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Introduction

Approximating functions in finite dimensional subspaces, whether directly
or as a solution to a differential equation, is an important problem in the
field of numerics. It is necessary for being able to use a computer to solve
a given problem. One main approach is the finite element method [3] which
naturally leads to a so-called full grid approach on a tensor product domain.
Another is the low-rank approximation method.

To mitigate the curse of dimensionality, which appears when trying to
use the full grid approach, the sparse grid method (first introduced by Sergey
Smolyak in 1963, introductions can be found in [9, 38, 12]) has been formu-
lated. To further optimize, since the for the sparse grid approach needed
multilevel systems can be quite involved in praxis, the combination technique
[23] was introduced. It recombines the sparse grid into a sum of anisotropic
full grids of smaller size, on which the solution to the problem has to be
computed.

In this work we wish to further optimize the combination technique by
compressing it with the help of low-rank approximation, in this context the
singular value decomposition [37, 36, 18]. For higher dimensional problems
the singular value decomposition does not generalize, so a tensor decompo-
sition has to be used, in this case the tensor train format [35, 11, 24] which
is also known as matrix product states (MPS). This format, which is newly
introduced in this work, is named Combi-format in reference to both the
combination technique and the use of the tensor train format.

Furthermore we formulate (for two dimensions only) a convergence anal-
ysis to prove that we can reach the same order of convergence with the
Combi-format as we could with the combination technique. This is in fact
also the order of convergence of the straightforward (Galerkin-) projection
onto the sparse grid [17] and therefore optimal in this context.

This work is structured as following: in the first part the necessary
basics are introduced. This includes the approximation spaces (both full
and sparse grids) and the considered function spaces in section 1. Also
the projections needed are introduced in section 2, we restrict ourselves to
L2(Ω)−orthogonal projections to solve approximation problems and Galerkin-
projections in tensor product form to solve elliptic differential operator equa-
tions in tensor product form.

The second part introduces the Combi-format in two dimensions. First
the necessary definitions are detailed in section 3 for the combination tech-
nique and section 4 for the singular value decomposition. Then the Combi-
format can be considered in section 6, including a convergence analysis which
is illustrated in praxis in section 7. The code used for the praxis examples
is also part of this work.

Finally the third part generalizes the Combi-format to higher dimen-
sions. For this tensors in general and the tensor train format in partic-
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ular are introduced in section 8. Then the Combi-format can be defined
for higher dimensions, and a praxis test shows convergence also in higher
dimensions. There is also a convergence analysis for higher dimensions, al-
though we cannot reach the same results as for two dimensions, mostly due
to the non-existence of the Eckart-Young-Mirsky theorem for more than two
dimensions.

In section 10 we conclude the usefulness of this new Combi-format.

Part I

Preliminaries

Before a definition of our new format is possible, a few basics need to be
introduced. We wish to approximate functions f ∈ H in finite dimensional
subspaces of L2(Ω). All of these concepts need to be defined. As such in this
part we wish to introduce the necessary basics for the following work.

This includes the function spaces H ⊂ L2(Ω) in section 1.1 and the
approximation spaces of the full and sparse grids in section 1.2. Then we
introduce the approximation problem we wish to solve, which is the compu-
tation of a (Galerkin-) projection, in section 2.

Throughout this part we consider a domain Ω = Ω1 × · · · × Ωm ⊂ Rm.
The Ωi for i = 1, . . . ,m are closed intervals and can without loss of generality
be considered to be [0, 1] .

1 Spaces

In the following section we want to characterize the function spaces which
will appear in this work. First, the subsection 1.1 defines the possible func-
tion spaces H. These are the spaces the functions f ∈ H, which we wish to
approximate, are from. They are based on the concept of Sobolev spaces,
which we will also quickly define. Then in subsection 1.2 we define the
approximation spaces Vl, which the approximated functions are a part of.
These spaces are based on a tensor product basis approach, which will lead
us into a quick review of full and sparse grids.

1.1 Function Spaces

We consider in this work functions f ∈ H ⊂ L2(Ω), where H is both a
Hilbert and a Sobolev space. Everything in the following subsection is only
a short definition, for further details one can consult most introductory
works for functional analysis (only as an example: [4]). The Sobolev spaces
are especially known as the classical solution space for the solving of PDE
problems. Needed in the following are an understanding of weak derivatives,
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Schwartz spaces and tempered distributions as well as the Fourier transform
[2, 4]. Here and in the following work we always consider Ω to have a
Lipschitz boundary.

As a foundation we consider Sobolev spaces, specifically the so-called
Bessel potential Sobolev spaces. Since H ⊂ L2(Ω), we restrict to those
spaces where p = 2, although generalization to other Lp spaces is of course
possible.

Definition 1 (Sobolev space). Let s ≥ 0, then the (Bessel potential) Sobolev
space of order s on Rn is defined as

Hs(Rn) :=
{
f ∈ L2(Rn) : ‖f‖Hs(Rn) <∞

}
(1.1)

and on Ω as

Hs(Ω) :=
{
f ∈ L2(Ω) : f = g|Ω , g ∈ H

s(Rn)
}
. (1.2)

The norm is given by

‖f‖Hs(Rn) :=

 ∑
‖l‖1≤s

∥∥∥Dlf
∥∥∥2

L2(Rn)

 1
2

(1.3)

for s ∈ N and for s ∈ R by

‖f‖Hs(Rn) :=

∥∥∥∥F−1
(

1 + ‖ξ‖22
) s

2 Ff
∥∥∥∥
L2(Rn)

. (1.4)

On Ω the norm is given by the restriction

‖f‖Hs(Ω) := inf
g∈Hs(Rn), f=g|Ω

‖g‖Hs(Rn) . (1.5)

Here the differential operator Dl refers to the weak derivative, F is the
Fourier transform and ξ is its variable.

It can be shown [4] that the above definitions are well defined and the
so-defined spaces Hs are indeed Hilbert spaces. It is generally enough to
consider s ∈ N, but we can use the fractional Sobolev spaces (where s /∈ N)
for more precise estimates.

To be able to use the concept of a dual space we define for s ≤ 0 the
space

Hs(Ω) =
(
H−s(Ω)

)∗
.

This definition is not necessarily compatible with others in literature, which
define the dual over the whole of Rd. Since we never need to consider
any more than the bounded domain Ω, we use the for us straightforward
approach and just define it as above.

Due to the estimates we later want to employ to describe convergence be-
haviour, we need to define some function spaces that are defined specifically
for a tensor product space [13, 18]:
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Definition 2 (Tensor Product Sobolev Spaces). Let 0 ≤ s1, s2, then we
define the Sobolev space of dominating mixed derivatives or -dominating
mixed smoothness for a tensor product domain Ω1 × Ω2 by

H
(s1,s2)
mix (Ω1 × Ω2) = Hs1(Ω1)⊗Hs2(Ω2). (1.6)

Analogously the isotropic Sobolev space is defined as

H
(s1,s2)
iso (Ω1 × Ω2) = H

(s1,0)
mix (Ω1 × Ω2) ∩H(0,s2)

mix (Ω1 × Ω2). (1.7)

We also use the shorter name mixed Sobolev space1 for (1.6), also known
is the name anisotropic Sobolev space or simply H-mix space.

The definitions above do generalize for more than two subdomains. Also
the following identities hold:

H
(s,s)
iso (Ω1 × Ω2) = Hs(Ω1 × Ω2);

Hs(Ω1 × Ω2) ⊂ H(s,0)
mix (Ω1 × Ω2); Hs(Ω1 × Ω2) ⊂ H(0,s)

mix (Ω1 × Ω2)

We can generalize the mixed Sobolev spaces to more specific underlying
spaces H ⊂ L2(Ω1 × Ω2) by defining

H(s1,s2)
mix :=

{
f ∈ H

∣∣∣∣∣
∥∥∥∥∥ ∂α+β

∂αx1
∂βx2

f

∥∥∥∥∥
H

<∞ for |α| ≤ s1, |β| ≤ s2

}
(1.8)

for 0 < s1, s2. This definition is compatible to the one in Definition 2 above.
Some examples for different H can be found in [17].

1.2 Approximation spaces

In this subsection the approximation spaces are defined, which define the
characteristics of the approximated functions. We will consider tensor prod-
uct grid spaces, namely full grids and sparse grids. Introductions to sparse
grids can be found in [12, 7, 38, 9].

There are many different ways to approach defining the necessary ap-
proximation spaces, the one chosen in this work is based on bases. In the
first step of approximation we chose a basis, for the sake of the coming sparse
grid approach a hierarchical and dyadic one. The most commonly known
one is probably the nodal basis, also called Lagrangian basis. But many
others like wavelets or pre-wavelets can also be considered.

Without loss of generality we assume the domain to be a hypercube,
specifically Ω = [0, 1]m. As a first step we also assume that our function
vanishes on the boundary, we will later give a brief outlook on including
boundary data.

1It is important to note here that the definitions in [20], [29] and [19] are not the same
as in [13] or [18]. In this work we therefore write the superscript in brackets (·, ·) in the
hope of unifying the notation and not causing more confusion.
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Example: Hierarchical hat-basis in 1D Before defining the approxi-
mation spaces in generality, the following paragraphs introduce the example
of the hierarchical hat-basis in one dimension, most likely the most well
known example for a chosen basis. In this example we consider Ω = [0, 1].

The univariate hat function φ : R −→ R is defined as

φ(x) :=

{
1− |x| if x ∈ [−1, 1]

0 else

and its translations and dilations φj,k : [0, 1] −→ R are given as

φj,k(x) := φ(2j · x− k)
∣∣
[0,1] (1.9)

for level j ∈ N and index k ∈
{

0, 1, . . . , 2j − 1, 2j
}
.

So for each level j ∈ N we now have a basis Φj = {φj,k : k ∈ ∆j} which
defines the approximation space

Vj = span {φj,k : k ∈ ∆j}

where ∆j =
{

1, . . . , 2j − 1
}

denotes the index set of cardinality #∆j ∼ 2−j .
(Both 0 and 2j are not part of the index set, since they index basis functions
which are non-zero on the boundary. These are treated separately whenever
we have to deal with functions not vanishing on the boundary.)

Now we define hierarchical increment spaces by Vj = Vj−1⊕Wj , resulting
in

Wj = span {φj,k : k ∈ ∇j} = span {φj,k : k ∈ ∆j , k odd} (1.10)

where ∇j = {k ∈ ∆j : k odd} is the index set for the increment. It also
holds that Vj−1 ∩Wj = {0} and we define Ψj = {φj,k : k ∈ ∇j} .

Finally we arrive at the hierarchical splitting of the space

Vj =

j⊕
l=1

Wl (1.11)

which was the goal of the entire preparations above.
In Figure 1 the hierarchical hat basis of level 3 is illustrated. It shows

the basis-functions of W1, W2 and W3; in the third row the functions of
level 3 which are not in W3 are shown in light grey. The final row shows
V3 =

⊕3
l=1Wl.

It can also be noted here that one of the advantages of using this ba-
sis (apart from just its simplicity) is that there exist an efficient algorithm
for calculating hierarchical coefficients from non-hierarchical ones and back.
Therefore one can also compute the coefficients for all basis functions of one
level and then transform them, or especially the other way around, which
makes evaluations easier. Especially for interpolation, which we do not ac-
tually want to consider in this work, this significantly reduces computational
complexity.
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Figure 1: An illustration of the hierarchical hat basis of level 3.

Generalization After this introductory example we consider the general-
ization of the above concepts to multiple dimensions and general hierarchical
bases. For this we now consider tensor products of the bases and therefore
the associated spaces. The one-dimensional bases are now arbitrary hi-
erarchical bases, the above considered hat-functions or (pre-)wavelets for
example (more bases can be found for example in [7, 2]).

We define the index set of basis functions of level j as

∆j = {k ∈ Nm : ki ∈ ∆ji , i = 1, . . . ,m}
∇j = {k ∈ Nm : ki ∈ ∇ji , i = 1, . . . ,m} ,

also the bases

Φj = {φj,k : k ∈ ∆j} (1.12)

Ψj = {φj,k : k ∈ ∇j} (1.13)

of basis functions
φj,k = φj1,k1 ⊗ · · · ⊗ φjm,km (1.14)

defining the spaces

Vj =
m⊗
l=1

Vjl = span Φj (1.15)

and hierarchical increment spaces

Wj =

m⊗
l=1

Wjl = span Ψj. (1.16)

Here, all boldfaced indices are multi-indices of the form j = (j1, . . . , jm) .
Also the following relations hold:

Vj = Wj ⊕ Vj−1, Wj ∩ Vj−1 = {0} , V0 = W0 (1.17)
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From this follows the representation

Vj =
⊕
i≤j

Wi. (1.18)

This means that every function u ∈ Vj can be uniquely expressed as

u(x) =

j∑
i=1

∑
k∈∇i

ui,k φi,k(x) (1.19)

with hierarchical coefficients ui,k ∈ R.
There is one more concept and the associated definitions to consider,

and that is the assumed approximation property

inf
fji∈Vji

‖f − fji‖Hq(Ωi)
. hs−qji

‖f‖Hs(Ωi)
f ∈ Hs (Ωi) , (1.20)

where q < γi and q ≤ s ≤ ri uniformly in j.
We therefore define the mesh width hji = 2−ji for the space Vji over Ωi;

the regularity of the functions contained in said space defines

γi = sup {s ∈ R : Vji ⊂ Hs(Ωi)} (1.21)

and ri ∈ N+ refers to the polynomial exactness, which is the highest degree
of polynomials that is contained locally in Vji .

