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Notation

N the set of natural numbers: {0,1,2,3,...}
R the set of real numbers
[m:n] the subset of N containing all elements from m until n

A A Matrix
aij Entry of the matrix A at the crossing of ith row and jth column
1 The identity matrix
v a vector
v; ith entry of vector v
1 column vector with all entries one
Abbreviations

FE finite element
PDE partial differential equation
LE Laplacian Eigenmaps






1. Introduction

With the exponential growth in both processing and storage capacities of modern
computers over the past decades, it is now possible to create, collect and store
huge amounts of raw, high-dimensional data. It is however nearly impossible for
humans to sort and process all of this information. This led to a rise of so-called
machine learning methods, algorithms that work on the data to group and process
it in a meaningful way. Especially interesting in this context are the unsupervised
learning methods, which do not need any more information than the data itself.
One important example for this class of methods is clustering, i.e. a division of the
raw data into groups of “similar” items. An example application would be online
retailing, where it is interesting to segment the customers according to their shop-
ping preferences. A second, similar class of algorithms is formed by embedding
methods. Here, the algorithm works on the high dimensional data and tries to
identify a smaller set of underlying (virtual) parameters, which are enough to de-
scribe the data in a meaningful way. Embedding methods are for example used to
make relations between high-dimensional data points visible for a human observer
by mapping them into 2 or 3 dimensions.

So-called spectral clustering and spectral embedding methods are modern and often-
used tools to perform such a data analysis. First developed in the late nineties
for image segmentation purposes [SM00], today such methods are employed to
arrange, interpret and analyze all sorts of data, from crash test simulations via
customer analysis in online trading to the classification of diseases. Mathemati-
cally, these methods are based on the spectral decomposition of a matrix containing
information about the similarity between the data points [Lux07].

However, all spectral learning methods are based on the assumption that the rel-
evant data points are given at training time, i.e. the moment the embedding or
clustering is calculated. For out-of-sample points that are to be taken into account,
a new matrix has to be set up and a new, computationally expensive eigendecom-
position needs to be run. This problem does not only occur in the online case,
where we will encounter new data points and want to cheaply evaluate them “as
they come”. Alternatively, one might have a very large data set, and the solution
of the resulting large eigenvalue problem (classically in O(n?)) would simply be
too costly. In this case, if one has access to an efficient out-of-sample-extension
algorithm, one can split the data into a small training set, on which one runs the
expensive parts of the computation, and a larger out-of-sample set that can be
processed by a simple function approximation.

A common approach to tackle this problem is the data-based Nystrom method
[BPV104]. Here, the evaluation function is constructed via an extrapolation
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based on kernel functions over the training data points. In this thesis, we in-
stead follow an alternative, grid-based approach by Peherstorfer, Pfliiger and Bun-
gartz [PPB11]. As traditional grids suffer from the curse of dimensionality and
are thus not feasible for the usually very high-dimensional data analysis problems,
the authors apply the sparse grid technique. This method was originally proposed
for high-dimensional quadrature [Smo63] and has been widely expanded over the
years. Today it is applied successfully in many different fields of mathematics,
mostly the numerical solution of partial differential equations [BGO04]. Its suc-
cess is based on the fact, that instead of @(n?) grid points in d dimensions, only
O(n(logn)¥=1) grid points are needed to approximate sufficiently smooth func-
tions, at a similar quality.

In contrast to Peherstorfer et al., who use the classic sparse grid method based on
rather complicated, hierarchical basis functions, we suggest to instead apply sparse
grid combination techniques to the problem of out-of-sample-extension. This class
of methods decomposes the sparse grid to several coarser, anisotropic grids, which
are easier to implement and to handle. An approach to using the optimized com-
bination technique (Opticom) has been presented by Garcke in 2014 [Garl4], but
has not yet been analyzed in more detail.

The aim of this thesis is first to comprehensively collect results on the numerical
(finite-element-based) solution of eigenvalue problems, on the sparse grids com-
bination techniques and on spectral embedding algorithms and to combine them
all for derivation and analysis of a new algorithm for out-of-sample-extension for
spectral data analysis. The theoretical considerations will be sided by numerical
experiments, using program code that has been newly implemented to support
this thesis.

Contributions
The main contributions of this thesis can be summarized as follows:

e Introduction of a framework to perform out-of-sample-extension for Lapla-
cian Eigenmaps using the optimized sparse grids combination technique (Op-
ticom)

e Comprehensive overview over underlying methods and presentation of the
new approach in several contexts

e Extensive, class-based implementation of the proposed framework in C++

e Practical and theoretical analysis of the algorithm

Layout

The thesis is structured as follows. The next three chapters outline the basic
frameworks that will be applied subsequently, beginning with Chapter 2 on the
numerical approximation of eigenvalue problems. Here, some numerical solvers



for matrix eigenvalue problems are introduced, followed by an outline of the so-
called Babuska-Osborn theory for the finite element approximation of eigenvalue
problems.

Chapter 3 will then proceed to sparse grids methods, where the focus lies on the
combination technique and the optimized combination technique (Opticom) and
the application of these techniques to problems related to the applications in this
thesis, namely machine learning and eigenvalue problems.

The idea of spectral data analysis methods is then described in detail in Chapter 4,
where we start with a general motivation and overview to then describe one of the
algorithms, Laplacian Eigenmaps, in detail. This chapter also covers convergence
results for this family of spectral methods and gives a brief introduction to the
existing approach for out-of-sample-extension, the so-called Nystrém method.

In the following Chapter 5 we will use these foundations to establish and analyze
our new proposed algorithm. We will consider the challenges and advantages of
this new approach, show how it can be interpreted in existing frameworks and
analyze its complexity.

This will be followed up by a chapter on numerical experiments, Chapter 6, where
the algorithm is put to the test in several different clustering and embedding set-
ups. Moreover, some studies on parameter choices and consistency are performed.
The concluding Chapter 7 will outline the results and provide a more general
outlook for the topic.






2. Numerical Treatment of Eigenvalue
Problems

Numerical methods are applied to solve or approximate eigenvalue problems in
many domains, from iterative methods for the eigendecompositions of large ma-
trices to finite-element-methods for the computation of eigenfunctions of infinite-
dimensional differential operators.

The problems considered in this thesis lie in between these applications: The orig-
inal problems from machine learning are finite-dimensional and stated as matrix
problems (however possibly quite large). At the same time, we intend to find
continuous functions extending these finite-dimensional eigenvectors, and to that
end we apply finite element grids.

To deal with the arising finite-dimensional problems, we will shortly summarize
Krylov subspace methods for the eigendecomposition of matrices, as well as the
FEAST algorithm, which we use in our proposed algorithm.

As the sparse grid techniques (introduced in the subsequent Chapter 3) have al-
ready been applied for the determination of eigenvalues and -functions of differen-
tial operators, and we will consider similar (but unknown) operators, we will then
present the very basics of the Babuska-Osborn theory [BO89, BO91], which consti-
tutes the foundation for the finite-element approximation of eigenvalue problems.

2.1. Matrix Eigenvalue Problems

Let us start with the well-known definition of the eigenvalue problem for a real,
square matrix.

Definition 1 (Eigenvalues of a real square matrix).
A scalar A € R is called an eigenvalue of the square matriz A € R™", if there
exists a nonzero vector x € R™ such that

Ax = Ax. (2.1)

The wvector x is called an eigenvector of A associated with A. The set of all
eigenvalues of A is called the spectrum of A and is denoted by A(A).

In the following, we will briefly describe a class of numeric techniques to solve such
eigenvalue problems, especially in the case of large and sparse matrices. Let us
just add a note in beforehand: The problems considered in this thesis are often
not in the standard form 2.1, but stated in the so-called generalized form, with
another square matrix B € R"*" on the right hand side:

Ax = \Bx. (2.2)
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In that case, we call A a generalized eigenvalue and x the corresponding general-
ized eigenvector. Trivially, this problem could be reduced to the standard form as
B~'Ax = M\x. However, this will not be possible, if the matrix B is singular. In
that case still, generalized eigenvalues of Problem 2.2 may exist [Saall].

If the matrices A and B are both symmetric and B is positive definite, the stan-
dard algorithms for the symmetric case (especially the Lanczos methods, presented
subsequently) can also be applied under some modifications [Saall]. Most impor-
tantly, the Euclidean inner product will need to be replaced by the inner product
defined by B, (z,y) 5 := (z, By).

2.1.1. Krylov Subspace Methods

The matrices considered in this thesis are often grid based and thus have the po-
tential to become very large. Unfortunately, many established methods for the
solution of eigenvalue problems of a given matrix A € R™*"™ such as the power
method, the QR decomposition or Jacobi methods [GL12] require computational
efforts of order O(n?), which will be unfeasible for large n.

The class of so-called Krylov subspace methods works in a way that avoids ex-
pensive matrix-matrix operations but instead uses only matrix-vector operations.
Starting with a vector z € R™ one calculates Az and iteratively A2z and so on.
The k-dimensional subspace spanned by these vectors,

R" 5 Ky (A, z) := span(z, Az, A%z, ... AF1z)

is called a Krylov subspace. Well-known examples of algorithms for the solution
eigenvalue problems via working on these spaces are the Lanczos algorithm for Her-
mitian eigenvalue problems and the more general Arnoldi’s method. Both methods
are based on the use of orthogonal projections onto Krylov subspaces. To this end,
an iterative algorithm is performed, starting with an initial vector z € R™, chosen
randomly or applying some sort of filter z = p(M)z® on a random z(®) e R™.
In iteration & of the algorithm an orthonormal basis of i_1(A, z) is extended to
an orthonormal basis of (A, z) via a variation of the classical Gram-Schmidt
orthogonalization process. Then, one computes the eigenvalues of the orthogo-
nal projection Hy of A onto the subspace. These so-called Ritz eigenvalues will
typically converge to the extreme eigenvalues of A. In the general Arnoldi case
however, a thorough mathematical foundation has not yet been given. The Lanc-
zos case for symmetric matrices A has a more complete theory [Saall].
Especially for large sparse matrices, where these matrix-vector-operations can be
implemented very efficiently, Krylov subspace methods have become the standard
method to solve eigenproblems.

We will refrain from going further into detail, as in this thesis we applied a modern,
alternative solver: FEAST, introduced in the upcoming section. A very thorough
overview on the numerical solution of matrix eigenvalue problems that gives many
different statements and implementations of the aforementioned algorithms can
be obtained from the classic textbooks by Saad [Saall] (especially Chapter 6) and
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Golub and Van Loan [GL12] (especially Chapter 10).

2.1.2. The FEAST Algorithm

For the matrix eigenvalue problems in this thesis, we applied a rather modern
approach: the so-called FEAST algorithm developed by Eric Polizzi [Pol09]. It
was especially designed for large sparse generalized eigenproblems, and is built in
a way that allows for parallelization at multiple steps in the algorithm.

The algorithm is based on ideas from quantum mechanics, the so-called density
matrix-method and the contour iteration technique [Pol09]. For a given interval
[Amin, Amax] Or a contour in the complex plane, it will find all eigenvalues within
that contour and the associated eigenvectors. To this end, the algorithm performs
a numerical integration along a complex contour by solving several independent
linear systems, each with varying right hand sides. Then an eigenvalue problem
is produced, which is several orders of magnitude smaller (the size of the number
of eigenvalues present inside the given interval/contour) and can be solved with
a standard method like the QR algorithm. All computational complexity thus
stems from the linear systems on the contour, which can be solved in parallel
and very efficiently with modern solvers. Due to the broad theory from different
fields of mathematics and quantum mechanics, we will not describe the algorithm
in further detail, but refer to the original publication [Pol09] and the additional
paper [PT14], in which the authors proved, that their algorithm corresponds to a
certain class of subspace iteration methods (cf. [Saall], Chapter 5) combined with
a filter based on a spectral projection. For the understanding of the work in this
thesis, this basic characterization of the method will be sufficient.

2.2. Finite Element Approximation

For the approximation of eigenvalues and eigenvectors of differential operators,
finite elements methods have been established as a valuable numerical tool. As in
the classic Ritz-Galerkin approach for boundary value problems, we start from a
variational formulation of the eigenvalue problem [Bof10, BO91]. In the remainder
of this section, unless otherwise specified, we use notation and definitions accord-
ing to the extensive survey on finite element approaches to eigenvalue problems
by Boffi, [Bof10].

Let V and H be real Hilbert spaces, V C H compactly embedded and a :
VxV —Randb: Hx H— R be symmetric and continuous bilinear forms.
We additionally suppose that a is coercive,

Ja > 0, such that a(v,v) > « H'UH%/ forallv eV,
and that b is positive definite, i.e.,

b(v,v) >0 forallve V\{0}.
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Then we can formulate the following symmetric variationally posed eigenvalue
problem:

Problem 2 (Symmetric variationally posed eigenvalue problem).
Find A € R and w € V '\ {0} such that

a(u,v) = Ab(u,v)  forallveV. (2.3)

We then call A\ a generalized eigenvalue of 2.3 and the corresponding element
u € V '\ {0} the associated eigenvector. If b corresponds to the scalar product of
H, as is often the case in applications, A is simply called an eigenvalue of 2.3.

To find a solution to Problem 2, we analyze it in terms of the well-understood
spectral theory for compact operators. To this end, we consider the solution
operator T': H — H. By the Lax-Milgram theorem and our assumptions, given
any f € H there is a unique T'f € V fulfilling

a(Tf,v) =b(f,v) forallvelV.

Due to our assumption that V' C H compactly, making 7" a compact operator,
we can now apply results from spectral theory on compact, self-adjoint opera-
tors [Kat76, Alt12]. We can deduce that for Equation 2.3 there exists an infinite
sequence of eigenvalues, 0 < A1 < Ao < A3 < ..., and their assigned eigenfunctions
u1, U9, U3, . . . are orthogonal with respect to the bilinear forms a and b:

a(ug,uy) = b(ug,w) =0 if k #1.

In case of multiple eigenvalues, the eigenfunctions can be chosen from the respec-
tive eigenspace, such that these orthogonalities hold as well.

Additionally, the eigenfunctions are considered normal in the sense that b(uy, ug) =
1. Note that this normalization is unique only up to its sign.

If b is the scalar product on H the eigenfunctions will thus constitute an orthonor-
mal basis of H.

To pass to a finite-dimensional approximation of the eigenvalue problem, we con-
sider the Rayleigh quotient R : V' \ {0} — R for Problem 2:

It can be shown, that the Rayleigh quotient is closely connected to the eigenprob-
lem, as

A1 = min R(v), wu; =argminR(v
LSy ) = i R
and
A= min R(v), wu; = argmin R(v),
veUi\{0} veUk \{0}

10



2.2. Finite Element Approximation

where Uy = span{ui,...,ux} and the orthogonal complements are taken on V
with respect to the scalar product induced by b.

