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Abstract We present a generalized optimal transport model in which the mass-preserving constraint
for the L2-Wasserstein distance is relaxed by introducing a source term in the continuity equation.
The source term is also incorporated in the path energy by means of its squared L2-norm in time of
a functional with linear growth in space. This extension of the original transport model enables local
density modulations, which is a desirable feature in applications such as image warping and blending.
A key advantage of the use of a functional with linear growth in space is that it allows for singular
sources and sinks, which can be supported on points or lines. On a technical level, the L2-norm in
time ensures a disintegration of the source in time, which we use to obtain the well-posedness of
the model and the existence of geodesic paths. The numerical discretization is based on the proximal
splitting approach [18] and selected numerical test cases show the potential of the proposed approach.
Furthermore, the approach is applied to the warping and blending of textures.
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ting

1 An optimal transport model with source term

In the last decade optimal transport became a very popular tool in image processing and image analysis
[18], where the quadratic Wasserstein distance is applied for instance in non-rigid image registration and
warping. It was also used to robustly measure distances between images or to segment and classify images
[17]. Driven by applications for instance in imaging [21,3,2] there is a strong demand to develop robust
and efficient algorithms to compute optimal transport geodesics, such as the entropic regularization [4,16]
or the sparse multiscale approach [22].

In their groundbreaking paper Benamou and Brenier [1] reformulated (for numerical purposes) the
problem of optimal transport first considered by Monge and then relaxed by Kantorovich in a continuum
mechanical framework describing the evolution of the mass distribution in time. This reformulation turned
out to be the geodesic equation on the L2 Wasserstein space. For an underlying flow of a density θ with
Eulerian velocity v one considers the path energy

E [θ, v] =
∫ 1

0

∫
D

θ|v|2 dxdt , (1)

where D ⊂ Rd is assumed to be a closed, bounded convex domain with Lipschitz boundary. Then
the quadratic Wasserstein distance W2[θA, θB ] between two probability density function θA and θB can
be computed by minimizing E over all density functions θ : [0, 1] × D → R and velocity fields v :
[0, 1]×D → Rd subject to the continuity equation ∂tθ+div(θv) = 0 and the constraints θ(0) = θA and
θ(1) = θB . Here the continuity equation enforces θ(t) to remain in the space of probability densities. In
applications such as image registration or image morphing, input images are frequently not of the same
mass. Thus, a contrast modulation on the input images is required before an optimal match between the
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input images can be computed. But, even if the total mass of the input images coincides, the incorporation
of local intensity modulation is desirable to cope with the variability of natural images and to avoid
”artificial” long range transport just for the purpose of mass redistribution between totally independent
image structures.

Recently, several optimal transport models [19,15,14,8,13] have been proposed, which relax the mass
preserving condition and incorporate a source term in the transport model to allow arbitrary input mea-
sures. To this end one introduces a source term z : [0, 1]×D → R in the modified continuity equation

∂tθ + div(θv) = z . (2)

This source terms has then to be incorporated in the path energy via a suitable penalty term, which
represents the cost of mass production. Here, we propose the following generalized action functional

Eδ[θ, v, z] =
∫ 1

0

∫
D

θ|v|2 dxdt+ 1

δ

∫ 1

0

(∫
D

r(z) dx

)2

dt (3)

subject to the relaxed continuity equation (2) and the constraints θ(0) = θA and θ(1) = θB , where
r : R → R is a non-negative, convex function satisfying r(0) = 0 and the linear growth condition
r(s) ≤ C(1+|s|) for all s ∈ R. Cases of interest in our considerations are r(s) = |s| corresponding to the
L1 norm in space or more appropriate in imaging applications a Huber norm in space with r(s) = 1

2β s
2

for |s| ≤ β and |s|− β
2 else for some β > 0. In this model δ > 0 denotes a penalty parameter which allows

to grade the mass modulation rate. It is desirable to allow also for singular sources which are supported
on line segments of points in space. The linear growth property will ensure that singular source terms are
admissible.