Any general basis we may wish to consider has to fulfil this property,
otherwise our approximation estimates (which will follow in later sections)
do not hold. This would invalidate all results.

Since in the following we want to consider various function spaces in the
context of grids we formally write:

Definition 3 (Full Grid). The (regular) full grid of level n is the space

Vn := Vn =
⊕
|l|∞≤n

Wl.

1.2.1 Regular Sparse Grids

Up to this point all considered spaces were full tensor product spaces. Now
we proceed to introduce the regular sparse tensor product spaces often just
called sparse grids. We again orient ourselves at [12] to define regular sparse
grids. Further introduction can be found in [38, 9].

In the following the regular sparse tensor product space will be denoted
by a hat over the space giving us:

Definition 4 (Sparse Grid). The regular sparse grid of level n is the space
defined by

V̂n =
⊕

|l|1≤n+d−1

Wl. (1.22)
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This gives us again a unique basis representation for each function û ∈
V̂n:

û(x) =
∑

|l|1≤n+d−1

∑
k∈∇l

ul,k φl,k(x) (1.23)

with hierarchical coefficients ul,k ∈ R.
With this information it is possible to calculate the degrees of freedom

of these two spaces. For the regular sparse grid (always without boundaries)
we have ∣∣∣V̂n∣∣∣ = (−1)d + 2n

d−1∑
i=0

(
n+ d− 1

i

)
(−2)d−1−i

= 2n
(

nd−1

(d− 1)!
+O(nd−2)

)
= O

(
2nnd−1

)
(1.24)

degrees of freedom. Comparatively, for the full grid we have |Vn| = (2n −
1)d = O

(
2nd
)
, meaning the sparse grid reduces the degrees of freedom and

therefore the necessary storage space and computations significantly. Even
more details can be found in [7, 20].

Motivation [12] To understand why these spaces are defined as they are,
one has to consider functions with bounded mixed second derivatives as
considered in subsection 1.1. Regular sparse grids are optimized for the

approximation of these functions f ∈ H(2,2)
mix (Ω).

It holds for functions f ∈ H
(2,2)
mix (Ω) that their hierarchical coefficients

fl,i (as defined in (1.19)) decay as |fl,i| = O
(
2−2|k|1

)
. This is due to Lemma

1.
On the other hand the hierarchical increment spaces have |Wk| = O

(
2|k|1

)
many degrees of freedom. Optimizing these two quantities leads to the
spaces defined above.

That the definition is reasonable can be determined by comparing the
degrees of freedom calculated above and comparing this to the approxima-

tion accuracy for functions f ∈ H
(2,2)
mix (Ω). We get for the sparse grid an

estimate of ∥∥∥f − f̂n∥∥∥
L2(Ω)

. 2−2n · nd−1

and by comparison for the full grid

‖f − fn‖L2(Ω) . 2−2n.

Here f̂n, fn are the approximations of f in V̂n,Vn respectively. It is impor-

tant to note that these estimates use the fact that f ∈ H(2,2)
mix (Ω), for other

10



function spaces there would be different rates. The proof for the rate of
convergence is formulated later on in Theorem 8.

The above concludes that the definition of the regular sparse grid justifies
itself by the significant reduction of degrees of freedom and therefore storage
space and calculations, with only a minor worsening of the approximation
accuracy.

1.2.2 Specialized Sparse Grids

There are many ways of specializing the sparse grid depending on the kind of
problem one wishes to solve. Generally speaking this is achieved by changing
the index-set which determines which basis functions of the full grid space
are chosen for the sparse grid space.

To get more detailed, consider

V̂n =
⊕
l∈ISn

Wl (1.25)

where
ISn =

{
l ∈ Nd| |l|1 ≤ n+ d− 1

}
, (1.26)

comparing with (1.22) leads to the conclusion that this is indeed consistent
with Definition 4.
ISn is the index-set for the regular sparse grid of level n. It defines the reg-

ular sparse grids we will mostly be using. As discussed above this index-set
is chosen in such a way to include the “more important” (or “more signifi-
cant”) basis functions and exclude the less “important” or “significant” ones
in order to optimize the cost-benefit quotient. As already discussed in the

section above this is done mostly for functions f ∈ H(2,2)
mix .

But, as said above, this index-set can be modified for settings in which
the importance (or significance) of the basis functions is weighted differently,
for example for f ∈ H where H ⊂ L2(Ω) is some special space. Depending
on the setting, optimizing cost-benefit can therefore lead to different index-
sets.

First, we can define the generalized sparse grid [22, 10] (for sparse
quadrature instead of approximation also [25]), which is just

V̂ g
n =

⊕
l∈Ign

Wl

with the general index-set Ign of level n, which has to fulfil an admissibility
condition:

k ∈ Ign and l ≤ k⇒ l ∈ Ign. (1.27)

This condition guarantees that the whole idea of the telescoping sum con-
struction still works. Multiple examples for different potential choices of
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this index-set are described in [25, Chapter 4] for quadrature instead of pro-
jection. There also a short introduction to dimension-adaptive sparse grids
can be found.

Both the regular sparse grid and the one we introduce below satisfy the
condition and are therefore sparse grids.

The second one is found in much of the literature cited in this work
[16, 17, 18]: the mixed sparse grid space V̂ σ

J . It is defined over the domain
Ω1×Ω2, where, although these could be higher-dimensional, we set Ω1 ⊂ R
and Ω2 ⊂ R. Then we have for a σ > 0 :

V̂ σ
J =

⊕
l1σ+

l2
σ
≤J

Wl. (1.28)

Since σ does not have to be a natural number, the relevant summation limits
do not have to be either. For sake of readability the, for strict formality
necessary, floor- and ceiling-brackets are omitted here.

We have that
V̂ 1
J = V̂J

by definition, and the index-set for the mixed sparse grid space is

ISmixσ,J =

{
l ∈ N2

∣∣∣l1σ +
l2
σ
≤ J

}
.

There are different sensible choices for the parameter σ, depending on ones
particular setting. These mixed sparse grid spaces where first introduced in
[16], where they are called sparse tensor product spaces.

Although we do not utilize these specialized sparse grids in this work,
they show a possibility of further optimization, depending on setting. To-
gether with potential dimension-adaptivity the specialized sparse grids are
a possible future topic of study.

2 Projection

In the field of Numerics, almost every problem posed needs to be approxi-
mated in an appropriate finite dimensional subspace to be practically solv-
able. Now that we have defined the spaces we need, the next step is to
consider the projections onto these spaces and their properties.

2.1 L2-Projection

The first kind of projection we consider is the L2−orthogonal projection onto
a finite dimensional space. It is a standard tool in the field of mathematics.
We will in the following first define it in one dimension and make note of
some of its properties. Then we use a tensor product approach to generalize
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it to higher dimensions. Special attention will be paid to the question of how
to compute the projection in praxis, as this is one of the major calculation
steps of the format introduced in this work.

2.1.1 Definitions in one dimension

First we define all necessary concepts in one dimension. As such we consider
the domain Ω ⊂ R, which is Ω = [0, 1] without loss of generality.

Definition 5. The L2(Ω)-orthogonal projection onto the space Vl is given
by

Ql : L2(Ω) −→ Vl. (2.1)

It is defined by the so-called projection identity :

〈f −Qlf, g〉L2(Ω) = 0 ∀g ∈ Vl (2.2)

for an f ∈ L2(Ω).

Ql is a projection with all the characteristics of one, meaning (Ql)
2 = Ql.

Additionally, since it is also an orthogonal projection it holds: (Ql)
? = Ql.

We know that Ql is a bounded operator, i.e.

‖Qlf‖Hs(Ω) . ‖f‖Hs(Ω) (2.3)

holds for |s| ≤ γ where γ is the maximum regularity defined in (1.21).
The projections also give rise to a multilevel decomposition of the func-

tion f :

f =

∞∑
j=0

(Qj −Qj−1)f =

∞∑
j=0

fj . (2.4)

Here Q−1 := 0 and we know fj := (Qj −Qj−1)f ∈Wj .
Furthermore we can formulate a L2-orthogonality as a direct consequence

of (2.2):
〈(Qj −Qj−1) f, v〉L2(Ω) = 0 ∀v ∈ Vj−1. (2.5)

Due to this L2-orthogonality, we also have the equality

‖f‖2L2(Ω) =

∥∥∥∥∥∥
∞∑
j=0

(Qj −Qj−1)f

∥∥∥∥∥∥
2

L2(Ω)

=

∞∑
j=0

‖(Qj −Qj−1)f‖2L2(Ω) . (2.6)

The final simple estimate needed is induced by the approximation prop-
erty (1.20) and will later give us our rate of convergence:

‖(Qj −Qj−1)f‖Hs(Ω) . 2−j(t−s) ‖f‖Ht(Ω) (2.7)

where s < t ≤ r and r is the polynomial exactness of the approximation
space.
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2.1.2 Generalization to higher Dimensions

All this generalizes into multiple dimensions by setting Ω = Ω1 × · · · × Ωm

and considering a tensor product approach.

Definition 6 (L2-projection). We denote the L2 (Ω)-orthogonal projection
onto the subspace Vl ⊂ L2 (Ω) as

Ql : L2(Ω) −→ Vl. (2.8)

It is defined by
Ql = Ql1 ⊗ . . .⊗Qlm . (2.9)

Due to the tensor product approach the properties of the projection,
namely being idempotent, self-adjoint and bounded translate directly.

It is very important to note that the tensor product approach makes the
different directions (the Qli) completely independent of each other. Most
operations one wishes to perform on the projection can therefore be cal-
culated for each (one-dimensional) direction separately from the others and
then the results can be combined together by the rules of the tensor product.

The above is the way we generalize the estimate (2.7). Here it is im-
portant to note that the space Hs(Ω) does not in fact contain the space
Hs(Ω1) ⊗ · · · ⊗Hs(Ωm), as such we need to consider the H-mix spaces in-
troduced in the section 1.1 before. For simplicity of writing we consider two
dimensions, more generalize analogously.

Lemma 1 (Approximation property). For a function f ∈ L2(Ω1×Ω2) and
0 < t1 ≤ r1 and 0 < t2 ≤ r2 the following approximation property holds

‖(Qj −Qj−1)f‖L2(Ω1×Ω2) . 2−(j1t1+j2t2) ‖f‖
H

(t1,t2)
mix (Ω1×Ω2)

. (2.10)

Here r1, r2 are the polynomial exactness of the spaces Vl1 , Vl2 respectively.

Proof. We follow the procedure described above and formulate

Qj −Qj−1 = (Qj1 −Qj1−1)⊗ (Qj2 −Qj2−1) .

Then, since w.l.o.g. f does not exist in tensor product form, we formulate

(Qj1 −Qj1−1)⊗(Qj2 −Qj2−1) = (Id ⊗ (Qj2 −Qj2−1)) ((Qj1 −Qj1−1)⊗ Id)

to use (2.7):

‖(Qj −Qj−1)f‖L2(Ω1×Ω2) = ‖(Id ⊗ (Qj2 −Qj2−1)) ((Qj1 −Qj1−1)⊗ Id) f‖L2(Ω1×Ω2)

(2.7)

. 2−j2t2 ‖((Qj1 −Qj1−1)⊗ Id) f‖
H

(0,t2)
mix

(2.11)

(2.7)

. 2−(j1t1+j2t2) ‖f‖
H

(t1,t2)
mix

(2.12)

where we twice used the one-dimensional estimate (2.7) and the definition

of H
(t1,t2)
mix (see section 1.1) as a tensor product space.
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The proof above is meant as an example for one of the main concepts in
this work: working with tensor products. Later we will also consider more
general tensors. One other concept introduced above is the usefulness of the
following:

Definition 7 (Detail Projection). For the L2−projection Ql : L2 → Vl we
define the detail projection by

∆Q
l := (Ql1 −Ql1−1)⊗ (Ql2 −Ql2−1) = (Ql −Ql−1) (2.13)

for two dimensions. Higher dimensions generalize.

It is important to remember that despite the name, the detail projection
is in general not actually a projection. Only when we have chosen a basis in
such a way that the Wl are orthogonal to each other it is indeed a projection.

With this we can generalize (2.4) to the multilevel decomposition of the
function f ∈ L2(Ω1 × Ω2) given by

f =

∞∑
l=0

∆Q
l f (2.14)

with ∆Q
l f ∈ Wl1 ⊗Wl2 . Furthermore we can generalize (2.5) to formulate

the important L2−orthogonality property:〈
∆Q

l f, v
〉
L2(Ω)

= 0 ∀v ∈ Vl−1. (2.15)

Then we can use the above to formulate an important estimate which
will be used in convergence proofs later:

Theorem 8. For a function f ∈ H(s1,s2)
mix with 0 < s1 ≤ r1 and 0 < s2 ≤ r2

the approximation error can be bounded by

‖f −Qlf‖2L2(Ω) . 2−2(l1s1+l2s2) ‖f‖2
H

(s1,s2)
mix

. (2.16)

The proof of it follows directly from Lemma 1, using the following esti-
mates:

‖f −Qlf‖2L2(Ω) =

∥∥∥∥∥∥
∑
j>l

∆Q
j f

∥∥∥∥∥∥
2

L2(Ω)

orth
=
∑
j>l

∥∥∥∆Q
j f
∥∥∥2

L2(Ω)

.
∑
j>l

2−2(j1s1+j2s2) ‖f‖2
H

(s1,s2)
mix

. 2−2(l1s1+l2s2) ‖f‖2
H

(s1,s2)
mix

.
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rank-r functions Since we will need it later, in the following paragraphs
we will consider the projections of rank-r functions. We will arrive at the
result that the projection of a rank-r function is itself again at most of rank
r.

