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Abstract. We address the solution of large-scale statistical inverse problems in the framework of
Bayesian inference. The Markov chain Monte Carlo (MCMC) method is the most popular approach
for sampling the posterior probability distribution that describes the solution of the statistical inverse
problem. MCMC methods face two central difficulties when applied to large-scale inverse problems:
first, the forward models (typically in the form of partial differential equations) that map uncertain
parameters to observable quantities make the evaluation of the probability density at any point
in parameter space very expensive; and second, the high-dimensional parameter spaces that arise
upon discretization of infinite-dimensional parameter fields make the exploration of the probability
density function prohibitive. The challenge for MCMC methods is to construct proposal functions
that simultaneously provide a good approximation of the target density while being inexpensive to
manipulate. Here we present a so-called Stochastic Newton method in which MCMC is accelerated by
constructing and sampling from a proposal density that builds a local Gaussian approximation based
on local gradient and Hessian (of the log posterior) information. Thus, the method exploits tools
(adjoint-based gradients and Hessians) that have been instrumental for fast (often mesh-independent)
solution of deterministic inverse problems. Hessian manipulations (inverse, square root) are made
tractable by a low-rank approximation that exploits the compact nature of the data misfit operator.
This is analogous to a reduced model of the parameter-to-observable map. The method is applied
to the Bayesian solution of an inverse medium problem governed by 1D seismic wave propagation.
We compare the Stochastic Newton method with a reference black box MCMC method as well as a
gradient-based Langevin MCMC method, and observe at least two orders of magnitude improvement
in convergence for problems with up to 65 parameters. Numerical evidence suggests that a 1025
parameter problem converges at the same rate as the 65 parameter problem.
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1. Introduction and background. Uncertainty in reconstructing parameter
fields from data is a fundamental feature of ill-posed inverse problems. Our lack of
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STOCHASTIC NEWTON MCMC A1461

knowledge results from noisy measurements, sparse observations, uncertain forward
models, and uncertain prior parameter information. The deterministic output least
squares approach to inverse problems, which amounts to minimizing a regularized
data misfit function, is incapable of accounting for uncertainties in the solution of the
inverse problem. Bayesian inference provides a systematic framework for incorporat-
ing uncertainties in observations, forward models, and prior knowledge to quantify
uncertainties in the model parameters. However, Bayesian solution of large-scale sta-
tistical inverse problems, i.e., those described by expensive forward models such as
partial differential equations (PDEs), and for large numbers of model parameters that
result from discretized parameter fields, is essentially intractable using conventional
statistical techniques that view the forward model (i.e., the parameter-to-observable
map) as a black box.

We address methods for sampling probability density functions (pdfs) that de-
scribe uncertain parameter fields in Bayesian solutions to statistical inverse problems
governed by PDEs. Such problems have two properties that present significant chal-
lenges for standard Markov chain Monte Carlo (MCMC) sampling methods. First,
each sample point requires solution of the forward problem, which can be exceedingly
expensive. Second, discretization of the parameter space can result in very high di-
mensional pdfs. Here, we present a method that exploits the structure of the inverse
operator to greatly speed up MCMC. The method, which we refer to as Stochas-
tic Newton, can be derived by analogy with the classical Newton method for the
associated deterministic inverse problem. Stochastic Newton employs a local Gaus-
sian approximation to the target pdf—informed by local Hessian information—as a
proposal density for MCMC. A low-rank approximation of the Hessian is invoked—
reflecting the ill-posed nature of many PDE-based inverse problems—rendering the
computation tractable. Alternatively, Stochastic Newton can be interpreted as a
Hessian-preconditioned Langevin MCMC method. In the remainder of this section,
we provide background on the Bayesian formulation of statistical inverse problems
and on MCMC methods, and discuss alternative approaches.

1.1. Bayesian formulation of the statistical inverse problem. The great
challenge in solving inverse problems lies in the fact that they are usually ill-posed:
many different choices of model parameters may be consistent with the data. Non-
uniqueness stems from sparsity of the observations and uncertainty in both the mea-
surements and the model itself. A popular approach to obtaining a unique “solution”
to the inverse problem is to formulate it as a least squares optimization problem:
minimize the misfit between observed and predicted outputs in an appropriate norm
while also minimizing a regularization term that penalizes unwanted features of the
parameters. This is often called Occam’s approach: find the “simplest” set of param-
eters that is consistent with the measured data. The inverse problem thus leads to a
nonlinear optimization problem that is constrained by the forward model. Estimation
of parameters using this regularization approach to inverse problems will yield an es-
timate of the “best” parameter values that simultaneously fit the data and honor the
regularization penalty term. However, we are interested in not just point estimates of
the best-fit parameters but a complete statistical description of the parameter values.
The Bayesian approach does this by reformulating the inverse problem as a problem
in statistical inference, incorporating uncertainties in the measurements, the forward
model, and prior information on the parameters [27, 43]. The solution of this inverse
problem is the posterior joint probability density of the parameters, which encodes
the degree of confidence in their estimate. Thus we are able to quantify the resulting
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A1462 J. MARTIN, L. C. WILCOX, C. BURSTEDDE, AND O. GHATTAS

uncertainty in the parameters, taking into account uncertainties in the data, model,
and prior information.

Suppose the relationship between output observables d (the predicted outputs at
the measurement locations and time instants) and uncertain model parameters m is
denoted by d = f(m, e), where e represents noise due to measurement and/or mod-
eling errors. In other words, given the model parameters m and noise e, the function
f(m, e) solves the forward (PDE) problem to yield d. Suppose also that we have the
prior probability density πprior(m), which encodes the confidence we have in prior
information on the unknown model parameters (i.e., independent of present obser-
vations), and the likelihood function πlike(dobs|m), which describes the conditional
probability that the model parameters m give rise to the actual measurements dobs.
Then Bayes’s theorem of inverse problems expresses the posterior probability density
of the model parameters, πpost, given the data dobs, as the conditional probability

(1.1) πpost(m) := π(m|dobs) ∝ πprior(m)π(dobs|m).

Expression (1.1) provides the statistical solution of the inverse problem as a probabil-
ity density for the model parametersm. Often, particularly in high dimensions, we are
interested not in a complete characterization of πpost(m) (which may be intractable
to compute and impossible to interpret) but in its moments (mean, covariance, etc.)
or other functionals (e.g., event probabilities).

As a specific example, suppose the noise is additive and is modeled as Gaussian
with zero mean and a covariance matrix Γnoise, and suppose the prior density of the
model parameters is represented as Gaussian with m̄prior as the mean and Γprior as
the covariance matrix; then the posterior probability density of the model parameters
is given explicitly (within a normalizing constant) by

(1.2) πpost(m) ∝ exp
[
− 1

2‖f(m)− dobs‖2Γ−1
noise

− 1
2‖m− m̄prior‖2Γ−1

prior

]
.

This latter expression shows that even when the prior, measurement, and modeling
uncertainties are Gaussian, the posterior density of the model parameters is gener-
ally not Gaussian, due to the nonlinearity of the parameter-to-observable map, f(m).
However, this expression exposes a significant connection between statistical and de-
terministic inversion. Suppose we wish to find the value of the most likely model
parameters by maximizing the posterior density (1.2). This is equivalent to minimiz-
ing the negative argument of the exponential function—which is precisely the misfit
function that is minimized by deterministic inverse methods, provided we interpret
the prior as a regularization and weigh the data misfit by the inverse noise covariance.
Moreover, it is straightforward to show that the inverse of the Hessian matrix of the
deterministic regularized misfit function approximates the covariance matrix of the
posterior density (the equivalence is exact when f(m) is linear). This connection
between the Hessian operator of the deterministic inverse problem and the inverse
covariance matrix of the statistical inverse problem is crucial to the computational
efficiency of the Stochastic Newton method.

While it is easy to write expressions for the posterior pdf such as (1.1) or (1.2),
making use of these expressions poses a challenge, because the posterior pdf is a surface
in high dimensions (equal to the number of model parametersm), and because the so-
lution of the forward problem (i.e., computing f(m) given m) is required to evaluate
the probability of any point in parameter space (as can be seen in (1.2)). Straight-
forward grid-based sampling is limited to problems with a few parameters and cheap
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STOCHASTIC NEWTON MCMC A1463

Algorithm 1. Metropolis–Hastings Algorithm to sample pdf π.