For the Galerkin-discretization of problem (2.3) we choose a finite-dimensional
subspace V;, C V and consider the discrete problem:

Problem 3 (Discretized eigenvalue problem).
Find A\, € R and up, € Vi, \ {0} such that

a(up,vp) = Apb(up,vp)  for all vy, € V. (2.4)

From here, we can take the same steps as before for the analysis of the problem:
V}, is a Hilbert subspace of V', so we can define a discrete solution operator Ty, :
H — H, which is uniquely defined and compact. In particular, we can deduce
that there exists a finite set of discrete eigenvalues, 0 < A1 < Ap2 < ... < Ay N
with V € N the dimension of V},. The associated eigenvalues uj 1, up 2, ..., upN
fulfill the same orthogonalities as the continuous ones,

a(upk, upg) = b(ung,upy) =0 if kK #1,

and analogous results hold for the discrete versions of the Rayleigh quotients.
The applicability of this Galerkin-method now depends on the relationship be-
tween the discrete and the original eigenvalues. And indeed, using the Rayleigh
quotient and the min-max-characterization [Bof10],

A, = min max R(v), where V¥ ={W CV |dim(W) =k},
EeVk vEE
which is also valid for the discrete problem, it can be shown that for a conforming
approximation V;, C V the exact eigenvalues are bounded from above by their
discrete counterparts [Bof10],

A < )\h,k for all k € [1:N].

Based on these results, one can safely apply Galerkin discretizations to approxi-
mate the eigenvalues of Equation 2.3. A classic choice of spaces are finite element
spaces, for which convergence of the discrete eigenvalues to the exact ones can be
proven for declining mesh widths.

Like for the Ritz-Galerkin methods for the solution of partial differential equa-
tions, we can then treat the computation of the eigenvalues and eigenfunctions of
Problem 3 as a classic matrix eigenvalue problem: We choose V}, as a finite-element
space with nodal basis & = {(;Sl}fi ;- Then we can represent the eigenfunctions
up, € Vp, via their coefficients in that basis representation, u = Zfil c;¢; and test
against this basis ®, representing all v;, € V}, in Equation 2.4. Thus one obtains
the generalized matrix eigenvalue problem

Ac = )\,Bc,

11
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with the matrices A, B € RV*N | a;; = a(¢;, ¢;) and b;j = b(¢;, ¢;) discrete ver-
sions of the bilinear forms a and b. This problem then may be solved with, e.g.,
one of the methods introduced in the previous section.

In this thesis, we will need the applicability of the Galerkin method for eigenvalue

problems to apply the Opticom method to eigenvalue problems, as in Section 3.3,
and to provide a numerical derivation of our algorithm in Chapter 5.

12
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In this chapter we will present the foundations of the sparse grid method. We will
begin with a brief introduction of the idea and technique itself and then proceed
to the description of combination techniques. This class of techniques will in some
cases allow for a more efficient computation, while still being comparably accurate.
For this thesis, the focus will be on an application of the optimized combination
technique (Opticom), which will therefore be presented in more detail.

To conclude the chapter, we will show previous applications of Opticom and the
classic combination technique for eigenvalue problems as well as for machine learn-
ing, since some of the challenges encountered in these scopes carry over to the
setting of this thesis.

3.1. Overview

The sparse grid technique has been developed by Zenger [Zen91] in 1990 to effi-
ciently discretize function spaces in high dimensions. Originally designed in the
context of solving partial differential equations, the method now is applied in var-
ious different numerical settings, from physics simulations over machine learning
applications to financial mathematics.

The technique is based on an idea by Smolyak [Smo63] aiming to counter the
curse of dimensionality in numerical integration. Key idea is to use sparse tensor
products of a hierarchical basis of piecewise linear functions. The classical nodal
basis of hat functions can be replaced by such a hierarchical basis spanning the
same function space and can then be reduced by omitting those basis functions
with a small contribution to the overall approximation. In this section, we will
mostly follow the derivation of sparse grids provided by Jochen Garcke in his sur-
vey [Garl3]. His approach is designed to lead to the introduction of the sparse
grid combination techniques, which will be applied in this thesis.

For simplicity, we consider the d-dimensional unit cube Q = [0, 1]d. All results
and definitions are applicable for any bounded rectangular domain by suitable
rescaling.

We will start the construction of sparse grids with the classical full grid discretiza-
tion approach for anisotropic grids. This discretization is defined via a level vector
1 € N?, yielding the grid

Ql::{xeﬁ‘xi:jﬂ_li for all i € [1:d],j € [O:Qli]}

13
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and corresponding multilinear nodal basis functions,
d

Dy j(z) = H¢livji (zi)
i=1

with j the multivariate position index, j; € [0:211] for all 4 € [1:d], and ¢;; the
well-known one-dimensional hat functions,

o t=e2t =] e e (G127 G+ D27 N[0, 1]
91(@) = {0, otherwise.

As usual, the mesh width in the i-th coordinate direction is defined by h; = 27,
We denote the resulting full grid space corresponding to the grid ; by

Vlzzspan{in,j ‘jie [0:21’} for all i € [1:d]}.

For an isotropic full grid, we will in our notation replace the vector 1 € N¢, [; = k
constant for all ¢ € [1:d], with the respective scalar k € N.

To now construct sparse grids, let us consider a classic isotropic full grid Q, k
fixed, and switch to a hierarchical basis of its associated function space Vj. This
basis is built starting with the basis functions of the coarsest subgrid V; and then
repetitively extended by adding basis functions from the next finer level as follows.
Let
. ::{{je [0:21] | jodd}, 1>1
{0,1}, =0

be a one-dimensional index set and let the Cartesian product Z; = Hle 1, be
the corresponding multi-dimensional index set. For every 1, Z; denotes the indices
that were not present in any of the smaller levels.

In Figure 3.1, for each level [ the respective indices of Z; in one dimension are
marked in bold font.

Then W :=span({ @15 | j € Z1 }) is a hierarchical increment space, as

d
M =W\ PV,
=1

where e; denotes the i-th unit vector and Vj := 0 if [; < 0 for any i € [1:d]. Thus
we can write the isotropic full grid space Vi as a direct sum of these increment
spaces:

Vie=Vig,.p) = @ 441
] <k

The first one-dimensional spaces W; and a comparison of the hierarchical and the
nodal bases are depicted in Figure 3.2 [FPR*10].

14
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I i =0
0 1
I 1 i =1
0 1 2
/\/\ .
0 1 2 3 4

Figure 3.1.: The one-dimensional spaces W; = span{¢;; | j € Z; } for I < 3. The
nodes from the index set Z; are marked in bold for each level.
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Figure 3.2.: On the left, the one-dimensional space V3 represented by its hierar-
chical basis as the sum of the increment spaces W1, Wy and W3, on
the right hand side the classic nodal basis representation for all spaces
Vi, © < 3. Note that the basis functions of the hierarchical increment
spaces have disjoint supports. Source of figure: [FPR*10].
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=1 =2 =3
=1 ® ? 3 ° siolole
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A * |

Figure 3.3.: The two-dimensional hierarchical subspaces of V3: Wy with 0 < I3 < 3,
0 < Iy < 3. The basis functions are formed as tensor products of the
one-dimensional ones. Using only the subspaces marked in black, one
obtains the somewhat optimal choice of basis functions for the sparse
grid space Vi, as defined in definition 4. Source of figure: [FPR*10].

Using the hierarchical basis, we can now write every piecewise linear function

f eV as
fl@)y= Y D> ajijx) = > filx),

| <kJ€Ty 1], <k

where the f; € W) denote the so-called hierarchical component functions of f.

As our aim is to reduce the complexity of the grid-based approximation while
keeping accuracy high, we can now determine which of the hierarchical component
spaces contribute the least to the approximation. If we measure the error both
in the L? or L*™ norm, the optimal (error versus number of grid nodes) choice
of basis functions is to use the spaces W with [l]; < k+d — 1. A detailed
proof and examples can be found e.g. in the extensive survey by Bungartz and
Griebel, [BG04]. Simply put, the importance of the basis functions diminishes with
the size of their respective supports, so we only keep the hierarchical increment
spaces with relatively large supports, cf. Figure 3.3.

The described cut-off now leads to the following definition of sparse grid spaces,
as provided by Zenger [Zen91]:

Definition 4 (Sparse grid function spaces).

Vo= @ W Li>0forallicl:d]
1|, <k-+d—1

Note that due to the positivity condition this definition does not contain any
degrees of freedom on the boundaries and is thus particularly useful for problems
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3.2. Sparse Grid Combination Technique

with Dirichlet boundary conditions. An alternative definition, used e.g. in [Gar13]
is

including degrees of freedom on the boundary. The respective grids will analo-
gously be denoted by QS’ . and Q7.

To precisely describe the approximation quality, we will consider functions from
the function space H2. ([0,1]%) = H%([0,1]) ® --- ® H?([0,1]), the Sobolev space
with dominating mized derivatives, which proves to be a very natural space working
with sparse grid functions, as it mirrors the tensor product structure of the hier-
archical basis functions. For details and the original definition see [Garl3, BG04].

Theorem 5 (Approximation quality of sparse grid functions).

In the L*- and L>-norms, the approzimation error for a function f € HZ2, in the
sparse grid space Vi, amounts to:
1f = filly = Og - k1), (3.1)
1f = fillo = Ohi - k).

Proof and approximation errors in further norms can be found in [BG04].
To finish the consideration of the properties of sparse grid spaces, we now look at
the number of degrees of freedom:

Theorem 6 (Number of inner grid points, [BG04]).
The dimension of the space Vi), i.e., the number of degrees of freedom or inner
grid points, is given by 7

Vi = 02" - k7).

Note that this complexity makes sparse grids a lot cheaper than the classic full
grid space Vj with size O(2F9), while the approximation quality is only slightly
worse.

As the sparse grids approach dampens, but not fully overcomes the curse of di-
mensionality, refinement techniques have been developed to further improve deal-
ing with higher dimensions, notably spatial adaptivity approaches [Pfl10] and
dimension-adaptive approaches [Heg02].

In the following sections, we will now consider combination techniques, a method

to use sparse grids without relying on the hierachical basis, but instead considering
them as the combination of several coarser, anisotropic grids.

3.2. Sparse Grid Combination Technique

To ease computation of the sparse grid method, the sparse grid combination tech-
nique [GSZ92] was introduced in 1992. Key idea is to consider a sequence of
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3. Sparse Grids

finite-element grids with their nodal bases, solve the problem on these spaces us-
ing efficient standard algorithms and then combine these solutions. To this end, we
represent the sparse grid {2} as the superposition of “classical”, coarser anisotropic
grids Q) with their respective function spaces V@,

Q=W u...um, (3.3)

A function f can then be discretized as a linear combination of the respective
discretizations on these subspaces,

fe = Zcifia (3.4)

7

with f; € V() and thus all the f; represented in a “simple” nodal basis structure.
This approach has several advantages: First, as mentioned above, for these well-
studied spaces, efficient algorithms to solve PDEs already exist. These make use
of the sparse structure of the standard FE matrices, a sparsity not given when we
use the hierarchical basis of sparse grids, due to the large supports of the low-level
basis functions intersecting with supports of many finer-level basis functions. Sec-
ondly, by splitting the problem into independent subproblems, the computation is
trivially parallelizable and thus can be implemented very efficiently.

The partial spaces considered follow a simplicial structure: We use those grids
whose levels 1 fulfill |1}, = k& — ¢ for all ¢ € [0:d — 1], or, to neglect the degrees
of freedom on the boundary, |I|; = £+ (d — 1) — ¢. The simplified indices from
Equation 3.3 are obtained by suitable numbering of the subspace levels.

In the following, we will use the term layers, where for each ¢ € [0:d — 1] the
respective layer is defined as the set of all grids with [l|; = k£ — ¢, see also Figure
3.4.

As several nodes of such a combined grid will appear in more than one of the
subgrids considered, we will need to apply the inclusion-exclusion principle from
combinatorics, yielding the following formula for the approximation of a function
f € H, with H some suitable function space:

- d—1
fi(x) =) (=) hix),
k q;) < ! ) mzk:—q |

or, with no degrees of freedom on the boundary (the natural case for PDEs with
Dirichlet boundary conditions),

d—1
f() :=Z<—1>Q(d‘1) ) (3.5)

q=0 ¢ 1], =n+(d-1)—q

Here, the f; € V] are the approximations of f in the standard nodal basis of the
regular anisotropic finite element space V) as defined in the section before,

2l 2la
f] = E oo E al,j(I)l,j-
=0 ja=0
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3.2. Sparse Grid Combination Technique

0 1 2 3 4 5 6

Figure 3.4.: The simplicial structure of the regular anisotropic grids that form the
combined sparse grid, for level [ = 6. The upper diagoal row, marked
in blue (the first layer of partial grids are these grids with [1|; = 6, the
green row marks the second layer with |1|; = 5. Often, one might wish
to leave out highly anistropical grids. As an example in the figure the
grids featuring only a resolution of 0 in one coordinate direction are
shaded lighter and might be left out in the method.

“““““ V4U ce .V‘d.l‘ e sz . e .
o CEEREEE o o
o .V.'z‘,o ..... V21 - ‘/-'1,2 - Vao,s
= Z Jig o, — Z Siq g _
l1+la=k I +ia=k-1 e e e

Figure 3.5.: The combination technique for two dimensions with level £ = 4. The
dotted grids in the first row are those belonging to the spaces V) with
1, = 4 (layer 1), the grids in the second row fulfill |1}, = 3. Combined
according to the combination formula, they form the sparse grid space
V¢, with the corresponding grid in the lower right corner. Source of
figure: [Gar13].
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3. Sparse Grids

Note that in the two-dimensional case, which will often be considered in this the-
sis, the binomial coefficients (dgl) in the equations simplify to 1. An example for
k = 4 is shown in Figure 3.5.

It can easily be shown that for function interpolation the combination technique
yields the same interpolant as the one obtained with the classical sparse grid
approach ff = f7, [GSZ92]. For the treatment of PDEs however, the solution
obtained with the combination technique does live on the sparse grid space V7,
but does not correspond to the solution yielded by the sparse grid technique with
hierarchical basis functions. However, if a certain pointwise error expansion holds,
both approximation errors are of the same order O(h? log(h,;l)) due to the can-
cellation of some high-order terms, [GSZ92].

As we will not consider the solution of PDEs in this thesis, we abstain from diving
deeper into detail here. Complete and concise explanations and proofs can be
found in the surveys [GSZ92, Garl3].

An alternative point of view to the combination technique is to consider the ap-
proximations on both the sparse grid space and the partial anisotropic full grid
spaces as projections onto those spaces. It can be shown that the approxima-
tion performed by the classical combination technique matches the sparse grid
approximation exactly, if and only if the projections on the partial spaces, Py,
commute [HGCO07]. As mentioned before, the identity holds true for interpolation
problems [GSZ92]. In applications, where this is not the case, numerical instabili-
ties may arise, as has been empirically observed for regression problems by Garcke
in his dissertation, [Gar04]. For such cases, an alternative approach has been
developed, which is based on the concept of projections: the opticom technique,
which will be presented in the next subsection.