First we consider the rank-1 function f = φ ⊗ ψ ∈ L2(Ω1 × Ω2) with
which we can formulate

Qlf = (Ql1 ⊗Ql2) (φ⊗ ψ) = Ql1φ⊗Ql2ψ.

This is again a rank-1 function (here a rank-1 function is simply one that
can be written in tensor product form).

A rank-r function is one that can be written as a sum of at least linearly
independent rank-1 functions with r summands. This means that in a second
step we consider f =

∑r
α=1 φα⊗ψα ∈ L2(Ω1×Ω2), which is indeed a rank-r

function. Since Ql is linear it holds

Qlf =
r∑

α=1

Ql1φα ⊗Ql2ψα. (2.17)

This gives us the wanted result: The projection of a rank-r function has at
most rank r.

(We can note here that it might have lower rank, depending on the
function and the space to be projected onto. It is in general not apparent
whether one or more of the Ql1φα ⊗Ql2ψα are linearly dependent on those
before them, which would result in a lower rank.)

2.1.3 Projection onto Sparse Grid Space

Above we have considered the projection onto the full grid space Vl. There
is however no reason why we cannot project onto the sparse grid space V̂n
as well. We again use a L2−orthogonal projection, it is only the projected
space that we change. In the following we will briefly define this projection
we call Q̂, and detail some of its properties and differences from Q.

Definition 9. For a level n ∈ N, the L2−projection onto the regular sparse
grid space is the operator

Q̂n : L2(Ω) −→ V̂n. (2.18)

It is defined analogously to (2.2) by the projection identity :〈
f − Q̂nf, g

〉
L2(Ω)

= 0 ∀g ∈ V̂n

for an f ∈ L2(Ω).
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In contrast to the full grid projection Q, the sparse grid version does not
have a simple product structure (recall (2.9)). This is because the underlying
space, in this case V̂n, does not have a simple product structure. However,
we know by definition

V̂n =
⊕

|l|1≤n+d−1

Wl
(1.17)

=
⊕

|l|1≤n+d−1

(Vl 	 Vl−1) .

Similarly to Theorem 8 we can formulate an estimate for the remainder
term:

Theorem 10. For a function f ∈ H(s1,s2)
mix with 0 < s1 ≤ r1 and 0 < s2 ≤ r2

the remainder term can be bounded by

∑
j1+j2>J

∥∥∥∆Q
j f
∥∥∥2

L2(Ω1×Ω2)
.

2−2J min(s1,s2) ‖f‖2
H

(s1,s2)
mix

, s1 6= s2

2−2Js1J ‖f‖2
H

(s1,s2)
mix

, s1 = s2

.

(2.19)

Here and in the estimates building on this one it can be further general-
ized for a Hilbert space H(Ω1×Ω2) ⊂ L2(Ω1×Ω2) (on the left side) and the

associated H(t1,t2)
mix (Ω1×Ω2) on the right hand side. However, in that case we

need to set 0 < t1 ≤ p1 and 0 < t2 ≤ p2, where the 0 < p1, p2 are the largest

numbers for whichH(p1,0)
mix ⊂ H

(r1,r2)
mix (Ω1×Ω2) andH(0,p2)

mix ⊂ H
(r1,r2)
mix (Ω1×Ω2)

holds. This is especially useful in the case of Galerkin-projections as defined
in section 2.2. More details in [17].

To proof this we again use Lemma 1:∑
j1+j2>J

∥∥∥∆Q
j f
∥∥∥2

L2(Ω1×Ω2)
.

∑
j1+j2>J

2−2(j1s1+j2s2) ‖f‖2
H

(s1,s2)
mix

.

The rest of the proof for this is rather technical, since the two directions
(dimensions) of the sum are not independent of each other as before, and
can be found in [16, Theorem 4.3].2

2.1.4 Practical Computation

In the section above, more specifically Definition 5 and 6, we have defined the
L2−Projection. However, from the point of practical computation, we notice
that the projection is not defined directly, but rather via the projection
identity (2.2).

This creates the problem of how to actually compute the L2−Projection,
and since we need to do it fairly often, how to do it efficiently. Here it is

2In [16] what we denote by ∆Q
j is instead written as Q

(1)
j1
⊗Q(2)

j2
and not to be confused

with our projection Q.
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very important to note the tensor product structure of the projection shown
in (2.9). As already noted above, due to this structure we can calculate the
one-dimensional projections in all directions and then simply multiplicate
them. In the following we will therefore show how to calculate the projection
in one dimension.

If we wish to calculate the L2-projection of f onto Vl(Ω), we consider the
basis of this space. In the following we will denote it by

{
φi, i = 1, . . . , 2l − 1

}
.

This basis is in general arbitrary (as long as it is a basis of the space Vl(Ω)),
although a natural choice is a hierarchical basis as defined in the previous
sections.

Then we know that an equation holds for all functions in a given space, if
it holds for all basis functions of said space. Also we know that every function

in Vl(Ω) has a unique basis representation, meaning Qlf =
∑2l−1

i=1 xiφi with

x = (xi)
2l−1
i=1 dependent on f .

As such we can reformulate (2.2) as

2l−1∑
j=1

xj 〈φj , φi〉 = 〈f, φi〉 ∀i ∈
{

1, . . . , 2l − 1
}

(2.20)

or equally as
Mx = b (2.21)

where M =
(
〈φi, φj〉L2(Ω)

)2l−1

i,j=1
is the so-called mass matrix and

b =
(
〈f, φi〉L2(Ω)

)2l−1

i=1
the right side vector.

As M and b are given and we want to determine x, the problem of
determining the L2−Projection has been reformulated as solving a linear
system. This is a well-known problem in Numerics, how exactly one solves
this is out of the scope of this work.

For our purposes it is important to note that to calculate am−dimensional
L2−Projection onto Vl(Ω1 × · · · × Ωm), one needs to solve m many linear
systems with 2li − 1, i = 1, . . . ,m variables each. If the basis is chosen well,
the cost of solving the system (2.21) (or analogously inverting the matrices
M) can be greatly reduced compared to an arbitrary system. There are
bases (for example those whose mass matrix is a tridiagonal one), where one
linear system can be solved in O(2l) operations, with l being the level of the
space in in the considered direction.

If we denote the cost of solving the linear system (2.21) by K(l), de-
pendent on the level l, then we can formulate a rough estimate for the
calculation of the L2−Projection. For an arbitrary l we can make no gen-
eral statements about the value of the li, therefore we will estimate with
max1≤i≤m li, which can make the estimate quite rough for extreme cases
(for example if l = (L, 1, 1, 1) with L very large).
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The cost of calculating the L2−Projection of a function f onto the space
Vl(Ω1 × · · · × Ωm) can be estimated by

O
(
m · max

1≤i≤m
K(li)

)
. (2.22)

As such the calculation does not suffer from the curse of dimensionality,
since m does not appear in the exponent. (It is however important to note
that the term K(li) contains the term 2li in some form, since this is (asymp-
totically) the number of variables of the system.) The importance of the
tensor product structure can not be understated, without exploiting this
structure we would arrive at a cost of O (max1≤i≤mK(m · li)), which does
have the dimension in the exponent and is therefore subject to the curse of
dimensionality.

2.2 Galerkin Projection

This linear system above is the discretized form of the operator equation
Ax = f where A is the identity operator. Now we can of course consider
operators A (mostly differential operators) that are not the identity. Then
we arrive at the subject of Galerkin Projections. More detailed discussions
of this very complex topic can be found in most introductory literature for
the subject Numerics [3].

For simplification purposes we consider a differential form A : H −→ H∗
over a Hilbert spaceH = H1⊗. . .⊗Hm3, which is continuous andH−elliptic.
We will also restrict ourselves to operators of the form A = A1 ⊗ . . .⊗Am,
where for i = 1 . . . ,m, Ai : Hi −→ H∗i . The reason for this are analogous to
the complexity estimates from the section before and will be made clear in
section 3.2.

Following from that we can define a bilinear form

a(u, v) = (Au, v)L2(Ω) : H×H −→ R (2.23)

which is also continuous and elliptic.
We now solve Au = f for a given f ∈ H∗ by considering the variational

formulation:

“ Find u ∈ H s.t. a(u, v) = f(v) ∀v ∈ H. ” (2.24)

To actually practically solve this all functions in H (that would be u and v)
are to be approximated in the finite dimensional space Vl.

This now characterizes the Galerkin Projection

Pl : H −→ Vl (2.25)

3This very naturally leads to H being a H-mix space.
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which is orthogonal in the sense of Galerkin orthogonality

a(u− Pl u, v) = 0 ∀v ∈ Vl (2.26)

which in comparison to the L2-orthogonality replaces the standard scalar
product by the bilinear form a(·, ·). All this is well defined due to the char-
acteristics of said bilinear form. More details can be found in most intro-
ductions to Numerics, for example [3].

In analogy with the definition of ∆Q
l we now define (again for two di-

mensions)
∆P

l = Pl1,l2 − Pl1−1,l2 − Pl1,l2−1 + Pl1−1,l2−1. (2.27)

Again, it generalizes for higher dimensions and is in fact equivalent to the
tensor product form we used to define (2.13), since A also exists in tensor
product form. As such we can also set

∆P
l = Pl − Pl−1 = (Pl1 − Pl1−1)⊗ (Pl2 − Pl2−1),

but only for the discussed special case.
Also an orthogonal property exists, generalizing (2.15), but in the sense

of Galerkin orthogonality:

a
(
∆P

l u, v
)

= 0 ∀v ∈ Vl−1. (2.28)

2.3 Linear vs. Standard Information

Both of the projections discussed above have in common that they are indeed
projections (and orthogonal at that). Projecting onto a subspace Vl is of
course not the only method to approximate a function f ∈ H, another well
known method is interpolation.

If we were to consider interpolation, we would define (for two dimensions,
more generalizes):

f int
j =

∑
k∈∆j

ck φj,k

where Φj = {φj,k : k ∈ ∆j} is a basis of Vj as in section 1.2. Here,

ck = f(xk1 , yk2)

are the function evaluations at points (xk1 , yk2) for each k ∈ ∆j.
There is an expansive theory on which are the best points to choose

depending on your setting, it is to this day an area of research. If we
consider the hat-basis from our example in section 1.2, the chosen points of
evaluation are (almost always) the hat-points of the hats, meaning the grid
points on a uniform mesh.

More generally, projection is referred to as linear information (consider
that we calculate it via solving a linear system) and interpolation is called

20



standard information. These two things are very much not the same and in
which ways they relate to each other is still a topic of research. Since the
L2−projection is the best-approximation with respect to the L2−norm, we
know that the interpolation has to be an upper bound on the approximation
error.

Since this is not a work about the choice of interpolation points we
will in the following not consider interpolation and remain with the linear
information as defined above and below, since approximation via singular-
value-decomposition is also linear information. The main takeaway from this
section should therefore be to not confuse the projections with interpolation,
since results for one are different from results for the other.

Part II

Results in two Dimensions

Having now defined the underlying basics, we can proceed to introduce our
new Combi-format for the approximation of functions f ∈ H in finite di-
mensional subspaces. The idea is to compress the combination technique
[23] using singular value decomposition.

Therefore both of these concepts will be introduced in the following
sections 3 and 4 respectively. Then we are finally ready to define the Combi-
format in section 6, show that it has good approximation rates in section
6.3 and then demonstrate this in praxis in section 7.

As the name of this second part suggests, we start by defining the Combi-
format (and all the underlying concepts necessary) in only two dimensions.
This means that we set d = 2 for everything already defined in the previous
part. We consider bivariate functions f ∈ H(Ω1×Ω2) ⊂ L2(Ω1×Ω2), where
without loss of generality Ω1 × Ω2 = [0, 1]2 . In general we mostly consider
P ≡ Q, although all results generalize to the setting of Galerkin-projections
except those where we specifically note that this is not the case.

3 Combination Technique

The sparse grid approach is an effective method for solving higher dimen-
sional operator equations, which the problem of approximation can be rewrit-
ten as. However the needed multilevel basis can be cumbersome in praxis.
To circumvent this, the combination technique [23] was introduced. It re-
combines the sum of the basis functions of the sparse grid into a sum of
small, anisotropic full grids. These full grids are easier to handle in practi-
cal applications. Also a convergence theory has been established especially
for the combination technique, see [17].
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Figure 2: A visualization of the combination technique for the space V̂3.

The Figure 2 illustrates the idea of the combination technique. We
add together the anisotropic full grids needed to accumulate all points of
the sparse grid and then have to subtract those points that we now have
multiple of. More mathematically expressed: Definition 4 gives us the formal
definition of a sparse grid of level m as a sum of hierarchical increment
spaces, meaning (this is (1.22)):

V̂m =
⊕

|l|1≤m+1

Wl.

This can be reformulated as

V̂m =
⋃

|l|1=m+1

Vl,

with the full grid spaces Vl. Of course this is now a union of spaces which
are not disjoint and therefore not a direct sum, which is what we want (since
a direct sum gives us a unique representation, which we need).