Choose initial parameters m0

Compute π(m0)
for k = 0, . . . , N − 1 do
Draw sample y from the proposal density q(mk, · )
Compute π(y)

Compute α(mk,y) = min
{
1, π(y)q(y,mk)

π(mk)q(mk,y)

}
Draw u ∼ U([0, 1))
if u < α(mk,y) then
Accept: Set mk+1 = y

else
Reject: Set mk+1 = mk

end if
end for

forward simulations. Special sampling techniques, such as MCMC methods, have been
developed to generate sample ensembles that typically require many fewer points than
grid-based sampling; see, e.g., [27, 43, 44]. In particular, Metropolis–Hastings (M-H)
methods employ a given proposal probability density q(mk,y) at each sample point
in parameter space mk to generate a proposed sample point y. Once generated, the
M-H criterion chooses to either accept or reject the proposed sample point, and re-
peats from the new point, thereby generating a chain of samples from the posterior
density πpost(m). Algorithm 1.1 [27, section 3.6.2] presents pseudocode for the M-H
method. For example, a popular choice for the proposal density is the isotropic Gaus-
sian q(mk,y) =

1
(2π)n/2 exp[− 1

2 (‖mk−y‖)2]; the resulting method is known as random

walk metropolis. This proposal density is easy to sample but can lead to poor MCMC
performance due to the mismatch between the proposal and posterior densities. This
problem is greatly compounded when the parameter dimension is large, and in these
cases it is critical that this mismatch be minimized to obtain acceptable MCMC per-
formance. The challenge is to devise a proposal density q(mk,y) that is both easy to
sample and a good representation of the underlying posterior probability density.

A traditional approach is to utilize a single site updating scheme [25, 33]. This
approach is more forgiving of naive proposal densities but requires as many forward
simulations as parameters to perform a single parameter sweep. When the forward
simulation is expensive and the parameter dimension is large, this approach is compu-
tationally intractable. In this paper, we therefore restrict our attention to multivariate
proposal densities that update the entire parameter vector at once.

Given the connection between the inverse covariance matrix of the posterior pdf
and the Hessian of the deterministic regularized misfit mentioned above, our goal is to
capitalize on advances in algorithms for deterministic inverse problems to construct
proposal densities for M-H MCMC that exploit the structure of the posterior pdf.
In particular, we construct local Gaussian approximations of the posterior pdf from
gradient and Hessian information of the negative log posterior. Drawing samples
from this proposal density then requires solving systems that are identical to the
Newton step for a deterministic inverse problem, thereby exploiting advances in fast
Newton methods for deterministic inverse problems. Using modern adjoint techniques,
gradients can be computed at a cost of a single linearized forward solve, as can actions
of Hessians on vectors. These tools, combined with specialized solvers that exploit
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the fact that many ill-posed inverse problems have compact data misfit operators,
often permit solution of deterministic inverse problems in a dimension-independent
(and typically small) number of iterations (see, e.g., [1]).

We study the efficiency of the Stochastic Newton method introduced here on a
model seismic inverse problem, that of recovering the distribution of stiffness of an
elastic medium from noisy observations of seismically induced ground motion at the
surface. Stochastic Newton is compared with a freely available implementation of an-
other popular method that attempts to exploit posterior covariance information, the
delayed rejection adaptive Metropolis (DRAM) method, and with unpreconditioned
Langevin MCMC. The results demonstrate large speedups over the other methods
and suggest mesh independence of Stochastic Newton for problems with up to 1025
parameters. We demonstrate experimentally that Stochastic Newton is able to take
large steps without compromising acceptance rates, and that convergence diagnos-
tics and integrated autocorrelation functions show substantial improvement in the
Stochastic Newton sample chains over traditional MCMC sample chains.

1.2. Approaches for sampling posterior pdfs. In this subsection, we review
existing approaches to the solution of the statistical inverse problem and conclude by
describing the relationship between the proposed Stochastic Newton method and ex-
isting methods. We restrict this review to methods for sampling pdfs that arise specif-
ically from large-scale statistical inverse problems characterized by “expensive” for-
ward models (e.g., those governed by PDEs) and high-dimensional parameter spaces
(e.g., those that arise by discretization of heterogeneous PDE coefficients). For such
problems, nearly every existing method ultimately gives the solution to the statisti-
cal inverse problem as a set of samples drawn from the posterior pdf. To make this
sampling tractable, some form of reduction is often advocated. Below we review sev-
eral different forms of reduction of the forward model and parameter space that have
been proposed. We proceed from these reduced modeling approaches to increasingly
“intrusive” sampling methods, eventually making use of first and second derivative
information to characterize the posterior pdf.

1.2.1. Reduced modeling. A popular approach to working with a large num-
ber of parameters is to reduce the dimension of the problem in some way during the
computation of the (expensive) parameter-to-observable map and later generate sam-
ples by interrogating this reduced representation at a correspondingly reduced cost.
Projection-type reduced order models are one possible realization of this idea. Here,
the state space is projected onto a limited number of basis functions to obtain an inex-
pensive reduced forward model. This is then used for posterior evaluation or sampling
[3, 10, 16, 35, 46]. In addition, the parameter space may also be reduced to facilitate
MCMC methods that work well in low dimensions [29]. The challenge has been to de-
velop reduced models that are faithful over the full high-dimensional parameter space.

Other approaches use a truncated polynomial chaos (PC) expansion to represent
the uncertain parameters and construct an approximate stochastic forward problem by
Galerkin projection onto this PC basis [19]. This stochastic problem is more expensive
than the original forward problem, but once obtained, the solution can be used to
construct a surrogate for the posterior distribution, which can be evaluated repeatedly
at negligible cost, making it ideal for MCMC sampling [30, 32]. Because the total
number of terms in the PC expansion is combinatorial in the parameter dimension,
a truncated Karhunen–Loève (KL) expansion (based on the prior distribution) may
be employed to prevent the cost of the stochastic forward problem from becoming
prohibitive [31]. However, it is necessary to ensure that enough KL modes are retained
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STOCHASTIC NEWTON MCMC A1465

so that the solution of the statistical inverse problem is not significantly biased toward
the prior distribution.

Alternatively, after reduction using a PC basis, one can formulate a functional op-
timization problem over the stochastic space to characterize the solution to the inverse
problem [4]. This idea can be combined with Smolyak sparse grids and stochastic col-
location to tackle higher-dimensional problems as well [47]. One may also approximate
the parameter-to-observable map with a Gaussian process model that is constructed
via Bayesian model calibration over a limited set of training data (limited in both the
number of experimental observations available as well as the number of forward model
evaluations) [23, 28]. Additionally, the Gaussian process model may incorporate local
Hessian information to estimate covariance matrices needed in the Gaussian process
representation [9].

1.2.2. Adaptive sampling. As an alternative, we may instead “sample then
reduce,” wherein the full parameter space is sampled by an MCMC method that is
able to cope with the high dimensionality and strong correlation structure inherent
in ill-posed inverse problems. This can be of particular importance when modes of
the parameter space that are important to the inverse problem do not align well
with a coordinate basis or strong modes of the prior in the KL expansion, and any
reduced basis generated by these approaches would require a prohibitive number of
basis vectors to solve the problem with sufficient accuracy.

Delayed rejection adaptive metropolis (DRAM) MCMC adaptively constructs an
approximation to the posterior covariance matrix to guide the sampling process and
cope with the correlation structure [21]. DRAM requires only the ability to evaluate
the posterior density at an arbitrary point and can thus be considered a black-box (or
“nonintrusive”) method. Similarly, the so-called t-walk requires only pointwise eval-
uations, but is specifically designed to be invariant to scale and correlation structure,
allowing it to perform well on problems that have different scales or correlations in
different regions of parameter space [13].

Many MCMC methods also employ derivative information to help guide sampling,
which is more demanding of the types of information that need to be computed
from the forward map. Langevin MCMC employs a stochastic differential equation
(SDE) that has the desired posterior distribution as a stationary solution. Trajectories
(realizations) of this SDE can thus be used to construct sample chains for the posterior
distribution. When discretized, a finite timestep must be selected, and the discrete
trajectories may no longer be faithful to the original SDE. Langevin MCMC restores
convergence of the sample chain to the desired posterior distribution by considering
each timestep as a proposal distribution for the M-H algorithm (see, e.g., [2, 39]). This
also permits the use of inexpensive approximate gradient information (e.g., computed
based on a coarse scale model) [14].

