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1 ABSTRACT

In this paper we describe a multi-scale approach to ion migration processes, which in-
volves a bridging from the atomic scale to the macroscopic scale. To this end, the diffusion
coefficient of a material i.e. a macroscopic physical quantity, will be appropriately deter-
mined from molecular dynamics simulations on the microscale. This way, performance
predictions become possible prior to material synthesis. However, standard methods
produce in general wrong results for ensemble setups which correspond to battery or
capacitor applications.

We introduce a novel method to derive correct values also for such problems. These
values are then used in a macroscopic system of partial differential equation (Poisson-
Nernst-Planck system) for the numerical simulation of ion migration in a battery.

2 INTRODUCTION

Batteries are important for a variety of mobile electronic devices. Moreover, future
electric cars need efficient and lightweight batteries. Therefore, there is a great demand
for new and improved types of batteries, which in turn requires improved and novel
materials.

Batteries work due to ion migration between electrodes. Important topics include
the increase of charge capacity, the maximally allowed current and a high (cycle) life time.
Additional challenges are present for materials which undergo substantial volume changes
depending on temperature or intercalation. Simulations are an important tool to better
understand the processes in existing batteries and to derive new batteries which may
be based on novel materials. To address these issues, it is necessary that basic material
properties can be predicted and their respective influence on the battery performance
can be evaluated.

1



Figure 1: Scheme of the scales in material design. From left to right: electron density of Ethylene
Carbonate (EC), and BF4 ions in EC, ion concentration in a battery cell demonstrator.

We use molecular dynamics to investigate the influence of defects and artificial
nanostructures on electrode and separator materials. The microscopic particle behavior is
then scaled up to macroscopic values such as chemical potential, volume changes, diffusion
coefficients, etc. In this paper we present an improved method for the derivation of
diffusion values. These values are then fed to the time dependent Poisson-Nernst-Planck
equations in three dimensions, which in turn are numerically solved by an adaptive finite
element method. In this context, special challenges appear with the strong non-linear
coupling of the ions’ electric field with the ions’ charge concentration. We treat this
non-linearity by a Quasi-Newton iteration with adaptive direction- and step-size-control.

3 THEORY

For the molecular dynamic problem on the microscale we make use of the TREMOLO-X
software package, a joint development at the University of Bonn and Fraunhofer SCAI,
for details see [5] and the web page www.tremolo-x.com.

The quantity of primary interest is the diffusion coefficient of the charged ions
within the electrolyte or the electrodes. Standard techniques to derive this value from
molecular dynamics simulations are based on the Einstein relation or a Green-Kubo
relation, i.e. the velocity auto correlation (VAC).

Here, let ~xp(t) be the position of particle p at time t, let n be the number of
particles, and let 〈 〉 denote the averaging operator. Then, we define the mean square
distance 〈

L̃2(t)
〉

=
1

n

n∑

p=1

(xp(t)− xp(t0))2 (1)

In case the system is in an equilibrium state, this is equivalent to the Green-Kubo relation

〈
L̃2(t)

〉
=

∫ t

t0

∫ t

t0

〈
vp(τ)vp(τ

′)
〉
dτ ′dτ (2)
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where ~vp(t) is the velocity of particle p at time t, see [4]. However, in an active battery
or capacitor, ions are in general in flux due to an external electrochemical potential and
a corresponding non-zero convection; thus the system is no longer in equilibrium. As
a consequence, the two traditional prediction methods (1) and (2) for diffusion fail and
become divergent.

The reason for this failure becomes apparent once we take a closer look at the
formula for ion flux on the particle level. Let Ω be the domain of the system in question,
let Bd(~x) be a sphere of diameter around point ~x, let ~xp denote the location and ~vp the
velocity of particle p and, finally, let δ(~x) be the three-dimensional delta distribution.
Then, the flux of particles can be written as

~J =
1

|Br(x)|

∫

Br(x)

∑

p:xp∈Ω

δ(x− xp)
∂~xp
∂t

dx

=
1

|Br(x)|

∫

Br(x)

∑

p:xp∈Ω

δ(x− xp)~vp dx

=
1

|Br(x)|

∫

Br(x)

∑

p:xp∈Ω

δ(x− xp) (~vp − 〈v〉+ 〈v〉) dx

=
1

|Br(x)|

∫

Br(x)

∑

p:xp∈Ω

δ(x− xp) (~vp − 〈v〉) dx
︸ ︷︷ ︸

diffusion

+
1

|Br(x)|

∫

Br(x)

∑

p:xp∈Ω

δ(x− xp) 〈v〉 dx
︸ ︷︷ ︸

convection

.