Considering the possible level-indices l ∈
{
k ∈ N2| |k|1 = m+ 1

}
, to

make the spaces disjoint we need to remove

V̂m−1 =
⋃
|l|1=m

Vl.

This is exactly what is shown in Figure 2, and how the combination tech-
nique is defined in the following.

In only two dimensions the formula for the combination technique is
given by

ûm = CT mu =
∑

|l|1=m+1

Pl1,l2u−
∑
|l|1=m

Pl1,l2u. (3.1)
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Figure 3: A visualization of the combination technique of level 8. Each box
of the grid is associated with its upper right corner, the pluses and minuses
show the appearance of the Pl in the combination technique.

The same method is shown in a different visualization in Figure 3, which
shows the combination technique of level 8. The dashed blue line shows
us |l|1 = m, it is the line where the sign of the projections changes. Since
the level-indices are of course natural numbers in each direction we instead
consider the grid and associate each box with its right upper corner. As
such the red line actually delimits the area for which |l|1 < m + 1 holds,
whereas the black one delimits |l|1 ≤ m+ 1.

The pluses and minuses show the indices l which appear in the format; if
there is a plus in the box associated with k, then Pk appears in the format
with positive factor, analogously for the minuses.

This can also be considered as

CT mu =
∑
l∈ICm

(−1)m+1−|l|1Pl1,l2u (3.2)

with
ICm =

{
l ∈ N2|m ≤ |l|1 ≤ m+ 1

}
(3.3)

being the index set of the grids of the combination format of level m.

3.1 Proof of Concept

In a previous section we have already defined ûm = P̂mu, with the projection
onto the sparse grid of level m, P̂m, being defined as in Definition 9. The
following provides a proof of concept for the combination technique, by
proofing that indeed

ûm = CT mu = P̂mu
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Figure 4: Two different ways to reformulate the formula for the combination
technique as described in (3.4). Here the thick black lines are for the sake
of visualizing the two possible directions of the subtraction.

holds in a specific setting. (That being P ≡ Q or P being in tensor product
form.)

First we rearrange the two-dimensional combination technique into other
formulations, which we will need in the following work. A closer look at
(3.1), especially the possible level-indices l, leads to the rearrangements in
the first line. They are also illustrated in Figure 4, showing the two possible
directions to rearrange the sum. Using the detail projection

∆P
l1,l2 = Pl1,l2 − Pl1,l2−1 − Pl1−1,l2 + Pl1−1,l2−1

first defined in (2.27) for the Galerkin-projection or (2.13) for the L2-projection
we can rearrange using a telescoping sum which gives us the second line. The
third line is based on u =

∑∞
|l|1=0 ∆P

l1,l2
u:

CT mu =
∑

|l|1=m+1

(Pl1,l2 − Pl1,l2−1)u =
∑

|l|1=m+1

(Pl1,l2 − Pl1−1,l2)u (3.4)

=
∑

|l|1≤m+1

∆P
l1,l2u (3.5)

= u−
∑

|l|1>m+1

∆P
l1,l2u. (3.6)

For the following it is very important to recall that we consider either
P ≡ Q or P is a Galerkin-projection in tensor product form. In other cases
the following theorem does not hold.
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Theorem 11. For a level m ∈ N and a function u ∈ H ⊂ L2(Ω1 × Ω2)
it holds that the combination technique ûm = CT mu as defined in (3.1) is
well-defined.

Proof. This proof is only for the case P ≡ Q. We start with what we already
know, letting u ∈ H ⊂ L2(Ω1×Ω2) be arbitrary and setting ûm = P̂mu where
P̂ is the orthogonal projection onto V̂m as defined in Definition 9.

The first step is to recognize that both P̂m : H −→ V̂m and CT m : H −→
V̂m are operators mapping onto the same space V̂m. Until now we have not
formally proven that CT m does actually map to V̂m. We prove this now.

The definition of V̂m (see (1.22)) states that

V̂m =
⊕

|l|1≤m+1

Wl

and the detail projection ∆P
l maps onto the space Wl. (Recall that despite

the name the detail projection is not generally an orthogonal projection, it
maps onto Wl, it does not (generally) project.)

Using the formulation of the combination technique stated in (3.5),
CT m =

∑
|l|1≤m+1 ∆P

l , we conclude the proof that CT m maps onto V̂m.
Now, to show that indeed ûm = CT mu, it needs to be proven that CT mu

is the orthogonal projection of u onto V̂m. Using the projection identity
(2.2) and the rearrangement (3.6) we can formulate for all v ∈ V̂m

〈u− CT mu, v〉 =

〈
u−

∑
|l|1≤m+1

∆P
l u, v

〉

=

〈 ∑
|l|1>m+1

∆P
l u, v

〉

=
∑

|l|1>m+1

〈
∆P

l u, v
〉

= 0,

since the detail projections with level-index |l|1 > m + 1 are orthogonal to

all functions v ∈ V̂m.
Since the orthogonal projection is unique and we chose u to be arbitrary,

we have now proven that ûm = CT m and the combination technique is well-
defined.

Again, it is important to note here that we only consider projections

Pl1,l2 = P
(1)
l1
⊗ P

(2)
l2

. There are of course Galerkin-projections which do
not have such a tensor product form. For them the above theorem does
not generally hold; Galerkin-projection onto the sparse grid space and the
combination technique with Galerkin-projections do not generally reach the
same result. However, [17] shows that for H ⊂ L2(Ω1 × Ω2) ⊂ H∗ being a
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Gelfand triple and the differential operator (which defines the bilinear form
which defines the Galerkin-projection) A : H −→ H∗ being elliptic, the same
rate of convergence of the combination technique can be achieved.

3.2 Properties

To actually use the combination technique, both in praxis and for the es-
timates later on, we need to consider its properties. Hence we investigate
linearity, storage requirements and computational complexity.

The combination technique is linear, that is

CT m(u+ v) = CT mu+ CT mv (3.7)

holds. This is easy to proof, since every operation in the definition (3.1) is
linear. (Of course CT m(λu) = λ CT mu for λ ∈ R also holds for the same
reason.)

The Theorem 11 justifies the definition of the combination technique,
since it is only a rewriting of the sparse grid into sums of full grids. We do
this (as previously stated) since we can work with full grids in a practical
setting on the computer, where working with a sparse grid would be difficult
to impossible depending on the problem.

Storage cost On the downside is also increases the storage space needed.
(Although in almost all cases dense matrices are easier to store and address
than sparse ones, so a slight increase in storage space does not necessarily
make dense storage less efficient. Details depend on implementation.) How-
ever we can also note that the storage space needed for the combination
technique in two dimensions of level m (so for CT m) computes to:

2

bm+1
2
c∑

l=1

(2l−1)(2m+1−l−1)+2

bm
2
c∑

l=1

(2l−1)(2m+1−l−1) ∼ O(2m+1m). (3.8)

For comparison: The storage requirement of the sparse grid of level m in
two dimensions is O(2mm), recall section 1.2, especially (1.24).

Since sparse storage comes with a question of efficient addressing of said
storage, it can generally be assumed that the additional factor of two in the
storage requirements for the combination technique is balanced out by its
far more efficient format (in this case meaning dense storage). Therefore the
combination technique can be considered a very efficient format, justifying
its use not only in the context of this work.

Complexity There is another factor to consider when it comes to practical
implementation: complexity. More precisely the question of how computa-
tionally difficult it is to compute the combination technique. For the answer
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of this question it is important to keep the tensor product form of the pro-
jection P in mind (which exists for P ≡ Q in the case of L2−Projection,
see also (2.9), and for P being the Galerkin-projection in the case where
A = A1 ⊗ . . .⊗Am with the Ai being one-dimensional operators).

We already discussed how to compute Pl efficiently in section 2.1.4. Now
we note that the combination technique in its form as an operator defined
by (3.1) is merely a sum of tensor products.

All of these tensor products can be calculated by combining the one-
dimensional projections as discussed. Since the projections in each summand
project onto different spaces and therefore different bases, we do not actually
perform the sum immediately, but rather keep all the grids in storage. Since
a lot of operations we want to perform on the combination technique (at
least in this work) are linear or bilinear, they can be performed on each grid
independently of each other. Only when we actually want to evaluate the
function do we perform the outer sum.

This leaves us the the following components of the complexity estimate
for the combination technique of level n: First, the projections themselves.
Here we have the results from section 2.1.4. In the worst case this means
the cost for one projection is O(2 · K(n)) where K(n) is the worst case
complexity of inverting the mass matrix of level n. Secondly, there is the
sum around the projections. In two dimensions it has O(2n) summands.

Finally we arrive at a rough estimate for the complexity of computing the
combination technique of level n as O(4·nK(n)). It is a rough estimate since
estimating the complexity of the projections uniformly by K(n) ignores the
structure of the combination technique which ensures that most projections
are cheaper to calculate than this worst case.

The important part of this estimate is to consider how the dimension
factors into it: d = 2 only appears once in each term, as a factor. Again,
section 2.1.4 explains in which way the dimension appears in the estimate
for the individual projections. Most importantly, d = 2 does not appear in
the exponent, as such the curse of dimensionality is broken.

(All of this explains why we only wish to consider P ≡ Q or P is Galerkin-
Projection for a differential operator in tensor product form, otherwise the
calculation of the projection could have a complexity with d in the exponent
and therefore be subject to the curse of dimensionality.)

3.3 Error Estimate

We have an error estimate especially for the combination technique, which
takes into account its structure. Above in this section we have shown in
Theorem 11 that in our setting the combination technique is equivalent to
the projection onto the sparse grid space. As such there already exists a
vast convergence theory as that of the convergence of said projections onto
sparse grids.
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In the following however, we will present another convergence proof,
which was first formulated in [17, Theorem 2]. The reason for this is twofold,
first we will need the structure of this proof in one of our own proofs in a
later section and secondly this proof also generalizes for Projections Pl which
do not have a tensor product form. This shows that our theory (although it
would become much more cumbersome in praxis) is not limited to the limits
we have laid down in this work.

The error estimate below is based on the remainder term, recall Theorem
10.

Theorem 12 (Convergence of the Combination Technique). For a level

m ∈ N and a function u ∈ H(s1,s2)
mix (Ω1 × Ω2) with 0 < s1 ≤ r1 and 0 < s2 ≤

r2, the combination technique satisfies the error bounds

‖u− CT mu‖2L2(Ω1×Ω2) .

2−2(m+1) min(s1,s2) ‖f‖2
H

(s1,s2)
mix

, s1 6= s2

2−2(m+1)s1(m+ 1) ‖f‖2
H

(s1,s2)
mix

, s1 = s2.

(3.9)

Here r1, r2 are the polynomial exactness of the spaces Vl1 , Vl2 respectively.

Proof. Following (3.6), we have

‖u− CT mu‖2L2(Ω1×Ω2) =

∥∥∥∥∥∥
∑

|l|1>m+1

∆P
l1,l2u

∥∥∥∥∥∥
2

L2(Ω1×Ω2)

and following Galerkin orthogonality∥∥∥∥∥∥
∑

|l|1>m+1

∆P
l1,l2u

∥∥∥∥∥∥
2

L2(Ω1×Ω2)

∼
∑

|l|1>m+1

∥∥∆P
l1,l2u

∥∥2

L2(Ω1×Ω2)
.

Now, if P ≡ Q, the rest of the proof is using the estimate for the re-
mainder term (2.19) from Theorem 10.

If however P is a Galerkin-projection, we instead consider

‖u− CT mu‖2L2(Ω1×Ω2) .
∑

|l|1>m+1

∥∥∥∆Q
l1,l2

u
∥∥∥2

L2(Ω1×Ω2)

+
∑

|l|1>m+1

∥∥∥(∆P
l1,l2 −∆Q

l1,l2

)
u
∥∥∥2

L2(Ω1×Ω2)
. (3.10)

The first sum we bound as above. The second one requires a bit of
preparation and is very technical. The details can be found in [17]. We
arrive at the final bound for the second term also being

∑
|l|1>m+1

∥∥∥(∆P
l1,l2 −∆Q

l1,l2

)
u
∥∥∥2

L2(Ω1×Ω2)
.

2−2(m+1) min(s1,s2) ‖f‖2
H

(s1,s2)
mix

, s1 6= s2

2−2(m+1)s1(m+ 1) ‖f‖2
H

(s1,s2)
mix

, s1 = s2
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which finishes the proof.

4 Low-rank Approximation

Approximating on a sparse grid is only one possible method for efficient
approximation. Another one is the low-rank approximation, by which the
considered function is approximated by a function with a given, lower rank.
In the following section we give meaning to these technical terms.

First, we will consider the singular value decomposition for bivariate
functions in section 4.1. It is defined by using the Hilbert-Schmidt theorem;
the idea for it was first formulated in [36]. Then we will in section 4.2
consider the analogue in a finite dimensional setting (i.e for matrices), which
is the well-known singular value decomposition. A general overview of the
different uses of the singular value decomposition over time can be found in
[37].

4.1 Singular Value Decomposition for Bivariate Functions

For sufficiently smooth domains Ω1 ⊂ R and Ω2 ⊂ R we want to consider
low-rank decompositions of functions f ∈ L2(Ω1 × Ω2), using the ansatz

f(x,y) ≈ fr(x,y) =
r∑

α=1

σα φα(x)ψα(y),

separating x ∈ Ω1 and y ∈ Ω2.
Since most functions cannot be decomposed into a tensor product struc-

ture, this ansatz leads us to the best we can do in general: A sum of tensor
products. Furthermore, fixing the number of summands r, the so-called rank
of the function fr, makes this ansatz practically computable.