Another class of methods uses a two stage proposal process, where the proposal
is first subjected to an accept/reject step based on an inexpensive approximate model
(e.g., based on a coarse scale model), and the expensive true solution is computed
only when the proposal is likely to be accepted [12, 15, 24].

Finally, Hamiltonian Monte Carlo (HMC) extends the parameter space at each
MCMC sample to include a momentum variable, chooses a random sample from
momentum space, and integrates a Hamiltonian system to generate proposal points.
Derivative information of the posterior density is also used for this approach in the
construction and solution of this system. A review of HMC methods can be found
in [34].
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1.2.3. Hessian-based sampling. Last but not least, we consider methods that
make use of Hessian information (i.e., second derivatives) of the forward map. This
information is generally more expensive to obtain but can prove highly beneficial
to speeding up convergence of the sampling process. MCMC methods that utilize
Hessian information have been considered previously [17, 18, 36] but are practicable
only for a small number of parameters or for problems where an analytical expression
for the Hessian is available. In [22], a BFGS-type approximation of the Hessian is
considered for this purpose to avoid explicit computation of second derivatives and
demonstrated on a 16 parameter Gaussian posterior distribution.

Another interesting approach makes use of the Fisher information as a natural
metric for a Riemannian manifold [20]. Langevin MCMC and HMC can both be
derived in this particular metric and show significant gains over the traditional vari-
eties of MCMC by respecting the local structure of the parameter space. This method
employs what amounts to the Gauss–Newton approximation of the Hessian of the neg-
ative log posterior, as well as additional third derivative terms. Computing the exact
Gauss–Newton Hessian is generally intractable for large-scale inverse problems since
it requires the solution of as many forward problems as the number of parameters.

Finally, the Stochastic Newton method we introduce in this paper can be un-
derstood as a relative of a preconditioned Langevin MCMC method, where the pre-
conditioning is performed with the local Hessian of the negative log posterior. It is
noteworthy that we obtain a similar preconditioning term to the one that appears in
the Riemannian-manifold derivation of Langevin MCMC; in this paper, however, we
construct an accurate low-rank representation of the Hessian and show that all neces-
sary computations can be performed without constructing the full Hessian operator.
This permits scalability to large parameter dimensions.

1.3. Outline of the paper. In section 2, we demonstrate the natural connec-
tions between deterministic optimization and the statistical inverse problem, use these
connections to derive Stochastic Newton MCMC, and derive the low-rank approxima-
tions required to make the method tractable for large-scale inverse problems. Section 3
presents a motivating Bayesian statistical inverse problem based on seismic wave scat-
tering. Finally, in section 4 we compare the performance of Stochastic Newton with
DRAM MCMC and Langevin MCMC in various convergence metrics, demonstrate
that Stochastic Newton offers a favorable tradeoff between increased complexity of
the computations and improved MCMC convergence, and show examples that sup-
port good scalability with increasing dimensionality of parameter space.

2. Stochastic Newton MCMC. Large-scale optimization provides many tools
and insights—in particular, Newton’s method and its matrix-free variants—that ac-
celerate the solution of deterministic inverse problems. In this section, we develop
the Stochastic Newton method, which exploits natural connections between the de-
terministic inverse problem and the Bayesian statistical inverse problem to accelerate
statistical sampling methods. Moreover, motivated by the spectral structure of un-
derlying infinite-dimensional Hessian operators that appear in many ill-posed inverse
problems, we introduce low-rank approximations that make the Stochastic Newton
method tractable in high dimensions.

2.1. Connection with optimization. Consider a finite-dimensional parameter-
to-observable map d = f(m) that maps parameters m ∈ R

n to observables d ∈ R
m.

The deterministic inverse problem seeks to minimize 1
2‖f(m) − dobs‖2W , the misfit

between the model predictions and the observed data dobs ∈ R
m in the W -norm,
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with W ∈ R
m×R

m. A quadratic regularization term 1
2‖m−m̄‖2R penalizes distance

from a baseline vector of parameters m̄ ∈ R
n in the R-norm, with R ∈ R

n × R
n.

Appropriate regularization of this form addresses ill-posedness of the inverse problem
and guarantees uniqueness of the solution m∗ to the following deterministic inverse
problem:

(2.1) m∗ = argmin
m

(
1
2‖f(m)− dobs‖2W + 1

2‖m− m̄‖2R
)
.

In the statistical inverse setting, we observe that Bayes’s theorem (1.1) can be un-
derstood directly in the deterministic context if we inspect the negative log-posterior:

(2.2) − logπpost = − log πlike − log πprior + const.

The constant of proportionality from Bayes’s theorem is included above but affects
neither the deterministic optimization nor the statistical inverse problem. In the
statistical setting of the inverse problem, the misfit f(m) − dobs is interpreted as a
vector-valued random variable. When the measurement error and model error are
unbiased, additive, and Gaussian, we have (f(m) − dobs) ∼ N (0,Γnoise). (See, e.g.,
section 3.2.1 of [27].) The log-likelihood function in this context plays the role of the
misfit term in the optimization formulation (2.1):

(2.3) − logπlike(dobs|m) = 1
2 (f(m)− dobs)

TΓ−1
noise(f(m)− dobs).

More general considerations of measurement and model error are possible and do not
restrict the applicability of our method.

Similarly, if the prior density is Gaussian with mean m̄prior and covariance ma-
trix Γprior, then the log-prior term in (2.2) plays the role of the regularization from
deterministic optimization:

(2.4) − log πprior(m) = 1
2 (m− m̄prior)

TΓ−1
prior(m− m̄prior).

As before the assumption of a Gaussian prior can also be relaxed.
The negative log-posterior (2.2) is now understood directly as the cost function

V (m) from deterministic optimization, and therefore we can write the posterior den-
sity as

(2.5) πpost(m|dobs) ∝ exp(−V (m)),

where the cost function V (m) is given by

(2.6) V (m) := 1
2‖f(m)− dobs‖2Γ−1

noise

+ 1
2‖m− m̄prior‖2Γ−1

prior

.

The connection between the cost functional from deterministic optimization and
the posterior probability density in the statistical setting is made explicit when we
seek the maximum a posteriori (MAP) estimate mMAP, which is given by maximizing
the posterior or, equivalently, by minimizing the cost function. Thus, mMAP = m∗

when the appropriate definitions of W and R are taken in (2.1). Next, we consider
how to further exploit this connection between deterministic and statistical inversion.

2.2. The Gaussian linear case. When the parameter-to-observable map is
linear, we write f(m) = Gm with G ∈ R

m×n. In this case we observe that the
negative log-posterior (or deterministic cost function)

(2.7) V (m) = 1
2 (Gm−dobs)

TΓ−1
noise(Gm−dobs)+

1
2 (m−m̄prior)

TΓ−1
prior(m−m̄prior)
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is quadratic in the parameters m. Making use of the expressions for the gradient g
and Hessian H of V (m),

g := g(m) = ∇V (m) = GTΓ−1
noise(Gm− dobs) + Γ−1

prior(m− m̄prior),(2.8)

H := ∇2V (m) = GTΓ−1
noiseG+ Γ−1

prior,(2.9)

we can rewrite the cost function in the form

(2.10) V (m) = 1
2 (m−m∗)TH(m−m∗) + const,

which makes clear, since both Γnoise and Γprior and therefore H are positive definite,
that a unique minimum of V (m) exists and is given by requiring g(m∗) = 0:

(2.11) m∗ = H−1
(
GTΓ−1

noisedobs + Γ−1
priorm̄prior

)
.

Moreover, the posterior pdf exp(−V (m)) can be seen to be Gaussian with mean given
by the minimizer of V (m), i.e., the solution of the deterministic inverse problem (2.1),
and covariance given by the inverse of the Hessian, H−1; i.e., πpost is distributed as
N (m∗,H−1). Hence, we see an explicit connection between the deterministic solution
and its statistical counterparts, at least in the case of a linear parameter-to-observable
map.

2.3. The nonlinear case and Stochastic Newton’s method. When the
parameter-to-observable map f (m) is nonlinear, the posterior is no longer Gaussian,
and in general the minimum of the cost function no longer coincides with the mean of
the posterior, nor does the inverse of the Hessian coincide with the covariance matrix
of the posterior. However, we can still exploit connections between deterministic
optimization methods for minimizing V (m) and statistical methods for sampling the
posterior πpost.