This separation into a diffusive and convective part is not taken into account by the
traditional formulae (1) and (2), which therefore may fail. Thus a new method is required
which is able to predict the correct value of pure diffusion also for the non-equilibrium
case. The idea is to remove – or more accurately to disregard – the contribution of the
convection while computing the displacement of the particles. For reasons of brevity we
will not give the complete derivation here, but point the reader to [9]. There, one can also
find a derivation of the splitting of convection and diffusion for the continuous Nernst-
Planck equation, which shows that the micro and the macro-scale behave equivalently
and the results are indeed transferable.

Here, we only present the resulting, corrected formula for the mean square dis-
placement (MSD) based Einstein relation for diffusion, i.e.

〈
L2(t)

〉
=

1

n

n∑

i=0

(xp(t)− xp(t0)− 〈x(t)− x(t0)〉)2 . (3)

This value can then be used to compute the actual diffusion coefficient

D =

〈
L2(t)

〉

6 · (t− t0)
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While the original formulae (1) and (2) are analytically equivalent in the infinite
limit, the derivation of the integral in the expression (2) has a much stricter requirement
of the equilibrium in the ensemble. As a consequence, the instability of approach (2) in
the case of an external field cannot be removed in the same way as it can be done for (1)
by (3). In the next sections, we consider the MSD based method (3) more closely.

4 RESULTS

4.1 Benchmarking of the corrected diffusion method

First, we perform benchmark tests with a unit-reduced Lennard-Jones fluid, following the
setup of [8] and compare the numerical results. Simulations were carried out for reduced
densities 0.6 and 0.8, and, for each density, at temperatures 1.2 and 3.0 (all in reduced
units). After an initial relaxation for 1000 time units, the MD simulation using the NVE
ensemble was first carried out for 500 time units. Then, the measurement process was
started. It was successively restarted after 4000 time units.

For systems without external forces, both methods (1) and (3) result in nearly
identical values (see figure 2), which match the results from [8]. However, in the presence
of an external field, the conventional method (1) yields completely different results (with
a computed diffusion coefficient that exceeds the valid one by several multiples and finally
diverges, compare figure 3), while the improved new approach (3) still gives the correct
result.

Figure 2: Comparison of the traditional (1) and the corrected (3) method for the classical equi-
librium case. The computed values are nearly identical.

Furthermore, qualitative tests were performed for systems with constant average
velocities. There the corrected method proved to be superior to the classical one as
well. Note however that such scenarios can in general also be successfully treated with
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Figure 3: Comparison of the traditional (1) and the corrected (3) method for an applied external
field. The traditional computation (1) diverges, whereas the new method (3) gives the
proper value.

the traditional method (1) by removing the momentum of the center of mass from the
ensemble.

Traditional method 1 Corrected method 3 Benchmark value
No force With force No force With force

Temp 1.2 Den 0.6 0.203 * 0.203 0.203 0.195
Temp 1.2 Den 0.8 - * - 0.087 0.084
Temp 3.0 Den 0.6 - * - 0.431 0.425
Temp 3.0 Den 0.8 - * - 0.232 0.225

Table 1: * These computations showed divergence, compare figure 3. Thus applying averaging
would result in meaningless, too large values.

Altogether we see from the results in table 1 that our new method (3) behaves just
as good as the classical method (1) for traditional ensembles in simple situations, while
it is far superior in the cases where an outer force is in effect or the center of mass is in
motion.

4.2 Diffusion of Li+ in EC

Next we consider dissociated LiBF4 in an Ethylene Carbonate (EC) solution. Intramolec-
ular forces for EC and were modeled after [3] and [7], respectively. The intermolecular
forces were modeled by Lennard-Jones and Coulomb interactions with the parameters in
table 2.
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molecule atom σ/Å ε/kcalmol q/e
EC O 2.96 0.210 -0.6452

OS 3.00 0.170 -0.4684
C 3.75 0.105 1.0996
CT 3.5 0.066 0.033
H1 2.5 0.030 0.1041

Li+ Li 1.46 0.191 1.0
BF−4 B 3.581 0.3975 0.9756

F 3.118 0.2552 -0.4939

Table 2: Van der Waals parameters and partial charges for EC

The basic system consisted of 2197 EC molecules. Then, for each Li+ or BF−4
molecule added, one EC molecule was removed. After the introduction of these extra
ions, the corresponding systems were relaxed and then equilibrated in an NPT setting for
a temperature of 323K and a pressure of 1 atm. The actual measurement was performed
for 147 ps at the end of the simulation. The thermostat was of Nose-Hoover type, the
barostat of Parinello type. For further details of the implementation, see [5].