3.3. Optimized Combination Technique

While the combination technique has often been successfully applied in the con-
text of partial differential equations, it has been observed to fail in some machine
learning applications such as regression, especially when there exist redundancies
in the data [Gar04]. Therefore, an alternate combination technique has been de-
veloped, that does not choose the coefficients ¢; in Equation 3.4 based on the grid
structure, but also takes into account the problem itself: the so-called optimized
combination technique (Opticom) [HGCO7].

Basic idea is the projection context, shortly introduced at the end of the past
section. For a function f € H, with H some suitable, problem-dependent function
space, we consider the projections onto the partial grids, Py, ) : H — V@ for all
1, and aim to combine those partial projections in a way minimizing the difference
to the projection onto the target sparse grid space, P : H — V,°. As in the past
section we assume a suitable numbering of the partial grids.
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3.3. Optimized Combination Technique

To identify the optimal combination coefficients ¢;, we aim to minimize the func-
tional J(c1,...,cm) = [|Pf— D clPV(z)f||2. A simple extension and use of the
projectivity property yield

J(er, .. yem) = |[PFAIP =2 " a{Pf.Pyaf) + 2. e (Pywf. Py ).
=1

i=1 j=1

We note that (Pf, Py, f) = (Py,f, Py, f) = ||Py; f||*. Deriving with respect to the
c;, and setting the derivative to zero to determine the optimum now yields the
system (cf. [HGCOT]):

1Py £ o APy [y Pyom f) c1 ||Pv<1)f||z
(Pyer [, Pyarf) - Py f, Pyan f) o | | [IPvefll
(Pyom £, Pyoy f) ... | Py oy 1| Cm | Py £

The solution vector ¢ of this system contains the so called optimized combination
coefficients, yielding an optimal combined solution

-1
f,gC(x):Z Z afi(x),

q=0[1];=k—q

where the indices have been replaced with the accordingly sorted anisotropic grid
levels.

Computationally, as this additional linear equation system is quite small, the so-
lution of it does not come in expensive. The calculation of the scalar products is
rather costly, though, as the projected functions do not live in the same spaces
V(@ Therefore they first need to be interpolated into a larger space which embeds
both relevant partial spaces and in the worst case is one order of magnitude larger
than the partial spaces.

It is important to note that the derivation of the optimal coefficients has been de-
veloped from a projection point of view, which is suitable in the common case of the
Galerkin solution approach to partial differential equations due to the Galerkin
orthogonality. In that case, the scalar products and norms are taken with re-
spect to the bilinear form a(-,-) defining the Galerkin equation of the problem:
a(PO f,v) = R(v) for all v € V),

In many other contexts though, the solutions on the partial grids cannot be inter-
preted as projections. The approach can nevertheless be applied in these cases by
observing that the equation system’s right hand side may also considered to be a
functional on the right-hand side of said Galerkin formulation, || Py, f||* = R(Py; f),
when choosing the partial solutions as the ansatz functions. Therefore, the opti-
com approach can also be transferred to other variationally posed problems, when
choosing such partial solutions as ansatz functions — problems such as the eigen-
problems, which will be considered in this thesis.
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3. Sparse Grids

The next two sections will show briefly, how both opticom and the classic combina-
tion technique have been employed to eigenvalue and machine learning problems,
and which challenges have been faced. Our approach in this thesis is tightly con-
nected to such applications.

3.4. Combination Techniques and Eigenvalue Problems

As we will apply both the classic and the optimized combination technique for a
certain eigenvalue problem in this thesis, we now present some classes of eigenvalue
problems where these methods have been applied successfully.
One of the first applications has been presented by Garcke and Griebel in 2000 for
quantum mechanics, namely to calculate the eigenvalues of the Born-Oppenheimer
approximation for the Schrédinger equation [GGO00]. In that paper as well as in
the underlying thesis [Gar98] the combination technique is applied to the three-
dimensional Schrodinger equation for hydrogen and the six-dimensional Schrédinger
equation for helium under the influence of both magnetic and electric fields.
Using the Born-Oppenheimer approximation [BO27] and some suitable simplifica-
tions, one obtains the problem

Hu = FEu

with H the electronic Hamiltonian operator, E the targeted eigenvalue and u the
corresponding wave function to be found [GGO00]. In weak form, this problem can
be stated as:

(Hu,v) = E (u,v) for all . (3.6)

This problem could be tackled using conventional finite element methods. Un-
fortunately those are not applicable due to the high dimensions of the problem,
leading to a need for storage and computational power that exceeds the capacities
of most modern computers. Therefore, a sparse-grids combination technique with
d-linear test and ansatz functions is applied. Classic finite elements eigensolvers
(cf. Chapter 2) can be used on the smaller anisotropic grids, and these partial
solutions will then be normalized and combined according to the combination for-
mula in Equation 3.5.

However, some challenges arose, and as they will also carry over for the problems
treated in this thesis, we will now present them in more detail, as well as present
the methods developed to work around them.

3.4.1. Challenges

A first challenge consists in the fact, that in comparison to PDE applications
with a single solution, eigenvalue problems have several eigenvalues that need not
have a consistent ordering. The eigenvalue A; on one of the anisotropic partial
grids does not need to (and mostly will not) correspond to A; on a grid with an-
other level, or the true i-th eigenvalue of the problem. As we need to identify
the eigenfunctions to combine them in a useful way, we have to find the “match-
ing” eigenfunctions on each of the grids. Here, Garcke suggested an algorithm
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3.4. Combination Techniques and Eigenvalue Problems

that orders the grids in a distinct way and for neighboring grids tries to identify
“matching” eigenfunctions by projecting the candidate functions onto a common
supergrid and match those with the lowest Euclidean distance. For the means of
their application, this method proved to work and enable good solutions [Gar98].
However, the authors emphazise, that it does not need to work, especially in the
presence of high anisotropies in the grids [GG00].

A second difficulty to face is the possible presence of multiple eigenvalues. In
that case, the corresponding eigenfunctions are not unique but may rotate in the
eigenspace. This problem can be intercepted by very slightly (in the order of
machine precision) modifying the size of the domain in the coordinate direction,
which lead to distinct eigenvalues while at the same time not influencing the error
order [Gar98|.

3.4.2. Opticom for Eigenvalue Problems

Some years later, after the successful application of the combination technique
for the Schrodinger equation, Garcke introduced a new algorithm [Gar08] that
tackles the same problem, but this time uses Opticom instead of the combination
technique.

As mentioned in Section 3.3, the Opticom approach is applicable here even with-
out a projection context, as the core problem 3.6 can be trivially stated as a
Galerkin problem. Thus we can use the partial solutions on the anisotropic grids
as Galerkin ansatz functions and determine the Opticom coefficients as solutions
of said Galerkin problem. Compared to the combination approach, this alternative
method was shown to reduce the error results obtained in [GG00] by a factor of 14.
While the challenges mentioned for the combination technique remain unchanged
(and were tackled with the same methods), Opticom has the additional advantage
that a scaling of the eigenfunctions on the partial grids for the combination is not
necessary prior to the combination as it is implicitly included in the calculation of
the combination coefficients.

So far, further studies to compare these methods for eigenvalue problems have not
been conducted. We note, however, that these first results indicate an advantage
of Opticom compared to the classic technique.

For the sake of completeness, let us shortly mention another, very different appli-
cation of Opticom for eigenvalue problems: Kowitz and Hegland [KH14] utilized
a variant of the technique to approximate the eigenvectors of the five-dimensional
linear gyrokinetic operator. Here however, a reformulation of Opticom was neces-
sary as this problem is neither based on a Galerkin formulation nor symmetric. We
will not go into detail on their method, as the problems considered in this thesis
are not closely related to the gyrokinetic problem — fortunately in our case, Opti-
com can be used in its standard form. It should nevertheless be noted, that in first
tests the modified Opticom method proved to be very promising in approximating
the solutions of the gyrokinetc problem.
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3. Sparse Grids

3.5. Combination Techniques and Machine Learning

For our work, another successful application of the sparse grids combination tech-
niques is important: the employment in problems of machine learning. In fact, the
optimized combination technique was even introduced [Heg02] as an instrument
to solve regression problems, a classic task in machine learning.

As some of the ideas and tools applicable in regression will have related concepts
in our proposed method, we will now introduce the regression (also known as
data fitting) problem and its sparse grid handling as described in [GGT01, Gar06,
GHO09] in more depth.

3.5.1. The Regression Problem

The classic regression problem is the following. Given is a data set of (possibly
high dimensional) data points with associated real values, S := {(x;,y;)};~; with
x; € R%y; € R for all i € [1:m]. We assume, that the y; are function values
of an unknown, continuous function h : R? — R, h(x;) = yi, and now aim to
reconstruct this function from the given data set in an optimal fashion.

To that end, we determine a function space V of functions over R? and introduce
the functional J : V — R,
m

D (F(xi) = w)* + AR -

i=1

1
T(f) =
The first term measures the residuals as a description of the closeness of f to the
known data, the second term is a regularisation functional R : V' — R that mea-
sures smoothness of the function f, mostly chosen to be a differential operator.
The inclusion of this term is necessary to obtain a well-posed problem [EHNO0O].
Finally, the regularization parameter A € R balances the two terms.

An optimal choice as the regression target function will now be the minimizer of
the functional, f* € V with
f*=argmin J(f). (3.7)
fev

To apply our grid based method, we reconsider the problem as a Galerkin problem,
yielding the equation

LS Feega) + AR, Ry = - > gy (33
=1 =1

which will be fulfilled by the minimizer of J, f*, for all ¢ € V [Gar04]. In a
next step, we choose the space V' as a space where the matching bilinear form a
constitutes a scalar product:

m

a(f.9) = -3 Foxa)glx) + A (R(F), Rl9))s.

=1
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In that case, the minimization 3.7 will be an orthogonal projection of the unknown
target function h into V' [Heg02].

For the sparse-grid-based solution we will choose a finite-dimensional subspace
VN C V with a basis {1#1}2]\;1 A function in Vy can thus be represented as
fn(z) = Zf\i 1 @t;. Using the basis functions as ansatz functions, from Equation
3.8 we can now directly obtain the linear equation system

(BB + AmC)a = B'aq, (3.9)

with B € RV>X™ the evaluation matrix of the basis functions at the data points,
bij = i(xj), and C € R¥*Y the matrix containing the L%-scalar products
cij = (R(¢5), R(1j)),- We can then solve this equation for the vector & € RV
and thus obtain the optimal solution fy of Equation 3.7 in V.

3.5.2. Regression with the Combination Techniques

For the sparse grid combination technique, we will discretize the space V via a
sparse grid space V,?. As described in the previous sections, the solution is then
combined as the sum Zle ¢; f; of the solutions f; obtained from discretizing the
problem on a sequence of k anisotropic subgrids. Note that if we use the gradi-
ent operator V as the regularisation operator, the matrix C will be the standard
stiffness matrix on the regular grids.

In his PhD thesis [Gar04], Garcke used the classic combination technique (coef-
ficients ¢; as in Equation 3.5) for the regression problem and was able to show
empirically that while this technique performed well for some model problems,
there were some problems where the combination technique was unstable and
even diverged for large data sets and small regularization parameters A. This
certain problem seemed to appear particularly often in applications from data
mining, where the data features many redundancies. In an extensive follow-up
paper [HGCO7] it could be shown that this behavior results from the fact, that
the angles between the involved partial grid spaces were not orthogonal and thus
the projections on these spaces did not commute. For the exact definition of
these terms and the proofs, we refer to the original paper. The Opticom method
however does not suffer from these problems, as the coefficients here are chosen
adaptively. Further experiments conducted for regression problems with Opticom
showed its competitivity compared to other, standard solution approaches [Gar06].

We could thus see that using optimized and problem-dependent combination co-
efficients has shown promising results before, both for the eigenvalue problems
introduced in the last section and the regression application presented in this sec-
tion. This motivated us to study Opticom for our problem, which roots in both
eigenvalue and machine learning applications: the out-of-sample extension of Spec-
tral Embedding and Spectral Clustering methods. These two classes of machine
learning problems will be presented in the next chapter, before introducing our
algorithm.
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4. Spectral Methods in Machine
Learning

This chapter offers an overview over two closely related fields of machine learn-
ing: spectral embedding and spectral clustering methods. Given a sample of
high-dimensional data as an input, spectral embedding algorithms will provide
a similarity-preserving lower-dimensional embedding. Spectral clustering meth-
ods will add a second step and perform a clustering of the embedded points in the
lower-dimensional space.

After a general introduction to both these fields, one of the algorithms is discussed
in more detail: Laplacian Eigenmaps by Belkin and Niyogi [BN03], which is the
embedding method used for the numerical experiments in this thesis, and the cor-
responding spectral clustering algorithm by Shi and Malik [SMO0O].

In the following we will provide a short survey on convergence results for the fam-
ily of spectral embedding algorithms.

The chapter is then concluded by introducing the problem of out-of-sample ex-
tension for these methods and a brief presentation of the Nystrom approach, a
common data-based tool to perform this extension.

4.1. Preliminaries for Spectral Learning

In many areas where we encounter high-dimensional data, this data is not in-
trinsically high-dimensional, but can be interpreted as the result of a (unknown)
function that depends on relatively few variable parameters. One common exam-
ple is computer vision, where an image of the same scene — usually represented
as a large set of pixels associated with color intensity values and thus very high
dimensional — changes due to the angle of light incidence or the position of a cam-
era. Our aim now will be to identify a smaller number of such parameters, which
are still suited to describe the data via maintaining the local similarities between
the data points in a lower dimensional space. The resulting general problem of
dimensionality reduction can be formulated as follows.

Let Y = {y1,...,Ym } C R? be the finite data set. We are looking for a lower-
dimensional embedding f : Y — RP, p < d, which preserves local similarities
between the high-dimensional data points: If points  and y are close in the orig-
inal space (with respect to a suitable metric), f(z) and f(y) are expected to be
close in the embedding space as well. Larger spatial distances are less important
to preserve in the embedding.

If this lower-dimensional representation has been the aim of our approach, e.g.
for visualization purposes (target dimensions of p = 2 or p = 3) or for reasons
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of an easier storage of the now reduced data, we will refer to the method as an
embedding method.

Often however, this dimensionality reduction step is performed as a preprocessing
step before applying a clustering algorithm. Such a procedure takes the same high-
dimensional data as input but aims at grouping the output data in a meaningful
way: Given a number k£ € N of target clusters, a clustering algorithm returns
a relation Y — {1,...,k}, labeling each data point with a cluster, so that the
similarity within the clusters is maximized while the inter-cluster-similarities are
minimized.