The gold standard for optimization is Newton’s method, which begins with a local
quadratic approximation Ṽ (m) of the cost function about a given point mk, which
can be written as

(2.12) V (m) ≈ Ṽ (m) =
1

2
(m−mk)

TH(m−mk) + gT (m−mk) + V (mk),

with gradient g(mk) = ∇V (mk) and Hessian H(mk) = ∇2V (mk).
In the vicinity of a local minimum, H is positive definite. However, at an arbitrary

point m, H is not guaranteed to be positive definite, and in such cases it is necessary
to replaceH with a suitably modified positive definite Hessian H̃ in Ṽ (m) in order to
guarantee convergence. A simple choice for H̃ is an eigenvalue decomposition of H,
with small or negative eigenvalues replaced with a minimum threshold value. Finally,
we rearrange (2.12) as we did in the Gaussian linear case (2.10) to write

(2.13) Ṽ (m) =
1

2
(m−mk + H̃

−1
g)T H̃(m−mk + H̃

−1
g) + const,

which shows that the minimizer of Ṽ (m) is given by mk+1 = mk−H̃
−1

g. Note that

−H̃
−1

g is the Newton step, and iterating this process leads to the classical Newton
method.
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In the statistical setting, inserting Ṽ (m) into (2.5) leads to an approximation of
πpost given by

(2.14) πpost(m) ≈ π̃(m) = exp(−Ṽ (m)),

which is in fact a Gaussian, centered on the pointmk+1 (the result of the deterministic

Newton step) with covariance H̃
−1

.
Having constructed a local Gaussian approximation of the posterior pdf, we are

now in a position to define the Stochastic Newton method, which is an MCMC method
that uses the normalized proposal density

(2.15) π̃(y) =
det H̃

1/2

(2π)n/2
exp

(
−1

2

(
y −mk + H̃

−1
g
)T

H̃
(
y −mk + H̃

−1
g
))

.

Recall that the quadratic approximation is constructed using gradient and Hessian
information atmk, namely H̃(mk) and g(mk). Thus, we have “tailored” the proposal
density q(mk,y) = π̃(y) to the underlying posterior pdf using derivative information
of V (m). The Stochastic Newton step at each MCMC iteration proposes a sample y
from the density π̃(y), which is then subjected to the accept/reject framework of the
M-H algorithm. Pseudocode for Stochastic Newton MCMC for this problem is given
in Algorithm 2.

If in fact the posterior density πpost is Gaussian (see, e.g., section 2.2) and the

Hessian H̃ is exact, then q(mk,y) = π̃(y) = πpost(y), and the M-H acceptance
probability in Algorithm 2 reduces to

α(mk,y) = min

{
1,

π(y)q(y,mk)

π(mk)q(mk,y)

}
= min

{
1,

π(y)π(mk)

π(mk)π(y)

}
= 1.(2.16)

Thus in this case we achieve “perfect sampling,” in which all samples are independent
draws from the true posterior density πpost(m) and are accepted with probability 1.

Before concluding this section, we make one final remark about the threshold value

used to define H̃. Because H̃
−1

is used as the covariance matrix for the proposal
distribution, this minimum threshold value for H̃ guarantees a maximum covariance
value for the proposal density. This threshold value can therefore be used as a tun-
able parameter in MCMC to restrict the maximum desired step length to improve
performance if the sample acceptance rate is too low.

2.4. Low-rank Hessian approximation. The MCMC method we are propos-
ing here has been contemplated before [18, 36, 37], but they are applied only to
low-dimensional sampling problems and not computationally intensive inverse prob-
lems as we consider here. Attempting to apply the method as described above to such
problems will quickly lead to failure, since constructing just one Hessian requires n
forward solves (see, e.g., [5, 26]), that is, equal to the number of parameters. Thus
MCMC becomes intractable for expensive forward problems (e.g., governed by PDEs)
and in high dimensions (e.g., when the parameters describe a discretization of a field
such as a PDE coefficient, initial condition, boundary condition, etc.).

However, experience with large-scale deterministic inverse problems has shown in
many cases that the Hessian of the data misfit term in (2.1) is a compact operator
whose range space is independent of mesh resolution (see, e.g., [45]). The intuition
behind the compactness of the Hessian of the data misfit term,

Hmisfit = −∇2 log πlike,(2.17)
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Algorithm 2. Stochastic Newton MCMC Algorithm to sample πpost.

Choose initial m0

Compute πpost(m0), g(m0),H(m0)
for k = 0, . . . , N − 1 do
Define q(mk,y) = π̃(y) as in (2.15)
Draw sample y from the proposal density q(mk, · )
Compute πpost(y), g(y),H(y)

Compute α(mk,y) = min
(
1,

πpost(y)q(y,mk)
πpost(mk)q(mk,y)

)
Draw u ∼ U([0, 1])
if u < α(mk,y) then
Accept: Set mk+1 = y

else
Reject: Set mk+1 = mk

end if
end for

is that for many ill-posed inverse problems, the observations are sparse and typically
inform only a limited number of modes of the parameter field; thus, the Jacobian
matrix of observables f (m) with respect to parameters m is well-approximated by a
low-rank matrix. In particular, it can be shown that the Hessian of the data misfit op-
erator for the inverse medium scattering problem we consider in section 3 is a compact
operator with exponentially decaying spectrum (when the medium is analytic) [8].
This property suggests a low-rank approximation of the data misfit Hessian, which
permits us to avoid prohibitive computation of the full Hessian. Below, we exploit
the compactness of the data misfit Hessian to make the Stochastic Newton MCMC
method presented here tractable for large-scale problems.

In the Bayesian setting, the Hessian H can be written as a sum of data misfit
and prior Hessians, i.e.,

(2.18) H = Hmisfit + Γ−1
prior.

Consider a decomposition of the prior such that Γprior = LLT , computed either as

the symmetric square root L = Γ
1/2
prior or as the Cholesky factorization.1 Rewriting

H as

(2.19) H = L−T
(
LTHmisfitL+ I

)
L−1,

we see that the expression LTHmisfitL emerges as a natural candidate for a low-rank
spectral approximation, since comparison with the identity provides a quantitative
criterion for truncating the spectrum, and since Γprior is often a smoothing operator,
and thus the collapse of the spectrum of Hmisfit is then enhanced by precondition-
ing with L. The low-rank approximation of LTHmisfitL represents the parameter
subspace in which the data are most informative about the parameters and least
constrained by the prior.

1For problems with very large parameter dimension, this factorization may become prohibitively

costly to perform. In this case, one prefers to exploit the structure of the prior to specify L or Γ
1/2
prior

directly—or their action on a vector—via an O(n) method. For example, for a smoothing prior, one

can view Γ
1/2
prior as an elliptic solve via a multigrid method [7, 41].
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Using Lanczos (or any of its siblings [40]), an r-dimensional low-rank approxima-
tion can be represented as LTHmisfitL ≈ V rDrV

T
r , where V r ∈ R

n×r contains the
dominant eigenvectors, and the diagonal matrix Dr ∈ R

r×r contains the dominant
eigenvalues. The number of desired eigenvectors r is determined by truncating the
decomposition once the eigenvalues fall below some threshold value α � 1, below
which it is assumed that the prior dominates the character of the Hessian. This trun-
cation also ensures positive definiteness of the low-rank approximation of H, which
we identify as H̃ .

Tractability of the low-rank approximation and its use in the Stochastic New-
ton Method can be established as follows. First, Lanczos requires only matrix-vector
products (“matvecs”), and therefore there is no need to explicitly form the (dense)
Hessian. Second, Lanczos tends to perform only as many matvecs as there are ex-
treme (dominant) eigenvalues, so that compactness of the Hessian bounds the number
of required Lanczos iterations. Third, each matvec requires only a pair of forward and
adjoint PDE solves (see, e.g., [5], [26, section 1.6.5]). Therefore, the approximation
can be constructed in a number of PDE solves comparable to the number of dominant
eigenvalues, r. For many ill-posed inverse problems in which the parameters are a dis-
cretization of an unknown field, the dominant eigenvalues are associated with smooth
eigenvectors (physically, this is a consequence of the data being uninformative about
small length scales); as such, the dominant eigenvalues are unaffected by subsequent
refinement, once a suitable discretization level is achieved. Thus, r is often indepen-
dent of n (see, e.g., [7]). Finally, we observe that all necessary MCMC computations
involving the Hessian can be performed without ever explicitly constructing the dense
operator as follows:

H̃ = L−T
[
V rDrV

T
r + I

]
L−1,(2.20)

H̃
−1

g = L
{
V r

[
(Dr + Ir)

−1 − Ir

]
V T

r + I
}
LTg,(2.21)

H̃
−1/2

x = L
{
V r

[
(Dr + Ir)

−1/2 − Ir

]
V T

r + I
}
x,(2.22)

det(H̃
1/2

) = (detL)−1
r∏

i=1

(di + 1)1/2.(2.23)

Expression (2.21) computes the Newton step, (2.22) allows us to sample from a Gaus-

sian distribution with covariance H̃
−1

, and finally (2.23) is necessary in the computa-
tion of the accept/reject criterion of M-H. With the exception of operations with the
square root of the prior, L, the complexity of operations in (2.21)–(2.22) is O(rn),
where as noted above r is often independent of n. The determinant (2.23) requires
only O(r) operations in practice, since det(L) can be precomputed once. Finally, the
complexity of carrying out operations with L in (2.21)–(2.22) appears naively to be
O(n2); however, as mentioned in footnote 1, for very large scale problems (particularly
on parallel computers), one would avoid a naive factorization and instead interpret
the action of L on a vector using a fast solver [7].

