookahead policies can be quite computationally expensive, because even exact optimization
over a small number of time steps can lead to an exploding problem size. Examples for looka-
head policies are tree search or rolling horizon. The simplest form of lookahead is a one-step
lookahead policy: At each time step t and at each state st P St we solve

πtpstq :� arg min
atPAt

E
�
Ctpst, atq � Ṽtpgpst, at, ξt�1qq

�
, (4.2)

where Ṽt is some approximation of the true value function Vt.
An m-step lookahead policy is analogously computed: At each time step t we solve an m-

step DP problem exactly, where st is the starting state. Then, for r � t�m� 1, t�m� 2, . . . , t
we compute the policy πr as a one-step lookahead policy based on an approximation Ṽr�1 of
the true value function Vr�1. For each state sr, the policy πrpsrq is the argmin of the equation
corresponding to (4.2), while the approximation Ṽr is the min of that equation. In other words,
we start with some approximation Ṽm�t and then use the DP algorithm to solve the m-step DP
problem exactly. After solving the m-step DP problem, we only use the last policy πt, however,
and discard the other policies.

In rolling horizon (also called model predictive control), we choose a horizon H. Then, at
time t, we optimally solve the simplified problem which only goes from time t to t � H. We
then use this policy to compute the decision leading to the next state st�1. At time t� 1 we then
repeat this for the problem from t�1 to pt�1q�H. In this sense, we "roll" the horizon forward.

Policy function approximations are fundamentally different from all the methods mentioned
above. In myopic policies, lookahead policies as well as in policies defined by value function
maximization, the crucial step is optimization of some function. With policy function approx-
imation we instead just define the policy as some function. This is useful if we already have a
good idea of how an optimal policy should look like. As with value function approximations,
we can choose lookup tables, parametric or non-parametric methods to represent the policy.

On-policy and off-policy learning. Another central categorization of ADP algorithms is whether
they employ off-policy learning or on-policy learning.

When approximating the optimal policy, we face an essential problem: On the one hand we
want the policy obtained from the algorithm to get as close to the optimal policy as possible. On
the other hand, in order to find the optimal policy, we also need to try out actions that might be
considered suboptimal under the current policy. In order to clarify these roles, we consider two
policies: We call the policy which approximates the optimal policy and which will be returned
by the algorithm target or learning policy. We call the policy which actually generates the
states the sampling policy. If target and sampling policy agree, we speak of on-policy learning,
otherwise of off-policy learning. On-policy learning is conceptually simpler, off-policy learning
is more general but also converges slower.

This is essentially the "exploration versus exploitation" dilemma, which is a problem inher-
ent to learning in ADP. The question is the following: Do we try out new actions just in order to
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know their value (explore) or do we choose the action we currently consider optimal (exploit)?
Exploring too much leads to slow convergence and is expensive, exploiting too much can res-
ult in not finding the optimal policy. Visiting every state is often a prerequisite in convergence
proofs. It is therefore crucial to factor in how certain we actually are of a value of a state.

Estimating the value of a state. So far we have only discussed how to estimate the value
function given some observations of the values of some state. We now address how we actually
obtain these observations.

In the finite horizon case, this is easy: In order to evaluate the value function for a given
policy π we simply follow a sample path: Let st be the state we are in at time t. We choose the
action at according to our policy π, that is at � πpstq. The exogenous information ξt�1 is realized
and we obtain the reward Ĉt � Ctpst, at, ξt�1q. Then we transition to the next state according
to the system dynamics and reach time t � 1. We do this until we reach the time horizon T .
Our estimate of the value of the state s0 is then v̂ �

°T
τ�0 Ĉτ. This process of generating a

sampling path from time t � 0 to T is called an episode. We typically generate many episodes
in one iteration, and then use the observations (the v̂’s) to estimate the value function. Another
way to see this is that (in the finite horizon case) evaluating a fixed policy is the same as making
unbiased observations of a noisy function.

In the infinite horizon case it is impossible to sample directly like above. One way to deal
with this is to simply cut off the sampling at some point. These partial simulations assume that
if we choose a "long enough" time horizon the sample is a "good enough" estimate. This is
especially applicable if we use discounting in the model: The impact of the rewards become
smaller as time progresses.

Another approach is to use temporal differences. They are the difference between our current
estimate of the value of a state and the update estimate of that value. Temporal differences are
used to update the value function iteratively. More on temporal difference learning can be found
for example in [SB17, Chapter 6] or [Ber17, Vol. II, Chapter 6].

Remark 4.3. There are multiple ways to generate a realization of exogenous information, or
rather, obtain random samples: Sometimes the random realizations are given by actual physical
and real-world processes (for example sequences of actual demands and prices or wind energy
data). An alternative way is to use as a black box computer simulation modelling a complex
process. A third way is to simply draw from a random variable, if it is known.

4.2 Putting it together: Approximate policy iteration

There is no fixed definition for approximate policy iteration 14 - approximate policy iteration is
simply policy iteration for which at least one of its components (for instance, the value function,
the sampling, the maximization) is approximated. The specific approximation choices are end-
less. Typically only the policy evaluation is approximated. (Finding the global optimum in the
policy improvement step is crucial for fast convergence.)

14The same holds for approximate value iteration.
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Convergence results. Though classical policy iteration converges, the convergence of meth-
ods using approximate value functions is only poorly understood. Results only exist for special
cases and many cases are known where algorithms using VFAs diverge or oscillate between poor
policies.

For example, for linearly parametrized VFAs (such as e.g. LSTD) convergence of the ap-
proximate policy evaluation can be guaranteed more easily. If the errors of the approximate
policy evaluation and approximate policy improvement are bounded, then approximate policy
iteration algorithms can be proved to produce policies with bounded suboptimality in the dis-
counted case [BSB10, Section 5.3]. However, convergence to a fixed policy is not guaranteed,
oscillating policies are possible. These results can also be applied to general approximation
methods. Issues such as policy oscillation, susceptibility to noise or convergence are discussed
for instance in [Ber11]. We note that this lack of theoretical convergence proofs holds for ADP in
general. Nevertheless, ADP algorithms have been successfully applied to a variety of problems,
also to very complex problems [Pow07].

When discretizing, we would like the property of consistency to hold. By this we mean
that the finer the discretization is chosen, the better should the result of the algorithm become,
and the optimal value function of the original problem should be obtained in the limit of the
discretization refinement. There are no general results for consistency. It is typically guaranteed
by some continuity conditions, such as the (Lipschitz) continuity of the optimal value function
or the optimal policy. This in turn only holds for specific subclasses of the problem, for example
only MDPs with a (Lipschitz) continuous reward function and system dynamics ([Ber17, Vol.I,
p.406], or see [LGM16] for a concrete example, here for a classification problem).

Evaluation of an algorithm. In practice, we would like to have a measure of how "good" an
algorithm is or not. Most of the time, we do not have an analytical solution or a way to compute
the solution exactly. If we do have an exact solution, we can measure the optimality of the policy
obtained by the algorithm by the values of the objective function. If we do not, we have to resort
to general characteristics such as the convergence rate. In practice, algorithms are not rated
absolutely, but judged in comparison to other algorithms, typically based on their performance
on some test problems.

Another viewpoint: Powell finds that it can often be more beneficial in industrial applications
to have a highly accurate model of the transition function than to obtain optimal policies[Pow07,
p.148]. He argues that the quality of policies is often hard to measure in practice, while a
simplified model of the system dynamics can lead to an incorrectly evolving system and thus
can have a stronger detrimental effect than a suboptimal policy.

Another thing to keep in mind is that real-time constraints of the problem have to be respec-
ted. That is, we need to factor in the computing capacities available which influence whether we
need the solution of the problem within an hour, a day, or a week.
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5 Application to the energy storage problem

In this chapter, we apply the theory of ADP from the previous chapters to our specific applica-
tion. We will use the approximate policy iteration approach from [JPP�14], in which the authors
test multiple methods as value function approximations. From these methods we choose Gaus-
sian Process Regression. Before we discuss the algorithm, we give a general introduction on
Gaussian processes and how they can be applied to regression and prediction problems.

5.1 Gaussian Process Regression

In recent decades, Gaussian processes have become very popular, particularly in the machine
learning community in the field of supervised learning. They are part of a trend for kernel-based
methods (another example are Support Vector Machines). It is also used in other fields: In
fact, it originates from geostatistics where it has been developed under the name of "kriging".
Gaussian processes can be applied to many different tasks, such as regression, classification or
optimization. Here we are only going to focus on Gaussian Process Regression (GPR). Gaussian
Process Regression is a nonparametric regression technique and a kernel-based learning method.
GPR has strong connections to many other popular methods: It is closely related to Support
Vector Machines and even mathematically equivalent to other popular models, such as Bayesian
linear models or spline models [RW05, Chapter 6]. Neal [Nea96] showed that, under suitable
conditions, neural networks with one hidden layer converge to Gaussian processes as the number
of hidden neurons tends to infinity.

For a general introduction of Gaussian processes with a particular focus on their use in ma-
chine learning we refer to [RW05]. MacKay [Mac98] mainly discusses the relation between
Gaussian processes and neural networks, but also gives a general introduction on Gaussian pro-
cesses.

A few general words on regressions. The goal in regression is to model and make inferences
about the relation between inputs and their outputs. We typically consider real-valued scalar
outputs. Given data points, in regression the aim is therefore to fit a curve through potentially
noisy data. That is, given a vector of inputs x and a vector of datapoints y, we want to find a
function f dependent on some parameters β such that

y � f px, βq.