Motivated by graph cuts, researchers in the late 90’s started to develop methods
that interpret the data set as nodes of a graph. A pair of data points with high spa-
tial proximity in the original space is connected by an edge with weight according
to the similarity between these two points. One can use the spectral properties of
the weighted adjacency matrix of the graph to find optimal bipartitionings (or, in
a more general context, partitions into k£ groups). This concept will be introduced
in the next section in more detail.

Another concept, that leads to very similar algorithms, originates from probability
theory. Using the same notion of the data as a graph, one now formulates the edge
weights as transition probabilities of a random walk on the graph. The eigenvalues
and eigenvectors of the according transition matrix can then be used to identify
and separate different regions of high density in the data.

As both points of view lead to closely related algorithms, we will now subsume
the common structure of the resulting family of spectral, graph-based algorithms,
before passing to more detailed background analysis:

General Scheme for Spectral Data Analysis (*)

1. For each data point, identify the nearest neighbors according to some dis-
tance function or similarity kernel.

2. Construct a graph on the data set with edges between these neighbors and
edge weights according to the chosen kernel.

3. Construct a certain matrix that captures information on that graph.

4. Use the first or last (generalized) eigenvalues and eigenvectors of that matrix
to produce a lower-dimensional embedding.

For the so-called spectral embedding methods, we can now return this embedding
and use it for further analysis, such as visualization. If the next step consists of
clustering to find a meaningful grouping of the data points, we pass to another,
tightly related area of spectral data analysis: spectral clustering methods. This
class of algorithms will follow up with a clustering step:

5. Use a suitable clustering algorithm to group the embedded data points f()).

The classical choice of matrix in step 3 is the so called graph Laplacian. Due to
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the crucial role this matrix plays for all the algorithms, in the next section this
operator and its properties are introduced in more detail.

4.2. Graph Laplacians and their Properties

Essential to all spectral clustering and spectral embedding algorithms is the matrix
used to capture the relationships between the data points in some way. This matrix
is nearly always referred to as graph Laplacian. However, this term is not used
consistently in the literature. One (common) definition, and the one that we will
use subsequently, is:

Definition 7 (Unnormalized Graph Laplacian).

Let G = (V,E), |V| = m be an undirected graph with non-negative edge weights
w({vi,vj}) = wi; stored in the symmetric matric W € R™*™. By D € R™*™ we
denote the diagonal degree matriz with entries d;; = Z;n:l Wij.

Then the unnormalized graph Laplacian L € R™*™ is defined as:

L=D-W

Note. In the following, we will denote the unnormalized graph Laplacian only
by graph Laplacian. In other works, that term is sometimes used differently, but
always based on adjacency and degree matrices and with closely related properties.
Other common definitions for this operator are for example the normalized graph
Laplacian Ly, = D™'W, the random-walk gmplh Laplalcian L., =I-D'W and
the symmetric graph Laplacian Lgy,, =1 — D7 2WD72 [Luz07]. We will use the
definition above as we follow the paper by Belkin and Niyogi [BN03]. Note that
the eigenpairs of all these matrices are in a one-to-one-relationship and can be
obtained from each other via simple transformations.

Let us shortly consider some properties of the graph Laplacian, as for example
compiled in Ulrike von Luxburg’s comprehensive survey [Lux07] on spectral clus-
tering:

Theorem 8 (Properties of the graph Laplacian [Lux07]).
The matrixz L satisfies the following properties:

1. For every f € R™ it holds that

1 m

T 2

7 Lf =5 > wii(fi — £)*. (4.1)
i,j=1

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the con-

stant one vector 1.
4. L has m non-negative, real-valued eigenvalues 0 = A1 < Ay < ... < Ay

Note. The first equation explains the term graph Laplacian: if we transform
the weight function w to a distance d via w(z,y) = 1/d(x,y)?, the formulation
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Zj wij(fi — fj) looks like a difference quotient approxzimating a gradient on the
graph, and the right hand side of Equation 4.1 thus can be considered a discrete,

graph-based version of the Laplace operator.

The properties of the eigenvectors and eigenvalues of the graph Laplacian have
been studied thoroughly since the works of Fiedler [Fie73] and Donath and Hoff-
man [DH73] in the 60’s and 70’s and are subject of an own theory: spectral
graph theory. Comprehensive works on this topic are an extensive survey by Mo-
har [Moh91] and the textbook by Fan Chung [Chu97].

Two more results are worth noting for our purposes. First, the following property
of the eigenvectors to the smallest eigenvalue zero:

Lemma 9 (Identification of connected components).

For an undirected graph G as in Definition 7, the multiplicity k of the smallest
eigenvalue 0 of L equals the number of connected components in the graph, and its
respective eigenspace is spanned by the indicator vectors of these components.

In a connected graph, there is thus only one eigenvalue A; that equals 0, and its
eigenspace is the space of constant vectors in R™ (corresponding to the space of
constant functions on the vertices).

The second important observation is that, for a connected graph, the eigenvector
vg belonging to the second eigenvalue A2 of L (also known as the Fiedler vector) is
heuristically very well suited for graph bipartitioning according to the normalized
cut problem:

Definition 10 (Normalized cut (NCut) problem).
Given a graph G = (V, E), find a bisection V = V1 U Vs, such that

veVy,weVa

s minimaized.

The NCut-problem itself is known to be NP-hard [SM00]. However, a nearly
optimal partitioning can be found by simply grouping the vertices by the sign of
the Fiedler vector’s entries: V = V3 U Vs with Vi = {i]wv2(i) <0} and V5o =
V' \ V1 [SMO00]. This approach solves a relaxed version of the problem; detailed
explanation and proof can be found in [Moh91] and [SM00]. The fact that this
method yields good results and is remarkably simple forms the main motivation

for spectral algorithms in machine learning. In the next section, it will shortly be
explained, how one can build the underlying graph from the data points.

4.3. General approach to Spectral Learning
To put things together, we consider the data set Y = (y1,...,yn) C R? and build

an undirected graph G = (V, E) by setting V' = [1:m], where each v € V repre-
sents the corresponding data point ;. As we expect some structure guiding the
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4.3. General approach to Spectral Learning

data generation, one of two assumptions can be made: The manifold assumption,
stating that all the data has been drawn from a manifold M C R with respect
to some probability distribution Pxq or a density assumption, implying that the
data is sampled according to some probability density on the whole space.

To enhance this geometric or probabilistic structure of the data, the similarity
function is chosen in a way that preserves the intrinsic geometry of the data set by
considering spatially local similarities. The common choice for the edge weights
is a symmetric, positive definite kernel K : Y x V) — R combined with some
cut-off-criterion. Based on a distance function d : ) x YV — R, possible criteria
to add the edge {7,j} to E are:

e-nearest neighbors The edge {7, j} is added, if d(y;,y;) > €.

mutual k-nearest neighbors The edge {7, j} is added, if y; is among the k nearest
neighbors of y; and vice versa.

symmetric k-nearest neighbors The edge {i,j} is added, if y; is among the k
nearest neighbors of y; or vice versa.

The edge weights w : ' — Ry are then usually determined via the trivial
0-1-kernel or the Gaussian (or heat) kernel K, with a parameter o:

0-1-kernel For {i,j} € E: w({i,j})) = 1.
Gaussian kernel Fix a bandwidth o € R>¢. For {i,j} € E:

2
[Jvi—uil]

’U)({Z,]}) = Ka(yi,yj) =e o

Note. There is no thorough mathematical theory on which graph setup to use in
which cases, or on a suitable choice of graph parameters, for details see [MHLOY].
We will introduce some of the established rules of thumb and our own choices in
Chapter 6, where we describe our erperiments.

For the graph created in this manner, we will now use the spectral decomposition
of the graph Laplacian matrix L defined in the previous section. The bipartition-
ing of the graph according to the sign of the second eigenvector of its Laplacian
matrix then yields a good bipartitioning for the whole data set, as introduced
and demonstrated for image segmentation by Meila and Shi in 2000 [MS01]. To
perform partitioning into more than two groups, the eigenvectors vs,vy,... cor-
responding to the next significant eigenvalues A3, A4,... can be used for a finer
subpartitioning of the two clusters, or more involved clustering rules than a trivial
thresholding at zero may be applied.

Instead of clustering, one can also consider the entries of the eigenvectors to form
an embedding and use this lower-dimensional embedding for further data process-
ing and analysis.

Machine Learning methods based on this principle are for example the spectral em-

bedding algorithms Diffusion Maps [CL06a], Isomap [TSL00] and Laplacian Eigen-
maps [BN03], as well as the famous clustering algorithms by Ng et al. [NJWO01],
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4. Spectral Methods in Machine Learning

Shi and Malik [SM00] and Meila and Shi [MS01].

We will now present Belkin and Niyogi’s Laplacian Eigenmaps and the closely
related Shi-Malik-algorithm for spectral clustering in full detail, before considering
convergence results for this general family of algorithms.

4.4. Laplacian Eigenmaps and the Shi-Malik-algorithm

A popular example for a spectral embedding algorithm following the described
scheme is Laplacian Eigenmaps, introduced in 2003 by Belkin and Niyogi [BN03].
Originally based rather on intuition, the authors later provided a theoretical back-
ground and were able to prove that under some assumptions the graph Laplacian
converges to the Laplace-Beltrami operator on the manifold, and that the respec-
tive eigenfunctions converge as well [BNO8b, BN08a|. These results and further
convergence results in general will be outlined in the following section 4.5.

We will now state Belkin and Niyogi’s algorithm in detail':

Laplacian Eigenmaps

Input Data set Y = {y1,...,ym } C R?
Output Lower-dimensional embedding Y — RP, p < d fixed.
Step 1: Construct adjacency graph G = (V, E): Set V. = [1,...,m],
E =0.
Choose a parameter k € N. For all pairs (i,j) € V x V add the edge
{i,7} to E, if y; is among the k nearest neighbors of y; or vice versa.
Step 2: Set edge weights: Choose a parameter ¢ € R. For all edges
{i,j} set entries of the weight matrix W € R"*™ ag
-]l
Wwi; = € o
Construct the diagonal degree matrix D € R™*™ and the unnor-
malized graph Laplacian L € R™*™ as defined in Definition 7.
Step 3: Eigenmaps: Assume the graph G is connected. Otherwise do the
following for each connected component.
Solve the generalized eigenproblem

Lf = AD/,
where we can consider L as an operator on functions defined on V.

Let (A1, f1),- -+, (Am, fm) be the solution pairs to the eigenproblem,
ordered according to the size of eigenvalues:

0= < <. .. <
Return the embedding into p-dimensional Euclidean space:

yi = (F1(0); -5 fo(2))

'For simplicity we present just the (standard) version used in this thesis, with k-nearest-
neighbors graph and heat kernel-based weights.
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4.5. Convergence

Some years before, Shi and Malik [SM00] had presented a closely related clustering
algorithm. Their approach was motivated from image segmentation and is one of
the first spectral clustering algorithms used in machine learning.

As in the rough overview in the previous section, simply adding one more step to
the embedding algorithm yields their clustering algorithm:

Spectral Clustering according to Shi and Malik

Input Dataset Y = {y1,...,ym } C R% number k of clusters to construct

Output Set of Clusters { C; }¥_,.

Steps 1 — 3: As above.

Step 4: Clustering: Fix a parameter k and cluster the points
(fi(@),..., fp(i)) calculated in step 3 according to the k-means al-
gorithm? into clusters Ci, . .., C. Return set of Clusters C1, ..., Cj

with C; = { y; | (A(7),-. £o()) € G }.

Note. In the original paper, Shi and Malik do not solve a generalized eigenproblem,
but directly consider the eigenvectors of the normalized graph Laplacian Ly, = I1—
D~'W, the matrix that is also used in Diffusion Maps [CL06a]. The embeddings
provided are however the same, as follows directly by multiplying the eigenvalue
equation Ly, f = Af with D from the right.

We will thus consider these algorithms as a “normalized” approach to spectral
learning, which will be important concerning the convergence properties discussed
in the next subsection.

4.5. Convergence

As noted in the remark after Theorem 8, the equation fTLf = Zij wij(fi — f;)?
may be considered as a discrete version of the quadratic form associated to the
standard Laplace operator A on R, which satisfies

(g, Ag) = / Vgl

Based on this intuition it makes sense to study the interconnections between the
discrete graph Laplacian and continuous Laplace operators on manifolds, espe-
cially concerning their spectral properties. Over the last years, several papers
have been published, that consider this topic from different angles.

Based on results by Giné and Koltchinskii [GK06], Belkin and Niyogi [BN08a,
BNO08b] performed convergence studies for Laplacian Eigenmaps, which take a ge-
ometric approach based on the manifold assumption. They introduced the point

2The k-means algorithm is one of the most used clustering algorithms. It minimizes the distance
of the points to their respective cluster center (thus minimizing the variance) and was first
described by Lloyd in the 1950’s [L1o82].
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cloud Laplacian, a generalized continuous version of the Laplacian eigenmaps ma-
trix, which depends on the sample size m. They proved that, if the data is sampled
uniformly from some underlying manifold M, the eigenfunctions of this operator
converge for m — 0o to the eigenfunctions of the Laplace-Beltrami operator A g
on said manifold.

Nadler et al. [NLCKO06] analyzed the related Diffusion Maps algorithm for spectral
embedding and considered the case of a manifold equipped with a non-uniform
probability distribution p(x) = exp(—U(z)). They were able to show that in this
case the eigenvectors of their version of the graph Laplacian, Ly, converge to the
eigenfunctions of the backward Fokker-Planck-operator on M:

Haid = A — 2V - VU.

This operator is a generalization of the Laplace-Beltrami operator A ¢, where the
term 2V ¢ - VU represents a drift towards areas with a higher probability density.
A similar, but more general result for different classes of Laplacian matrices was
proven by Hein et al. [HAL06, HALO7]. In their work, they showed that while all
of the considered graph Laplacians L, L and Lgy, converged pointwise to some
continuous limit operator, indeed only for L,y this limit operator is a (weighted)
version of the Laplace-Beltrami operator on the manifold.

An alternative approach in the convergence analysis leaves out the geometric as-
pects and the manifold assumption and concentrates on a more general case of
underlying integral operators, based on a probability density see e.g. [LBBOS,
RBD10]. In the cited publications, the authors prove that with a fixed weight
function w under certain conditions (which remain rather weak for the class of
normalized problems containing L, and Lgym) the eigenvectors of the discrete
problems converge to the eigenfunctions of certain limit operators on a Hilbert
space.

Even though Laplacian Eigenmaps uses the unnormalized graph Laplacian in the
problem formulation, the convergence results for the normalized L, are applicable
here, as follows from a simple reformulation, see also the note in Section 4.4.