Additionally, it is a well known fact [36] that with respect to the rank r
of the decomposition, the best possible representation of f in the L2−sense
is the singular value decomposition, also sometimes known in this infinite
dimensional spaces context as Hilbert-Schmidt decomposition. The singu-
lar value decomposition coincides with the ansatz above, how exactly it
is calculated is shown below. This makes the σα singular values and the
φα(x), ψα(y) normalized left- respective right-eigenfunctions.

For a formal definition we need to take a few steps. In preparation we
recall the Hilbert-Schmidt theorem [36, 37]. It states that for a Hilbert-space
H and a bounded, compact and self-adjoint operator A : H −→ H there exist
a sequence of eigenvalues |λα| > 0 with α = 1, . . . , r where r is the rank of
the operator A. We order the eigenvalues in such a way that the sequence
of the absolute values is non-increasing (if necessary repeating eigenvalues
if they have a multiplicity greater one), then we also have limα→∞ λα = 0
for r =∞.
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Also there exist corresponding eigenfunctions φα ∈ H for α = 1, . . . , r
which form an orthonormal basis of the range of A. This means that A (φα) =
λαφα holds for α = 1, . . . , r.

To use this theorem, we now need to define an appropriate operator.
In a first step we define the integral operator

S : L2(Ω1) −→ L2(Ω2), u 7→ (Su) (y) :=

∫
Ω1

f(x,y)u(x) dx (4.1)

and its adjoint operator

S? : L2(Ω2) −→ L2(Ω1), u 7→ (S?u) (x) :=

∫
Ω2

f(x,y)u(y) dy. (4.2)

These operators are both Hilbert-Schmidt-operators (since f ∈ L2(Ω1×
Ω2)) and therefore well-defined. We use these operators to formulate the
relations we wish to achieve:

σα ψα(y) = (Sφα) (y) and σα φα(x) = (S?ψα) (x) (4.3)

for the left- and right-eigenfunctions
{
φα ∈ L2(Ω1)

}∞
α=1

and
{
ψα ∈ L2(Ω2)

}∞
α=1

.
Also we point out that the eigenfunctions form orthonormal bases in L2(Ω1)
respectively L2(Ω2).

To actually calculate the singular values and proof that they and the
eigenfunctions mentioned above exist we however need a self-adjoint integral
operator for the Hilbert-Schmidt theorem, which is why we define

K = S?S : L2(Ω1) −→ L2(Ω1), u 7→ (Ku) (x) :=

∫
Ω1

k(x,x′)u(x′)dx′

(4.4)
with the kernel (function) k, defined as

k(x,x′) =

∫
Ω2

f(x,y) f(x′,y)dy ∈ L2(Ω1 × Ω1). (4.5)

It can be proven that the kernel is a symmetric Hilbert-Schmidt ker-
nel (this is equivalent to showing that indeed k(x,x′) ∈ L2(Ω1 × Ω1) and
k(x,x′) = k(x′,x)). Following from this is the fact that K is again a Hilbert-
Schmidt-(integral-)operator, and in contrast to S a self-adjoint one. This
can also be proven the usual way by considering

〈Ku, v〉 = 〈S?Su, v〉 = 〈Su,Sv〉 = 〈u,S?Sv〉 = 〈u,Kv〉

for arbitrary u, v ∈ L2(Ω1). Thus the operator K fulfils the prerequisites for
the Hilbert-Schmidt-theorem.

As a consequence of the Hilbert-Schmidt-theorem we can conclude that
there exist countably many eigenvalues (of K) {λα}∞α=1 and the associated
eigenfunctions {φα}∞α=1 form an orthonormal basis in L2(Ω1).
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For the analogue for L2(Ω2) we have to change the order of S and S?:

K̃ = SS? : L2(Ω2) −→ L2(Ω2), u 7→
(
K̃u
)

(y) :=

∫
Ω2

k̃(y,y′)u(y′)dy′

(4.6)
with symmetric Hilbert-Schmidt kernel

k̃(y,y′) =

∫
Ω1

f(x,y) f(x,y′)dx ∈ L2(Ω2 × Ω2). (4.7)

Analogous by the Hilbert-Schmidt-theorem this gives us countably many

eigenvalues
{
λ̃α

}∞
α=1

and eigenfunctions {ψα}∞α=1 which form an orthonor-

mal basis in L2(Ω2).
One can relatively easily prove that the eigenfunctions obtained from

the operators K and K̃ are indeed the functions in (4.3) and that λ̃α =
λα = σ2

α. We consider the eigenvalues (and therefore also the singular-values)
numbered in decreasing order.

After all the above work we can now formally define the low-rank ap-
proximation of rank r of a function f ∈ L2(Ω1 × Ω2) as

fr(x, y) =
r∑

α=1

σα φα(x)ψα(y). (4.8)

4.2 Singular Value Decomposition for Matrices

Depending on ones background in numerics the most known definition for
the singular value decomposition is actually the one of a matrix. That
matrices can be considered to be function representations in a particular
basis is a well known fact in linear algebra, and explains the connection
between this section and the previous. All of the following can be found in
most introductory books for numerics (also [37]).

Let A ∈ Rn×m be a real matrix. Then the singular value decomposition,
SVD for short, of A is defined as A = UΣVT . Here, U ∈ Rn×n,V ∈ Rm×m
are orthogonal matrices and Σ ∈ Rn×m is a rectangular diagonal matrix with
non-negative entries. These entries are the singular values of the matrix,
again in decreasing order. Following from this the columns of the matrix U
contain the left-eigenvectors, and the columns of V the right-eigenvectors.

In the matrix case the SVD is only unique if m = n and all the singular
values are non-zero and distinct from each other and only up to multipli-
cation with (−1). In all other cases the SVD is not unique, or rather only
unique up to orthogonal transformations.

To verify the definition above one can check the relation defining singular
values and -vectors, meaning

Avi = σiui, ATui = σivi i = 1, . . . ,min(n,m), (4.9)
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where ui,vi are the i-th left- respective right-singular vector and σi the
accompanying singular value.

Also we can formulate

A =
r∑
i=1

σi ui ⊗ vi (4.10)

where r is the rank of the matrix, i.e. the number of non-zero eigenvalues.
And because we want to consider approximations, especially the low-

rank ones, we define

Ar̃ =
r̃∑
i=1

σi ui ⊗ vi (4.11)

to be an approximation of A with rank r̃.
It is easy to see the similarity of (4.9) to (4.3), which can be explained by

considering A to be a function in a specific basis representation. This gives
us A=̂f , but also due to the definition of the matrix-vector-multiplication
A=̂S.

Now it is easy to conclude from the previous section that to actually
calculate the SVD we should solve the eigenvalue problem for the matrix
ATA in accordance with (4.4). In theory this produces the correct result,
but squaring the matrix also squares the condition number and therefore
calculating the eigenvalues like this in praxis is numerically unstable. In-
stead, the SVD is usually calculated with the help of Householder reflections
and the QR-decomposition, although other algorithms exist as well.

Addition Especially because we will define an addition for tensors we do
briefly need to consider how to “add” two SVDs. Here we consider an ad-
dition of two SVDs, whose original, not decomposed matrices are of the
same size. The normal addition of two matrices no longer applies, even
if the matrices in the two SVDs are of the same size they are not with
regard to the same basis. As such two practical options remain: first,
multiplying the SVDs back to the original matrix, adding them together
and then performing the SVD again. Secondly, analogously to how we will
be adding tensors in section 8. By combining the bases and setting for

Rn×m 3 A(1) = U (1)Σ(1)
(
V (1)

)T
and Rn×m 3 A(2) = U (2)Σ(2)

(
V (2)

)T
a

pseudo-addition in the SVD:

A(1) usvd A(2) =
[
U (1) U (2)

] [Σ(1) 0

0 Σ(2)

][(
V (1)

)T(
V (2)

)T
]
. (4.12)

In our context it is very important to note that if the two original ma-
trices were with regard to the same basis the above defined pseudo-sum of
them is with regard to this basis, but duplicated. It is therefore no longer
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defined with regard to a basis at all and cannot be used together with ma-
trices that are. This is due to the fact that the above is no longer a SVD, it
is the representation of the sum

A(1) usvd A(2) =
r(1)∑
i=1

σ
(1)
i u

(1)
i ⊗ v

(1)
i +

r(2)∑
i=1

σ
(2)
i u

(2)
i ⊗ v

(2)
i (4.13)

where the u
(1)
i and u

(2)
i are not necessarily orthogonal to each other (analo-

gous for the v
(k)
i , k = 1, 2). Since it is not an SVD the above sum also does

not have the properties of an SVD, it is especially not of lowest rank. Per-
forming a re-orthogonalization step could help in some contexts, but there
is no general way to turn the above into an SVD. For more details on this
see the section 8 on tensors and the sources cited within.

Concluding we can say that if we wish to perform such a thing as an
addition in analogue to the tensor addition we always have to keep the
basis-functions behind the matrix-representation in mind.

4.3 Eckart-Young-Mirsky and the Truncation Operator

As already mentioned above the Eckart-Young or sometimes Eckart-Young-
Mirsky theorem states the SVD to be the best low-rank approximation of
a given matrix or bivariate function in the L2-sense [36, 37]. Following this
we define the truncation operator, which uses the truncated SVD to return
the low-rank best-approximation of the given function or matrix.

Theorem 13 (Eckart-Young-Mirsky). For a given function f ∈ L2(Ω) the
solution to the optimization problem

min
f̃∈L2(Ω), rank(f̃)≤r

∥∥∥f − f̃∥∥∥
L2(Ω)

(4.14)

is the function fr defined by (4.8) and the section above.
For a given matrix A ∈ Rn×m the solution to the optimization problem

min
Ã∈Rn×m, rank(Ã)≤r

∥∥∥A− Ã
∥∥∥

2
(4.15)

is the matrix Ar as defined by (4.11) above.

Having established the above we can now define a truncation operator
which, given a rank r, returns the low-rank best-approximation of a function
or matrix as above.

First in the continuous case:

Definition 14. We define for a Hilbert space H and an integer r the con-
tinuous truncation operator by

T∞r :H −→ H

f 7→ fr := arg min
f̃∈H, rank(f̃)≤r

∥∥∥f − f̃∥∥∥
L2(Ω)

.
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And then in the discretized version:

Definition 15. We define for an integer r the discrete truncation operator
by

T (n,m)
r :Rn×m −→ Rn×m

A 7→ Ar := arg min
Ã∈Rn×m, rank(Ã)≤r

∥∥∥A− Ã
∥∥∥

2
.

Should it be clear from context which spaces we are referring to we will
omit the superscripts.

A quick note on the discrete truncation operator: We will often use it
in combination with the projection Pl : H −→ Vl in an expression T l

rPlu for
some u ∈ H. For this we define the truncation operator analogous to the
Definition 15 but without brackets in the superscript as

T l
r : R(2l1−1)×(2l2−1) −→ R(2l1−1)×(2l2−1) (4.16)

in two dimensions. It generalizes for more dimensions.
Now the expression T l

rPlu is well-defined, since Vl and R(2l1−1)×(2l2−1)

are isomorph to each other when Vl is given in a fixed basis, which is always
the case in this work. For the sake of readability we omit this isomorphism
in the notation.

It is important to note that the truncation operator does not posses
most properties we find useful in operators. Most importantly it is not
linear, Tr(f + g) 6= Trf + Trg with f, g ∈ H. What does hold is a kind of
commutativity with itself, it holds Tr1Tr2f = Tr2Tr1f = Tmin(r1,r2)f .

Especially with Part III of this work in mind it is very important to
not forget that the Eckart-Young-Mirsky theorem holds for matrices, which
are explicitly a two-dimensional object as A ∈ Rm×n, and for bivariate
functions, meaning f ∈ L2(Ω1 × Ω2). For more than two dimensions the
theorem no longer holds, the SVD is not the best-approximation for objects
in three or more dimensions. These objects are tensors or functions f ∈
L2(Ω1 × · · · × Ωm), which we will consider in more detail in Part III.

4.4 Error Estimates: Bramble-Hilbert Lemma

Having defined the truncation in the previous section the question now be-
comes: how to best bound the truncation error? We will see that for the
singular value decomposition for matrices only an exact equation in terms
of the singular values of the matrix in question exists. For the continuous
case a more general estimate using the Bramble-Hilbert Lemma exists and
will be shown in the following.

By definition of the L2−norm,

‖f − T∞r f‖L2(Ω1×Ω2) =

√√√√ ∞∑
α=r+1

σ2
α
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exists as a first estimate (strictly speaking this is not an estimate, but rather
an equality) of the approximation error for the truncated singular value
decomposition.

Since we do not have any general estimates for the singular values them-
selves, we instead use a trick (as described in [18]) to estimate further: the
Bramble-Hilbert lemma [3]. Said Lemma is an estimate for Finite-Element
approximations, but can be applied to our context as well.

First we need some setup: We consider approximation in the first co-
ordinate (arbitrarily, we could also choose the second one) and introduce a
new finite element space UM ⊂ L2(Ω1). The space UM consists of a quasi-
uniform triangulation over Ω1 with mesh-width hM ∼ M−1 and M many
discontinuous, piecewise polynomial functions of total degree dpe on said
triangulation. Let PM : L2(Ω1)→ UM be the L2(Ω1)-orthogonal projection
onto UM .