The form of the function, f , is specified beforehand, and the goal is to estimate the parameters
β. Note however, that - unlike for interpolation - we do not require the curve to pass exactly
through those data points, because we assume noise.

Doing so, we often face the problem of overfitting. The given dataset is only a sample
of the underlying distribution, the latter is what we want to model. However, we can only
base our modelling on the given sample. Overfitting then means that the model resulting from
regression memorizes the specific properties of our sample too much and thus does not reflect
the true distribution anymore. The more degrees of freedom there are in the model, the higher
the chance of overfitting is. For example, if we have a linear model and more parameters than
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observations, then the fitted function can simply reproduce the observations exactly. There is a
general trade-off between data-fit and predictive power. In GPR we try to limit overfitting by
using a prior.

Stochastic processes. Stochastic processes are, roughly speaking, a generalization of prob-
ability distribution to functions (which we can also view as an "infinitely-dimensional vector")
instead of finite-dimensional random variables. Thus, Gaussian processes are generalizations of
multivariate Gaussian distributions. They have found widespread use in Bayesian inference (a
method of statistical inference where the updating of the probability of a hypothesis is based
on Bayes’ theorem, see below for more details) where, compared to other stochastic processes,
Gaussian processes require only relatively simple computations and still yield good results. In
the following paragraphs, we will roughly follow Chapter 2 in [RW05].

Definition 5.1. A Gaussian process is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Remark 5.2. Alternatively, MacKay [Mac98] defines: "The probability distribution of a function
ypxq is a Gaussian process if for any finite selection of points x1, x2, . . . , xn the marginal density
Ppypx1q, ypx2q, . . . , ypxnqq is a Gaussian."

Just like Gaussian distributions, Gaussian processes are fully specified by their mean and
their covariance. Note that for processes, both mean and covariance are functions. Note also
that the covariance function plays the much more important role; the properties of Gaussian
processes are mainly determined by their covariances.

Analogous to the finite-dimensional case, we define the mean function mpxq and the covari-
ance function kpx, x1q of a real stochastic process f pxq as:

mpxq � Er f pxqs,

covp f pxq, f px1qq � kpx, x1q � Erp f pxq � mpxqqp f px1q � mpx1qqs.

The mean function is here assumed to be zero for notational simplicity. Also, note that the
covariance of the output is written as a function of the input variables. In the machine learning
context, the covariance function is typically called kernel. It measures the similarity between
points.

Then we can write the Gaussian process as

f pxq ∼ GPpmpxq, kpx, x1qq. (5.1)

Gaussian Process Regression. The setting is as follows: Our given data consists of n training
points, pxi, yiq

n
i�1 P R

d �R (sometimes also called observations). Our training points pxi, yiq
n
i�1

are composed of the d-dimensional input variable xi and the scalar output variable, or target
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variable, yi
15. In the following calculations we will represent the input data in the d � n-matrix

X, where column i represents the input vector xi.
GPR is an application of Bayesian inference. As the name already indicates, Bayesian infer-

ence is based on Bayes’ Theorem:

PpH|Dq �
PpD|Hq � PpHq

PpDq
. (5.2)

Here H stands for hypothesis and D for data. We call PpH|Dq posterior (probability), PpHq
prior (probability), PpD|Hq likelihood, and PpDq marginal likelihood.

In this case, our prior is over the function space. In other words, our prior is our belief of the
distribution over the function space before any data is observed. We assign a prior probability
to every possible function, with regards to how likely it is that this function underlies the given
data.

Specifically, our prior is that a Gaussian process f underlies the data, where

f pxq ∼ GPp0, kpx, x1qq

for all inputs and for a specified covariance function k. When doing GPR, we can choose which
covariance function we use (and of course we can also use another mean than zero).

In this case we choose the Gaussian kernel (also called squared exponential or Radial Basis
Function) as our covariance function, so that

kpx, x1q � σ2 exp
�
�
|x� x1|2

2l2



, l ¡ 0. (5.3)

The Gaussian kernel is stationary, that is, its value is only determined by the relative position of
its arguments, not their absolute location. We see that the exponential part attains values in the
interval p0, 1s. It tends to one the closer the inputs get, and tends to zero as the distance between
the inputs increases.

It has two parameters, the lengthscale l and the signal variance σ2. The lengthscale de-
termines how close two points have to be to influence each other. In general we are not able
to extrapolate more than l units away from the data. The signal variance is a scale factor, it
determines how much the function varies from its mean on average.

The Gaussian kernel has many useful properties: It is infinitely differentiable, it is univer-
sal (see [MXZ06]16, and it can easily be integrated against. As a result the Gaussian kernel
has become the default kernel in many kernel-based methods, such as Gaussian processes or
Support Vector Machines. Other standard kernels are periodic kernels or linear kernels. More
information on which kernel to choose and how to combine them can be found for example in
[Duv14].

Recall that in regression we are interested in making inferences about the relation between
inputs and outputs. That means that we are not interested in modelling the distribution of the the
inputs itself, but in modelling the conditional distribution of the outputs given the inputs.

15In statistics the input variables are called independent variables and the output variables dependent variables.
16"Universal" means that any continuous target function can be uniformly approximated on any compact subset of

the input space.
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In general, GPR is not only used to describe the given data, but to moreover predict the
target for some given testpoints. In our case it is sufficient to consider only one testpoint (see the
algorithm later). Let this testpoint be denoted by x�. We are interested in calculating, or rather,
approximating the unknown test output, that is y� ..� f px�q. Furthermore, we denote the vector
of all training targets with y � py1, . . . , ynq

T .
In reality, we often only have access to noisy observations,

y � f pxq � ε,

where we typically assume that we have additive i.i.d. Gaussian noise ε with variance σ2
N

(the subscript stands for "noise"). The following derivations also holds for the noise-free case,
by simply omitting ε. We call the Gaussian noise variance σN , the signal variance σ and the
lengthscale l the hyperparameters of the GPR. This term reflects that they are parameters of
a non-parametric model. We can vary the hyperparameters. With this noise distribution the
covariance becomes

covpyi, y jq � kpxi, x jq � σ2
Nδi j,

or written as a matrix
covpyq � KpX, Xq � σ2

N In, (5.4)

where pKpX, X1qkl � kpxk, x1lq for matrices X and X1.
The joint prior distribution of the training outputs y and the test output y� is, according to

our prior (5.1), �
y
y�



∼ N

�
0,
�

KpX, Xq � σ2
N In KpX, x�q

Kpx�, Xq kpx�, x�q




.

We now obtain the posterior distribution (recall (5.2)) by conditioning the joint prior distribu-
tion (corresponding to the numerator in (5.2)) on the observed data (the conditioning corresponds
to dividing by the marginal likelihood in (5.2)), cf. [RW05] for the detailed derivations:

y�|X, y, x� ∼ N py�, covpy�qq ,where

y� � Ery�|X, y, x�s � KpX, x�q
�
KpX, Xq � σ2

N In
��1 y (the predictive mean)

covpy�q � kpx�, x�q � Kpx�, Xq
�
KpX, Xq � σ2

N In
��1

KpX, x�q.

(5.5)

In y� we have thus obtained our prediction for the test output. Note that the prediction is
actually a distribution in itself. We choose to use the mean as the returned prediction value.
Furthermore, note that the vector v ..� rKpX, Xq � σ2

N Ins
�1y does not actually depend on the

chosen test point. In other words, we use the vector v for all test outputs we predict. Thus, we
can rewrite

y� � KpX, x�qT v �
ņ

i�1

kpxi, x�qvi.

In other words, the (mean) prediction is a linear combination of kernel functions, each one
centered on a training input.
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GPR scales cubically in the number of training points; its runtime is Opn3q, where n is the
number of training points. This is due to calculating the determinant and matrix inversions.
Furthermore, it has Opn2q memory complexity. GPR therefore quickly becomes intractable for
large datasets (ten thousand or more). As a result, sparse Gaussian processes are an active
research field.

Figure 5.1: Figure 2.3 from [RW05]

Optimized choice of hyperparameters using the marginal likelihood. We would like to
choose our hyperparameters l, σ and σN optimally. The most common way to do this is to
maximize the marginal likelihood. The marginal likelihood, also called (model) evidence, is
defined as PpDq in (5.2). We can write it as the integral over the product of likelihood and
prior, PpDq �

³
H PpD|HqPpHq. In this case the hypothesis H consists of the exact (noise-free)

function values f of our training points, and the data D consists of the noisy target values y
of our training inputs. Our marginal likelihood is ppy|Xq (for all three probabilities (marginal
likelihood, likelihood, prior) we additionally condition on the training inputs X), we thus have

ppy|Xq �
»

ppy|f, Xqppf|Xqdf.

The marginal likelihood is then the likelihood that we obtain the noisy training outputs, based
on the training inputs. Using the fact that for our Gaussian Process framework the likelihood is a
factorized Gaussian and the prior is Gaussian (for more details see [RW05, p.37]), we can write
the log marginal likelihood as

log ppf|Xq � �
1
2

yT pK � σ2
N Iq�1y�

1
2

log |K � σ2
N I| �

n
2

log 2π. (5.6)

The three summands have the following meaning: �1
2 yT pK � σ2

N Iq�1y represents the data-
fit, �1

2 log |K � σ2
N I| is a complexity penalty and n

2 log 2 is a normalization constant. With a
growing lengthscale l the (negative) data-fit decreases (the model becomes less flexible) and the
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(negative) complexity penalty increases (with a higher lengthscale the Gaussian kernel becomes
more peaked).