4.6. Out-of-Sample Extension for Spectral Learning
Methods

Laplacian Eigenmaps, as all graph-based spectral embedding methods, only pro-
vides an embedding for the training data at hand. Thus, a new data point can
only be incorporated into the embedding by a new run of the algorithm on the
now slightly enlarged data set. Due to the high computational complexity of the
eigenvalue solver, alternative methods to perform this so called out-of-sample ex-
tension without full re-calculation of the eigenvalue problem are being explored,
for example in [BPV104, CLO6b, GLMH12, BBH13].
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4.6. Out-of-Sample Extension for Spectral Learning Methods

4.6.1. Nystrom Extension for Spectral Embedding

The most popular approach for this has been proposed by Bengio et al. [BPVT04]
in 2003 and is based on the Nystrém method?. The extension makes use of the
fact that all popular spectral embedding algorithms can be expressed via a nor-
malized version K of the kernel function K employed for the edge weights of the
underlying graph — thus, in case of Laplacian Eigenmaps the Gaussian kernel K
or the nearest-neighbor-0-1-kernel.

The embedding of a new point £ € R™, f;.(&) with k the index of the corresponding
eigenvector, can then be obtained via the formula [BPV*104]:

() = L > ADEE ),

A
koo

with K a normalized version of the kernel and f;, as defined in the output of the
algorithm.

In our case of Laplacian Eigenmaps, such a normalized kernel K can be defined
via the kernel K used for the edge weights in the graph,

1 K(a,b)
m \/E, K (a, )| E, [(K(b,y)]

where the expectations in the denominator are taken over the complete data set
Y [BPVT04].

K(a,b) :=

Intuitively, the denominator corresponds to the normalization matrix D~! in the
sense that di; = > 7%, k(yi,yj) = mEy,[k(yi,y;)]. Thus, the kernel K does not
exactly correspond to the problem considered in Laplacian Eigenmaps Lu = ADu,
but 1to the problem L,,,u = Au using a different normalized Laplacian L, =
D 2WD™ 2. However, the eigenvalues and eigenvectors can, as mentioned before,
be obtained from this related formulation via simple transformations (see also
[Wei99]).

4.6.2. Nystrom Extension for Spectral Clustering

The same approach for out-of-sample-extension can be used for spectral clustering
algorithms, as here, too, the computationally expensive part lies in calculating the
embedding. After the additional out-of-sample point has been embedded using the
Nystrom method, a new (cheap) run of the k-means-clustering algorithm can be
performed on f())U{f(£)}, which works in O(mkp), with k the targeted number
of clusters and p the dimension of the embedding space. Alternatively, if k-means
clustering has already been performed on f()) one can perform k-means-out-of-
sample extension and assign £ to the cluster, whose center is the closest to f(§).

30riginally the Nystrom method stems from problems with large matrix computations and
consists of generating a lower-rank approximation to a large matrix by subsampling from its
columns.
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4. Spectral Methods in Machine Learning

4.6.3. Grid-based Out-of-Sample Extension

This method has been proven to work very well and is a standard choice for out-
of-sample-extension of spectral data analysis methods. However, it is not very
natural. A more intuitive approach to the extension problem would be to use
spectral embedding to not only learn a discrete embedding f : Y — RP, but a full
embedding function f : R® — RP. As Belkin and Niyogi were able to prove, the
eigenvectors their algorithms provides will converge (as the number of data points
— interpreted as samples drawn from the underlying manifold M — grows) to the
eigenfunctions of the Laplace-Beltrami operator A x4 on that manifold. Therefore,
learning a continuous embedding function should be feasible. However, a “useful”
finite-dimensional representation of this function would need to be grid-based, and
as we are working in high dimensions the curse of dimensionality would hold.

Based on a proposal by Peherstorfer, Pfliiger and Bungartz [PPB11], the aim of
this thesis is to present, adapt and analyze a method for this grid-based out-of-
sample-extension using the sparse grid approach introduced in Chapter 3 and thus
containing the inherent curse of dimensionality up to some point.

The next chapter will present the algorithms needed to combine the spectral tech-
niques presented in this chapter with the sparse grid method and the challenges
we face in this approach.
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5. Out-of-Sample-Extension using
Opticom

In this chapter, we will establish the central concept of this thesis: a grid-based
out-of-sample extension for Laplacian Eigenmaps using the optimized sparse grid
combination technique.

First, we will present the general approach for a sparse-grids-based extension as
introduced by Peherstorfer, Pfliiger and Bungartz in 2011 [PPB11]. While they
applied hierarchical sparse grid basis functions, we will instead use the optimized
combination technique. The proposed algorithm will be presented in Section 5.2
in detail.

Some of the challenges mentioned in the previous chapters will carry over to this
application, others can be effectively countered. We will give an overview and a
short discussion of these aspects in Section 5.3. In the following, we will provide
an alternative point of view on the partial problems considered in the algorithm.

5.1. Sparse-Grid-based Out-of-Sample Extension

The idea of using sparse grids in the context of out-of-sample extensions of Lapla-
cian Eigenmaps was first published in a paper by Peherstorfer, Pfliiger and Bun-
gartz in 2011 [PPB11]. Instead of using an extension based on the data points (as
the Nystrom method, cf. Section 4.6), their idea is the following:

It is known that under certain conditions for an increasing number of samples
Y={y,....,ym}, M — oo drawn from a manifold M C R%, the eigenvectors
u; € RM recovered by Laplacian Eigenmaps will converge to the eigenfunctions u;
of the Laplace Beltrami operator A on that manifold [BNO8a], cf. Section 4.5.
Thus, it may be possible to try and recover a discretized version of these functions
up i, and for out-of-sample points § € R? simply evaluate these functions at & to
provide a p-dimensional embedding {up;(§ )}f;l

A naive approach to perform such a calculation on a grid would fail, as the prob-
lems are often high-dimensional and grid methods would suffer from the curse of
dimensionality. To prevent this, the authors suggest to use the sparse grid tech-
nique, as presented in Chapter 3.

We denote the discrete sparse grid space by V® and its hierarchical basis by
D= {qﬁl}f\;l For every function f € V* we now have a representation

N
f@) = aigi()
i=1
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5. Out-of-Sample-Extension using Opticom

with a coefficient vector @ = (a,...,an). We set up a new discrete problem as
follows: We consider the i-th embedding vector v; € RM resulting from the classic
Laplacian eigenmaps as the vector f; ¢ RM containing function evaluations of f;
at the data points, f; = (fi(yk))AL, and reformulate the problem to:
Find A € R, f € RY such that

Lf = \Df

A variational approach, using the representation of f in the sparse grids formula-
tion leads to:
Find X € R, coefficients & € RY, such that

B7LBa = AB'DBaq,

with B € RM*N being the evaluation matrix of the basis ® at the data set ),
bij = ¢ (i)

To provide a better solvabilily, Peherstorfer et al. add a regularization term,
(vC + BT'LB)a = \AB'DBaq,

where C € RV*N may for example be the identity matrix, and v € R is a suitably
chosen regularization parameter.

The eigenvectors a; obtained from the solution of this problem define our target
functions f; € V®. Note that, analogously to the previous chapter, a; defines
the eigenvector associated to the eigenvalue )\;, and the eigenvalues are ordered
increasingly, 0 = A\; < X2 < ... < Ay

An embedding for an out-of-sample-point ¢ € R? into R? can then be provided
by £ — ( fl(f))f;l . Note that we leave out the function f; corresponding to the
smallest eigenvalue A1, as we know that A\; = 0 and the associated eigenvector is
constant and thus contains no information.

The authors implemented and tested their approach successfully on synthetic and
real world data, using the hierarchical sparse grid basis functions. The aim of
this thesis is now, to implement, test and analyze their proposed method with the
Opticom technique instead of the — harder to handle — hierarchical basis functions.
This idea has already worked out well for regression problems (cf. Section 3.5.2)
and we will now consider if it may also prove to be an alternative for the out-of-
sample-extension of spectral embedding.

5.2. Algorithm

5.2.1. Core Algorithm

Before considering the theoretical details and challenges, we will show how the
method presented in the previous section can be modified, formulated and imple-
mented to provide an Opticom-based out-of-sample-extension for Laplacian Eigen-
maps.

To this end, we will apply the method described above to a sequence of anisotropic,
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5.2. Algorithm

Algorithm 1: OOS-extension of Laplacian Eigenmaps with Opticom

Input: dataset Y = {y1,...,ym } C Q C R?, sparse grid parameters:
level L € N, margin amar € N, graph setup parameters: number of
nearest neighbors ny, € N, kernel bandwidth o € R, reqularization
parameter v € R

Output: embedding function f: 2 — R

read input data Y;

build similarity graph on data using graph parameters nyy,, o (cf. Section
4.4);

calculate graph Laplacian L € RM*M and diagonal degree matrix

D € RM*M (cf. Section 4.4);

determine K € N, number of partial grids to be considered;

initialize opticom matrices L € REXE D ¢ REXK,

initialize level counter k := 1;

for levels 1 with Y, l; = L and Vi : l; < apmqer do
setup regular anisotropic grid of level 1 on €2, using d-linear basis

functions B*) = { Yo }7

calculate grid stiffness matrlx C k) € RNexNk - ( = [V¢;V;;
calculate grid- Laplac1an L*) = (BMTLB® ¢ RNkXNk and
grid-degree matrix D®*) ( ENTDB®) € RNe*Nk wwhere

(k) _ (R, .
bij” = &; (%i);
solve the generalized eigenproblem

(L(k) + fyc(k))a(k) — \EpFE gk

and use generalized eigenvector agk) corresponding to second smallest

(k

eigenvalue A, ) to obtain and store partial solution

F® = Zivzkl ag,cz‘)‘z’z('k);

for k=1 to k do

determine level 1* of smallest grid containing grids k£ and k:

setup regular anisotropic grid of level 1* and corresponding stiffness
matrix C*), grid-Laplacian L*") and grid-degree matrix D*") as
above;

project functions f®), & onto functions f®), & on grid kx;
set lij = <ﬁ (L") + W’C(k*))ﬁ>;

set Jij = <W> D(k*)ﬁ>;

end

k = k+1;

end

solve opticom generalized eigenvector problem
Lu = ADu
for eigenvector uy according to smallest eigenvector A\; and store in
coefficient vector c;
return embedding function f := Eszl crf®
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but regular grids (instead of using the hierarchical basis of one sparse grid), and
combine these solutions in a useful manner determined by the additional Opticom
step (cf. Section 3.3). In contrast to the previously presented method, we will
need to be a bit more careful with the regularization step, in order to deal with
the anisotropies on the partial grids. Where Peherstorfer et al. could apply the
identity matrix, we need to use a matrix taking into account the shape of our,
potentially highly anisotropic, grids instead. In the presented approach, this role
is taken by the stiffness matrix, however also a weighted version of the mass matrix
(representing the identity operator) is be a possible candidate.

The proposed core algorithm without post-processing is stated in detail in Al-
gorithm 1. For simplicity, we give a full version of the algorithm only for a
one-dimensional embedding. The necessary extensions (and decisions on imple-
mentation and design) for a more-dimensional embedding will be presented and
discussed in the subsequent sections, especially in Section 5.4.

Note that we used only the top layer of anisotropic grids here; if we were to use the
standard combination technique we would need d layers. In this case, we replace
the outer for-loop in the algorithm by the two nested loops “for q in [0:d] do”
and “for levels 1 with Zl li=L—qandVi:l; <ama do”.

For the following analysis, we will partition the algorithm into the following core
steps:

Data management Read data, build graph and matrices.

Step 1: Compute partial solutions Solve grid-dependent eigenproblems on K reg-
ular anisotropic grids.

Step 2: Optimized Combination Solve an eigenproblem set up from scalar prod-
ucts of the partial solution.

Post-processing and function evaluation Evaluate the obtained Opticom solu-
tion at out-of-sample points £ € ). If applicable, perform clustering on the
embedding f(YU{&}) (cf. Subsection 5.2.2)

5.2.2. Postprocessing

Depending on the application context, different aims are pursued by embedding
methods. Sometimes the goal is to allow for a lower-dimensional representation of
originally high-dimensional data, that can then be visualized in two or three di-
mensions and adapted to human perception. Often, the embedding is indeed only a
preprocessing step before clustering is applied on the now lower dimensional space.

Analogously; the reasons for out-of-sample-extensions vary: In some situationS not
all data points are known at calculation time, and one wishes to quickly analyse
new data as it becomes available. In others, training of the machine learning
algorithm on the data set grows so quickly in M, that one splits the data into
a training set and one evaluation set that is processed with the newly learned
embedding function. In the following, we will focus on the latter application.
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For the post-processing step we have different implementation options to achieve
the respective aim as efficiently as possible.

Embedding

As our aim is to speed up the learning process and thus all out-of-sample data is
given at once, we now present the short algorithm for batch evaluation of the new
data set in Algorithm 2. Note that we assume that the learned target function
f : Q — R is stored internally via its coefficient vector ¢ € R¥ as well as the
number of partial grids, K € N.

Algorithm 2: Batch evaluation of out-of-sample points for embedding

Input: out-of-sample data S = {&1,...,&} € Q C R?
Output: out-of-sample embedding f(S)

initialize output vector v € RM:
for k < K do

load partial grid k;

load grid coefficient vector a(%);

for i < M do
| vi=wi+ 30l (€);
end
end

return f(S) = {v1,...,onm}

As it is possible to evaluate the basis functions of the partial grids very efficiently,
this batch evaluation is very fast, which is also confirmed by experiments in the
upcoming Chapter 6.

Clustering

If we only wish to obtain a simple bi-clustering into clusters {0, 1}, it is sufficient
to consider the one-dimensional embedding function and threshold it at zero. For
the new data point € € ) the cluster assignment is then defined as
o) = {0, i £() <0,
L, if f(§) = 0,
with f : Q@ — R the embedding function learned in Algorithm 1. Especially for
embedding dimensions p > 1 (for the extension of Algorithm 1 to this case see
Section 5.4), one may wish to use a more sophisticated clustering than simple
thresholding. In that case, one needs to decide depending on the complexity of
the clustering algorithm and the size of the out-of-sample-data set, if a full run of

the clustering algorithm on training and out-of-sample set is necessary. Otherwise,
a out-of-sample-extension of the clustering algorithm itself may be used.
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5.2.3. Complexity

There are two main drivers of the complexity in our approach: the solutions of the
grid based eigenvalue problems on the O(dn?!) partial grids, and for every partial
grid the loop over all previously considered grids with the projections on a common

grid and the calculation of the scalar products <f(k), (L) +7C(k*))f(’f)> on

these common grids. The preprocessing steps, as well as the reasonably small
final eigenproblem, are negligible in comparison.

5.3. Challenges

To combine the spectral embedding approach with Opticom gives rise to several
challenges, some of these known from the application of the combination techniques
to eigenvalue problems, cf. Section 3.4, others arising due to the origins of the
operator in question.