In summary, the low-rank representation H̃ can in many cases be computed
efficiently (i.e., in a small number of PDE solves, independent of mesh, and therefore
of problem, size) and applied in O(n) computational work.

2.5. Comparison with Langevin MCMC methods. Stochastic Newton also
has a natural interpretation as a form of a Langevin MCMC method. In Langevin
MCMC, we begin with the negative log-posterior V (m) and construct trajectories of
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the stochastic process from Langevin dynamics,

(2.24) dXt = −A∇V dt+
√
2A1/2dW t,

which sample the desired probability density as t → ∞ [42]. Here, A is a positive
definite preconditioning matrix, and stochastic variables are denoted by Xt and W t,
where W t is the vector of standard independent Brownian motions. When A is the
identity, we recover traditional Langevin dynamics.

To solve (2.24), time is discretized by the Euler–Maruyama method, with time
step Δt, to yield the update

(2.25) xk+1 − xk = −A∇V (xk)Δt+N (0, 2ΔtA).

Preconditioning with the local inverse Hessian H−1, choosing Δt = 1, and discard-
ing the factor of 2, we can formally recover the Stochastic Newton method derived
previously:

(2.26) xk+1 − xk = −H−1∇V (xk) +N (0,H−1).

Of course the Hessian is both nonconstant and not everywhere positive definite, and
so Stochastic Newton is not rigorously understood as a Langevin MCMC, but there
do exist definite parallels. Note that without preconditioning, i.e.,

(2.27) xk+1 − xk = −∇V (xk)Δt+N (0, 2ΔtI),

Langevin MCMC resembles a steepest descent method in the deterministic setting.

2.6. Comparison to other Gaussian MCMC proposal types. Stochastic
Newton’s use of a Hessian-based local Gaussian approximation as a proposal function
can be contrasted with other types of Gaussian proposal functions. Figure 1 shows
proposal density contours for several different proposal functions, using the Rosen-
brock function as an example target density. All contours in the image are normalized
so that they contain 5%, 50%, and 95% of the density, respectively. In this way, the
best acceptance rates and sample chain convergence will be achieved for the proposal
that matches the contours of the target density most closely.

3. Application to statistical seismic inverse problem. We demonstrate the
Stochastic Newton method by solving a particular statistical inverse problem. Con-
sider a theoretical seismic exploration experiment in which a surface explosion causes
seismic waves to travel downward into the subsurface medium. If there are obstacles
in the medium, or if the medium properties vary with depth, then a fraction of the
seismic wave energy will scatter off of these boundaries and return to the surface to
be observed at later times. The statistical inverse problem processes these obser-
vations to reconstruct a statistical description of the subsurface medium properties.
Using this description we are able to estimate properties of the subsurface, including
locations of buried objects or oil/mineral deposits.

The remainder of this section describes in detail the ingredients required for this
statistical reconstruction. The first ingredient is the mathematical forward model,
which maps input medium parameters to predicted observations. Second, the likeli-
hood function uses these predicted observations to determine the probability that the
given input medium parameters could have produced the observed experimental data.
The third ingredient in any Bayesian analysis is the prior distribution, which encap-
sulates all of the assumptions about the subsurface medium before any experimental
data is considered. Bayes’s theorem combines these ingredients into the posterior
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Fig. 1. Visualizations of differing types of proposal distributions for MCMC. Top left shows
contours of the classical Rosenbrock function from deterministic optimization, with effective (un-
normalized) density exp(−(1−x)2 −100(y−x2)2). Top right shows the contours of the random walk
proposal function overlaid on the Rosenbrock contours. Bottom left shows overlays of Langevin con-
tours without preconditioning. Bottom right shows contours of the Stochastic Newton method–type
proposal function.

probability distribution over the set of input medium parameters, which is the sta-
tistical description of the subsurface medium which we seek. Finally, we describe the
efficient computation of adjoint, gradient, and Hessian-vector product information
which is required for use of our method.

3.1. The forward model. We model our exploration experiment using the 1D
wave equation. The problem is solved on the spatial domain Ω = [0, L], where z ∈ Ω
represents the depth beneath the surface at z = 0. At the maximum depth z = L, we
use an absorbing boundary condition which allows plane waves to pass through the
boundary without reflection.

The surface explosion is modeled with a right-hand side forcing input to the wave
equation using a Ricker wavelet F ricker(t) in time with a mean spectrum energy density
at 0.5 Hertz and a spatial delta function at the surface δ(z − 0).

Finally, our model has two physical parameters, which are the density ρ and a
stiffness parameter μ. In principle both parameters may vary freely with depth, but
we will consider only variations in the stiffness μ(z;m) and assume a constant density
ρ = 1. Note that we have included an explicit dependence on the model parametersm.
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The governing equations for the forward model are

ρ utt(z, t)−
(
μ(z;m)uz(z, t)

)
z
= F ricker(t)δ(z − 0),(PDE)

μ(L;m)uz(L, t) = −
√
ρ μ(L;m)ut(L, t),(Absorbing BC)

μ(0;m)uz(0, t) = 0,(Free Surface BC)

u(z, 0) = 0,(IC)

ut(z, 0) = 0.(IC)

These equations are solved numerically using finite elements on piecewise linear
meshes in space using an explicit scheme in time, as in [11]. Most of the examples here
are solved on 64 element (65 DOF) meshes, and a few are solved on 1024 element (1025
DOF) meshes. The physical parameter μ(z;m) is discretized as a linear combination
of the same 65 or 1025 DOFs as the numerical PDE solution.

Finally, we observe the system by measuring the surface displacement at 120
equally spaced points in time. These measurements are assumed to contain errors at
each observation time which are Gaussian, additive, and independent. The noise level
is selected such that the resulting RMS signal to noise ratio is approximately 2:1.

It should be emphasized again that the role of the forward model f(m) is to
map (stiffness) parameters m to surface displacement observations d. In terms of
the forward solution u(z, t), the forward model can be expressed as a vector with
components

(3.1) fi(m) = u(0, ti), i = 1, . . . , 120,

where t1, . . . , t120 are the observation times. Although the underlying PDE is linear,
this forward model map from parameters to observables is not.

3.2. The likelihood function. The likelihood function governs the probability
that a candidate set of stiffness parameters μ(z;m) would reproduce the observation
data dobs that was measured in the exploration experiment. In our case, this obser-
vation data is synthetically generated according to the noise model assumed in the
previous section.

We generate the experimental observation data on a mesh different from that used
for statistical inversion (256 elements), and we additionally corrupt the observation
data with additive Gaussian noise as discussed previously: yobs = g(µ)+εnoise, where
εnoise ∼ N (0,Γnoise), and Γnoise = σ2

noiseI. This is done to avoid “inverse crimes” [27],
in which it might be artificially easy to invert for the desired parameters if the same
mesh is used for the inversion as was used to generate the synthetic observation data.

Using the additive Gaussian noise model, our likelihood function is given as

(3.2) πlike(dobs|m) ∝ exp
[
− 1

2 (f (m)− dobs)
TΓ−1

noise(f (m)− dobs)
]
.

For the 2D problem (described in the next subsection), we use σnoise = 8× 10−5, and
for the 16D, 65D, and 1025D problems, we use σnoise = 2× 10−5.