Defining optimal as "maximal marginal likelihood", we can now optimize the hyperparamet-
ers by maximizing the marginal likelihood (the marginal likelihood is a suitable candidate for an
optimality criterion because it incorporates an automatic trade-off for data-fit and complexity).
We need the partial derivatives for the first order condition, they can be written as

δ

δθ j
log ppy|X, θq �

1
2

trpppK�1yqpK�1yqT � K�1q
δK
δθ j

q, (5.7)

where θ are our hyperparameters.

5.2 Approximate policy iteration algorithm

We now finally turn to the specific implementation of API for our energy storage problem. The
following algorithm is based on the API algorithm in [JPP�14]. Boiled down to its essence,
we approximate exact policy iteration only in the policy evaluation step: We use GPR as an
approximation of the value function, based on Monte Carlo samples.

Algorithm 2: Approximate policy iteration
Input: nmax, m, ApproximationArchitecture
Output: Approximation of optimal policy

1 for n � 1, ..., nmax do
2 Set vi,t

..� 0 for all i � 1, ...,m and for all t � 1, ...,T
3 for i � 1, ...,m do
4 Initialize ri,1
5 for t � 1, ...,T do
6 Sample wi,t, pi,t, di,t

7 Set si,t
..� pri,t,wi,t, pi,t, di,tq

8 ai,t
..�

#
initial policy n � 1
arg maxaPAtpstqCpsi,t, aq � V p

n�1,tps
a
i,tq n ¡ 1

9 ci,t
..� Cpsi,t, ai,tq

10 for τ � 1, ..., t do
11 vi,τ �� ci,t

12 end
13 ri,t �� Φ � ai,t

14 end
15 end
16 for t � 1, ...,T do

17 V p
n,tp�q

..� ApproximationArchitecture
�!

sai,t
i,t

)
i�1,...,m

, tvi,tui�1,...,m



18 end
19 end
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As before, Φ � p0, 0,�1, βc, βc,�1q denotes the transition factors for each component of
the decision vector as defined in (3.3), and Atpstq denotes the space of admissible decisions
for the state st as defined in (3.2). n is the iteration number, and i is the index for the samples
or episodes. Note that the return value of the algorithm (the final approximation of an optimal
policy) is only returned implicitly: In order to evaluate it at a given state, we have to first perform
the optimization in line 8.

We now describe the algorithm based on the notions introduced in the previous chapter.
Since the energy storage problem is continuous in space, we have to use ADP methods.

Here, we use approximate policy iteration. In the algorithm, the (exact) policy improvement
takes place in the optimization in line 8, while the (approximate) policy evaluation ranges from
lines 2-18 , excluding line 8 (that is to say, it takes up the rest of the algorithm).

In the policy improvement step we use a one-step lookahead step in the optimization. Note
also, that the policy is not explicitly represented: It is implicitly defined by the current value
function approximation and only computed for the states that occur during the sampling.

As a value function approximation we choose GPR which is a nonparametric model. The
value function observations vi,t for the value function approximation are computed by simple
Monte Carlo sampling where the sampling of the exogenous information in line 6 is uniform.
At the beginning of every episode, the initial storage value is also sampled uniformly (line 4).

Note that these observations vi,t are noisy: They are not exact samples from the value func-
tion, but only approximate samples; that is, samples from value functions corresponding to sub-
optimal policies. This is because our approximations are based on our value function approx-
imation V p

n,t, but these approximations may be quite bad, especially in the first few iterations
(depending on the quality of the intial policy). We therefore have a two-fold approximation:
First, we approximate the value function using GPR. Second, we approximate the approximate
value samples the GPR is based on.

During the sampling for the policy evaluation, we use an on-policy approach. There is no
exploration. Arguably, we already explore to some degree by the fact that we have approximate
samples of the true value functions which can also be seen as exact samples of suboptimal
policies, as mentioned above. However, these suboptimal policies are not chosen randomly as
one would do in exploration.

The algorithm is not model-free since we already know the transition function and the con-
tribution function, but it can be considered as distribution-free (by this we mean that we do not
know the distribution of the exogenous variables w, p, d [Pow07, p.604]).

Two additional notes on the algorithm: There are no "memory effects"; there is no learning
effect within one iteration. Learning only takes place in one sweep between iterations. Fur-
thermore, we assume perfect state information, that is, we know all relevant information, in
particular the price.

Initial policy. There is no canonical choice for an initial policy. In our implementation, we
do not define the initial policy globally (for example implicitly via a value function), but only
compute the respective action for the specific state we are in. In particular, we do not determine
the respective action deterministically, but sample it fromAt.



5.2 Approximate policy iteration algorithm 47

Rejection sampling ("sample till you hit a feasible action"), while simple, is computationally
expensive and very slow, in our experiments it took up to 16 million samples till a feasible
decision was sampled. That is because, depending on the state, the set of feasible decisions is
fairly small compared to the total set of decisions (see Section 6.4). Thus the rate of acceptance
is very low and the algorithms takes a long time. Instead, we sample our admissible decision
from a subset of admissible decisions.

Concretely, given a state prt,wt, pt, dtq, we sample the components of the decision

pawd
t , ard

t , a
gd
t , a

wr
t , agr

t , a
rg
t q

consecutively and dependent of each other (the dependency is required in order to produce an
admissible decision that lies within the setAt). We sample in the following order:

awd
t P r0,mintdt,wtus,

ard
t P r0,mintrt, γd, βdpdt � awd

t qus,

agd
t � maxt0, dt � awd

t � ard
t � βdu,

awr
t P r0,mintwt � awd

t , γc, rmax � rtus,

agr
t � 0,

arg
t � 0.

(5.8)

Lemma 5.3. A decision generated by (5.8) yields an admissible decision.

Proof : This can be checked by a quick case distinction: Since the constraints p1q-p4q in
(3.2) are only (in-)equalities, it is sufficient to show the admissibility of the generated sample by
taking the min and max in each of the decision. That is, we do not sample from the interval, but
set each variable as its maximal possible value. Thus we have

awd � mintd,wu, ard � mintr, γd, βdpd � awdqu, and awr � mintw� awd, γc, rmax � ru.

For readability we also omit the time index.

Case 1: d ¤ w
Then awd � d. Thus we have ard � 0 and agd � 0. ñ p1q is fulfilled. ñ awr � awd �

mintw, γc � d, rmax � r � du ¤ w. ñ p2q is fulfilled by definition of the minimum, the same
holds for p4q. Inequality p3q is trivially fulfilled, as the left side is zero.

Case 2: d ¡ w
Then awd � w. Thus we have awr � 0. Then p2q is fulfilled. p4q trivially holds because the

left side is zero. Inequality p3q holds by definition of the minimum (the upper bound is already
incorporated in the definition of ard). It remains to show equality p1q:
Case 2.1: d � w� βdard ¡ 0 ñ awd � βdard � agd � w� βdard � d � awd � βdard � d.
Case 2.2: d � w� βdard � 0 ñ awd � βdard � agd � w� βdard � d. �
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The motivation for this choice of initial policy is the following intuitive idea: Use all avail-
able wind energy. Use as much of it for demand as needed and as possible. If there is not enough,
stock up with energy from the storage, and if that is not enough, with energy from the grid. If
there is excess wind energy left, store it. Note that agr

t and arg
t are zero for all states. (This only

concerns the initial policy, during the course of the algorithm the policies can potentially be very
different.)

We set agr
t equal to zero in the initial policy because we want to minimize costs and therefore

only buy from the grid sparingly. Intuitively, we prefer stocking the storage with excess wind
energy rather than with bought energy from the grid. The idea is that even in the worst case
(that is, when demand exceeds the combined energy from wind and storage), we can simply
compensate with energy from the grid. Put differently: We can always just buy energy from
the grid when we need it, this might be cheaper. arg

t is the most difficult decision and heavily
depends on the state of storage and the state. For example, it is wise to sell when the price is
high, and when the storage is high. However, if we expect that dt will be low in the next few
timesteps, than we might as well accept selling from an already low storage, if the price is very
high. This is only one of many considerations that influence the size of arg

t . Thus, we simply set
it as a constant in the initial policy. In order to ensure an admissible decision at all times, we set
it to zero.

5.3 Approaches to the wind energy storage problem in the literature

The specific wind energy storage problem described in Chapter 3 was first formulated in [SP17]
by Powell and Salas, where a lookup table approximate value iteration approach exploiting con-
cavity is used. In a follow-up paper [JPP�14] the same authors (as well as Jiang, Pham and
Scott) then compared the performance of various common ADP approaches. In another follow-
up paper [JP15], Jiang and Powell applied a lookup table approximate value iteration approach
exploiting monotonicity. Using the same problem formulation, Han and E [HE16] use a neural
network approach to the problem. In the following we summarize the various approaches and
their results.

Lookup table approximate value iteration exploiting concavity (Salas, Powell 2017). In
this paper[SP17] Salas and Powell develop the energy storage problem used in [JPP�14]. They
use a structured lookup table with approximate value iteration. Their algorithm also uses post-
decision states and is based on piecewise linear and separable VFAs V̄ of the form

V̄tpr
p
t ,wt, ptq �

Kţ

i�1

v̄t,ipwt, ptqbt,i. (5.9)

Here rt,wt and pt have the same meaning as in Chapter 3 (rp
t is the post-decision storage vari-

able), Kt is some integer number,
°

i bt,i � rp
t and v̄tipwt, ptq is the slope for segment i. The VFA

is completely determined by the slopes tv̄t,ipwt, ptqu
Kt
i�1 and the breakpoints tbt,iu

Kt
i�1.