For this model existence of a shortest (geodesic) paths given by a minimizer of the cost functional Eδ
existed. To prove this the appropriate framework is that of Radon measures and a suitable decomposition
of the measures for mass, momentum and source term into absolutely continuous and orthogonal parts
with respect to the Lebesgue measure. Since these decompositions are not unique, it is useful to require
1-homogeneity of the integrands for the singular measures, which ensures that the definition of the energy
functionals does not depend on the decomposition. In particular, we will observe that our class of mod-
els allows singular sources. Furthermore, the L2-norm in time provides an equi-integrability estimate,
which guarantees compactness in the space of curves of Radon measures and is thus essential to establish
existence of a minimizer.

The flow formulation (1) has been used in [1] primarily to compute optimal transport geodesics nu-
merically with an augmented Lagrangian approach. In [18] it was shown that a proximal splitting al-
gorithm leads to an equivalent optimization method. We will extend this approach to derive a suitable
numerical discretization of our model.

This paper is organized as follows: First, in Section 2 we give an overview of recent developments
on optimal transport models with source term. In Section 3 we rigorously define the generalized optimal
transport model and establish the existence of optimal transport geodesics. Then we propose in Section 4
an efficient numerical scheme via proper adaptation of the proximal splitting method. Finally, in Section
5 we present results and discuss properties of the generalized model.

2 Related work on optimal transport with source term

In very recent years there has been a lot of activity on the extension of optimal transport distances to
spaces of densities or measures with possibly different masses, which we here briefly summarize and
point out differences to our model. A so-called partial optimal transport model was proposed by Caffarelli
and McCann [5] and analyzed by Figalli [12]. By relaxing the marginal constraint in the Kantorovich
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formulation, they ask for the optimal transport of a fixed fraction of some initial to a final density function.
Note that there is actually no source term involved, but one is rather interested in the geometry of the
subsets which are actually transported.

Furthermore, there are generalized transport distances which are closely related to the Benamou-
Brenier formulation and based on a minimization of a path energy subject to the continuity equation with
source term. Picolli and Rossi [19,20] considered minimizer of the path energy

EL1 =

∫ 1

0

∫
D

θ|v|2 dxdt +
(∫ 1

0

∫
D

|z|dxdt
)2

subject to equation (2). They prove for absolutely continuous measures θ and absolutely continuous
sources z with respect to the Lebesque measure that this geodesic formulation corresponds to solving
the problem

inf
θ̃A,θ̃B :|θ̃A|=|θ̃B |

|θ̃A − θA|+ |θ̃B − θB |+W2(θ̃A, θ̃B) .

Instead of the squared L1 norm, Maas et al. [15] choose as penalization of the source term the squared
L2 norm:

EL2 =

∫ 1

0

∫
D

θ|v|2 dxdt +
∫ 1

0

∫
D

|z|2 dx dt .

Chizat et al. [8] and Liero et al. [14] proposed an interpolating distance between the Wasserstein distance
and the Fisher-Rao distance by minimizing the energy

EWF =

∫ 1

0

∫
D

θ(|v|2 + α(z)) dx dt

subject to the continuity equation ∂tθ+div(θv) = θz. Note that the source term in this model is integrated
w.r.t. to the measure given by θ. Furthermore, in [7] a static Kantorovich formulation is derived and it is
shown that the distance in [19,20] arises as a special case.

At first glance, the distances obtained by minimizing the energies EL1 and EL2 seem to be very similar
to our proposed energy (3). The difference becomes crucial when properly extending the energies to the
space of Radon measures. In fact, a penalization of the source term squared L2 norm does not allow
singular sources which are for instance concentrated on lines of points, whereas such sources are possible
in our model as it will be demonstrated in Section 4. However, choosing a penalization in the L1 norm
in space-time does not guarantee that the resulting minimizing measure is actually a curve in time in the
space of Radon measures. Indeed, the generalized Benamou and Brenier model (3) allows for singular
measures as source terms, which are for instance concentrated on lower dimensional sets.

3 Variational formulation for the generalized transport model

Here, we formulate a measure-valued setup for the energy in (3) as well as for the continuity equation
with source term (2). We follow the lines of [9] and the treatment of the source term in the L2-norm in
space-time presented in [15].