Then the Bramble-Hilbert lemma [3, Theorem 6.3, Theorem 6.4] for any
given function u ∈ Hp(Ω1) states

‖(Id− PM )u‖L2(Ω1) ≤ c(p,Ω1)M−p |u|Hp(Ω1) (4.17)

uniformly in M .
Important to note: we have p ∈ R+ depending on the space u is from,

but since the degree of polynomials has to be a natural number we set this
degree to be dpe. If p ∈ N we can omit the ceiling-brackets.

If we now set for a function f ∈ H ⊂ L2(Ω1 × Ω2)

fM (x, y) := ((PM ⊗ Id) f) (x, y) ,

then we can formulate the following approximation error estimate in UM ,
see also [18, Theorem 3.1]:

Lemma 2. For λ1 ≥ λ2 ≥ . . . ≥ 0 being the eigenvalues of the operator K
as defined in (4.4) and λM1 ≥ λM2 ≥ . . . ≥ λMM ≥ 0 being the eigenvalues of
the operator KM := PMKPM , it holds

‖f − fM‖2L2(Ω1×Ω2) = trace K − trace KM =
M∑
α=1

(
λα − λMα

)
+

∞∑
α=M+1

λα.

(4.18)

Using the approximation estimate (4.17) of the Bramble-Hilbert lemma
leads to the estimate

0 ≤ trace K − trace KM .M−2p |f |2
H

(p,0)
mix (Ω1×Ω2)

. (4.19)

This can of course be formulated for approximation in the second coordi-

nate direction analogously. And since H
(p,0)
mix (Ω1 × Ω2) ∩H(0,p)

mix (Ω1 × Ω2) =
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H
(p,p)
iso (Ω1 × Ω2) = Hp(Ω1 × Ω2) by definition this can be rewritten for the

space Hp(Ω1 × Ω2).
Now we can reformulate using the notation we have previously used in

this work and arrive at the main error estimate for the truncation at rank r
therefore being given by:

‖f − T∞r f‖L2(Ω1×Ω2) =

√√√√ ∞∑
α=r+1

σ2
α . r−k |f |Hk(Ω1×Ω2) . (4.20)

Comparing this estimate to the ones for the projection P in the previous
section 2 shows a problem we will encounter later: The appearance of the
semi-norm on the right side makes it difficult to use in combination with
our other estimates, which have a norm.

By the above technique [13] and also for more general cases by other
methods [21] we can prove a rate of decay for the singular values of a function

f ∈ Hk(Ω). A specialized, better rate for f ∈ H(s1,s2)
mix (Ω) does not exist (that

we know of). This will cause issues for the convergence results in this work.
Based on the previous results we can bound the rate of decay of the

eigenvalues and with that of the singular values as well. We achieve a bound
of

σ2
α . α−2k−1, α→∞. (4.21)

As discussed previously, the discrete matrix case is connected to the
above continuous function one. Nonetheless for our consideration:

The error estimate for the discrete truncation of a matrix A ∈ Rn×m at
rank r is given by:

∥∥∥A− T (n,m)
r A

∥∥∥
F

=

√√√√min(n,m)∑
α=r+1

σ2
α =

√∑min(n,m)
α=r+1 σ2

α√∑min(n,m)
α=1 σ2

α

‖A‖F (4.22)

∥∥∥A− T (n,m)
r A

∥∥∥
2

= σr+1 =
σr+1

σ1
‖A‖2 (4.23)

All of the above are equalities, we do not have good estimates for the
rate of decay of the singular values of the matrices A in general. Should
such a rate exist for specific matrices A, inserting it in the equations above
would give a more general error estimate.

5 Sparse Grids and the Singular Value Decompo-
sition: Versus and Mixing

Having now defined both the sparse grid method and the singular value
truncation we can ask ourselves: which is the better approximation method
(in which setting)? And how do these two methods interact when used
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together; how can they be used together? In the following we give a summary
of results on the topic, motivating our new Combi-format.

5.1 Versus

After considering the results from the previous section, one question becomes
apparent: Why not use the singular value decomposition in all cases, as it
realizes the low-rank L2-best-approximation? Of course in praxis there may
be constraints on which method one has to use for approximation, but if
this is not the case, why choose the sparse grid approximation?

There has been some work on the topic of comparing the truncated
singular value decomposition and the sparse grid method, see for example
[18, 14] and also [15]. A short summary of the topic follows.

As we have already briefly hinted at in the above section: for a gen-
eral function f ∈ L2(Ω1×Ω2) there exists no practical algorithm to exactly
compute its singular values and (left- respective right-) eigenfunctions. Con-
sequently, these need to be approximated in appropriately chosen spaces,
which adds computational complexity and makes the error estimate more
complicated.

A more detailed analysis of these facts can be found at [18, Section 3.4].
The result of this can be summarized as follows [18, Theorem 3.4]:

For a function f ∈ H(s1,s2)
iso (Ω1×Ω2) and the approximate singular value

decomposition approach the degrees of freedom necessary to achieve a pre-
scribed accuracy ε are

dof isosvd(ε) ∼ ε
−min

(
1
s1
, 1
s2

)
ε
−max

(
1

min(s1,r1)
, 1
min(s2,r2)

)
. (5.1)

Here r1, r2 are the polynomial exactness of the spaces Vl1 and Vl2 in which
we approximate.

In [15, Corollary 4.3] this rate is improved somewhat for f ∈ H(s1,s2)
mix (Ω1×

Ω2) and using mixed sparse tensor product spaces for approximation. There
it results in

dofmixsvd (ε) ∼ ε−
1

s1+s2 ε
−max

(
1

min(s1,r1)
, 1
min(s2,r2)

)
. (5.2)

In contrast to that we have already briefly considered the efficiency of the
sparse grid method in the paragraph “Motivation” in section 1.2.1, which
achieves

dofmixsg (ε) ∼ ε−max
(

1
min(s1,r1)

, 1
min(s2,r2)

)
(5.3)

for a prescribed accuracy ε. For a proof consult for example [18, Theo-
rem 4.1] 4.

4The mixed sparse tensor product space V̂ σJ used in this proof coincides with our sparse
grid space V̂J since we have set dim(Ω1) = dim(Ω2) = 1.
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f ∈ L2(Ω1 × Ω2)

T∞r f ∈ L2(Ω1 × Ω2)

PlT
∞
r f ∈ Vl

Plf ∈ Vl

T l
rPlf ∈ Vl

Truncation (continuous)

Projection

Projection

Truncation (discrete)

?

Figure 5: A diagram showing the different possible orders of operations
when mixing projections and truncations. The question mark highlights the
relation we wish to define in this section.

From these calculation we can conclude that in praxis (when one actually
has to compute the singular value decomposition), the sparse grid method
requires less degrees of freedom to arrive at the same prescribed accuracy
ε than the approximated singular value decomposition. As such the sparse
grid method is more efficient.

5.2 Mixing

We have already stated that the Combi-format we wish to define in the fol-
lowing section will combine both sparse grid approximation and truncated
singular value decomposition approximation. To be able to understand its
properties and formulate an error analysis for it, we need a better under-
standing of the way approximation via orthogonal projections and via trun-
cated singular value decomposition relate. In contrast to above, this time
we wish to consider what happens when we combine the two techniques.

In Figure 5 we see the two different ways we can combine projections
and truncations. We start with a function f ∈ H ⊂ L2(Ω1 × Ω2); the
first way we first apply the continuous truncation to rank r denoted by
T∞r : H ⊂ L2(Ω1 × Ω2) −→ H and then project this onto the space Vl
with an orthogonal projection Pl. The second way consist of first projecting
with Pl and then applying the discrete truncation of rank r denoted by
T l
r : Vl −→ Vl.

The question we wish to investigate in this subsection is the following:
what relation exists between the two results of the above described paths?
In the Figure 5 this relation is highlighted by the question mark in the red
circle.

Before we continue we need to underline that although both paths use
the same projection Pl : H −→ Vl the two truncations are different from each
other. Said difference has already been established earlier, it is the difference
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between the truncated singular value decomposition for continuous bivariate
functions and the SVD for matrices. In a theoretical context the difference
might not seem that significant (recall that we can interpret a matrix as a
continuous function represented in a chosen basis and as such the matrix
SVD is only a special case of the continuous one), but in a practical context
it is of utmost significance. There exists no way to efficiently compute the
singular value decomposition for an arbitrary function f ∈ L2(Ω1 ×Ω2). In
the subsection above we have already briefly mentioned that to compute the
eigenfunctions, one needs to approximate them in subspaces. An analytical
solution is practically impossible. On the other hand, computing a matrix
SVD is very much possible. It is still a relatively costly matrix operation
(for a quadratic matrix A ∈ Rn×n the cost is O(n3)), but especially when
the matrix has some special form the SVD can be optimized.

Concluding: Only the second path can in praxis be computed as written,
the first would need further work and is (as discussed in the subsection
above) less efficient.

In contrast to this is the fact that since the projection is linear and the
truncation is not, the result of the first path is, for work in theory, easier to
handle.

Commutativity The first question we ask ourselves (somewhat naively)
is: does the diagram commute?

This would mean that for arbitrary f ∈ H ⊂ L2(Ω1 × Ω2) and for an
arbitrary Pl (in this case we also mean that the basis of Vl is arbitrary):

PlT
∞
r f

!
= T l

rPlf.

It is fairly easy to proof that the equation above does not hold (in gen-
eral). Due to the fact that the projection of a rank-r function is again of at
most rank r (recall for example (2.17)), we can formulate

PlT
∞
r f = T l

rPlT
∞
r f

since truncating a rank-r function at rank r is the identity.
Furthermore, in general

PlT
∞
r f 6= Plf

i.e applying the projection after the rank-r truncation is not the same as
just applying the projection. Since the SVD is unique (up to orthogonal
transformations), the SVDs of two unequal functions are themselves not
equal.

As such we come to the conclusion that in general the two paths do not
reach the same result and therefore the diagram does not commute. We
cannot put an equal sign in place of the question mark.
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However, in the paragraphs above we have often needed to state that we
were formulating in general. There are special cases in which the diagram
does commute.

If indeed, for some (specific) f ∈ H ⊂ L2(Ω1 × Ω2) and Pl it holds

PlT
∞
r f = Plf

then it also follows that
PlT

∞
r f = T l

rPlf

and therefore the operations commute.
Now the question remains: for which specific f ∈ H ⊂ L2(Ω1 × Ω2) and

Pl does the above hold? There are two possible cases.

1. T∞r f = f , which is to say f is already a function of rank r or lower.
This holds for arbitrary Pl. In this case it also holds T l

rPlf = Plf ,
since the projection of a rank-r function also has at most rank r,
recall (2.17).

2. T∞r f = Plf , which means that given a function f and a truncation
rank r the space Vl is defined as Vl = span {φα ⊗ ψα}rα=1 ∪ Ṽ where
φα and ψα are the (right- and left-)eigenfunctions of f as defined in

section 4.1. Furthermore Ṽ ⊂ (span {φα ⊗ ψα}∞α=1)⊥, meaning it is
orthogonal to all eigenfunctions of f . The easiest case for this would
be to choose the basis underlying Vl as the eigenfunctions.

While both of these cases are interesting in theory, in praxis they are
less important. In the first case the truncation is equal to the identity and
we arrive at only an approximation via orthogonal projection. In that case
we do not need to consider the truncation at all and most of what we do in
this work becomes unnecessary. For the second case we need to be aware of
the fact that this involves choosing a basis (and based on that the spaces
and projections) dependent on the function f . This removes any sort of
generality of the format we will be considering. It would also involve already
knowing the eigenfunctions of the considered function (which is in general
not feasible), at which point we can just use the truncated singular value
decomposition (which our projection would become) without the extra steps
we are considering in this work, which would as above become unnecessary.

If we consider our setup without the two special cases above the question
remains: what is the relation between the results of the two paths? To
formulate a more general answer, we will consider the difference between
the two results.

Difference between orders of operations: We have already hinted
above that due to its practical computability we wish to make use of the
second path in praxis, but due to the linearity of Pl would like to use the
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first one in theory. As such we first consider the error for switching the order
of operations on a subspace defined by its level l and with truncation rank
given by r ∈ N+:

T l
rPlf − PlT

∞
r f = T l

rPlf − Plf + Plf − PlT
∞
r f

=
(
T l
r − Id

)
Plf + Pl (f − T∞r f) (5.4)

= −
∞∑

α=r+1

σlα φ
l
αψ

l
α + Pl

( ∞∑
α=r+1

σα φαψα

)

= Pl

(
−

∞∑
α=r+1

σlα φ
l
αψ

l
α +

∞∑
α=r+1

σα φαψα

)
(5.5)

=: El,r(f) (5.6)

where f =
∑∞

α=1 σα φα ψα and Plf =
∑∞

α=1 σ
l
α φ

l
αψ

l
α. Here we have first

added a zero to achieve (5.4), and then used the fact that the projection is
idempotent to arrive at (5.5).

(We know (for example [13]) that σα − σlα ≥ 0 and as such the above
is well defined.) An explanation of the result above in words: The error of
switching the order of operations is the projection of the difference between
the error of the discretized and the continuous truncation onto the subspace
in question.