The crucial feature of the algorithm is that it exploits the concavity of the value function
in the resource dimension 3.1. As the authors write: "[Exploiting concavity] allows us to use
a pure exploitation policy, avoiding the need for exploration policies that are characteristic of
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all reinforcement learning policies for problems with discrete actions." At every update of the
VFA its concavity is enforced using the Concave Adaptation Value Estimation algorithm from
[GP01].

As shown in the paper, the algorithm performs very well: On the same dataset as used
here, its returned near-optimal policy is within 0.1% of optimal for the deterministic datasets
and within 0.9% of optimal for the stochastic ones. For almost all datasets, it performs better
than model predictive control. Additionally, the authors demonstrate that the algorithm is well-
suited for multiple devices and that it scales linearly with the number of devices. Its drawback is
however that it is limited to a low-dimensional state-of-the-world-variable, because (in addition
to the curse of dimensionality) a problem with complex state variables typically has much less
structure to be exploited.

Monotone-ADP (Jiang, Powell 2015). In [JP15] Jiang and Powell develop an approximate
value iteration lookup table method which they call Monotone-ADP. It is intended for problems
which have monotone structure in some input dimensions of the value function and enforces
this monotonicity for the VFA after every update. The algorithms requires a full exploration
policy. The authors demonstrate that the algorithm outperforms several popular ADP algorithms
(among them approximate policy iteration and kernel-based reinforcement learning) at multiple
applications. Almost sure convergence to the optimal value function is proved under suitable
conditions.

Comparison of ADP methods (Jiang et al. 2014). In their paper [JPP�14], Jiang et al. de-
velop the model described in Chapter 3.

The objective of the paper is to compare and evaluate the performance of several popular
ADP methods on the same energy storage problem. The methods are:

(1) approximate policy iteration where the value function is approximated by both linear and
nonparametric methods (Support Vector Machines, Gaussian Process Regression (with Gaus-
sian kernels), local polynomial regression, Dirichlet cloud with radial basis functions)

(2) the lookup table approximate value iteration exploiting monotonicity developed in [JP15]

(3) the lookup table technique exploiting concavity developed in [SP17]

(4) direct policy search

The performance is compared to the exactly computed benchmark solutions for the discretized
version of the problem. The authors come to the conclusion that none of these techniques works
really well. Their results can be summarized as follows: Firstly, the approximate policy itera-
tion and approximate value iteration algorithms ((1) and (2)) perform poorly. Among them the
support vector machines work best, with an average optimality of 90%. Secondly, while the two
latter methods ((3) and (4)) work well, (especially the structured lookup table approximate value
iteration which has optimality rates of 98 � 100%), they do not scale well to large-dimensional
problems, however.

As a consequence of the bad performance of the general-purpose ADP methods, the authors
conclude that an efficient method should exploit the structure of the problem.



50 5 Application to the energy storage problem

Neural network approach (Han, E 2016). In [HE16] Han and E use feedforward neural
networks with two hidden layers to approximate the optimal controls. Their model is principally
the same as in [JPP�14] with minor modifications (no holding costs, no dis-/charge efficiencies,
no option to stock the storage with electricity from the grid). They use standard stochastic
gradient descent with backpropagation and batch normalization in the subnetworks. Though
their algorithm is suitable for continuous variables, they confine it to a discretized set in order to
compare it to the benchmark solutions in [JPP�14].

Han and E present the results only for time horizons T � 10 and T � 15. For these two time
horizons, their algorithm performs near-optimal, for T � 10 it performs even better than the
benchmark lookup table policy. They concede however that both the variance of the optimality
results and the number of iterations required for convergence grow with increasing time horizon.
This seems to imply that the algorithm would not scale well to the full-time-horizon problem in
Chapter 3 (T � 100).
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6 Numerical Results

In this chapter, the approximate policy iteration from Chapter 5 is analysed numerically. In
Section 6.1 we introduce the benchmark datasets that we used for the computations. We present
our implementation approach and the main results in Section 6.2. In our implementation the
algorithm achieves a much higher optimality rate than in [JPP�14]. We discuss how the choice
of initial policy and the choice of hyperparameters contribute to this. In Section 6.3 we analyse
other measures of optimality, we find that they partly give discouraging results. We discuss the
computation time in Section 6.4. We conclude in Section 6.5 with a summary of our results and
suggest ideas for further investigation.

6.1 Benchmark datasets

We use the same benchmarking datasets as Jiang et al. in [JPP�14]. The datasets originate
from [SP17] and consist of both deterministic and stochastic cases. We focus on the stochastic
datasets for comparative reasons, as results of the approximate policy iteration with GPR are
only provided in [JPP�14] for the stochastic datasets.

In the stochastic case the exact solution (the benchmark) was computed by discretizing the
state space and then solving the Markov Decision Process exactly using backwards induction. In
this respect, the solutions for the stochastic datasets can only be considered as optimal contingent
on the chosen discretization. They are only approximations of the true optimal solution of the
energy storage problem in Chapter 3. The discretization is rather coarse: The resulting grid
contains 7 � 13 � 41 � 8897 states: we have 7 uniformly distributed levels of energy, 41
uniformly distributed levels of price and 31 uniformly distributed levels of storage. Demand is
assumed to be deterministic, thereby further reducing the number of states. We note that the
coarseness is necessary in order to have a computationally tractable problem.

The energy storage problem we consider is a comparatively simple problem. However, we
note that it only constitutes a benchmark problem. It is not meant to represent the real-world
application as accurately as possible, but instead to provide a simple problem for the evaluation
of algorithms. Moreover, even though this is a simple problem, we see that the existing methods
do not work that well [JPP�14].

The exogenous factors are modelled as follows:

• Demand is assumed to be deterministic and sinusoidal (representing a seasonal structure):

dt � max
"

0, 3� 4 sin
�

2πt
T


*

• Two types of price processes are tested: A sinusoidal price process (similar structure
to demand) and a Markov chain (for some datasets also with jumps), both perturbed by
Gaussian shocks. The Markov chain is time homogenous, first-order and bounded in state
space.

• Energy is also modelled as a time homogenous, first-order, bounded Markov Chain with
Gaussian or uniform shocks.
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Example sample paths were shown in Figure 3.2.
Discharge efficiency and charge efficiency are modelled as perfect; βd = βc = 1. This is

necessary for the trajectories to stay on the discretization grid. Furthermore, the (dis)charging
capacity is restricted to γd � γc � 5. For more details we refer to [JPP�14] or [SP17].

Optimality is measured against the exact solution which is determined by backward dynamic
programming. The performance metric M of an algorithm is the ratio of the total profit obtained
by the algorithm, T PA, and the total profit obtained by the exact solution, T PE , on the same set
of sample scenarios (that is, for those sample scenarios the stochastic factors are identical, only
the storage trajectories are different):

M �
T PA

T PE
(6.1)

Inconsistencies in the datasets. Each dataset contains 256 sample paths 17. For each sample
path the state (price, energy, demand, storage), the optimal decision, and the resulting profit are
provided for every point of time.

We found that the files of some datasets were partially inconsistent with the description given
in the corresponding papers ([JPP�14, SP17]): This mainly concerned the price samples for the
datasets S1-S4. The price process for the datasets with the sinusoidal price process (S1-S4)
does not seem to be sampled randomly: For each time step t, the decimal places across all 256
samples are identical. The plots according to the given price samples are significantly different
from the plots generated according to the definition of the price process: In the latter ones the
underlying sinusoidal structure is clearly identifiable while it is not in the former (see Figure
6.1). Additionally, while pmin � 30 and pmax � 70 in [JPP�14], the provided price-data for S1-
S4 does not comply with these bounds, instead it has a range of r0, 80s. For the dataset S1 37%
of the provided price samples lay outside the bounds in the paper (same for the datasets S2-S4).
As a consequence of these inconsistencies, we did not use these datasets for the comparison to
the results of Jiang et al. [JPP�14].
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Figure 6.1: Comparison of provided, simulated and unperturbed sinusoidal price process

Another inconsistency is the use of holding costs in the benchmarks in the datasets, but not

17In the computations below, we typically consider only a subset of 30 sample paths. We found that this yielded
the same results as for the full 256 sample paths. Accordingly, whenever we compare the mean of results from our
own implementation with the mean of results from the benchmark datasets, we compare both means on the same set
of 30 sample paths.
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in the paper. In [JPP�14] the Monotone-ADP algorithm [JP15], which requires monotonicity
of the value function in the storage dimension, is also applied on the benchmark datasets from
above. However, in the paper [JPP�14] the authors only prove the required monotonicity in the
case without storage costs. It is not obvious why even with storage costs the monotonicity in
the storage dimension should still hold (see footnote regarding Proposition 3.2). Therefore the
application of the Monotone-ADP to the problem in the datasets seems inadmissible. However,
this does not directly affect the use of the benchmarks here, since we do not use the monotonicity
property in the approximate policy iteration algorithm.

6.2 Main results and algorithm tuning

Approach and implementation details. In the following subsections we discuss the findings
based on our implementation of the approximate policy iteration algorithm in [JPP�14]. In our
implementation (see enclosed CD) we use the GPy software [GPy12] for the Gaussian Process
Regression (a recent comparison of different Gaussian Process modelling software can be found
in [EAS17]). In their implementation of the Gaussian kernel, three hyperparameters can be set:
the lengthscale and the variance (l and σ in (5.3)), and the Gaussian noise (σN in (5.4)). The
maximization in the policy improvement step is implemented by brute-force gridsearch: we
simply compute the values for all admissible actions and choose a maximal value (if there are
several maxima, we choose the one discovered first). We note that the algorithm is able to handle
continuous variables and the discretization is only performed to enable the comparison with the
benchmarks.