3.3. Parametrizations and priors. In this application, we set up four distinct
statistical inverse problems which differ in the parametrization used to describe the
medium and the prior imposed on each parametrization. The choice of prior in a
statistical inverse problem can have a significant impact on both the computational
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effort required to solve the problem as well as the posterior density itself. We select
priors in this section that are intended to be typical of the priors that might be
used in this case of a heterogeneous medium in which the fine scale variability of
the medium is assumed negligible. Toward this end, we use Gaussian smoothness
priors, which provide a flexible way to describe random fields with a desired degree
of smoothness and are commonly employed in Bayesian inference of parameter fields.
Except in the 1025D case described below, these parametrizations are considered as
independent problems, and each have synthetic observation data which are unique to
that parametrization.

In the simplest 2D case (i.e., with two independent parameters m1,m2) the
medium is parameterized with four equal length layers, where we constrain the pa-
rameter values of the topmost and bottommost layers to be μ = 1, leaving only two
DOFs in the parametrization for the second and third layers. In this 2D case, we take
the prior to be uniform over [0.5, 10] (i.e., we specify as little a priori knowledge as
possible except for the range of possible values):

(3.3) πpr(m) ∝
{
1 if 0.5 ≤ mi ≤ 10 ∀i,
0 otherwise.

In the intermediate 16D case, the medium is parameterized with 16 equal length
layers, each containing four elements. In this case we do not further constrain any of
the layer parameter values, but we use a (truncated) Gaussian smoothness prior to
specify a priori knowledge that there should not be large jumps between parameter
values in neighboring layers. The form of the prior is given explicitly for the layer
parameter values mi for i = 1, . . . , 16:

πprior(m) ∝
{
exp

(
− 1

2 (m− m̄prior)
TΓ−1

prior(m− m̄prior) if 0.5 ≤ mi ≤ 10 ∀i,
0 otherwise,

(3.4)

m̄i
prior = 5,

(3.5)

Γij
prior = θ1 exp

(−(zi − zj)
2

2θ22

)
+ εδij .

(3.6)

The values θ1 and θ2 specify the magnitude of the correlation and the correlation
length, respectively. The layer depths zi indicate the midpoint of each layer. In this
example, the correlation length is chosen to be θ2 = 0.125 (a width of 2 layers). We
add a small diagonal term εδij to ensure that the prior covariance remains numerically
well conditioned. Here we choose ε = 10−5.

Finally, the 65D and 1025D cases allow every discretization point in the mesh to
be a separate parameter. (As such, the 1025D problem must be computed on a finer
mesh.) We impose the same form of the prior as in the 16D case (again specifying
a priori information about smoothness of the medium), where the zi represent the
depth of each mesh grid point, and we set the correlation length to θ2 = 0.125, which
is intended to correspond to the same correlation length of 2 layers in the 16D case.
As before, we add a small diagonal term εδij to ensure numerical well conditioning.
We choose ε = 10−5 in the 65D case and ε = 10−12 in the 1025D case.

3.4. The statistical inverse problem. We are now prepared to describe the
statistical inverse problem we seek to solve. Sections 3.1–3.3 describe in detail the
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ingredients (forward model, likelihood, and prior) required to construct the posterior
density using Bayes’s theorem:

(3.7) πpost(m) ∝ πprior(m)πlike(dobs|m).

Complete specification of a particular statistical inverse problem requires a set of
observation data dobs as defined in section 3.2 and a choice of medium parametrization
and prior as defined in section 3.3.

In this paper, we consider three distinct inverse problems, corresponding to dif-
ferent choices of the 2D, 16D, and 65D medium parametrizations and associated prior
distributions as described in section 3.3. In each problem, a sample from the prior dis-
tribution is selected to be the “ground truth” medium, which is then used to generate
synthetic observation data as in section 3.2. As an experiment in “weak scaling” of
our method, the same observation data are used in the 65D and 1025D experiments.
In this sense, the 1025D problem is a refinement of the 65D problem, in which we
desire to infer over a larger parameter space for the same fundamental underlying
problem.

Finally, “solving” a statistical inverse problem reduces to the ability to interrogate
πpost(m). In high dimensions, this is a nontrivial problem even when the posterior
density is known. Typically we are interested in the mean and covariance of the pos-
terior distribution, and higher moments or other functionals of the distribution (e.g.,
event probabilities) may be desirable as well. Finally, probability distributions for spe-
cific quantities of interest (e.g., the softest type of rock in the medium minz μ(z;m))
are often also essential for decision making purposes once the statistical inverse prob-
lem is characterized.

3.5. Efficient computation with adjoint methods. For this problem, effi-
cient computation of gradient and Hessian information is crucial. In this section, we
give the expressions derived from deterministic PDE constrained optimization, which
we use to perform all derivative computations used in the numerical results. For prac-
tical reasons, we make little attempt in this paper to justify the expressions given here
but refer the reader to standard references in PDE constrained optimization [6, 26].

Recall that the cost function from deterministic optimization is analogous to the
negative log-posterior distribution for this problem. We assume the case of a Gaussian
prior on the parameters m. The negative log-posterior is written as

− logπpost =
1
2 (f (m)− dobs)

TΓ−1
noise(f (m)− dobs)(3.8)

+ 1
2 (m− m̄prior)

TΓ−1
prior(m− m̄prior).

In the deterministic context, the quantity (3.8) would be minimized as a function of
the parameters m, subject to the constraint that u(z, t) satisfy the forward model
given in the previous section.

The Lagrangian L(u, p,m) serves as a tool for solving this constrained minimiza-
tion problem, where the adjoint solution p(z, t) is introduced as a Lagrange multiplier
to enforce the given constraints.

To write the Lagrangian for the constrained optimization problem, we introduce
the adjoint solution p(z, t) which plays the role of the Lagrange multiplier. The
Lagrangian can now be expressed in weak form in terms of the forward solution u,
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the adjoint solution p, and the parameters m:

L(u, p,m)

=

∫ t=T

t=0

∫
z∈Ω

1

2σ2
noise

120∑
i=1

(u(z, t)− di
obs)

2δ(z − 0)δ(t− ti)

+
1

2
(m− m̄prior)

TΓ−1
prior(m− m̄prior)dzdt

+

∫ t=T

t=0

∫
z∈Ω

p(z, t)
[
ρutt(z, t)−

(
μ(z;m)uz(z, t)

)
z
− δ(z − 0)F ricker(t)

]
dzdt

+

∫ t=T

t=0

[
p(L, t)

(√
ρ μ(L;m)ut(L, t) + μ(L;m)uz(L, t)

)
− p(0, t)μ(0;m)uz(0, t)

]
dt

+

∫
z∈Ω

ρ [p(z, 0)ut(z, 0)− pt(z, 0)u(z, 0)] dz

+
√
ρμ(L;m) p(L, 0)u(L, 0).

Setting δpL(u, p,m) = 0, we recover the original forward PDE with the proper
boundary conditions, given in section 3.1.

Setting δuL(u, p,m) = 0 and carefully integrating by parts, we derive the adjoint
PDE and boundary conditions which determine the adjoint solution p(z, t):

ρ ptt(z, t)−
(
μ(z;m) pz(z, t)

)
z
= − 1

σ2
noise

120∑
i=1

(u(z, t)− di
obs)δ(z − 0)δ(t− ti),

(Adj. PDE)

μ(L;m) pz(L, t) =
√
ρ μ(L;m) pt(L, t),(Absorbing BC)

μ(0;m) pz(0, t) = 0,(Free Surface BC)

p(z, T ) = 0,(FC)

pt(z, T ) = 0.(FC)

The gradient g = ∇mL(u, p,m) is then computed efficiently using the forward
u(z, t) and adjoint p(z, t) functions satisfying the forward and adjoint equations, re-
spectively:

g = Γ−1
prior(m− m̄prior)(3.9)

+

∫ T

0

∫
Ω

[∇mμ(z;m)
]
pz(z, t)uz(z, t) dzdt

+

∫ T

0

1

2

√
ρ

μ(L;m)

[∇mμ(L;m)
]
p(L, t)ut(L, t)dt.

We next consider the block form of the full Hessian operator H = ∇2L(u, p,m),
which acts on the incremental variables (p̃, ũ, m̃). Since only the parameters m̃ are of
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interest, we consider the Schur complement of H with respect to the m̃ block, which
amounts to block elimination of the system

⎛
⎝Hpp Hpu Hpm

Hup Huu Hum

Hmp Hmu Hmm

⎞
⎠
⎛
⎝ p̃

ũ
m̃

⎞
⎠ =

⎛
⎝ 0

0
∇m∇mL(u, p,m)m̃

⎞
⎠ ,(3.10)

which implicitly defines the action of the Hessian on m̃. Again, the details for the
justification of the above expression are omitted, and we refer the reader to standard
references in PDE constrained optimization.