First, we apply the change of variables (θ, v) 7→ (θ,m = θv) already used by Benamou and Brenier
[1]. Instead of the pair (θ, v) we consider the pair (θ,m), where m denotes the momentum, such that the
integrand |v|2θ pointwise transforms into

Φ(θ,m) =


|m|2
θ if θ > 0 ,
0 if (θ,m) = 0 ,

+∞ otherwise .
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with the advantage that Φ is lower-semicontinuous, convex and 1-homogeneous.
A generalized continuity equation ∂tµ + div(ν) = ζ in terms of measure-valued quantities, namely

mass µ ∈ M+([0, 1] × D), momentum ν ∈ M ([0, 1] × D;Rd), and source term ζ ∈ M ([0, 1] × D)
and for given boundary values µ0 = µA and µ1 = µB is defined in the sense of distributions, by testing
against all space-time test functions η ∈ C1([0, 1]×D) :

0 =

∫ 1

0

[ ∫
D

∂tη(t, x) dµt(x) +

∫
D

∇η(t, x) · dνt(x) +
∫
D

η(t, x) dζt(x)

]
dt

−
∫
D

η(1, x) dµB(x) +

∫
D

η(0, x) dµA(x) .

We will consider curves of measures on D instead of just measures on the product space [0, 1]×D as the
proper measure theoretic setup for the continuity equation equation with source term. Further, we denote
the set of all solutions of the weak continuity equation with source term by CE [0, 1].

Next, we define the energy (3) in terms of measures. To this end we decompose for each t ∈ [0, 1] the
triple (µt, νt, ζt) ∈M+(D) ×M (D;Rd) ×M (D) using the Lebesgue decomposition theorem. Thus,
we can rigorously define the total energy functional Eδ (cf. 3) for measures (µ, ν, ζ) ∈M+([0, 1]×D)×
M ([0, 1]×D;Rd)×M ([0, 1]×D) using these decompositions. Finally, following [15], we obtain the
following existence result for minimizing paths.

Theorem 1 (Existence of geodesics). Let δ ∈ (0,∞) and take µA, µB ∈ M+(D). Then there exists a
minimizer (µt, νt, ζt)t∈[0,1] of the energy Eδ subject to the weak continuity equation (4). Moreover, this
defines a metric Wδ on M+(D), and the associated curve (µt)t∈[0,1] is a constant speed geodesic for
Wδ , i.e.,

Wδ[µs, µt] = |s− t|Wδ[µA, µB ]

for all s, t ∈ [0, 1].

The proof of this theorem with an additional representation formula for the generalized Wasserstein dis-
tance is given in the supplementary material accompanying this paper.

4 Proximal splitting algorithm

In this section we derive a numerical scheme to compute geodesics for our new distance for d = 2. To this
end, we will adapt the proximal splitting algorithm, which was proposed by Papadakis et al. [18] for the
classical L2 optimal transport problem. In detail, the constraint optimization problem is first rewritten as a
non-constraint minimization problem adding the indicator function of the set of solutions of the continuity
equation CE [0, 1] to the cost functional. Then, the proximal splitting algorithm yields a solution scheme,
which only requires to solve a space-time elliptic problem and to project pointwise onto a convex set. The
resulting algorithm is equivalent to the augmented Lagrangian approach in [1]. Different from [1,18] we
will use a finite element discretization instead of finite differences.

Let us briefly recall the definition and the basic properties of a proximal mapping (see for instance
[6,18]). In the following, let (X.‖ · ‖X) be a Hilbert space and f : X → R ∪ {∞} a convex and lsc
function. Then the proximal mapping of f is defined as

proxf (x) = argmin
y∈X

f(y) +
1

2
‖x− y‖2 .
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In the sequel it will be important to compute the proximal mapping of the indicator function

IK(x) =

{
0 if x ∈ K ,

+∞ if x /∈ K .

of a convex set K ⊂ X , which is just given by proxIK (x) = projK(x) , where projK is the orthogonal
projection on K with respect to the norm ‖ · ‖X . Now, we suppose that D is a polygonal domain and
consider a tetrahedral mesh Sh with grid size h for the space time domain [0, 1]×D, which is generated
from a triangular mesh for the domain D via subdivision of prisms (k h, (k + 1)h) × T (with T being
a triangle) into 3 tetrahedrons such that the resulting tetrahedral mesh is an admissible triangulation in
space time. On this triangulation we define finite element spaces

V 1(Sh) = {φh : [0, 1]×D → R : φh continuous and piecewise linear on elements in Sh} ,
V 0(Sh) = {θh : [0, 1]×D → R : θh piecewise constant on elements in Sh} .