We note that some parameters and essential choices for the computation are not specified
in the [JPP�14]; in particular the choice of initial policy, the number of samples in the policy
evaluation step, and the hyperparameters of the GPR. As default values we choose the discret-
ized version of the initial policy described in (5.8) (to comply with the discretization in the
benchmarks), 500 samples in the policy evaluation step (m � 500 in Algorithm 2), and fixed
hyperparameters (l � 1, σ � 1, σN � 1).

In the following, we will compare the performance of our implementation to the one in
[JPP�14] on three different test sets, the benchmark datasets S6, S13, S17. In all three cases,
the price shocks are modelled according to a discretized form of the normal distributionNp0, 1q
(called discrete pseudonormal distribution in [JPP�14]). The price is modelled as a first-order
Markov chain, in S6 and S13 we additionally have jumps (see [JPP�14]). The wind energy
shocks are modelled uniformly (Up�1, 1q) in S6 and discrete normally in S13 (Np0, 0.52q) and
S17 (Np0, 1q).

Despite comparatively small differences, the difference in performance, as given in [JPP�14]
is comparatively big: After 10 iterations of the approximate policy improvement algorithm as
described in the previous chapter, 83% optimality (measured as in (6.1)) are obtained for S6,
78% for S13, and 88% for S17. We chose these three datasets as they represent the range of
performance in Jiang et al.[JPP�14]: S13 is the worst-performing dataset, S6 is average and
S17 is one of the best-performing datasets. If not specified differently, we always use the dataset
S6 in the computations below.
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Improvement of performance. In our numerical computations we obtain significantly better
results than the results of Jiang et al. in [JPP�14], this comparison is shown in Figure 6.2. With
our default values as described above we obtain after 10 iterations an average of 96.5% over 5
different random seeds. For S13 and the same setting, we obtain 97.6%, and for S17 we obtain
98.2%. This is an improvement of about ten percentage points compared to the results of Jiang
et al. Also note that the variation in performance across the datasets is much smaller than in
[JPP�14]. As there are only minor differences in the model parameters for each dataset, this
seems plausible. As before, the best results are obtained for S17. This might be attributable to
the presence of jumps in S6 and S13 and the consequently stronger stochasticity: With jumps,
there can be a higher approximation error in the policy evaluation step, as a sample path with a
price jump may be less representative of the actual value of the policy.

Note that these optimality values do not represent the best performances of the algorithm:
In the majority of the computations the optimality rate had not converged yet and continued to
increase (in computations over 20 iterations the optimality rate increased by up to 1 � 2% and
then converged). However, in [JPP�14] only the values for 10 iterations are computed and we
therefore limit the number of iterations to 10 in order to be able to compare them to the results
in [JPP�14].
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Figure 6.2: Comparison on multiple datasets

Two factors may explain why we obtain better results: the choice of hyperparameters and
the choice of initial policy. Both choices were not specified in [JPP�14]. In the following we
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illustrate the impact of each choice on the performance of the algorithm.
In order to put the optimality results of the algorithms presented in this chapter into context, it

is worth noting that for the VFA Ṽ � 0 the optimality is roughly 57% (for S6 and m � 500). That
is, we actually perform policy improvement without considering any value function at all (the
policy evaluation becomes redundant and we only need one iteration), and we only optimize the
reward for the current time period. The algorithm thus reduces to a simple greedy algorithm. The
comparatively high optimality comes from the fact that the optimality is measured by cumulated
profit. However, merely satisfying demand (which is a binding constraint in every time step)
already generates profit in most cases.

Choice of initial policy. We find that the choice of the initial policy drastically affects the
outcome of the algorithm, see Figure 6.3.
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Figure 6.3: Comparison of initial policies

Here, "initial policy 2" denotes the policy described in (5.8). "Initial policy 1" represents
the discretized version of this policy, that is, we only sample from the points which additionally
lie on the discretization grid. "Initial policy 3" represents an initial policy where the policy is
again implicitly defined by the maximization of an objective function including a VFA, which
is here set to zero for all states. In other words, we consider a greedy initial policy which only
maximizes over the rewards.

We see that the greedy initial policy performs worst and does not display any improvement
tendency. It performs at roughly the same level as the simple greedy algorithm without VFA.
This seems to suggest that the VFA can not successfully improve the values obtained by the
greedy policy. Initial policy 1 and 2 display some improvement over the number of 10 itera-
tions. Initial policy 1 improves at a much slower rate than initial policy 2 but is on a much
higher absolute level. Note that initial policy 1 starts of with a much higher optimality rate than
initial policy 2 (20 percentage points higher), though they are basically the same, apart from the
discretization in initial policy 1 18. A reason for this could be that since we only consider the
discretized values in the algorithm, we obtain much better samples of the real value functions if

18Initial policy 2 works despite not using the discretized values: Note that the initial policy only influences the
samples for the fitting of the first GPR, and the GPR can handle continuous values.
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we sample directly from the discretized state space (we get information directly from the grid
points instead of the points around them).

As a conclusion we see that the choice of the initial policy has a significant and extremely
big impact on the performance of the algorithm. Already within these three initial policies we
have a difference in performance of almost over 40%. These results reflect the fact that the
initial policy is of crucial importance for the fitting of the VFA: In order for the algorithm to
work well, we need to ensure that the approximate value samples v1,t, and thus the VFA V p

1,t,
in the first iteration of the algorithm are not too inaccurate. If the VFA is too inaccurate, the
algorithm does not recover and stagnates (see "initial policy 3"). (The first VFA V p

1,t is based on
the cumulative rewards v1,t of the sample paths in the first iteration. But if the v1,t are very far
from reflecting the actual value of a state, our VFA is a poor approximation of the actual value
function. This poor VFA then in turn creates inaccurate value samples in the policy evaluation
step of the next iteration, which then lead to another poor VFA and so on.) The only way for us
to influence the quality of the value samples in the first iteration is the choice of initial policy, it
is therefore of crucial importance.

Hyperparameter tuning. The second algorithmic choice that hugely influences the perform-
ance of the algorithm is the choice of hyperparameters for the Gaussian Process Regression.
Recall that we have three hyperparameters: the lengthscale l, the signal variance σ and the
Gaussian noise variance σN . An unsuitable choice of hyperparameters leads to a bad fitting of
the Gaussian Process Regression to the approximate value samples which in turn leads to a bad
approximation of the GPR to the true value function. In this case we test two values for each of
the two hyperparameters and consider all hyperparameter configurations from the product space
t0.5, 2u � t0.2, 1u � t0.2, 1u. For each configuration we compute the mean over two random
seeds, the results are displayed in Figure 6.4, as well as the mean for l � 1, σ � 1, σN � 1 from
Figure 6.2(a).
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Figure 6.4: Comparison of hyperparameters (m � 500)

The best performance is achieved by a small signal variance (σ � 0.2) and a bigger Gaussian
noise variance (σN � 1); for either lengthscale we achieve 98% after 10 iterations. In particular
we achieve a better result than for our default values l � 1, σ � 1, σN � 1. The good perform-
ance for σ � 0.2 and σN � 1 may reflect the fact that the true value function does not have a
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high variance, but that our approximate value samples are in fact quite noisy: Since our sample
paths are based on our inaccurate value functions, our samples are not not very good samples of
the true value function. Interestingly, although we find similar values for both lengthscales, the
behaviour of the optimality graphs is different: For l � 2 we obtain an approximately monoton-
ically decreasing graph, while the graph for l � 0.5 is monotonically increasing. However, this
might just be a stochastic difference, as we only consider two random seeds each.

For the opposite configuration (a bigger signal variance (σ � 1) and a smaller noise vari-
ance (σN � 0.2)), we obtain only around 91% - 92% optimality and thus the worst performance
among the combinations tested. This can be attributed to overfitting: With a higher signal vari-
ance and a lower noise variance, we assume that our training outputs are very close to the exact
functional values of the training inputs. Thus, if there is high variance between the training out-
puts, we assume this is due to the underlying true function having high variance there. We thus
end up modelling the noise of these specific training points (the real noise is unknown, it might
be quite high) instead of the real function. However, we note that even the worst hyperparameters
tested in Figure 6.4 performs better than the results by Jiang et al [JPP�14].

We observe that the graph for H1
..� pl � 2, σ � 0.2, σN � 0.2q is not visible, as the values

in our computations happen to be identical to those for H2
..� pl � 2, σ � 1, σN � 1q. Though

the respective Gaussian Processes themselves are not identical, they are still similar enough that
the maximization in Line 8 of the algorithm yields the same results. (To explain this, consider
(5.1): Since the lengthscale is the same for H1 and H2, and since we have σ � σN in both cases,
the respective Gaussian Processes for H1 and H2 only differ by a constant and thus display
similar behaviour.)
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Figure 6.5: Comparison of hyperparameters (m � 200)

For a smaller sample size (m � 200) we obtain similar results, see Figure 6.5. Though
the behaviour of the graphs is slightly different from the ones in Figure 6.4, the ranking of the
hyperparameter combination among each other is still the same (with the only exception of the
two best-performing combinations (brown and orange graph), which basically yield the same
optimality from iteration 5 onwards).