We can follow from (5.4) or (5.5) that in the two cases where the paths
commute, which are discussed above, it indeed holds El,r = 0. In the first
case f − T∞r f = 0 and

(
T l
r − Id

)
Plf = 0 which then results in El,r = 0 by

(5.4). The second case arrives at the same result by considering that (in
this case only) Plf =

∑r
α=1 σα φαψα and therefore

∑∞
α=r+1 σ

l
α φ

l
αψ

l
α = 0.

Using that also the projection projects onto a space that is by definition
orthogonal to

∑∞
α=r+1 σα φαψα and therefore Pl

(∑∞
α=r+1 σα φαψα

)
= 0, we

conclude El,r = 0 by (5.5).

6 Combination Format

In this section we now define the new format which we have worked towards
in this work. We will call this new format combination format, emphasising
its dependence on the previously referenced combination technique. Often
it will be shortened and simply be called Combi-format. In the following we
will orient ourselves by the definitions from section 3. Specifically we will
define this new format in two dimensions, using the SVD.

The main idea of the Combi-format is to compress the combination
technique. In the section 5.1 before, we have discussed that for functions
f ∈ L2(Ω1 × Ω2) the sparse grid approximation has many advantages over
approximating with the truncated singular value decomposition. As such
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using the sparse grid approach, and because of the practical problems men-
tioned in section 3 the combination technique, is a logical step.

On the other hand, the singular value decomposition has the unique
property of being the low-rank L2−best-approximation. Since rank is di-
rectly connected to cost, in both the storage and computational complexity
sense, this is a desirable property. Furthermore, for a function u ∈ Vl (which
can equivalently be expressed as a matrix with respect to a chosen basis) the
SVD would be the classical one: decomposing a matrix. This means that no
eigenfunctions would need to be approximated in a finite dimensional space,
since the function already exists in such a space.

Therefore it makes sense to consider the Combi-format, where we, after
calculating all the projections for the combination technique, compress them
via the SVD. Although we loose the linearity of the combination technique,
we hope to achieve a good cost-benefit ratio by reducing the rank of the
projected functions significantly.

6.1 Definitions and Properties

As described in the introduction above, we define the Combi-format by
compressing the combination technique via the SVD. Therefore we get

CFm,ru =
∑

|l|1=m+1

T l
rl
Plu−

∑
|l|1=m

T l
rl
Plu. (6.1)

where r = (rl)l∈ICm is the vector of truncation ranks indexed by the grid the
truncation is applied to.

There are multiple ways to choose this vector r, we will mostly dis-
tinguish between a uniform truncation (for each grid the same rank) and
specialized truncations. In the first case we will replace the vector r by the
integer r. Choosing the truncation ranks will be discussed later on in section
6.4.

Properties When further considering the above format we can see that
its structure resembles the combination technique as defined in (3.1), only
the appearing grids have been compressed by the SVD. This unfortunately
means that the Combi-format inherits the non-linear property of the SVD.
While this guarantees better approximation rates it makes the format harder
to handle as well: the Combi-format is not linear, CFm,r(u+v) 6= CFm,ru+
CFm,rv in general.

Furthermore, it is not even clear what is meant by the addition of two (or
more) Combi-formats: one can not simply add the matrices (if they are even
of the same size), since they are as a consequence of the SVD with respect
to generally different bases. There are however two ideas to circumvent this,
as long as the Combi-formats involved are of the same level and with respect
to the same basis.
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This has been previously discussed in the paragraph “Addition” in sec-
tion 4.2.

One idea is to re-multiply the SVD on each grid, add up the (now all
in the same basis representation) matrices and then apply the SVD again.
The other one is to “add” the SVDs together as described in (4.12). This is
analogous to what we will consider for more than two dimensions. In that
case we will need to always keep in mind that the sum of two Combi-formats
is based on a different basis-function system (strictly speaking not a basis
since basis-functions appear twice) than the normal Combi-format.

rank-r functions In section 2.1, recall (2.17), we discussed that the or-
thogonal projection of a rank-r function also has at most rank r. For the
Combi-format this is now very important, since it means that we can trun-
cate at this rank r without actually loosing any information.

For a function f ∈ H ⊂ L2(Ω1 × Ω2) of at most rank r it holds

CT mf = CFm,rf (6.2)

where CT m is the combination technique of level m and CFm,r is the Combi-
format as defined above with universal truncation rank r. This equality
follows directly from the properties of the combination technique.

Cost: Computation and Storage To evaluate the usefulness of the
Combi-format we need to answer the question of the cost-benefit ratio. For
this we need to know the cost of computing the Combi-format, with respect
to computational complexity and storage space.

Since (6.1) shows us that to compute the Combi-format we first need to
compute the combination technique and then perform an SVD on each grid,
we can formulate the computational complexity of the Combi-format based
on the one for the combination technique.

Computing the SVD does in general require O(n3) operations for a ma-
trix in Rn×m with n ≤ m. As such we need to perform for the whole
Combi-format additional operations of the size∑

l∈ICm

O(23 min(l1,l2)).

Recalling the complexity estimates in section 3.2, using K̃(l) as the cost
of inverting the mass-matrix in one direction of level l we can formulate a
detailed cost formula:∑
l∈ICm

O(23 min(l1,l2))+K̃(l1)+K̃(l2) ∼
∑
l∈ICm

O(23 min(l1,l2)3)+2·K(max(l1, l2)).

(6.3)
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Unfortunately this does mean that, as long as the mass-matrix has a
structure that means it can be inverted in quadratic or even linear com-
plexity, the Combi-format has even asymptotically higher computational
complexity. If this is not the case the asymptotic cost is the same for both
the Combi-format and the combination technique, as the worst case cost for
inverting the matrix is O(n3) as well.

In exchange for the additional computations the storage cost is reduced.
We recall that for the combination technique we have a storage cost of (this
is (3.8)):

2

bm+1
2
c∑

l=1

(2l − 1)(2m+1−l − 1) + 2

bm
2
c∑

l=1

(2l − 1)(2m+1−l − 1) ∼ O(2m+1m).

For the Combi-format we need to store for each grid the two (we can
always multiply the diagonal matrix Σ onto one of the other two, w.l.o.g.
U) matrices of the SVD. As such we get a storage cost of∑

l∈ICm

(
2l1 − 1

)
· rl +

(
2l2 − 1

)
· rl. (6.4)

If we have a particular rule for the rl we can specify this further. For
example if we have a uniform truncation at rank r we achieve:∑

l∈ICm

r ·
((

2l1 − 1
)

+
(

2l2 − 1
))
∼ O(r · 2b

m+1
2
c)

if r < 2b
m+1

2
c (meaning if a truncation actually took place). Depending on

the chosen r this can be a significant reduction. And even in the worst case
(no truncation at all) it is asymptotically no worse than the combination
technique.

Concluding this we can say that the Combi-format exchanges a (poten-
tially small) increase in computational complexity for a (potentially signifi-
cant) reduction in storage cost. The storage cost reduction is dependent on
the chosen truncation.

6.2 The Truncation

The main difference between the combination technique and the Combi-
format is the truncation of each projected function, where we use a truncated
SVD as described in 4.3.

Now the question remains: how to choose the truncation parameter(s)
r = (rl)l∈ICm?

Generally speaking we can choose them arbitrarily, there are no condi-
tions on the truncation for which the Combi-format would somehow not be
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well-defined. As such the real question becomes: what choice of parameters
is useful or efficient?

In this work we consider two different options for truncation, chosen
because they are practical; practical as in can be efficiently used in praxis.
For practicalities sake we set r > 0, meaning no truncation to empty takes
place.

Rank-r-truncation The first option is to decide a-priori that the result-
ing matrix decomposition (and with that the discretized function on that
subspace) should have maximum rank r. This is particularly useful in the
case that there is a fixed limit to storage space, since fixing the maximum
rank also fixes the maximal storage space. Another use is for when the con-
tinuous function already has a fixed rank, since in that case the rank of the
exactly approximated function cannot be any higher (recall (2.17) and the
paragraph above) and any in praxis appearing higher ranks are due to ap-
proximation and calculation inaccuracy (meaning the computer precision).
These can be discarded without influencing convergence and therefore speed
up computation (and reduce the needed storage space).

Singular-value-truncation The second option is to dynamically (dur-
ing calculation) truncate according to the calculated singular values. Here
multiple options present themselves:

� We can truncate by the sum of the squares of the singular values. More

precisely we bound
∑min(n,m)

α=r+1 σ2
α. This term naturally appears in the

error analysis, since it is equivalent to the squared Frobenius-norm of
the truncation error, as can be seen in (4.22).

� Analogously, we can consider the relative error and bound
∑min(n,m)
α=r+1 σ2

α∑min(n,m)
α=1 σ2

α

,

which again appears in (4.22).

� We can just consider the value of the singular value, bounding σr+1;
this coincides with the error in the 2-norm, as shown in (4.23).

� For the relative error we bound the term σr+1

σ1
, which again appears in

(4.23).

This does not have the advantage that we know the rank of the matrix a-
priori, but instead the idea is that it more accurately keeps the “important”
singular values dependent on the individual function.

In the case of singular-value-truncation we write r(ε) for a chosen bound
ε > 0, since the ranks are depending on the bound and not known a-priori.

The above are the options for each sub-grid. For the whole format there
are again two main options:
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� Uniform truncation, meaning we truncate the same way on each sub-
grid. This is the option that appears first in the convergence analysis
because it is the easiest one to control for. In this case we can replace
the vector of truncation ranks r by a single r ∈ N (and r(ε) by r(ε) ∈
N).

� Individual truncation, meaning each sub-grid is truncated individually
and independently of each other.

� We do need to note that one form of truncation we use in the following
examples combines these two concepts: When we use singular-value-
truncation, each grid gets truncated individually, although all grids
are truncated by one universal rule. As such it is possible to combine
the above two options due to the fact that the truncation rank in the
singular-value-truncation is not known a-priori.

6.3 Convergence Analysis

Considering the convergence of the Combi-format is not straightforward.
Due to the non-linearity of the SVD the convergence theory for the Combi-
technique is not directly transferable. As such we need to take a few detours
to arrive at a result for the Combi-format

First of all we need to define the setting: In the following we show a
convergence analysis for the Combi-format defined in (6.1).

We wish to formulate a result along the lines of Theorem 12, which
shows the convergence of the combination technique. For this we consider

f ∈ H(s1,s2)
mix (Ω1 × Ω2) for 0 < s1 ≤ r1 and 0 < s2 ≤ r2. The proof of this

theorem is based on the idea of detail projections ∆P
l f , which are orthogonal

to each other. Due to the nature of the SVD, the terms (T l
r−T l

r−1)f are also
orthogonal to each other. Unfortunately what we also need for the proof is
an analogy to (3.6), the reformulation of the difference to the function only
in terms of the detail projections.

This is not transferable to the combination technique. The telescoping-
sum principle does not work if we also perform a truncation after the pro-
jection. This is due to what we have already formulated in section 5: the
non-commutativity of the projection and the truncation in general. The
truncation (whether for the matrix of the continuous case) is not linear in
its argument, but the projection is.

Therefore we wish to use the switching of the order of operations we
formulated in section 5.2. In the following all norms without index are the
L2(Ω)−norms. Also we consider P ≡ Q for simplicity, generalization is of
course possible, analogous to the proof of Theorem 12.

Naive Idea: Triangle Inequality A first idea for estimating the error
is by triangle inequality; the combination technique and the Combi-format
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both have an outer sum, which can be pulled out of the norm by said in-
equality. We restrict to uniform truncation at a rank r and of course d = 2.

Now we wish to use the switching of the orders of operation, recall section
5.2. Following this idea we can formulate for the Combi-format with uniform
truncation:

CFm,r(f) =
∑

|l|1=m+1

T l
rPlf −

∑
|l|1=m

T l
rPlf

=
∑

|l|1=m+1

(PlT
∞
r f + El,r)−

∑
|l|1=m

(PlT
∞
r f + El,r)

= CT m(T∞r f) +
∑

|l|1=m+1

El,r −
∑
|l|1=m

El,r.

In summary we know that

CFm,r(f) = CT m(T∞r f) +
∑

m≤|l|1≤m+1

(−1)m+1−|l|1El,r(f) (6.5)

holds by linearity of the combination technique. Here

T l
rPlf − PlT

∞
r f = El,r(f)

by definition at (5.6).
Given this we can just apply the triangle inequality:

‖f − CFm,r(f)‖ ≤ ‖f − CT m(T∞r f)‖+

∥∥∥∥∥∥
∑

m≤|l|1≤m+1

(−1)m+1−|l|1El,r(f)

∥∥∥∥∥∥
and then again, consecutively for both terms on the right hand side.

For the first term we formulate:

‖f − CT m(T∞r f)‖ ≤ ‖f − T∞r f‖+ ‖T∞r f − CT m(T∞r f)‖ .

Both of the right hand side terms above we know how to bound already,
first

‖f − T∞r f‖0 =

√√√√ ∞∑
α=r+1

σ2
α . r−k |f |k

by the error estimate (4.20) for the truncation operator.
Secondly, by the Theorem 12 about the convergence of the combination

technique, we have

‖T∞r f − CT m(T∞r f)‖ .

2−J min{s1,s2} ‖T∞r f‖
H

(s1,s2)
mix

s1 6= s2

2−Js
√
J ‖T∞r f‖

H
(s1,s2)
mix

else
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where J = m+ d− 1.
Finally there remains the term for the switching of operations:∥∥∥∥∥∥

∑
m≤|l|1≤m+1

(−1)m+1−|l|1El,r(f)

∥∥∥∥∥∥ ,
for which we have found no bound yet. We can also apply the triangle
inequality to it, but since we also have no bound for the El,r(f) separately,
this grants no obvious improvement.