This allows us define discretization

θh ∈ V 0(Sh) , mh ∈
(
V 0(Sh)

)d
, zh ∈ V 1(Sh) ,

for the measures for mass, momentum and source, respectively. Furthermore, we will use the notation
ph = (θh,mh) ∈ V 0(Sh)

d+1. For a triple (θh,mh, zh) ∈ V 0
h (Sh) × V 0

h (Sh)
d × V 1

h (Sh) we choose a
weighted L2 norm

‖(θh,mh, zh)‖ :=
(∫ 1

0

∫
D

|θh|2 + |mh|2 +
1

δ
|zh|2 dx dt

) 1
2

,

which can be computed exactly by choosing a quadrature rule of at least second order. In correspondence
to the weak formulation (4) the set of discrete solutions of a continuity equation is defined as follows:

Definition 1. Let θA, θB ∈ V 0(Sh) be given. Then, the set CEh of solutions of a weak continuity equation
with source term and boundary values θA, θB is given by all triples (θh,mh, zh) ∈ V 0

h (S) × V 0
h (S)

d ×
V 1
h (S) satisfying∫ 1

0

∫
D

θh∂tφh +mh∇xφh + zφh dxdt =

∫
D

φh(1)θB − φh(0)θA dx ∀φh ∈ V 1(Sh) .

Note that we used Neumann boundary condition in space. The approach can easily be adopted in case of
Dirichlet or periodic boundary conditions.

Now, we can state a discrete version of the minimization problem:

inf
(θh,mh,zh)∈CEh

(∫ 1

0

∫
D

Φ(θh,mh) dx dt+
1

δ

∫ 1

0

(∫
D

Rh(zh) dx
)2

dt

)
,

where Rh[zh] denotes a suitable interpolation of r(zh). Here, we define Rh[zh](t, x) as the piecewise
affine interpolation of r(zh((k−1)h, ·)) on the triangle T for (t, x) ∈ (kh, (k+1)h)×T (one of the prisms
underlying the tetrahedral grid). Numerically, we are not able to treat singular measures as presented in
Section 3. Our concrete choices of r(s), which coincide with |s| for large s allow to approximate such
measures in the source term cost supported on the union of the support of basis functions. Thus point or
line sources are numerically treated via sources with support thickness 2h. To apply a proximal splitting
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algorithm, we split the functional into

F1(θh,mh, zh) := Ftrans(θh,mh) +
1

δ
Fsource(zh)

with Ftrans(θh,mh) :=

∫ 1

0

∫
D

Φ(θh,mh) dx dt , Fsource(zh) :=

∫ 1

0

(∫
D

Rh[zh] dx
)2

dt ,

F2(θh,mh, zh) := ICEh(θh,mh, zh) .

Next, let us compute the proximal mappings of F1 and F2.

Proximal map of F2. The computation of the proximal mapping of the indicator function of CEh requires
the orthogonal projection of a point (ph = (θh,mh), zh) ∈ V 0(S)d+1×V 1(S) onto CEh, i.e. we ask for
(p∗h, z

∗
h) ∈ argmin(qh,wh)∈CEh ‖(ph, zh)− (qh, wh)‖2. The associated Lagrangian is given by

L[(qh, wh), ψh] = ‖(ph, zh)−(qh, wh)‖2−
1∫

0

∫
D

qh · ∇(t,x)ψh+whψh dxdt+

∫
D

ψh(1)θB−ψh(0)θA dx ,

with a Lagrange multiplier ψh ∈ V 1(Sh). In terms of this Lagrangian the projection problem can be
written as a saddle point problem, where as ask for (p∗h, z

∗
h, φ
∗
h) ∈ V 0(S)d+1 × V 1(S) × V 1(S), such

that

L[(p∗h, z
∗
h, φ
∗
h)] = min

(qh,wh)∈V 0
h (S)d+1×V 1

h (S)
max

ψh∈V 1
h (S)

L[(qh, wh, ψh)] .