Again we have identical values for pl � 2, σ � 0.2, σN � 0.2q and pl � 2, σ � 1, σN � 1q.
Additionally, we obtained identical values for pl � 0.5, σ � 0.2, σN � 0.2q and pl � 0.5, σ �
1, σN � 1q.
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We show the results for both m � 200 and m � 500 in the same figure in Figure 6.6. Com-
paring the absolute optimality rates, we see that for pl � 2, σ � 1, σN � 1q, pl � 2, σ �
0.2, σN � 0.2q, pl � 0.5, σ � 1, σN � 0.2q, pl � 2, σ � 1, σN � 0.2q the algorithm performs
better for the smaller sample size. That is, m � 200 obtains better results in the case that the
signal variance is bigger and the noise variance smaller, as well as in the case that the lengthscale
is bigger and the variances are set to the same value. For the other hyperparameter combina-
tions, there is no significant or only a small difference in performance between the two sample
sizes. Among the hyperparameter and sample size combinations tested, the best performance
was achieved by l � 2, σ � 0.2, σN � 1 and m � 500.
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Figure 6.6: Comparison of hyperparameters (m � 200, 500)

We conclude that different sample sizes require different sets of hyperparameters, and that
our default choice can be improved. However, this does not yield a general rule how to choose
the hyperparameters optimally. We consider an automated approach to optimize the hyperpara-
meters in the following paragraph.

Automated hyperparameter tuning. As described in Section 5.1, the optimization of the
hyperparameter choice can be automated using the marginal likelihood. In our implementation
we used the built-in optimization in [GPy12].

However, the results are not encouraging: We found that after the optimization (maximiz-
ing the marginal likelihood) all three hyperparameters are set to unrealistically high values (of
order 106 or higher). Due to the extremely large lengthscale the Gaussian kernel is zero almost
everywhere. Moreover, with such a large noise variance, all of the data is de facto interpreted as
noise. The obtained Gaussian Process subsequently has only very little explanatory power and
is almost constant everywhere. As a result of this poor VFA, the performance of the algorithm
decreases over the course of iterations (in our experiments we obtained 77% optimality after 10
iterations).

Reasonable "optimized" hyperparameter values (that is, values not greater than order 101)
were only achieved if in the fitting of the GPR the target values were additionally scaled. How-
ever, scaling the target values in itself already seems to worsen the performance significantly,
see Figure 6.7. Additionally optimizing the hyperparameters via the marginal likelihood only
seemed to deteriorate the performance further.

The high noise after optimization is the result of the fact that the matrix K in (5.6) is very
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ill-conditioned. As a result, the matrix K � σ2
N I is only numerically invertible for an extremely

large σ2
N . However, while this stabilizes the inversion, adding the identity matrix multiplied

with a constant of order 106 or greater highly distorts the covariance matrix, and the end result
is very far away from the true solution. This is a possible explanation why the hyperparameter
optimization does not work in this case.

It is still unclear why the matrix K is so ill-conditioned. One idea that we tested is that
the generated samples are "too close" to each other. We tried removing points which were "too
close" to one of the other points, where "too close" is defined by some threshold distance (we
tried various threshold distances). We did not obtain any significant improvement in the condi-
tion number of K however. Another idea is that the bad condition arises from the dependency
between the samples. Though the starting states are sampled independently, the sample paths in
the policy evaluation (lines 2-18 in Algorithm 2) all develop according to the same VFA. The
sample paths therefore do not develop independently. In particular, the sample storage values ri,t

tend to concentrate around the same values; in the beginning (for small t) storage is quite high
and then goes down to zero towards the end (see also under Section 6.3).

A further possible reason for the poor performance of the hyperparameter optimization is
that at the end of every iteration of the algorithm, a new Gaussian Process is fitted for every time
step. Theoretically, the hyperparameters obtained after the optimization can change drastically
from iteration to iteration, as they are highly dependent on the samples obtained in the respective
iteration. This instability is alleviated if we fix the hyperparameters, as for the results in Figures
6.2 - 6.6.
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Figure 6.7: Comparison with automated hyperparameter optimization

Effect of sample size. Increasing the sample size does not necessarily improve the optimality
rate: For all other parameters fixed, we compare the performance of the algorithm for various
sample sizes m. The mean over five different randomseeds is shown in Figure 6.8 for four differ-
ent sample sizes. We see that there is no clear correlation between sample size and performance.
Indeed, the smallest sample size (m � 200) surprisingly performs best, while the other sample
sizes end up with very similar optimality rates after 10 iterations. This might seem counterin-
tuitive: A higher sample size corresponds to more data for the fitting of the Gaussian Process
and we expect that more data can only improve the result, not worsen it. To understand this, we
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have to take into account that all results in Figure 6.8 were computed with the hyperparameters
fixed to one (our default hyperparameters). However, the optimal choice of hyperparameters
also depends on the sample size. As we saw in Figure 6.6, depending on the hyperparameter
combination, either of two sample sizes can be better, no sample size dominates.

Effect of scaling. We discuss two kinds of scaling to improve the performance of the al-
gorithm: feature scaling and target scaling. Feature scaling is a common step in machine learning
to preprocess raw data, since many algorithms do not work without it or only work much slower.
There is no canonical scaling method, popular choices are standardization, normalization and
scaling to unit length. In this case, we specifically aim to improve the accuracy of the GPR
in line 17. It is fitted on the inputs si,t (states) and the outputs vi,t (approximate value function
samples).

Firstly, we scale the features si,t by standardizing them (that is, we remove the mean and
scale to unit variance). We use the "StandardScaler" from [PVG�11]. In Figure 6.9 we see that
without standardization, a lower optimality rate is achieved than with standardization (compare
with Figure 6.8). Additionally, the graph is characterized by a much higher variance than its
counterpart with scaling. We attribute this to the scaling making the inverting of the matrix in the
calculation of the prediction (5.5) numerically more stable, as the matrix is very ill-conditioned
(see above).

We note that while scaling the inputs improves the performance, scaling the targets results
in the opposite (see Figure 6.7). This might be because the targets (value samples) are more
affected by stochasticity than the inputs: The value samples are computed as sums of rewards,
which in turn are computed as products of price and demand as well as price and storage. This
"squares" the stochasticity in some sense. Indeed, we find that the target values can vary from
each other by several orders of magnitude, while the state components all range in the same
order of magnitude. However, considering that the linear scaling of the target y should only
affect the result linearly in (5.5), it is surprising that it affects the performance at all. Why this
is, remains an open question.
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6.3 Error measures

We will now discuss other ways to evaluate the performance of the algorithm, in particular we
try to capture the approximation error in several ways.

Mean squared error to optimal decision. So far we have only measured the performance of
the algorithm based on the optimality ratio compared to the benchmark solution. That is, we
have only compared the obtained total profits on a set of sample scenarios.
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Figure 6.10: Mean squared error

Since the optimal decisions are provided in the datasets, we can measure the distance between
the optimal decisions and the decisions computed by the algorithm 2 (for the sample scenarios
which we also used to compute the optimality rate in (6.1)). We compute the distance to the
optimal decisions in the following way: For every time step we compute the mean squared error
of the computed decision to the optimal decision (the decisions are six-dimensional, and the
ranges are similar for each dimension). Then for every sample path in the policy evaluation we
compute the mean squared error over all time steps (we compute the error to the reference value
zero), and then for every policy iteration step we compute the mean squared error of the errors
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for each sample path in the policy evaluation. The results for three different sample sizes are
shown in Figure 6.10.

We see that the mean squared error seems to go down for m � 500 and m � 800, however it
does not decrease for m � 200 for which the algorithm actually achieves the best total perform-
ance (see Figure 6.8). Note however that a near-optimal policy does not necessarily need to be
close to the provided optimal policy. The set of near-optimal policies can be quite large. The
aim is only to design a policy that is near-optimal; the VFA, and thus the approximate optimal
policy, can differ from their exact counterparts. Therefore, while a small mean squared error
would be an indicator of near-optimality, a high and non-decreasing mean squared error is not
necessarily an indicator for bad performance.

Optimal storage paths. We can also compare the optimal storage paths (again for the sample
scenarios used for the computation of the optimality rate) to the ones computed by the algorithm.
That is, we now compare the outcome of the optimal actions versus the outcome of the actions
computed by the algorithm 2.
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Figure 6.11: Comparison of storage paths (mean over 30 samples)

In Figure 6.11 we compare the mean of the optimal storage paths from the benchmark data-
sets to the mean of the ones obtained by the algorithm after 10 iterations (where the mean is
computed over the same 30 sample scenarios). Though the rough behaviour is the same ("keep
the storage well filled for the first half of the time period, then empty it over the second half"),
we see that there is quite a big difference between the two means. In particular, the optimal solu-
tion maintains a higher storage on average. We also see for each of the 30 samples (not shown
here) that the storage paths chosen by the algorithm and the benchmark differ substantially. This
goes hand in hand with the observation from above that the computed decisions differ strongly
between algorithm and benchmark solution.
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Figure 6.12: Comparison of mean sample paths with standard deviation

Figure 6.12 depicts the means from Figure 6.11 with their respective standard deviation. The
standard deviation for the benchmark is much higher than for the algorithm.