5.3.1. Sorting of the Eigenvalues

This problem has already been described shortly in Section 3.4: Depending on
the different discretizations on the partial grids, different features of the data are
enhanced, and thus the eigenvalues capturing these features will vary from grid
to grid. Especially for the less significant eigenvalues, that this will also influence
the ordering of the eigenvalues and the effect of eigenvalue crossings will occur.
For the combination however we will need to combine the “matching” eigenvalues
instead of those at the same position. In [Gar98] Garcke suggests (for the classic
combination technique) to, for each eigenfunction, loop over all possible matching
functions on other grids, project them onto the coarsest grid containing both func-
tion spaces and compute the L?-distance on that grid. The “closest” functions in
this sense are then considered to be approximations to the same continuous eigen-
function and will be combined in the combination step. As this heuristic approach
is not guaranteed to work [GG00, Gar98], other possible solutions may be evalu-
ated.

For the problems considered in this thesis, we assume the first non-zero eigenvalue
A1 to be so dominant in the problem that it will be recovered on all grids in the
same extreme position. Concerning the further eigenvectors, which are needed
for a higher-dimensional embedding, we will follow an alternative approach, in-
troduced in Section 5.4, where we collect all eigenvectors on the respective spaces
into one, larger Opticom system and use the existing orthogonalities between the
eigenfunctions.

Alternatively, the intra-grid alignment of the eigenvectors might be modeled sim-
ilar to the projection methods used in model order reduction. An example appli-
cation can be found in [AF11].
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5.3.2. Multiple Eigenvalues

If an eigenvalue has a multiplicity larger than one, the corresponding eigenvectors
are not uniquely determined (up to multiplication with —1), but may rotate in
the eigenspace they span. Thus in this case we would need to perform some
(computationally very expensive) inter-grid alignment of these eigenvectors. For
the Born-Oppenheimer-problem Garcke [GG00] successfully evaded this problem
by slightly perturbing the spaces in the different coordinate directions.

Luckily, this problem will is unlikely to occur in our case, where the eigenvalue
problem stems from a graph based problem on the data, which has been drawn
randomly without any symmetries. If the graph is connected, we know that exactly
one of the eigenvalues, namely A1, is equal to zero, and due to the random structure
of the graph the other eigenvalues will almost surely not be multiple.

5.3.3. Anisotropies of Grids

It is known from perturbation theory that the stability of eigenvalues holds only
locally [Kat76]. The inclusion of highly anisotropic grids might thus be unfeasible
for eigenvalue problems and hinder any possible convergence. For the small range
of grid levels and dimensions considered in the course of this thesis, we will try
to counter potentially negative effects of highly anisotropic grids via the margin
parameter am,, € N. For future, larger setups an automatic choice of aya, will
need to be considered.

5.4. Variants for two-dimensional Embeddings

Most of the above-mentioned concepts, as well as the presented algorithm, treat
only the one-dimensional embedding provided by the second eigenvector. As in-
dicated, in case of a graph Laplacian, this vector (also known as Fiedler vector)
indeed carries most of the information on the graph. In general, to obtain a higher-
dimensional embedding (and, at the same time, a more sophisticated clustering),
the next p — 1 eigenvalues must be considered for the embedding analogously.

In the classic Laplacian eigenmaps and in the method on only one grid (e.g. the
hierarchical organized sparse grid considered in the approrach by [PPB11]), these
eigenvectors can be obtained directly from the method by computing, storing and
processing more generalized eigenvectors of the matrix L or vC + BT LB. For our
approach, however, one needs to decide on the design of the algorithm. For each
partial grid (step 1) we can easily determine as many eigenvectors as we want —
but how do we combine them in the Opticom step (step 2)?

Trivially, two options come to mind:

1. To determine the i-th component of the embedding, use the respective ¢+ 1st
partial solution functions provided by the partial grids and for every com-
ponent set up a separate Opticom system, from which the first eigenvector
will be used (in short: several Opticom systems, repeat step 2).

43



5. Out-of-Sample-Extension using Opticom

2. Use all k-p partial solution functions obtained from the partial grids, fz(l), ey

flgfl, f2(2), . ,féi)l, R fQ(k), .. .fygi)l as ansatz functions to form a large Opiti-
com system, from which we use the first p eigenvectors in the next step (in

short: one Opticom system, enlarge step 2).

Note that only the first approach can be used analogously to the classic Combi-
nation technique.

In the next two subsections, we will present the theoretical advantages and draw-
backs; numerical experiments and results for both approaches will be shown in
chapter 6.

5.4.1. More Opticom Systems

An obvious drawback of this approach is the necessary sorting of the eigenvalues,
as described in the previous section. A heuristic algorihm to cope with this prob-
lem does exist, as introduced in the previous subsection. However, the overhead
of projecting the solutions onto the finer, common space is large, and there are
no results on the expected quality of this processing. Especially the choice of the
L?-difference as a matching criterion might not be optimal.

A possible alternative could be to consider the bilinar forms defined by the matrix
A = yC + BTLB on the common grid. As the originial spaces are embedded in
the common grid space, it is known from classic spectral theory that the eigen-
vectors caluculated on the partial grids will also be A-orthogonal on the common
grid. It follows, that pairs of partial solutions approximating the same continuous
eigenfunction will have scalar products close to one, while those pairs of eigen-
functions on the partial grids approximating different — and thus orthogonal with
respect to the continuous operator — eigenfunctions will exhibit scalar products
close to zero.

5.4.2. Larger Opticom System

The option, where we just use all k - p solution functions from the partial grids is
a lot simpler to implement, as there is no overhead from comparing the functions
across different partial grids. On the other hand, the complexity is — analogously
to above — dominated by the necessary projections on the subspaces, where we
calculate the bilinear forms. Here, too, we encounter the A- and M- orthogo-
nalites, where M := B”DB is the matrix on the right-hand side. This leads to
a very clear distinction between the approximations of different eigenfunctions on
the partial grids. Thus, the optimal combination coefficients for target eigenfunc-
tion u; indeed will nearly only give weight to partial solution functions that are
“matching”, without the necessity of a prior sorting.

5.5. Graph-based Derivation

A possible point of view towards the eigenvalue problem (yC + BTLB)a =
ABTLBa is to consider it as a new sort of graph problem on a grid.
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b4
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Figure 5.1.: Calculation of the edge weight w;;, describing data-based “similarity”
between the nodal basis functions ¢; (support marked in green) and
¢; (support marked in orange) on the grid graph: The edge between
the data points y; and y; on the data graph (red dashed line) adds
its weight, which is then again weighted by the respective function
values at the data points: w;; = ¢i(yx)P;(yi)wk. Note that on the
grid graph there would be no edge between the gray nodes, as none
of their respective nodal basis functions supports a data point.

Whereas the graph G = (V, E) defining the graph Laplacian matrix L was defined
over the data set Y = {y1,...ya }, we now consider another graph, G = (V, E),
which is defined over the nodes of the anisotropic grid. For distinction, we will
denote the former by data graph and the latter by grid graph. We define the grid
graph as follows: the vertices are formed by the indices of the grid’s basis func-
tions, V = {i | ¢; € ® } and {i,j} € E, if there is a positive edge weight, according
to the weight function @ : V x V — R,

M
(i, 5) =Y ¢iy)ds () wi,

k=1

where wy; is the edge weight assigned to {k,l} (or {yg,y;}) in the data graph.
This setup is depicted in Figure 5.1.

As this weight function is non-negative, all the results on graph Laplacians from
Section 4.2 are also applicable for the grid Laplacian L=D-W=B'DB-
B?WB = BTLB.

In this setup, the regularization can be explained by the addition of information
on interconnections between the grid points. In Figure 5.1 for example, the nodes
marked by the gray circles would not be connected in the graph, even though they
are neighboring, and intuitively also affected by the similarity between the data
points y; and y;. Adding some weights via a grid-based matrix such as mass or
stiffness matrix would at least strengthen the idea of a similarity of neighboring
grid points and the transfer of similarity not only via data points, but also via a
sort of “diffusion” of similarity across the domain.

Note. While in the analysis of Laplacian eigenmaps the solution of our generalized
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5. Out-of-Sample-Extension using Opticom

problem Lv = ADv corresponded to that of L,,v = Av, this does not hold any
more for the problems on the grid, as the right-hand-side matric D = BTDB s
not invertible.

5.6. Attempt of a Numerical Derivation

For a technical analysis of our approach, we may want to consider our problem
setup as the empirical and functionally discretized version of an unknown con-
tinuous operator. This point of view allows us to reconsider our problem in the
light of the variational numerical methods for the solution of eigenvalue problems,
introduced in Chapter 2. In the following, we will provide a heuristic approach to
this reformulation.

Going backwards, we start with some unknown operator £ and its associated
bilinear form a. A variational approach (cf. Chapter 2) would start from the
eigenvalue equation

a(u,v) = / Luvdx = )\/ Duvdx = Ab(u,v) forallveV, (5.1)
Q Q

where we choose the necessary spaces as V = H*(Q2) and H = L?(Q). The operator
L is known only partially. For a start, we heuristically assume it is an integral
operator on a manifold M equipped with a probability distribution v and that it
can be written in the form

Lu(z) = /M k(z, s)u(s)dv(s).

The underlying manifold and the density function are yet unknown, but can be
empirically estimated by the sample ) that we assume has been drawn accordingly.
Thus, we will model £ by an empirical operator L* : V — V,

1 m
) = LS ul ko).

k=1

Performing a Monte Carlo integration over the grid points, we can thus express
the LHS integral as the sum

. 1
/Q[,uvdx%/gﬁ uvdxzm Zu E(yk,yr)-

For D on the other hand we make the assumption that it is a simple scaling
operator, weighing u(x) with the expectation value of k(x,-) taken with respect
to the data-generating density function v:

Du(x) = u(x) /Q k(z,s)dv(s).
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5.6. Attempt of a Numerical Derivation

This can also be approximated with the empirical density given by the sample ):

m

Du(x) =~ D*u(x) = u(m)% Z k(z,yg).

k=1

As this scaling does not depend on u, we can define the weights using the function
d:R? = R, dz) = % > opey k(z, yk), representing the empirical expectation of
k(x,-). As before, we also use a Monte-Carlo method to calculate the right-hand-
side integral of Equation 5.1 and obtain

/QDuv dz ~ % > ulyy)d(y;)oly))-

Using a grid-based finite element space V;, C V with basis ® = {¢i}@']\i1a we can
then use a standard Galerkin method by approximating u in V}, by a discretized
up = Z;V: 1 @;¢; and obtain the finite element problem:

Find a € RY such that

N m N m
i Y bily)di ek uk) = XD ai Y bilye)di(uk)d(y) for all ¢; € ®.

i=1  ki=1 i=1 k=1
This problem may be represented in matrix-vector notation as
B LBa = \B'DBq, (5.2)

with evaluation matrices B € R™*N | bij = ¢;(yi)-

So, in conclusion we used discretization in the following steps:

e Discretization of unknown operator £ via known empirical distribution (data
points),

e Monte-Carlo approximation of both integrals,

e Galerkin finite element approach for eigenvalue problem using the same basis
as ansatz and test functions.

Regularization can be included in this derivation by describing the unknown target
operator as the combination of the standard Laplacian operator and an (unknown)
integral operator, £ = yA + £. This can be justified not only by the technical
need for regularization, but also by our assumption, that the graph Laplacian cor-
responds to a discrete version of the Laplace operator.

As the Laplacian is known, we can then rewrite the integral [yAuwvdz into
v [ VuVu dz without the need for a data-based reformulation as it was performed
for £. The discretization takes place only in the Galerkin step, adding an addi-
tional term to Equation 5.2:

ym*C + BTLBa = AB"DBa, (5.3)
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5. Out-of-Sample-Extension using Opticom

where C € RV*V is the standard finite element stiffness matrix, cij = [ VoV,

We emphasize that this derivation is only heuristic. While it helps to provide
a better intuition of the discretization step, the operator £ as we chose it, does
not resemble the Laplace Beltrami operator A, but rather its inverse, A=, Ad-
ditionally, the matrix L as known from Laplacian Eigenmaps does not exactly
correspond to a kernel k, in the way we used it to derive Equation 5.2.

Still, this heuristic attempt is useful to understand both main steps of our algo-
rithm as a Galerkin formulation. We know that on the partial grids our basis
¢ = {qbl}fi | is a standard nodal finite element basis. However, also in the second
step, the Opticom step, we can interpret the space spanned by the partial solu-
tions as another finite-dimensional ansatz space, on which we will consider the
exact same operators.
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6. Numerical Experiments

As a main component of this thesis, the proposed Algorithm 1 has been imple-
mented in an extensive C++-project, enclosed on CD-ROM.

In this section, we will put the algorithm and the implementation to the test by
performing some parameter studies and tests on classic toy data sets from ma-
chine learning. We will show, that even though the algorithm is meant to be an
extension for Laplacian Eigenmaps it sometimes outperforms it concerning the
information contained in its output and the stability towards some parameters.
However, this gain comes at the cost of a higher complexity.

6.1. Implementation

The algorithm presented in section 5 has been implemented as a C++ program for
the purpose of this thesis. Some of the functionalities have been adapted from
C-code written by this thesis’ supervisor Jochen Garcke for a presentation at SGA
in Stuttgart [Garl4]. Pre- and postprocessing, as well as operating the program
binary was performed using python scripts.

A short overview of the program’s class structure and a documentation can be
found in appendix A.

All of the relevant source code and documentation are also added to this thesis on
an enclosed CD-ROM.

The computationally most complex part of the code, the solution of the several
partial and final opticom generalized eigenvalue problems, is performed by using
the FEAST eigenvalue solvers [Pol09], shortly introduced in Section 2.1. Further
external libraries used were the Eigen library for its sparse matrix format [GJ*10]
and a kd-tree implementation to perform the k-nearest-neighbors search needed
to set up the graph Laplacian on the nodes.

For the experiments the program binary was called from an adaptive python script,
the plots used in this thesis were also generated in python using the matplotlib
package [Hun07]. Data generation, preprocessing (normalizing the data, deciding
on some parameters) and postprocessing (clustering, quality measuring) were also
implemented in python, using several functionalities offered by the scikit-learn
package [PVGT11].

6.2. Data Sets

In the following, we present some of the synthetic data sets used for the experi-
ments. Unless otherwise specified, the data sets have support on the unit square
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Figure 6.1.: Plots of example data sets

[0, 1]d and we have drawn 200 samples for the training and 2000 samples for test
sets.

(Anisotropic) Blobs

The n-blobs data sets are generated using the make_blobs()-function provided
by the Python package scikit-learn [PVGT11]. Here, samples are drawn from
isotropic Gaussians around n different, randomly determined centers.

For the anisotropic blobs — a data set that is very interesting, because the clas-
sic k-means clustering has some difficulties with it — n blobs were created with
make_blobs () as above and then linearly transformed with deterministic param-
eters. In the end, both data sets are fitted to the unit square. Plots of data sets
generated this way are shown in Figures 6.1a and 6.1b.