The Euler-Lagrange equations corresponding to this saddle point problem are given by∫ 1

0

∫
D

p∗h · ∇(t,x)ψh + z∗hψh dxdt =

∫
D

ψh(1) θB − ψh(0) θA dx ∀ψh ∈ V 1
h (S) (6)∫ 1

0

∫
D

qh · ∇(t,x)φ
∗
h dx dt =

∫ 1

0

∫
D

2(p∗h − ph) qh dx dt ∀qh ∈ V 0
h (S)

d+1 (7)∫ 1

0

∫
D

φ∗hwh dx dt =

∫ 1

0

∫
D

2

δ
(z∗h − zh)wh dxdt ∀wh ∈ V 1

h (S) (8)

Testing equation (7) with qh = ∇(t,x)ψh and then using equation (6) gives∫ 1

0

∫
D

1

2
∇(t,x)φ

∗
h · ∇(t,x)ψh dxdt =

∫ 1

0

∫
D

(p∗h − ph) · ∇(t,x)ψh dxdt

=

∫
D

ψh(1)θB − ψh(0)θA dx−
∫ 1

0

∫
D

z∗hψh + ph · ∇(t,x)ψh dxdt

Hence, by using equation (8) ( z∗h = zh +
δ
2φ
∗
h) we obtain∫ 1

0

∫
D

1

2
∇(t,x)φ

∗
h∇(t,x)ψh +

δ

2
φ∗hψh dxdt =

∫
D

ψh(1)θB − ψh(0)θA dx

−
∫ 1

0

∫
D

zhψh + ph∇(t,x)ψh dx dt
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for all ψh ∈ V 1
h (S).

After computing φh the solution of the projection problem is given by

p∗h = ph +
1

2
∇(t,x)φ

∗
h , z∗h = zh +

δ

2
φ∗h .

Proximal map of F1. The transport term Ftrans does only depend on θh andmh and can be treated exactly
as for classical optimal transport. Since we observe pointwise that Φ∗ = IK is an indicator function of
the convex set

K =

{
(θ,m) : θ +

|m|2

4
≤ 0

}
,

(see [1]) we can use Moreau’s identity and get

proxΦ(θ,m) = (θ,m)− proxΦ∗(θ,m) = (θ,m)− projK (θ,m) .

The projection onto K can be computed separately on each tetrahedron of the simplicial mesh Sh due to
the choice of our finite element spaces with ph ∈ V 0(Sh)

d+1.
We note that for a source term in L2 both in space and time we easily get a pointwise update

prox γ
δ |·|2

(z) = argmin
w

1

δ
|w|2 + 1

δ
|w − z|2 =

1

1 + γ
z .

Following the computation in [11] we also get a pointwise update for the proximal operator of the source
term in L1(L1), which is given by

prox γ
δ |z|

(z) =

{
0 , if |z| ≤ γ

2
z − γ

2 sgn(z) , else.

Thus, a numerical scheme for a source term in L1(L1) would be as simple as for a source term
in L2(L2), but existence of geodesics is not guaranteed. In case of a linear growth function r(·) the
minimization problem only decouples in time but not in space. Hence, for each discrete time step k we
have to solve

argmin
wh

γ

δ

(∫
D

Rh[wh](kh, x) dx
)2

+
1

2δ

∫
D

|wh(kh, x)− zh(kh, x)|2 dx .

For a source term in L2(L1) the minimization problem is well defined, but since r(z) = |z| is not
differentiable it is not clear how to find the minimizer. Therefore we restrict our numerical computations
to the case of r being the Huber function and use a gradient descent to compute this minimum.

Douglas-Rachford splitting algorithm. Finally, to solve the minimization problem

(p∗h, z
∗
h) ∈ argmin

(qh,wh)∈V 0(S)d+1×V 1(S)

F1(qh, wh) + F2(qh, wh)

we apply the Douglas-Rachford splitting algorithm [10], which is given by the iteration

(qnh , w
n
h) = proxγF2

((pn−1h , zn−1h )) ,

(pnh, z
n
h ) = (ph, zh)

n−1 + α
(
proxγF1

(2(qnh , w
n
h)− (ph, zh)

n−1)− (qh, wh)
n
)
,

for an initial value (p0h, z
0
h) and a step size weight α have to be chosen. It is guaranteed that for γ > 0

and α ∈ (0, 2) the sequence (pnh, z
n
h ) as well as (qnh , wh)

n converges to a solution of the minimization
problem.
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5 Numerical results