This might be due to the specific structure of the computed VFA in the algorithm. We first
note that in the policy improvement step (line 8 in Algorithm 2), we are given a price p and an
amount of available energy w, only the storage value can be changed (within a small interval).
The VFA however does not vary a lot in the price direction. The graphs

tppr,w, pq,Vn,tpr,w, pqq | r P rr � 5, r � 5su 19, w and p fixed,

do not vary too much across either wind or price. Even when the absolute values vary, the essen-
tial behaviour of the function (especially with regard to optima) remains the same. Consider for
instance the VFA after 10 iterations in Figure 6.13. In time t � 0 we start at r0 � rstart � 25. For
every price p, the behaviour of the value function Vn,tp�, 4, pq in the interval r20, 30s is basically
the same (except near the maximal and minimal price), and favours a maintaining of the storage
value or even a slight reducing. Thus, considering that for all sample paths the start value for the
storage is the same and considering that the value function tends to dominate the contribution
function in the policy improvement objective function (the value function as an expectation of
the cumulated profit to be obtained in the future tends to be much bigger than the profit of a
single time step), we end up with a similar storage development. This carries through the other
time steps 0   t ¤ T as well.

Not only do the storage sample paths stay close to the mean over all 30 evaluation sample
paths of a single dataset, the mean also does not vary much across different datasets. In the figure
in Table 1 we consider three different datasets, with different energy and price processes (where
the difference is expressed mainly in the variance of the energy and price shocks). However, the
means over the evaluating sample paths are very similar.

Training and test error. As another way of evaluating the performance of the algorithm we
look at the development of the training errors and test errors. In Figure 6.14 we plot the training
and the cross-validation test error. These are computed on a set S or of state and target samples,

19It suffices to consider an in-/decrement of 5, as this is the maximal dis-/charge in this case.
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Figure 6.13: VFA after 10 iterations (t � 0,w � 4,m � 500)

Dataset êt p̂t

S6 Up�1, 1q Np0, 12q
S12 Np0, 22q Np0, 52q
S13 Np0, 0.52q Np0, 12q
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Table 1: Mean sample paths over different datasets (with differently distributed energy and price
shocks, êt and p̂t)

which we obtain in the 10th iteration in line 17 of the algorithm (m � 1000). Then, for every
Nu ¤ 1000 we repeat the following a 100 times: We divide a random subset S Nu � S or of
the original sample set, where |S Nu | � Nu, randomly into a training set (90% of S Nu) and a
test set (10% of S Nu). We train the GPR on the training set and then cross-validate it on the
test set. For both we compute the mean squared error to the respective target samples of S or

(we assume that the target samples are a close approximation to the true value functions). We
then average over all 100 errors for Nu, respectively for the training error and the test error.
We see that both the training and test error are quite high and plateau relatively fast. (Note
though, that this is not the true error: Since we do not have the true value function values, we
can only compute the error to our targets, which are approximate value samples. Depending on
how good these approximations are, the training and test error might look different.) This error
behaviour seems to suggest a high modelling bias and an underfitting problem [Ng17]. The
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Figure 6.14: Training and cross-validation test error

reason for this could either be that GPR is in general not a very accurate modelling choice for
the value function, or that the hyperparameters are simply not chosen well enough. Note also
that the errors are surprisingly high considering that the algorithm achieves a tolerably good
performance (for m � 1000, see Figure 6.8).

6.4 Computational aspects

The bottlenecks of the algorithm are the fitting of the Gaussian Process Regression in the policy
evaluation step and the gridsearch optimization in the policy improvement step.

The fitting of the GPR varies hugely over time: For 500 training points, the fitting for one
single regression ranges between 2 and 20 seconds. The mean lies at around 6 seconds, the
median slightly below that. For 800 training points, the fitting for one single regression ranges
between 2 and 40 seconds. The mean lies at around 9.5 seconds, the median at 8.5 seconds.

A single gridsearch optimization takes less time: For 500 episodes (the number of episodes
influences the complexity of the GPR, therefore also the objective function and the length of
the gridsearch) one single optimization takes between 0.2 and 1.6 seconds, with a mean of 0.6
seconds, for 800 episodes it takes between 0.2 and 2 seconds, with a mean of 0.85 seconds.

However, since the gridsearch optimization is performed many times more often than the
fitting of the Gaussian Process Regression, it affects the total computational time more than the
GPR fitting. In total we have |iterations| � |episodes| � |timesteps| optimizations, compared to
|iterations| � |episodes| fittings; in this case we thus perform |timesteps|=100 optimizations for
every fitting. Making the gridsearch more efficient and faster would therefore yield a significant
improvement in computational performance. In total, the algorithm needs 3 days for 500 samples
and a week for 800 samples. Summing up the total amount of time needed for optimization and
fitting, we see that these two steps make up the total computation time for the whole algorithm.

We already consider a more efficient version of gridsearch optimization as we do not go over
the complete action space. This is because in the gridsearch optimization we need to evaluate
the objective function (reward plus VFA) only for the admissible actions. The advantage then
lies in the fact that the set of admissible actions is on average much smaller than the whole set
of actions: In our computations it constituted on average under 1% of the entire (discretized)
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action space 20, often even significantly lower. However, even though we do not necessarily
need to evaluate the objective function for each action, we still need to check for each action
if the resulting state is feasible. We can reduce the computational complexity of this check by
exploiting the constraints (3.2): These constraints yield upper bounds for the variables. Thus,
the search can be limited to

at � pawd
t , ard

t , a
gd
t , a

wr
t , agr

t , a
rg
t q P A ..� r0, c3s�r0, c1s�r0, dts�r0, c2s�r0, c2s�r0, c1s, (6.2)

where c1 � mintrt, γdu, c2 � mintrmax � rt, γcu and c3 � mintwt, dtu. This reduces the
computational burden: In our case, the feasible points now make up between 2.5%�10% of the
constrained action space A.

At closer inspection, we see that the length of the optimization step is closely linked to the
size of demand, as shown in Figure 6.15:
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Figure 6.15: Relation between optimization length and demand function

This can be attributed to the structure of (6.2): Of the relevant variables rt,wt, dt, demand
most directly influences the size of A. In most stages, the storage exceeds the discharge capacity
but is also well under the maximum storage amount. We then have c1 � γd and c2 � γc,
therefore the storage does not influence the size of the action space A in practice. It is only in
the later stages (around t � 80) that we typically have storage close to zero while demand is
not zero. This is also where the plot of the policy improvement length departs more strongly
from the shape of the demand curve. The discrete nature of the state space is reflected in the
stepfunction-like ascent in the function.

20Here we consider the continuous action space as

A � r0,max ds � r0,max ds � r0, γds � r0, γcs � r0, γcs � r0, γds,

where d is again demand. Considering that for these benchmark problems max d � 7, γc � γd � 5, and the
discretization step is of size one, the discretized action space then has 8� 8�6�6� 6�6 � 82944 actions in total.
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6.5 Summary of the evaluation and outlook

In this chapter, we tested and analysed the approximate policy iteration algorithm using GPR as a
VFA which originates from [JPP�14]. Our main result is that with the right choice of parameters,
the algorithm performs much better than previously found: In particular, with a suitable choice
of the initial policy and of the hyperparameters we achieved an increase in optimality rate of 10
percentage points. Both choices determine the range of optimality as well as overall behaviour
(for example whether the performance improves over the course of iterations or not). The big
impact of the initial policy choice (see Figure 6.3) reflects the fact that the initial policy is the
driving factor of the quality of the approximate value samples on which the first VFA is trained.
We also note that while we use general purpose methods (API, GPR), the algorithm’s good
performance relies on a problem-specific choice of initial policy.

The choice of hyperparameters is equally important. Among the values tested we found
that a fixed small signal variance and a bigger noise variance work best. Hyperparameter op-
timization via maximization of the marginal likelihood did not yield optimal parameters and
instead lead to a poor performance. Our results suggest that this failure is not due to numerical
instabilities caused by "too close" points, but it remains an open question why exactly the hyper-
parameter optimization does not work. We also saw that the choice of hyperparameters depends
on the sample size used in the policy evaluation. Consequently it is not clear whether (with a
right choice of hyperparameters) increasing the sample size can always improve the performance
of the algorithm.

Scaling the state variables improves the performance of the algorithm, while scaling the
target variables fundamentally worsens it. The former can be attributed to increased numerical
stability in calculating the inverse in the evaluation of the GPR. The latter may be caused by the
high variance of the target values (in particular the targets have a higher variance than the state
variables).

However, although the results are promising, the approach might be limited: We observe
that training and test error are high and do not improve, even when overall performance is good.
This seems to suggest a high bias in the modelling and that the GPR may not be a very accurate
model for the true value function. We also note that the approximate optimal policy computed
by the algorithm varies significantly from the exact optimal policy. Similarly, the storage paths
produced by the approximate optimal policy do not coincide with the exact optimal storage
paths, though the overall behaviour is the same. In particular, the algorithm stores less on average
and has a lower variance in storage outcomes. However, deviation from the optimal policy and
the optimal storage paths is not necessarily an indicator for bad performance.

We suggest the following ideas for further investigation and for further improvement of the
algorithm: It still remains to find a rule for the optimal choice of hyperparameters. Automated
hyperparameter optimization using marginal likelihood does not seem to work. Gridsearch is a
possibility, but is in general too expensive, since we need to run the whole algorithm to evaluate
the performance (the optimality rate). Additionally, the performance can potentially be increased
by improving the VFA: Proposition 3.1 shows that the true value function is concave in the
storage dimension. As of now, this is regularly violated in the implementation (consider for
example Figure 6.13). Enforcing concavity through shape-constrained GPR as described in
[WB16] might thus reduce the approximation error (it might also address the high bias from
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above) and consequently lead to better results. Likewise, testing other kernels in the GPR might
address the high bias problem. Another starting point for improving the algorithm can be to
choose a different method of sampling of initial states in the policy evaluation step (see Line 6
in the algorithm). Currently this is done by uniform sampling, but of course the states do not all
have the same likelihood under the true stochastic exogenous information processes.
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7 Conclusion

In this thesis we investigated and improved the performance of an existing approximate policy
iteration approach by Jiang et al. [JPP�14] using Gaussian Process Regression and applied it to
a wind energy storage problem.