To compute the action of the reduced Hessian operator on a given parameter
function m̃(z), we first solve the incremental forward equation, given by row 1 of
(3.10):

ρ ũtt(z, t)−
(
μ(z;m) ũz(z, t)

)
z
=
([∇mμ(z;m) · m̃] uz(z, t)

)
z
,

(Incremental PDE)

μ(L;m)ũz(L, t) +
[∇mμ(L;m) · m̃] uz(L, t)

(Bottom BC)

= −
√
ρ μ(L;m) ũt(L, t)− 1

2

√
ρ

μ(L;m)

[∇mμ(L;m) · m̃]ut(L, t),

μ(0;m) ũz(0, t) +
[∇mμ(0;m) · m̃]uz(0, t) = 0,

(Top BC)

ũ(z, 0) = 0,(IC)

ũt(z, 0) = 0.(IC)

Next we solve the incremental adjoint equation, given by row 2 of (3.10):

ρ p̃tt(z, t)−
(
μ(z;m) p̃z(z, t)

)
z

(Incremental Adj. PDE)

=
([∇mμ(z;m) · m̃] pz(z, t))

z
− 1

σ2
noise

120∑
i=1

ũδ(z − 0)δ(t− ti),

μ(L;m)p̃z(L, t) +
[∇mμ(L;m) · m̃]pz(L, t)(Bottom BC)

=
√
ρ μ(L;m)p̃t(L, t) +

1

2

√
ρ

μ(L;m)

[∇mμ(L;m) · m̃]pt(L, t),
μ(0;m) p̃z(0, t) +

[∇mμ(0;m) · m̃]pz(0, t) = 0,(Top BC)

p̃(z, T ) = 0,(FC)

p̃t(z, T ) = 0.(FC)
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Finally, the Hessian-vector product can be computed by row 3 of (3.10), using
the solutions of the incremental forward and adjoint equations, respectively:

Hm̃ = Γ−1
priorm̃

+

∫ T

0

∫
Ω

{[∇mμ(z;m)
](

p̃z(z, t)uz(z, t) + pz(z, t)ũz(z, t)
)

+
[∇2

mμ(z;m) · m̃]pz(z, t)uz(z, t)
}
dzdt

+

∫ T

0

{
1

2

√
ρ

μ(L;m)

[∇mμ(L;m)
](

p̃(L, t)ut(L, t) + p(L, t)ũt(L, t)
)

− 1

4

√
ρ

μ(L;m)3
[∇T

mμ(L;m)
][∇mμ(L;m) · m̃]p(L, t)ut(L, t)

+
1

2

√
ρ

μ(L;m)

[∇2
mμ(L;m) · m̃]p(L, t)ut(L, t)

}
dt.

4. Numerical results. The primary goal of this section is to compare the per-
formance of a variety of MCMC methods for the statistical inverse problems outlined
in section 3.4. Four separate statistical inverse problems are considered, correspond-
ing to the choices of of the medium parametrizations and associated priors outlined
in section 3.3. We call these experiments 2D, 16D, 65D, and 1025D, respectively,
according to the number of parameter dimensions contained in the problem.

The observation data dobs for each of the experiments are synthetically generated
using a “ground truth” medium in each case which is drawn from the prior distribu-
tion. Synthetic observation data is generated on a mesh different from that used for
inversion.

In general the datasets used in each case are unique, with the specific exception
that the 1025D problem is intended to be a precise refinement of the 65D problem:
The same dataset is used in both experiments, and the initial starting points for the
MCMC chains in the 1025D case are linear interpolations of the starting points for
the 65D case. In this way, the same underlying physical problem is being solved in
both cases, so that we may look at the scaling behavior of our method.

For each MCMC method to be compared, 64 MCMC chains are computed using
a common set of 64 initial points. These points are selected from a long Stochastic
Newton MCMC chain which is initialized at the MAP estimate. From this chain,
several initial points are chosen which approximately maximize the minimum pair-
wise distances between points, so that the resulting set is distributed quasi-uniformly
over the region of nonnegligible posterior probability density. In this way the initial
points are overdispersed relative to the true posterior probability density (which is
important for computation of the MPSRF, later), but they remove potential difficul-
ties in comparing different “burn-in” times for different MCMC methods and make
the results more comparable in general. In cases where the MCMC method requires
tuning or choice of parameters, several parameter studies were performed to attempt
to optimize the performance of the MCMC chain, wherein we choose the parameter(s)
which provide the largest mean square jump distance while maintaining an acceptance
rate of 30%–50% [38].

Secondary goals are to demonstrate features of this particular physical model
which enable the use of Stochastic Newton MCMC and to examine quantities of
interest which might be of scientific or engineering relevance.

D
ow

nl
oa

de
d 

08
/3

1/
12

 to
 1

31
.2

20
.2

23
.4

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1480 J. MARTIN, L. C. WILCOX, C. BURSTEDDE, AND O. GHATTAS

Fig. 2. Visualizations of the 1D marginal prior probability distributions (top row) and posterior
probability distributions (bottom row) are shown in gray scale above. Results are shown from left to
right for each of the 2-, 16-, and 65D parametrizations of the medium, respectively. A few realizations
from each distribution are overlaid to give an indication of the smoothness of the distributions.
Parametrizations shown in blue on each of the plots represent the “true” underlying distribution
from which the observation data were generated.

4.1. Visualization of the posterior pdf. Attempting to construct a visual-
ization which depicts the full correlation structure for a 65D object is an impossible
task. In this section, we present the most generally informative visualization of the
solution to the given statistical inverse problems that we are able to provide.

In Figure 2, we present the marginalized 1D probability distributions as a vertical
gray scale stripe for each depth. Regions of darker gray indicate higher certainty that
the true curve passes through a given value of the parameter at this depth. The
images in the figure are constructed by placing these gray scale stripes side by side for
every depth and as such present no indication of the correlation between parameter
values at different depths.

To give a hint at the correlation structure, a few representative samples are shown,
drawn from the prior PDF or drawn from the posterior PDF MCMC chain, respec-
tively. In all cases, the blue curve represents the ground truth parameters, from which
the synthetic observations were generated, and should be expected to pass through
the regions of reasonable (or at least nonnegligible) probability.

4.2. MPSRF diagnostic. To compare the different MCMC methods, we em-
ploy the multivariate potential scale reduction factor (MPSRF) diagnostic [6]. This
diagnostic compares averaged properties of the individual sample chains with prop-
erties of the pooled sample chain. When these properties are similar, we infer that
each of the individual sample chains has converged.

This idea is made quantitative using the sample chain covariance. One estimate
W uses the average of the individual sample chain covariances, which will tend to
underestimate the true covariance of the distribution. Second, V̂ estimates the pooled

D
ow

nl
oa

de
d 

08
/3

1/
12

 to
 1

31
.2

20
.2

23
.4

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC NEWTON MCMC A1481

sample chain covariance between all of the chains, and will tend to overestimate the
true sample covariance, due to the overdispersion of the initial points. The MPSRF
statistic then computes the maximum linear projection of the ratio,

(4.1)
√
R̂ = max

‖a‖=1

(
aT V̂ a

aTWa

)
,

which overestimates and eventually approaches 1 as the two estimates become more
and more similar.

Figure 3 displays the MPSRF curves for each MCMC method on each of the 2D,
16D, and 65D problems. We find in general that Stochastic Newton MCMC is al-
ways more efficient on a per sample basis, but the reference MCMC methods DRAM
and Langevin are very competitive on the 2D and 16D problems in terms of total
computation time, as Stochastic Newton is substantially more expensive. However,
the reference methods fail to converge for the 65D problem under the MPSRF con-
vergence diagnostic even in 10 hours of wallclock computation time and order 105

samples, while Stochastic Newton still appears to converge.
In Figure 4, we demonstrate scaling of the low-rank Stochastic Newton to large-

scale problems by comparing the MPSRF convergence diagnostic for the 65D and
1025D problems plotted against the number of samples computed. If the 65D problem
is well resolved, then we anticipate that the 1025D should display similar convergence
diagnostics (as a function of number of samples), since it is in principle nothing more
than a refinement of the same problem. Furthermore, we have claimed previously that
each sample requires a dimension-independent number of PDE solves (depending only
on the compact subspace of the Hessian), and therefore the full solution cost for the
statistical inverse problem should be only a constant multiple of the cost of a single
forward PDE solve, which is independent of the parameter dimension.