Two Moons and Two Circles

Both Two Moons and Two Circles are classic and simple data sets to visualize and
compare (bi-)clustering algorithms. Two Moons consists of two half circles that
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are not linearly separable but interleaving; Two Circles is formed by a smaller and
a larger circle around a common center. For the purpose of this thesis, both have
been created with some added Gaussian noise, using the scikit-learn functions
make_moons() and make_circles(). Here, too, the sets are fitted to the unit
square, cf. Figures 6.1c and 6.1d.

These data sets are commonly used to test nonlinear learning algorithms, as classic
clustering algorithms that work either by finding hypersurfaces to linearly separate
clusters, or by finding concentric “blobs” in the data (such as k-means) fail to
properly segment them. Two Circles is especially interesting, as the data points
in the central circle lay much denser than those in the outer circle, adding an
additional level of complexity to the clustering problem.

6.3. Embedding on Partial Grids

As a first impression of the functionality of our proposed algorithm, the final and
partial results for a run on the Two Moons data set are depicted in Figure 6.2 for
grid level L = 6 and margin a;,,r = 1. The first 5 subfigures, 6.2a — 6.2e, show the
upper layer (for the notion of layers, cf. 3.4) of partial grids (>, lq = 6), the next
4 plots, 6.2f — 6.2i, represent the second layer (},;lq = 5). In the last row, we
see the combined result for the classic combination technique, Opticom on both
layers and Opticom using only the top layer.

All embeddings here and in the remaining sections have been plotted in the follow-
ing manner: The plot shows the embedding function applied to the unit square.
Function values are visualized as colors, dyed according to a colormap that is opti-
mized for human perception, as the colors increase their brightness as the function
values increase. In the plot itself, a black line marks the zero contour, the contour
along which a very basic bi-clustering algorithm (cf. Section 5.2.2) would split the
clusters. The axis ticks in the plots indicate the refinement level of the respective
grid. In case of a combined solution, the solution function has been evaluated at
every grid point of the smallest full grid containing all relevant partial grids and
then linearly interpolated. The data points used for training are depicted as gray
circles.

6.4. Bi-Clustering Results

In this section, we will extensively consider our proposed method in the light of
clustering of two dimensional not linearly separable data sets.

The potential use case we test our method for is the clustering of a large data set,
where we wish to train an efficient embedding function on a small subset of the
data (the training set), which will then be used embed the rest of the data (the
out-of-sample set) in a consistent way.
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Figure 6.2.: Partial and combined solutions of example run on Two Moons data

set with m = 250 data points. Parameters: sparse grid level L = 6,
6 = 8.0, ¥ = 0.0001, n,, = 8.
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6.4.1. Quality Measure

To determine the quality of out-of-sample-extensions, no clear formula has evolved.
Different researchers use different quality measurements depending on their ap-
proaches. Most rely on some sort of cross validation, some compare the cross
validation result then to the variability inside the training set. Possible measure-
ments include:

e Simple k-fold cross validation!, commonly 10-fold, as performed for out-of-
sample extension for spectral embedding in [GLMH12|. Note the slight abuse
of notation - classically, for cross validation the prediction error is compared
to the actual (known) embedding. As in our case of unsupervised learning
we do not have a “correct” embedding, we compare the results to those that
are calculated when the cross validation set is itself part of the full training
set.

e Comparison of a (m—1)-fold cross validation (leave-one-out-cross validation,
LLOCYV) with the so-called “training set variability”, meaning the difference
between the error calculated in LLOCV and the error on a subset S C )
when splitting Y \ S = R; U Ry and training with S U R; versus S U Ro.
This method is used by Bengio et al. in their paper on Nystrom-based out-
of-sample-extension, [BPVT04].

e Usage of an intermediate clustering step, as performed by Peherstorfer et
al. in the paper that motivated this thesis, [PPB11], and then applying a
measure of cluster similarity: the so-called ARI (adjusted Rand index). The
classic Rand Index constitutes a similarity measure between two clusterings
by considering all pairs of samples and counting those pairs that are assigned
in the same or different clusters in the predicted and true clusterings [HA85]:
If we have a ground truth cluster assignment C' and want to compare a new
clustering K, we define a as the number of pairs of elements that are in
the same set in C' and in the same set in K, and b the number of pairs of
elements that are in different sets in C' as well as in different sets in K. Then
the Rand index is calculates as:

a+b
RI(C,K) := ——,
with OM = (1\2/1 ) the total number of possible pairs.
The adjusted rand index includes a normalization, yielding a score of —1.0
for fully dissimilar, 0.0 for random and 1.0 for identical clusterings. This
normalization is performed via taking into account the expectation value,
E[RI] as follows:
RI(C, K) — E[RI]
ARI(C,K) :=
(C, %) max(RI) — E[RI]

!Cross validation: Split the data set ) randomly into k subsets of the same size. Then for each
subset Y; train the method with the k — 1 other subsets, evaluate the obtained target function
f for every y € Y; and calculate the error compared to the embedding obtained when training
with the full set. Calculate the mean over all subsets.
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For our analysis, that focuses mostly on the clustering quality of the out-of-sample-
extension, we apply the ARI score. As a ground truth, unless otherwise speci-
fied, we use the cluster assignment obtained with the corresponding Shi-Malik-
clustering on the union of training and out-of-sample data points. This maps the
potential use case: training with a small subset of the full data, while aiming for
a clustering that features a comparable quality to one obtained directly from the
full data. In a next step, we will then need to set this quality in relation to the
potential gain in computational efficiency, cf. Section 6.4.5.

6.4.2. Parameter Studies

In the following, we will analyze the sensitivity of our proposed algorithm to the
variation of its parameters. For our consideration, we sort the parameters accord-
ing to the part of the algorithm, that is influenced by them: First, the parameters
that determine the setup of the graph, namely the number n,, € N that deter-
mines the number of edges present in the graph, and the bandwidth ¢ € R of
the Gaussian kernel defining the edge weights. Second a parameter influencing
the partial solutions on the grids (and the Opticom system): the regularization
parameter -, weighing the grid-based regularization term. Third, the Opticom
parameters, determining which grids we are going to consider: the total grid level
L € N and the margin amay € N describing how many of the highly anisotropic
grids on the borders of our simplicial level structure will be ignored in the calcu-
lation.

The Opticom parameters will however not be treated separately. As to be ex-
pected, a growing refinement level L will lead to more elaborate results and a
greater robustness towards parameter variations. For the simple data sets used in
this section, already rather coarse levels will be enough to yield perfect ARI scores
of 1.0. This effect can be observed in several of the figures supporting the studies
of the other parameters, e.g. in Figure 6.7, where for each level the ARI score is
plotted with respect to the regularization parameter.

Data Graph Parameters: n,, and o

The choice of parameters for the set up of the data graph, the number of nearest
neighbors n,, € N to be connected with an edge and the bandwidth for the Gaus-
sian kernel o € R, is quite tricky and there are few to no theoretic studies on this
matter. At the same time, the results of spectral algorithms may be very sensitive
to variations in the graph set up [Lux07].

Some rules of thumb, however, have been established and will also be applied
in this thesis. For the bandwidth parameter ¢ it is common to use the (scaled)
length of the longest edge in a minimum spanning tree over the data, or the mean
distance of a point to its (log(m) + 1)-nearest neighbor [Lux07]. We will follow
the approach by Lafon [Laf04] for Diffusion Maps and use the mean difference to
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ARI vs graph parameters, Two Circles, level 4

ARl score

0.0

—0.2 . . .
2* 2° 2°
graph bandwidth parameter a

7

Figure 6.3.: The ARI score on the Two Circles data set for varying graph parame-
ters. Training set size was 500, test set size was 2500. Note the sudden
quality improvement, indicating a sensitivity towards the bandwidth
parameter stemming from the existence of different density regions in
the data set. Regularization parameter (fixed): ¥ = 1079, level L = 4.

its closest neighbor, scaling by a parameter §:

0 .
0= m%gg}{d(x,y) | d(z,y) # 0}

Heuristically, a lower choice of o (or ¢, respectively) emphasizes local similarities
higher, as the edge weights between spatially close points will be higher in con-
trast to those between spatially further apart points. At the same time, such a
choice makes it more difficult to cluster outliers and to deal with data sets with a
underlying density that varies in different regions.

An example is depicted in Figure 6.3, which shows the ARI for the Two Circles
data set dependent on the bandwidth scaling parameter § for varying choices of
the number of nearest neighbors in the graph. It is clearly visible, that for all
choices of “reasonable” n,, there happens a sudden improvement, where the qual-
ity jumps from a arguably bad embedding (ARI score of ~ 0.4) to a near perfect
match to our target clustering (ARI score of ~ 0.99) when scaling with § = 32.
To make this difference more visible, consider Figure6.4, showing the embedding
functions calculated from the training data for different §, and Figure 6.5 show-
ing the clustering on the out-of-sample data set next to the Shi-Malik clustering
determining the ground truth.

For the choice of the number of nearest neighbors, one important factor to take
into account is the efficiency of the algorithm. A complete graph (n,, = m) will
contain the most information, even though due to the Gaussian weight function far
apart pairs of points will have negligible edge weights. Unfortunately, this graph’s
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Figure 6.4.: Embeddings for Two Circles data set, training set size 500. Parame-
ters: L =4, ny, = 25, 5 = 107°
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Figure 6.5.: Clusterings of 2500 out-of-sample-data points for Two Circles data set,
training set size 500. The green line shows the zero contour learned
in the embedding, see Figure 6.4. On the right, we see our ground
truth, the clustering obtained with the Shi-Malik-algorithm working
directly on all training and out-of-sample data points. The different
colors follow from the fact, that uniqueness of the eigenvectors is only
given up to sign. Parameters: L = 4, ny, = 25, 7 = 107
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matrices are not sparse and thus make the algorithm’s operations computationally
very expensive.

On the other hand, the size of ny, must be chosen in a way, that will ideally
lead to a connected graph. Otherwise, any clustering algorithm will simply return
the connected components and all information on inter-cluster-similarity will be
lost. For larger data sets, von Luxburg in her survey suggests a thumb rule of
npn = log(m) [Lux07]. As the data sets we use in this thesis are not “large” in
their sense, we will vary this parameter by hand, while keeping this rule in mind.
Note that in our setting, even if the data graph is not connected, the graph on
the grids (as introduced in Section 5.5) will always be, due to the addition of
the regularization term. The resulting difference in clustering quality is especially
notable when clustering into more than 2 clusters see Section 6.5.

In Figure 6.6 we show, that a careful choice of the neighborhood parameters ny,
and ¢ is crucial especially for small sparse grid levels as L = 5, where in two
dimensions the largest of the partial grid features as little as 51 grid nodes and,
due to the margin parameter an., = 1, only 4 grids are considered in total. In
the second subplot, it can be seen that even for level L = 4 (largest grid with 27
nodes and a total of 3 grids) with a suitable parameter choice ARI scores of more
than 0.94 can be achieved.

Analogous tests with grid level L = 6 on the same data set performed well, with
ARI scores of more that 0.98 for all parameters in the tested range.

It can be noted that the optimal scaling parameter § for the band width of the
Gaussian kernel is rather high, considering the fact that is was originally suggested
to be 6 = 1. A plausible explanation is the fact, that for our approach we do not
use the weights between the data points directly, but rather distribute them to
find weights for the interconnections between grid nodes. Thus, the finer our
resolution gets and the less data points will be on the support of a single function,
the more important it will get to still have significant weight between the respective
data point and its neighbors. A suggestion for future investigations could thus be
to choose the graph for Laplacian Eigenmaps already with the grids in mind and
include grid properties such as mesh width into the choice of the kernel bandwidth.

Regularization Parameter ~

We scaled our regularization parameter v € R dependent on the data set size,
~ 2
vi=amo,

where 4 € R is a parameter passed by the user. The quadratic dependency of the
data set size m was chosen heuristically due to the numerical derivation in Section
5.6, where the factor % appears twice in the discretized data term on the left hand
side and might thus need to be canceled in the regularization term. It remains to
be empirically tested, if such an interconnection between regularization parameter
and training data set size is justified, or if other descriptors of the problem are
better suited for this task.
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ARI vs graph parameters, Two Moons dataset, level 4
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Figure 6.6.: ARI scores plotted against the graph parameters. We used the Two

o8

Moons data set with a training set size of 200 and an out-of-sample
test set of 2000 and clustered according to trivial thresholding at zero.
The regularization parameter was fixed at 4 = 107°. Ground truth
is the clustering obtained with Shi-Malik spectral clustering on the
combined set of 2200 data points.



6.4. Bi-Clustering Results

ARI vs regularization, Two Circles, nn=10
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Figure 6.7.: ARI scores plotted against the regularization parameter for varying
levels on the Two Circles data set. Further parameters: n,, = 10,
6 = 32.

As for our experiments, we did not vary the data set size within one set of exper-
iments, so m? may just be considered a scaling parameter.

The variation of 4 played the most important role for grids with many “empty”
cells, where several nodal basis functions had no data points on their support.
This notion was also introduced shortly in the intuitive graph-based explanation
in Section 5.5: If nodal basis functions are neighboring, even if they are not con-
nected via data points on their respective supports, there should still be a notion
of similarity.

On the other hand, if there are only data points, a high regularization parameter
overshadows the connectivity stemming from the data points. In these cases, the
embedding function will not stay true to the data. This can be seen in the sudden
decrease of quality for rising 4 in the plot in Figure 6.7 and in the exemplary
embeddings in Figure 6.8, which depict the effect of too large regularization.

6.4.3. Choice of Clustering Function

As shortly noted in Section 5.2.2 for the bi-clustering we pursued in the Two Moons
and Two Circles examples, a thresholding at zero can be applied as a trivial clus-
tering algorithm. In these experiments, we additionally ran a k-means algorithm
on the one-dimensional embedding, to take into account proximity to the means
of the two clusters. The results obtained were mostly very similar concerning the
ARI scores, as can be seen in the runtime tables, Table 6.1 and Table 6.2, and
there is no obvious tendency towards one choice. Interestingly however, some out-
liers were present in both ways. Often, if both results are good (ARI Score of 0.95
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Figure 6.8.: The influence of a growing regularization parameter on the Two Cir-
cles data set (m = 500). On the second plot, the term with the
stiffness matrix dominates the problem and any data dependency is
lost. Further parameters: L = 6, ny, = 10, § = 32

or better), the k-means clustering scores slightly better, due to its more tolerant
view towards the decision boundary at zero. This is especially notable in cases
with a large regularization parameter.

The discussed comparability of the clustering naturally holds only for the biclus-
terings considered in this section. For higher-dimensional embeddings, where the
number of clusters exceeds the number of target dimensions (which is the standard
case for real-world-applications), the advantages of the k-means algorithm natu-
rally predominate. However, also in these cases a thresholding of the coordinate
axes at zero can be meaningful, cf. the figures in Section 6.5.