For that purpose, we first gave an extensive overview over the theoretical framework of
Dynamic Programming (DP) in Chapter 2 and derived the policy iteration method from the Dy-
namic Programming Principle. We discussed convergence and other theoretical properties. In
Chapter 3, we provided a detailed description of the wind energy storage application. The prob-
lem in this storage application is to find a profit maximizing storage policy which smoothens
fluctuations in wind energy, price and demand. We motivated the modelling decisions and as-
sumptions. In Chapter 4 we generalized the DP methods from Chapter 2. We presented Ap-
proximate Dynamic Programming (ADP) methods such as value function approximation and
discussed other options for algorithm design.

As the final building block of the necessary theoretical groundwork for the algorithm we
gave a detailed introduction to Gaussian Process Regression (GPR) in Chapter 5. We explained
the main ideas and addressed the topic of hyperparameter selection using marginal likelihood
as a measure of optimality. We then presented the approximate policy iteration approach using
GPR by Jiang et al. [JPP�14] and explained how the ADP methods were applied in this specific
algorithm. We proposed a heuristically motivated initial policy choice. We also addressed how
this specific wind energy storage problem was solved in the literature.

In Chapter 6, we analysed the approximate policy iteration algorithm in detail and discussed
our own implementation choices. We found that with our choice of initial policy and a suitable
choice of hyperparameters of the GPR we could achieve an improvement of about 10 percentage
points (yielding an overall optimality rate of about 97%). These results show that general pur-
pose methods such as approximate policy iteration using popular machine learning methods as
value function approximations perform better than previously found in the literature [JPP�14].
We note however that the good performance of the algorithm relies on incorporating problem-
specific information in form of an initial policy tailored to the application. We illustrated the
impact of the initial policy on overall performance and demonstrated the effectiveness of our
heuristically motivated initial policy choice. We analysed the impact of the hyperparameter
choice on overall performance. We found that for this application, GPR with a small signal
variance relative to the noise seems to work best. Additionally, we showed that feature scaling
improves the algorithm performance significantly.

Though our results are promising and imply that the approximate policy iteration can be
an effective choice, a high training and testing error suggest that this particular choice of value
function approximation may not be a very accurate choice. Possible steps to improve the model
choice would be to test other kernels or to add shape constraints in the GPR to exploit properties
of the underlying value function such as concavity. Another important question that requires
further investigation is how to choose the hyperparameters of the GPR optimally. We found
that model selection by maximizing the marginal likelihood did not achieve desirable results.
Similarly, the tuning of the initial policy could increase the optimality further.
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[BSB10] L. Buşoniu, B. D. Schutter, and R. Babuška. Approximate dynamic programming and
reinforcement learning. In Interactive collaborative information systems, pages 3–44.
Springer-Verlag, Berlin, Heidelberg, 2010.

[CBJK08] L. M. Costa, F. Bourry, J. Juban, and G. Kariniotakis. Management of energy storage
coordinated with wind power under electricity market conditions. In Proceedings of
the 10th International Conference on Probabilistic Methods Applied to Power Systems,
pages 259–266. 2008.

[Duv14] D. Duvenaud. Automatic model construction with Gaussian processes. PhD thesis,
University of Cambridge, 11 2014.

[EAS17] C. Erickson, B. E. Ankenman, and S. M. Sanchez. Comparison of Gaussian process
modeling software. European Journal of Operational Research, 2017.

[ES98] L. Evans and A. M. Society. Partial Differential Equations. Graduate studies in math-
ematics. American Mathematical Society, 1998.

[FF13] M. Falcone and R. Ferretti. Semi-Lagrangian Approximation Schemes for Linear and
Hamilton-Jacobi Equations. Society for Industrial and Applied Mathematics, 2013.

[FS02] E. A. Feinberg and A. Shwartz. Handbook of Markov Decision Processes - Methods
and Applications. Springer US, 2002.

[GP01] G. A. Godfrey and W. B. Powell. An adaptive, distribution-free algorithm for the news-
vendor problem with censored demands, with applications to inventory and distribution.
Management Science, 47(8):1101–1112, 2001.

[GPy12] GPy. GPy: A gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.



REFERENCES 71

[GWE] Global Wind Energy Council. Wind in numbers. http://gwec.net/global-
figures/wind-in-numbers/. Accessed: 2018-08-05.

[HD11] L. Hannah and D. Dunson. Approximate dynamic programming for storage problems.
Proceedings of the 28th International Conference on Machine Learning, pages 337–
344, 2011.

[HE16] J. Han and W. E. Deep learning approximation for stochastic control problems. Deep
Reinforcement Learning Workshop, NIPS, 2016.

[How60] R. Howard. Dynamic Programming and Markov Processes. Published jointly by the
Technology Press of the Massachusetts Institute of Technology and Wiley, New York,
1960.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning - Data
Mining, Inference, and Prediction. Springer-Verlag New York, 2nd edition, 2009.

[IEAa] International Energy Agency. Share of sources in renewable electricity gen-
eration. https://www.iea.org/statistics/?country�WORLD&year�
2015&category�Key%20indicators&indicator�ShareRenewGen&mode�
chart&categoryBrowse�false. Accessed: 2018-08-05.

[IEAb] International Energy Agency. Wind electricity generation. https://
www.iea.org/statistics/?country�WORLD&year�2015&category�Key%
20indicators&indicator�WindGen&mode�chart&categoryBrowse�false.
Accessed: 2018-08-05.

[JP15] D. R. Jiang and W. B. Powell. An approximate dynamic programming algorithm for
monotone value functions. Operations Research, 63(6):1489–1511, 2015.

[JPP�14] D. R. Jiang, T. V. Pham, W. B. Powell, D. F. Salas, and W. R. Scott. A comparison of
approximate dynamic programming techniques on benchmark energy storage problems:
Does anything work? In 2014 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, pages 1–8. 2014.

[KHH03] M. Korpaas, A. T. Holen, and R. Hildrum. Operation and sizing of energy storage for
wind power plants in a market system. International Journal of Electrical Power and
Energy Systems, 25(8):599 – 606, 2003. 14th Power Systems Computation Conference.

[KP11] J. H. Kim and W. B. Powell. Optimal energy commitments with storage and intermittent
supply. Operations Research, 59(6):1347–1360, 2011.

[LGM16] A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of classification-based policy
iteration algorithms. Journal of Machine Learning Research, 17(19):1–30, 2016.

[Mac98] D. J. MacKay. Introduction to gaussian processes. NATO ASI Series F Computer and
Systems Sciences, 168:133–166, 1998.



72 REFERENCES

[MXZ06] C. A. Micchelli, Y. Xu, and H. Zhang. Universal kernels. Journal of Machine Learn-
ing Research, 7:2651–2667, December 2006.

[Nea96] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

[Ng17] A. Ng. Lecture notes in machine learning (CS229), 2017.

[Øk00] B. Øksendahl. Stochastic Differential Equations: An Introduction with Applications.
Springer-Verlag, 2000.

[PB79] M. L. Puterman and S. L. Brumelle. On the convergence of policy iteration in stationary
dynamic programming. Mathematics of Operations Research, 4(1):60–69, 1979.

[PIB] Presse- und Informationsamt der Bundesregierung. Wie funktioniert der Strom-
markt. https://www.bundesregierung.de/Content/DE/Artikel/2014/08/
2014-08-04-so-funktioniert-der%20strommarkt.html. Accessed: 2018-07-
24.

[Pow07] W. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensional-
ity. Wiley Series in Probability and Statistics. Wiley, 2007.

[Pow11] W. Powell. Approximate Dynamic Programming I: Modeling. In Encyclopedia of
Operations Research and Management Science. John Wiley and Sons, 2011.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[PVG�11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learn-
ing in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[Rus96] J. Rust. Chapter 14: Numerical dynamic programming in economics. volume 1 of
Handbook of Computational Economics, pages 619 – 729. Elsevier, 1996.

[RW05] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[SB17] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2nd (complete draft, forthcoming) edition, 2017.

[Sha53] L. Shapley. Stochastic games. Proceedings of the national academy of sciences,
39:1095–1100, 1953.

[Sma] Bundesnetzagentur. Großhandelspreise. https://www.smard.de/blueprint/
servlet/page/home/wiki-article/446/562. Accessed: 2018-07-24.

[SP17] D. F. Salas and W. B. Powell. Benchmarking a scalable approximate dynamic program-
ming algorithm for stochastic control of grid-level energy storage. INFORMS Journal
on Computing, 30(1):106–123, 2017.



REFERENCES 73

[SR04] M. Santos and J. Rust. Convergence properties of policy iteration. SIAM Journal on
Control and Optimization, 42(6):2094–2115, 2004.

[SS16] A. A. Shardin and M. Szölgyenyi. Optimal Control of an Energy Storage Facility Under
a Changing Economic Environment and Partial Information. International Journal of
Theoretical and Applied Finance, 19(4), 2016.

[Van01] R. Vanderbei. Linear Programming: Foundations and Extensions. International Series
in Operations Research & Management Science. Springer US, 2001.

[WB16] X. Wang and J. Berger. Estimating shape constrained functions using gaussian pro-
cesses. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1–25, 2016.

[WID] Windindustrie in Deutschland. The power market. https://www.windindustrie-
in-deutschland.de/fachartikel/the-power-market-how-it-works-its-
players-and-pricing/. Accessed: 2018-07-24.