We have applied the proposed scheme for the optimal transport with source term for different sets of
(θA, θB), which we show in the accompanying figures always from left (θ(0) = θA) to right (θ(1) = θB).
In all computations D = (0, 1)2 and the grid size is h = 2−7. Recall, that the Huber function is given
by r(s) = 1

2β s
2 for |s| ≤ β and |s| − β

2 , where we choose β = 10−4. At first, we demonstrate that the
density function r for the source term is the right choice to deal with approximations of singular measures
as source terms. To this end, we consider in Figure 1 measures θA and θB supported on a thin rectangular
strip with constant but different density. The proposed model with the L2–Huber [L2(H)] type cost
functional

∫ 1

0
(
∫
D
r(θ) dx)2 dt for the source term is able to generate the required singular measure and

the Wasserstein geodesic is just given by a blending of the two measure θA and θB . The generating of
singular sources is not possible for an L2 type cost functional in space time [L2(L2)], which was proposed
in [15]. Indeed, chosen the cost functional

∫ 1

0

∫
D
z2 dx dt for the same data, the generation of mass via

the source term takes place on a thick super set of the rectangular strip and is then transported toward to
strip. We also observe a similar effect for absolutely continuous measures. In Figure 2 we compare the
L2(H) and the L2(L2) source term for geodesics connecting differently scaled characteristic functions
of a square. Again, the resulting geodesic for the L2(H)-model is given by a blending of the two measure
θA and θB , whereas in the L2(L2) the additional mass in image uB is generated from a bigger support.
Figure 3 shows a plot of t 7→

∫
D
|z(t, ·)|dx for both models underlining the equidistribution of the source

in time for the L2(H) model. Let us remark, that numerical diffusion in particular on coarse meshes leads
to a blurring effect for the source term at discontinuities of the density which is then accompanied by
minor transport to compensate for this diffusion.

L2(H)

L2(L2)

Figure 1. Optimal transport geodesic between approximations of singular measures with different intensity. Here the
source term parameter is δ = 100.

Next, we investigate the effect of the source term parameter δ for the L2(H) model. In Figure 4
we choose as input data θA at time t = 0 a characteristic function of a square and as input data θB at
time t = 1 the same measure density with an additional characteristic function of a translated square of
the same size. Now, optimizing the connecting path with respect to the generalized Wasserstein distance
there is a competition between the curve which simply blends the second square and a curve which
transports part of the second square and blends of remaining non transported measure. This balance
between both processes depends on δ. In the limit δ → 0 transport becomes cheaper, which is reflected
by the computational results for small δ. In contrast for δ →∞ transport becomes expensive and a simple
blending can be observed for large values of δ in Figure 4. A similar effect is shown in Figure 5, where
the a bump function in the center of a periodic cell is transported to a splitted bump function in the corners
applying periodic boundary conditions.

In Figure 6 another type of interaction between generation and transport of mass is shown. The initial
images at time t = 0 consists of three scaled characteristic functions of balls, where one of this balls has
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L2(H)

L2(L2)

Figure 2. Optimal transport geodesic and corresponding source terms between two characteristic functions of squares
with different intensity. Here the source term parameter is δ = 100.

0.25 0.5 0.75 1

2

3

4

t

∫
D |z(t, ·)| dx

Figure 3. Distribution of the L1-norm of the source term in time for the example in Figure 2. (continuous line:
L2(H), dotted line: L2(L2))

smaller density value. The final image at time t = 1 is based on the identical geometric configuration, but
with swapped densities. Depending on the parameter δ a certain amount of mass is transported from the
two balls with higher intensity in the image at time t = 0. At the same time a blending of the transported
masses as a compensation for the non balanced total mass can be observed. Figure 7 shows plots of the
functions t 7→

∫
D
|z(t, ·)|dx, t 7→

∫
D
z+(t, ·) dx, and t 7→

∫
D
|z−(t, ·)|dx for the different values of δ.

A striking observation in Figure 3 and Figure 7 ist that t 7→
∫
D
|z(t, ·)|dx is approximately constant

in time for the L2(H) model. This is in constrast to the L2(L2) model as indicated in Figure 3.
Finally Figure 8 and Figure 9 depict examples for images of wood texture and marble texture. Gener-

alized Wasserstein geodesics in case of the L2(H) cost functional are shown.
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