4.3. MCMC chain statistics. Table 1 shows the computational time per sam-
ple, mean square jump distance, and integrated autocorrelation times for six scalar
quantities of interest.

Time per sample. Comparing the computational time required for each MCMC
sample (TPS column of Table 1), we see that full Stochastic Newton easily has the
highest per sample expense followed by reduced-rank Stochastic Newton. The refer-
ence MCMC methods are comparatively inexpensive.

Mean square jump distance. The mean square jump distance (MSJ column of
Table 1) can also be used to give an indication of how well the MCMC chain is
mixing within the desired posterior probability distribution. This metric is defined
for a single MCMC chain with samples m0, . . . ,mN as

(4.2) MSJ :=
1

N

N−1∑
k=0

‖mk+1 −mk‖2.

The quantity reported in the table is averaged among all 64 parallel chains from a
given method. In general, a larger mean square jump distance indicates faster mixing
of the MCMC chain and tends to result in better chain convergence to the underlying
posterior distribution.

Integrated autocorrelation time. In the 65D case, we also consider the integrated
autocorrelation times for six scalar quantities of interest for each MCMC method con-
sidered. These quantities are computed for each sample as minz μ(z;m), maxz μ(z;m),∫ L

0
μ(z;m)dz, μ(0;m), μ(L/2;m), and μ(L;m), respectively, and reported in Table 1.
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Fig. 3. The MPSRF statistic is shown on a semilogarithmic plot for Stochastic Newton MCMC
(in red) and two reference MCMC methods DRAM (in black) and Langevin (in blue). Color is
available only in the online version. As convergence is reached, the MPSRF estimate is expected to
decrease to 1. The MPSRF is plotted as a function of the number of samples in each of 64 parallel
MCMC chains (left column) and as a function of the total per-chain wallclock computation time
(right column). Stochastic Newton generally requires several PDE solves for each MCMC sample,
while the reference methods DRAM and Langevin only require one and two PDE solves, respectively,
which accounts precisely for the differences in the left and right columns. Results are shown from
top to bottom for each of the 2-, 16-, and 65D parametrizations of the medium, respectively. In the
smaller problems (top two rows), the reference MCMC methods are very competitive with Stochastic
Newton. However, in the largest problem (bottom row), the reference MCMC methods fail to even
converge in 10 hours of wallclock computation time and O(105) samples under this metric.
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Fig. 4. The MPSRF statistic for the 1025D and 65D Stochastic Newton MCMC chains is
plotted as a function of the number of samples in each chain. We observe similar convergence rates
for both problems in this metric, despite the factor of 16 difference in number of parameters. This
demonstrates that Stochastic Newton is sensing only the intrinsic difficulty of the problem defined by
the compact subspace of the Hessian operator, rather than the full 65 or 1025 parameter dimensions,
which are otherwise fatal for the reference methods.

Table 1

Time per sample in seconds (TPS), mean squared jump distance (MSJ), and integrated auto-
correlation time comparison for a variety of MCMC methods. We compare the full-rank Stochas-
tic Newton MCMC (SN), reduced-rank Stochastic Newton (rr SN), Langevin MCMC (L), prior-
preconditioned Langevin MCMC (pp L), delayed rejection adaptive metropolis MCMC (DRAM),
and prior-initialized DRAM (pi DRAM). Entries for which integrated autocorrelation is not listed
are incomputable due to lack of chain convergence. The 65 parameter experiment is considered for
all statistics.

Integrated autocorrelation times

MCMC type TPS MSJ minµ(z) max µ(z)
∫ L
0 µ(z)dz µ(0) µ(L/2) µ(L)

SN 64 6.1 65 124 50 17 52 31
rr SN 16 6.8 85 95 46 37 56 32
L 0.42 3.0e-4 – – – – – –

pp L 0.42 5.9 74 114 52 29 51 35
DRAM 0.35 1.2e-5 – – – – – –

pi DRAM 0.35 1.2e-5 – – – – – –

It is well known in Monte Carlo methods that averaging over N independent and
identically distributed samples mk ∼ πpost will reduce the variance in the estimate by
a factor of 1

N . However, MCMC samples are most certainly not independent, and in
general we observe that averaging over N samples from an MCMC chain will reduce
the variance in the estimate by a factor of only τ

N , where τ > 1 is the integrated
autocorrelation time [37]. This can be computed as

(4.3) τ = 1 + 2

∞∑
s=1

ρ(s),

where ρ(s) is the usual autocorrelation function for a lag s. In practice for finite
length sample chains, ρ(s) is a noisy function, and we report the maximum value of
τ obtained by truncating the summation after any value of s < 5000. In some cases,
the sum does not converge over the entire length of the sample chain. It is almost
certain that these chains are not well converged, and these entries are not reported.
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Fig. 5. Likelihood Hessian spectrum curves, computed at each of 64 sample points distributed
quasi-uniformly across the region of nonnegligible posterior pdf. The spectrum at every point col-
lapses quickly to zero, as even a single noncompact spectrum would stand out among the rest in this
view. We also observe small negative eigenvalues in some spectra, demonstrating nonlinearity and
nonconvexity of our forward model.

We observe similar integrated autocorrelation times for the full- and reduced-rank
Stochastic Newton MCMC methods, as well as the prior preconditioned Langevin
MCMC, indicating that these methods appear to be mixing well and at compara-
ble rates. In this metric we actually do not observe significant difference between
Stochastic Newton and prior preconditioned Langevin MCMC, which is likely due to
the smoothing effects in our choice of prior.

4.4. Compactness of the likelihood Hessian. We demonstrate numerically
that the Hessian matrix of the likelihood term for this problem is indeed compact, as
this is a necessary condition for Stochastic Newton MCMC to be effective. Figure 5
contains spectra for the likelihood Hessian Hmisfit = −∇2 log πlike computed at each
of the 64 MCMC chain starting points.

The spectra shown do not contain the contribution to the Hessian from the prior
term and are not modified (e.g., for positive definiteness) to demonstrate the low-rank
character of the underlying physical model.

It is precisely this underlying compact nature of the forward model that enables
similar convergence characteristics of the refined 1025D problem as those of the 65D
problem, demonstrated in Figure 4.

5. Concluding remarks. We have presented a Stochastic Newton MCMCmeth-
od that is aimed at ill-posed and large-scale statistical inverse problems. The key idea
is to make use of gradient and Hessian information characterizing the posterior pdf.
We apply concepts from deterministic optimization, making the connection to the
classical Newton method, to efficiently construct a proposal density for MCMC sam-
pling without ever building the full Hessian operators.

We apply the proposed method to a prototypical statistical inverse problem based
on a seismological scattering experiment that is governed by a 1D wave equation.
Stochastic Newton MCMC and two reference MCMC methods are applied to this
problem for a variety of discretizations of the parameter space. When the number of
parameters is small, all three methods are comparable in MCMC performance. How-
ever, when increasing the dimension of the parameter space, Stochastic Newton shows
faster convergence and better mixing of the MCMC chain. Moreover, comparing its
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performance for 65D and 1025D parametrizations of the same physical problem, we
observe similar MCMC convergence characteristics. While this behavior is not yet
provable theoretically, the numerical observations suggest an insensitivity of conver-
gence of Stochastic Newton to the parameter dimension.

We hypothesize that the observed dimension independence of the proposed method
(depicted in Figure 4) stems from its ability to detect the subspace of parameters for
which the data are informative (and therefore the forward model is active), which
is typically small for ill-posed inverse problems governed by PDEs. Once this data-
informed subspace is sufficiently well resolved by a given parameter discretization, we
anticipate that further parameter refinement does not affect the data misfit term and
therefore does not affect the resulting posterior distribution or the low-rank character
of the Hessian. We thus expect the number of PDE solves required for Stochastic
Newton MCMC to be similarly unaffected as the parameter dimension is increased,
enabling this method to be effective for PDE-based statistical inverse problems with
high-dimensional parameter spaces.

We are currently investigating robustness of the method with respect to nonlin-
earity of the forward model and indefiniteness of the Hessian, which both can produce
high sample rejection rates.
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