6.4.4. Use of the Classic Combination Technique

A natural and closely related choice of method to compare the Opticom eigenvalue
approach to is the classical Combination technique. However, the following aspects
need to be noted:

e The combination technique needs the second layer of grids (for the notion
of layers, cf. Figure 3.4 in Section 3.2), thus almost twice as many partial
solutions needs to be calculated.

e For more than one target dimension of the embedding (or, in clustering, the
lower dimensional space in which the clustering algorithm is performed) we
need to use the first variant introduced in Section 5.4, where we first attempt
to match the pairs of the eigenvectors across the grids.

Our experiments showed that for the eigenvalue problems considered in this thesis
the classic combination technique is not competitive. While it reacted a lot more
sensitive towards the parameters, notably the regularization parameter 4 in the
sense that the results would slightly improve for larger values of 7, the results
were never found to be of high quality. A representative example is depicted in
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6.5. Clustering via n-dimensional Embeddings

Mirain | RT Training | RT OOSE | ARI (k-m.) | ARI (thr.)

50 1.19s 0.06 s 0.119 0.000
100 1.5s 0.06 s 0.008 0.008
150 1.86 s 0.05 s 0.810 0.940
200 241 s 0.08 s 0.945 0.990
250 2.65s 0.07 s 1.0 1.0
300 3.28 s 0.05 s 1.0 1.0

Table 6.1.: Runtime and ARI score of Two Circle, independent out-of-sample test
set with Myos = 2000. ARI score calculated on ground truth created
at data generation. Parameters: n,, =20, § =32, L=15,5 = 10"".

Figure 6.2j. Here, the Opticom solution manages to balance the coefficients of the
partial solution in a meaningful way, while the non-adaptive classic combination
coefficients can not differentiate.

6.4.5. Runtime

Some empiric runtimes of both the Two Moons and the Two Circles data set are
given in Tables 6.2 and 6.1. In both cases, we varied the size My, of the training
set between 2.5 and 15% of the size of the out-of-sample, My.s. The sets were
drawn independently.

In comparison, the full Laplacian Eigenmaps algorithm on both training and out-
of-sample data runs about 5.5 seconds. Thus for both toy data sets, we succeeded
in our approach to achieve high-quality approximations (ARI score of 0.95 or
higher), while taking considerably less time than the full algorithm. As discussed
before, the better results for Two Moons stem from the fact, that here the data
density is more consistent. The Two Circles data set features a reason of lower
density (the outer circle), so more samples of the data are needed to obtain a
meaningful graph.

It needs to be noted that the measured runtimes to some scale depend on a fine-
tuning of the FEAST solver. For example, a larger regularization parameter leads
to the existence of more eigenvalues close to zero, and as the speed of the solver
depends on the number of eigenvalues in a determined interval, the regularization
parameter thus influences the runtime.

6.5. Clustering via n-dimensional Embeddings

For comparability and ease of inspection, the above-mentioned experiments were
performed for biclustering, and using an embedding into R.

As discussed in Section 5.4, a strength of Opticom for eigenvalue problems is the
“automatic” sorting it will perform in the case of several eigenfunctions coming
from each partial grids. This was put to the test using the anistropic blobs data
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6. Numerical Experiments

Mirain | RT Training | RT OOSE | ARI (k-m.) | ARI (thr.)

50 1.06 s 0.07 s 0.540 0.540
100 1.22 s 0.05 s 0.660 0.664
150 1.62 s 0.07 s 1.0 1.0
200 211 s 0.07 s 0.988 0.988
250 242 s 0.06 s 0.980 0.980
300 2.64s 0.05 s 0.962 0.962

Table 6.2.: Runtime and ARI score of Two Moons, independent out-of-sample test
set with Myos = 2000. ARI score calculated on ground truth created
at data generation. Parameters: n,, =20, 6§ =32, L=15,5 = 10"".

set, with different data densities for every blob. We mapped this two-dimensional
data set again into the R?, while combining the solution function from all 2k

. N k
eigenfunctions, { 2(1), fQ(l)}‘ coming from the k partial grids. For this problem,

the proposed algorithm W(Z)}ll{ed remarkably well. An example data set and its
embedding is depicted in Figure 6.9. Note, that already an embedding onto R via
the z-coordinate would yield quite an accurate one-dimensional embedding. While
a trivial zero-thresholding clustering could not separate the yellow and light blue
points, the k-means algorithm on the embedding had no problems splitting these
two data set, yielding a perfect ARI score of 1.0 for the embedding of the training
data, and a score of 0.988 for the formerly unknown out-of-sample data.

Notably, the application of the original Laplacian Eigenmaps for the 2-dimensional
embedding gave worse results and found only three of the clusters, as its underlying
graph was not connected, and thus each of the eigenvectors was piecewise constant.
In the calculation of the ARI score above we therefore used the ground truth
provided by the data generating function.

6.6. Embedding Results

While in the past section we concentrated on the clustering capacities of our pro-
posed algorithm for two-dimensional data sets, while still having the underlying
embedding functions in mind, we will now present the results for a standard, true
embedding problem, the unrolling of the Swiss Roll dataset.

This classic toy dataset for machine learning features a two-dimensional subman-
ifold embedded very nonlinear (“rolled”) in R3, and it is the aim of the algorithm
to recover the original two-dimensional structure. In Figure 6.10 we show the orig-
inal data set, where the colors mark the z-direction in the originating manifold.
Our proposed method, like the closely related method by Peherstorfer et. al.,
managed to find an embedding for the structure, as shown in Figure 6.11. Note
that this embedding, even though it does still feature some curvature, is indeed
“better” than the embedding obtained with Laplacian Eigenmaps on the training
data only, as the distances between points are recovered more accurately. A plot
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Figure 6.9.: Anistropic Blob data set with varying density, split in training data

(m = 200) and test data (m = 2000), and the 2 dimensional embed-
ding obtained when training on the training data. The colors represent
ground truth labels, the gray lines in the embedding plots mark the
coordinate axes. Parameters: n,, = 15, § = 32, A = 107°, amar = 1,
L =5.
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6. Numerical Experiments

Figure 6.10.: The Swiss Roll data set with 2000 data points.

of the latter is depicted in the last subfigure of 6.11.

It needs to be noted, that already for this 3-dimensional case with a level as low as
5, the slow-down due to the projection products on the high-dimensional spaces
was notable. A list of empiric runtimes of distinct steps of the algorithms is given
in Table 6.3.

6.7. Limitations

In addition to the influence on the runtime, some problems occurred during this
experiments due to the FEAST solver. While it is fast and works well on sparse
matrices, to be able to use it at its full power a lot of fine tuning is necessary,
adjusting parameters such as the search interval and the number of eigenvalues
to be found in this interval, adaptively and carefully. Still, for some matrices
(often for very large and sparse ones, with high level L and low regularization
parameter 7) the solver did not converge, and it could not become clear, why this
behavior appeared in these situations. For this reasons, our intended experiments
to compare the results to those on a highly-refined full grid were not possible, as
the solver aborted.

As our main use case will be situations with more data points than grid points,
these effects may not occur in other setups.

Still, these problems will need to be investigated in the future, and it might even
be useful to consider another solver, especially for use cases that can be run single-
threaded and do not need the computational power of FEAST.
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Figure 6.11.: The two-dimensional embeddings for the Swiss Roll data set found
by our algorithm, for training and out-of-sample data set, both with
a size of 2000, and with the original Laplacian Eigenmaps on the
data points. The colors are chosen as in Figure 6.10 and denote the
original position on the manifold. Parameters: level L = 5, n,, = 40,
§=64,5=10"10
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6. Numerical Experiments

Step Runtime | (matrix size)
Grid eigenproblem level (1 1 3)T 4.07s | 81
Scalar products with previous solutions 0.0s
Grid eigenproblem level (1 2 2)T 4.16s | 75
Scalar products with previous solutions 12.62 s
Grid eigenproblem level (2 1 2)T 2.96s | 75
Scalar products with previous solutions 24.10 s
Grid eigenproblem level (1 3 1)" 2.96 s | 81
Scalar products with previous solutions 35.89 s
Grid eigenproblem level (2 2 l)T 2.96 s | 75
Scalar products with previous solutions 47.65 s
Grid eigenproblem level (3 1 1)T 2.98 s | 81
Scalar products with previous solutions 59.33 s
Final eigenproblem 0.01s | 12
Out of sample batch evaluation ‘ 0.16 s

Table 6.3.: Detailed empiric runtimes for calculation of grid based embedding func-

tion for Swiss Roll. Measurement was performed on a simple worksta-
tion.

6.8. Open Questions

In the following, we summarize the open questions that appeared during the the-
oretical and experimental analysis of our method and that may be worth some
further consideration.

Parameter Choices While some heuristic rules of thumb have been established

for the classic spectral learning algorithms, it remains to be investigated, if
these can just be copied for a grid-based approach. Our experiments indi-
cated, that this might not be sufficient, but it might be necessary to include
values like the grid’s mesh width already into the graph setup.

Choice of Spectral Learning Algorithm So far, we based our algorithm on Lapla-

cian Figenmaps. While we noted in Chapter 4 that most of the data-based
spectral learning algorithms are equivalent in some way, this does not au-
tomatically carry over to the grid-based reformulation. Intuitively, the ran-
dom walk derivation of Diffusion Maps [CL06a], encoded in the random walk
Laplacian Ly, might be more suitable in the context of grids.

Convergence The existing results on the convergence of Laplacian Eigenmaps
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(cf. Section 4.5, [BNO8a]) and on eigenvalue approximation on finite ele-
ment meshes (cf. [Bofl0]) could possibly be combined to derive convergence
results for our proposed method. Unfortunately, a thorough mathemati-
cal investigation on this matter exceeded the scope of this thesis. Notable
aspects to consider are the highly anisotropic grids that arise in the com-



6.8. Open Questions

bination technique and can strongly influence the local stability properties
of the spectrum (cf. [Kat76]), as well as the exact properties of the spaces
spanned by the partial solutions, which are the ansatz spaces for our second
Galerkin step in the Opticom approach.

Computational Feasibility for higher-dimensional Problems The dimensions of
both the ambient and the latent space influence our approach’s runtime
largely. The ambient space does this in a more obvious and well studied way
which did in fact give rise to the sparse grid approach. But here, too, exist
limitations up to which level sparse grids can be applied before suffering
from the curse of dimensionality. Also the latent space’s dimension p € N
has some influence to our algorithm’s complexity, as in our suggested ap-
proach the final Opticom system is built from the scalar products of the kp
partial solution functions (k the number of partial grids considered for the
applied sparse grid level). As discussed before, these scalar products mean
some computational overhead, as the considered functions are embedded
into a more refined grid space, and the system matrix has to be constructed
for this space as well. Efficient implementations for this need to be sought
for, and depending on the effective computational loss the other options dis-
cussed in Section 5.4 may need to be reevaluated in this context.

Potential Adaptivity Considering the fact that in most of the considered prob-
lems (as usual in data analysis problems) the data points are very dense
in some areas and rather sparse in others, a potential for adaptivity seems
likely. In contrast to the hierarchical basis that is applied for the problem
by Peherstorfer et al., for the Opticom approach there exists no adaptive
refinement, as it draws its efficiency from the fact that the partial grids are
regular. A sort of adaptivity might however be considered in future work by
simply adding data dependent functions to the Galerkin ansatz space in the
Opticom step.
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7. Conclusion and Outlook

7.1. Conclusion

In this thesis, we investigated the possible application of the optimized sparse
grids combination technique for eigenvalue problems in machine learning. To that
end, we introduced and implemented a new framework for the grid-based out-of-
sample-extension of the Laplacian Eigenmaps algorithm.

The diverse theoretic origins of the algorithm were collected, summarized and ap-
plied to interpret the new method from different points of view.

The proposed algorithm was then analyzed and tested with standard machine
learning data sets. It has been shown, that for 2-dimensional clustering problems
even for very few grid points a well-suited embedding function could be learned.
Combined with an efficient batch evaluation, our method could deliver a quality
compared to that of a full run of Laplacian Eigenmaps at a higher speed. This
fulfilled one of the core quality assessments we defined for the algorithm.

Additionally, we evaluated the performance in a pure embedding setup. Here,
the algorithm was able to recover the two-dimensional structure of the Swiss Roll
data set. Remarkably, the provided embedding featured some qualities superior to
the one obtained with Laplacian Eigenmaps. For this three dimensional problem,
however, a loss of speed was notable.

7.2. Outlook

It needs to be evaluated, if the results also prove to be competitive when applied
to higher-dimensional and real-world data. The extrapolation qualities observed
in the tests are very promising, while the increase in computation time might be
critical for the use in real-world-applications.

If this is feasible, several extensions and adaptions to the method are possible. In
[BNSO06] a two-fold regularization both in the ambient and in the latent space was
proposed, which could positively affect our embedding quality. Additionally, for
our proposed use case of training on a subsample and then cheaply extending the
results to the rest of the sample, one could investigate the use of sophisticated
subsampling methods,

So far, this thesis considered only the case of unsupervised learning, i.e. we worked
with unlabeled training data. If some of the data is labeled, the clustering problem
can be refined into a classification problem. For this semi-supervised learning ap-
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7. Conclusion and Outlook

proach, Sinha and Belkin suggested an extension of Laplacian Eigenmaps [SB10],
which first finds a basis representation of the embedding and then adds the learn-
ing from labeled examples in a second step. It would be interesting to investigate,
if a similar approach is also possible with our provided function representation.

A detailed list of more practical open questions following from the experimental
results has additionally been compiled in section 6.8.
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A. Appendix: Implementation Details

The code written for this thesis, including a python-script containing an example
run, can be found on the enclosed CD-ROM.

A.1. Class structure

The main building blocks of the program are the following classes, ordered roughly
according to their generality:

Experiment The most general class, created in main.cpp, built using all config-
uration parameters. Several experiments are implemented here, including
cross validation, the general data-based Laplacian Eigenmaps algorithm and
the functionalties for out-of-sample extension.

OCHandler This class manages the execution of Opticom for eigenvalue problems
by performing all steps from Algorithm 1, from pre-processing to function
evaluation. For the latter, OCHandler also stores all partial solutions inter-
nally.

OpticomEVSolver Virtual class to provide Solvers for generalized eigenvalue prob-
lems, for both sparse and dense problems.

FEASTOpticomEVSolver Wrapper for the FEAST implementation by Eric Polizzi,
[Pol09]. If the solver does not converge, the wrapper will change the param-
eters accordingly and retry.

InputData Handles data management. Provides readers to load data stored in
txt-format and can work directly on data to set up the data dependent
Graph Laplacian and degree matrices.

RegularAnistropicGrid Building block reprensenting the partial grids. Provides
all methods on function evaluation.

A detailed description of all member variables and method can be found in the
documentation provided in Section A.2.

A.2. Documentation

On the following pages, find a detailed documentation of the program code, created
with Doxygen.
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A.2. Documentation
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