Computations were carried out for different concentrations of LiBF4 in the elec-
trolyte. In order to have comparability with experimental values, the diffusion of the
bound hydrogen atoms was used to express the diffusion coefficient of EC. The results
obtained for the diffusion coefficients can be found in table 3.

# Ions DEC(H)

[
10−10 m2

s

]
DLi

[
10−10 m2

s

]

6 5.47 0.5
8 3.24 1.65
10 4.56 1.4
12 3.31 0.75
14 3.05 1.16
(average) 3.926 1.092

Table 3: Results for diffusion coefficients of EC and Li+

These values are to be compared with results computed by other simulations and
found in lab experiments. In the simulation study [10], using the same ions and elec-
trolytes as in this work, a diffusion coefficient for Li+ of 4.7 · 10−10 m2

s was derived, but
no value for EC was given. Furthermore, to the best of our knowledge, no experimen-
tal values for exactly the same configuration have been published so far. However, a
slightly different setup using the same electrolyte but N(SO2CF3)−2 as a counter-ion
was investigated by both, simulation and experiment. Here, the simulation study [2]
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produced diffusion coefficients for Li+ and the EC electrolyte of 2.8− 2.9 · 10−10 m2

s and
5.3− 5.8 · 10−10 m2

s , respectively. Moreover, in experimental work [6] the diffusion coeffi-
cients of Li+ and EC were measured to be 2.1 · 10−10 m2

s and 4.3 · 10−10 m2

s , respectively.
Note that due to the larger counter-ion N(SO2CF3)−2 , a direct comparison of these val-
ues may be questionable. Nevertheless, let us point out that our diffusion coefficient of
Li+ is twice as close to this experimental result as the one derived in [10]. At the same
time, a much better result than in [2] is predicted for the diffusion of EC.

5 Going up in scale: Macroscopic ion migration

The derived values can now be fed as input parameters into a macroscopic continuous
model for ion migration. To this end, we employ the time-dependent, fully coupled
Poisson- Nernst-Planck (PNP) equations

∂ci
∂t

= ∇ ·
[
Di

(
∇ci +

zi · e∇Φ

kBT
ci

)]

−4Φ =
F

εrε0

∑

i

zici(x)

in three dimensions with appropriate boundary conditions.
The PNP equation system is discretized using the finite element library deal.II [1].

In this context, special issues exist with the strong non-linear coupling of the ions’ con-
centration with the ions’ electric field . Any explicit treatment will lead to an oscillating
behavior in the solution so that, in order to guarantee a numerically stable progression
of the solution, all variables must be handled fully implicit. As a result, each time step
of the solution requires not only the solution of a single linear equation system, but an
iteration of such systems, i.e. a Quasi- Newton method.

As a first test we apply our method to an asymmetric, three-dimensional demon-
stration case. To this end, we simulate a unit cube containing four distinct subdomains
(c.f. figure 5), each of which has its specific nanostructure with appropriately derived
diffusion coefficients for both ionic species, which vary independently between 8.3 · 10−11

and 5.0 · 10−9 . The two ionic species have opposing charges and are initially distributed
with constant and equilibrated concentration. Then, an external electric field along the
x-axis and a constant current across the y/z-plane boundaries are applied. Thus ion
migration takes place accordingly and the distribution changes rapidly, compare figure 5.

6 CONCLUSION

We introduced a new, improved method to measure diffusion in molecular dynamics. It
is at least as good as the traditional methods for standard ensembles, but in addition
allows for an external force field. This is a prerequisite for any multiscale simulation of
ion migration in new battery systems and capacitors. The resulting diffusion coefficients,
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Figure 4: Cut-open unit cube with different diffusion regions, initial isosurfaces of ion concen-
tration and final isosurfaces of ion concentration after 10 time units.

plugged into the Poisson- Nernst-Planck equation, yield improved macroscopic models
and there allow for more accurate numerical results.
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