To get a cohesive error estimate we would now need to balance the
different estimates above. Trying to do so is challenging, especially because
of the different (semi-)norms, both in the sense of it being a different norm
and a different function in the norm. As such, this estimate is mostly useful
for getting a first idea of what kind of convergence rates we can expect (and
the difficulty of mixing sparse grid and SVD error estimates.)

Combination Technique Convergence In the following we orient our-
selves by the convergence proof given in [17] and start again with (6.5). To
use the convergence of the combination technique we try to not pull anything
out of the norm before absolutely necessary.

We start by formulating the notation

CEm,r(f) :=
∑

m≤|l|1≤m+1

(−1)m+1−|l|1El,r(f)

to shorten the expressions. Here, El,r(f) = T l
rPlf − PlT

∞
r f as defined in

(5.6).
Then we consider

‖f − CFm,r(f)‖ = ‖f − CT m(T∞r f)− CEm,r(f)‖ (6.6)

=

∥∥∥∥∥∥
∞∑
|l|1=1

∆P
l T
∞
∞ f −

m+1∑
|l|1=1

∆P
l T
∞
r f − CEm,r(f)

∥∥∥∥∥∥ (6.7)

=

∥∥∥∥∥∥
∞∑

|l|1>m+1

∆P
l T
∞
∞ f +

m+1∑
|l|1=1

∆P
l (Id− T∞r )f − CEm,r(f)

∥∥∥∥∥∥
(6.8)

= ‖f − CT m(f) + CT m((Id− T∞r )f)− CEm,r(f)‖ (6.9)

≤ ‖f − CT m(f)‖+ ‖CT m((Id− Tr)f)− CEm,r(f)‖ .
(6.10)

Here we have used a number of known facts. We start with the same
idea as (6.5), which gives us (6.6); for (6.7) we use the representations (2.14)
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of f and (3.5) of CT m(T∞r f). We also need the fact that T∞∞ = Id, giving us
the ability to just insert this operator wherever we need it without changing
anything. This is how the term (Id − T∞r )f came to be, since both the
projection and the detail projection are linear we can simply pull this term
into the operator. For (6.9) we again use different representations: (3.6)
for

∑∞
|l|1>m+1 ∆P

l T
∞
∞ f , where we also use T∞∞ = Id again, and (3.5) for∑m+1

|l|1=1 ∆P
l (Id− T∞r )f .

The problem lies in the last line (6.10) where we had to use the triangle
inequality. Recalling the method of the proof for the combination technique
in Theorem 12, we only wish to use the triangle inequality to pull terms
apart once we have pulled the sum of the combination technique out of
the norm using (Galerkin-) orthogonality. Unfortunately, while the terms
∆P

l T
∞
∞ f are all orthogonal to each other, they are not orthogonal to either

the ∆P
l (Id− T∞r )f (recall that the detail projection does not need to be an

actual projection) or the terms of CEm,r(f). While the orthogonality to the
∆P

l (Id − T∞r )f is fixable by demanding that the basis be chosen in such a
way that the Wl are orthogonal to each other, the terms of CEm,r(f) are by
their definition not orthogonal to the other terms.

We have an estimate for the term ‖f − CT m(f)‖ from [17] respective
Theorem 12, it is the additional term that needs further consideration.

Bounding the additional Error We now wish to further consider the
term

‖CT m((Id− T∞r )f)− CEm,r(f)‖ .

Writing this term down in a more detailed form leads to

CT m((Id− T∞r )f)− CEm,r(f)

=
∑

m≤|l|1≤m+1

(−1)m+1−|l|1
(
Pl((Id− T∞r )f)− Pl(f − T∞r f)− (T l

r − Id)(Plf)
)

=
∑

m≤|l|1≤m+1

(−1)m+1−|l|1(Id− T l
r)(Plf)

=: FEm (6.11)

Comparing this to the above calculations explains why this makes sense,
the additional term is essentially only the difference between the combination
technique and the Combi-format under our restrictions. Bounding this term
is more problematic, to our knowledge a general form has not been found
yet.

A very rough estimate is possible via triangle inequality, considering
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σα − σlα ≥ 0, as explained above. This leads to

‖FEm‖ =

∥∥∥∥∥∥
∑

m≤|l|1≤m+1

(−1)m+1−|l|1(Id− T l
r)(Plf)

∥∥∥∥∥∥
≤

∑
m≤|l|1≤m+1

∥∥∥(Id− T l
r)(Plf)

∥∥∥
≤

∑
m≤|l|1≤m+1

‖(Id− T∞r )(f)‖

.
∑

m≤|l|1≤m+1

r−k |f |Hk(Ω) . (2m+ 1) · r−k |f |Hk(Ω) , (6.12)

where we also used the error estimate for the truncation operator (4.20)
again.

Conclusion All in all we arrive at

‖f − CFm,r(f)‖ ≤ ‖f − CT m(f)‖+ ‖FEm‖ . (6.13)

Especially the last error term is highly dependent on the relation between
f and the chosen basis. I have not found any general estimates for this term.

It is important to note that the second term is 0 if we choose to project
onto the eigenbasis of the function f . Then we have a simple estimate for the
Combi-format that coincides with the one for the Combi-Technique. This
case should not appear in praxis though, since it presumes that one already
knows the eigenbasis (and therefore, recall the theorem of Eckart-Young-
Mirsky, the low-rank best-approximation.)

The best general estimate we have at the moment is therefore the fol-
lowing:

‖f − CFm,r(f)‖0

.

2−(m+1) min{s1,s2} ‖f‖
H

(s1,s2)
mix

+ (2m+ 1) · r−k |f |k s1 6= s2

2−(m+1)s
√
m+ 1 ‖f‖

H
(s,s)
mix

+ (2m+ 1) · r−k |f |k s1 = s2 = s

(6.14)

It still requires a balancing of two very different terms, but is a definite
step up from the naive approach. We do note that the estimate is not
sharp: If we were to truncate at the highest rank a grid in the Combi-format

could have (that would be 2b
m+1

2
c − 1), we essentially would not truncate

at all and therefore have the combination technique of the same level. But

inserting r = 2b
m+1

2
c (disregarding the −1 for ease of notation) in the above

estimate does not achieve the same order of convergence as Theorem 12; the
theorem which gives the rate of convergence of the combination technique.
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Disregarding the constants the rate of convergence is still significantly slower

since we cannot expect a function f ∈ H
(s,s)
mix to be in H2s. (In the worst

case f is only in Hs, making the rate of convergence of the combination
technique about squared the rate we have above.)

As such we know that the problem is the second term: the estimate for
the truncation of the projected function is far from optimal. Unfortunately
we do not have a better one, while we do have an estimate for the decay
of the eigenvalues of the function f as described in section 4.4, the only
estimate we have for the eigenvalues of the projected functions is to bound
them by the eigenvalues of f .

All of the above is for truncation after a universal rank r, for individual
ranks for each summand we have to go a different way.

Again: Triangle Inequality The conclusion we have reached above has
given us a new approach: instead of using the switching of the order of the
operators, we will instead consider the term FEm, which is the difference
between Combi-format and combination technique.

Following from that we can disregard the technique of the combina-
tion technique convergence proof and instead consider the triangle inequal-
ity again directly. Considering the not existent necessary orthogonality in
the above approach this should reach about the same result, while making
greater generality possible.

And indeed we will find that this reaches the same result as the con-
siderations above, since we did use the triangle inequality to pull exactly
the term FEm out of the norm. The only way to improve the convergence
theory is therefore to find a way to circumvent this step, finding some way
to reshape this term (or of course finding a completely different method of
proofing convergence). As far as is known such a reshaping has not yet been
found and it is questionable whether one actually exists. This reshaped
term would depend strongly on the behaviour of the singular values of the
approximated function (the σlα), and not much is known of their behaviour
(yet).

The following strategy for proving a rate of convergence is similar to the
convergence proof in [25, 31], only that instead of the combination technique
the sources consider the ANOVA-decomposition and instead of truncation
via SVD they consider quadrature (the goal is to approximate an integral,
not the function itself). The general strategy still transfers and reinforces the
thought that there may not be a better strategy to prove convergence for the
Combi-format. In contrast to the method contemplated in [25, 31] we still
have the problem of not being able to bound the projected singular values
well, as discussed previously. Also in contrast to the ANOVA-decomposition
the combination technique does not give us an automatic understanding of
which terms are more or less important.
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As a first step we consider now this estimate via triangle inequality:

‖f − CFm,r(f)‖ ≤ ‖f − CT m(f)‖+ ‖CT m(f)− CFm,r(f)‖ . (6.15)

Since we no longer need to show orthogonality via the detail projections
we can also consider the Combi-format in its generality, with potentially
non-uniform truncation ranks.

This leads us to defining

CT m(f)− CFm,r(f) =
∑

m≤|l|1≤m+1

(−1)m+1−|l|1(Id− T l
rl

)(Plf)

=: FEm,r, (6.16)

compare also to (6.11).
We need a few more definitions; the following is a useful substitution,

which will motivate the way we use the singular-value-truncation as we have
already defined it. Also worth recalling is (4.22), which shows that

εl =

√√√√min(l1,l2)∑
α=rl+1

(σlα)
2

(6.17)

is also the norm of the difference between a discretized function and its trun-
cated (at rl) approximation. Considering what we have already formulated,
this is exactly the term we need.

We recall the notation

Plf =
∞∑
α=1

σlα φ
l
αψ

l
α, (6.18)

especially remembering that the singular values of the projected functions
(the σlα) are not the same as the singular values of the original function (the
σα). About the latter we would have more information (again, recall section
4.4) given the smoothness of the function.

Then we reformulate in a very straightforward fashion with the triangle
inequality:

‖FEm,r‖ ≤
∑

m≤|l|1≤m+1

∥∥∥(Id− T l
rl

)(Plf)
∥∥∥ (6.19)

=
∑

m≤|l|1≤m+1

√√√√min(l1,l2)∑
α=rl+1

(σlα)
2

(6.20)

=
∑

m≤|l|1≤m+1

εl, (6.21)
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knowing that this is only a rough estimate, but the best we can do in this
setting.

For an even rougher estimate we can formulate

‖FEm,r‖ ≤ (2m+ 1) max
l∈ICm

εl, (6.22)

this will help later when choosing the truncation ranks.
Finally we can formulate the convergence result:

Theorem 16 (Convergence of the Combi-format). For a level m ∈ N and

a function f ∈ H
(s1,s2)
mix (Ω1 × Ω2) with 0 < s1 ≤ r1 and 0 < s2 ≤ r2, the

Combi-format satisfies the error bounds

‖f − CFm,r(f)‖ ≤ ‖f − CT m(f)‖+ ‖FEm,r‖

.

2−(m+1) min{s1,s2} ‖f‖
H

(s1,s2)
mix

+ ε̄ s1 6= s2

2−(m+1)s
√
m+ 1 ‖f‖

H
(s,s)
mix

+ ε̄ s1 = s2 = s,
(6.23)

where
ε̄ =

∑
m≤|l|1≤m+1

εl. (6.24)

If we wish to reach more generality (remove the dependence on the sin-
gular values of the projected functions) we can consider [21] and σα ≥ σlα
and f ∈ Hk(Ω):

εl ≤

√√√√min(l1,l2)∑
α=rl+1

σ2
α . r−kl (6.25)

and substitute this in the above result. This however is a rough estimate
that does not necessarily make it easier to choose the truncation ranks, since
it automatically leads to a uniform truncation.

The above concludes our considerations for a convergence estimate for
the Combi-format. It is not a sharp estimate, but it is useable, as will be
shown in the following section.

6.4 Truncation-ranks: A Heuristic

Given the convergence technique we have formulated above we now wish
to consider the most important remaining question: given the information
about convergence that we have, how do we wish to choose the truncation
ranks? The following is not formulated as an algorithm, in this work all the
choosing of rank was still done per hand. It is however an approach to a
possible algorithmic solution of the problem.

The following is already very praxis-oriented, the described procedure
takes place in the middle of the algorithm to compute the Combi-format.
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First we need to consider the information we have: with only a-priori
information we are reduced to the result of (6.25), where we can then uni-
formly choose the rank of truncation depending on the smoothness of the
function. As such we allow ourselves to consider more information.

The projections necessary for the combination technique have to be com-
puted regardless and are completely independent of the chosen truncation.
Also regardless of what we choose the SVD has to be calculated. (If one
has access to a SVD method which truncates while computing and would
stop before calculating the whole decomposition this might cause additional
computations. In our computing environment this was however not the case.
This motivates the singular-value-truncation, for which all singular values
need to be computed any way).

At this point we also have access to the information that is the value
of the singular values for each sub-grid. Additionally we know a-priori how
fast the combination technique (the first summand of the convergence result
above) is expected to converge.

To at least roughly predict the possible convergence (which is the conver-
gence of the combination technique) we also need a starting point. For this
it is necessary to compute the error of the first level of the Combi-format
to the actual function. The first level of the Combi-format consists of one
basis function (we do not truncate to empty, this one point always exists)
and is the same as the combination technique of one level. Since we wish to
calculate the approximation error in this work, we already have the neces-
sary values computed to calculate this error in our chosen form (analytical
error). If this should in other work not be available, one might consider the
normalized function.

Following all this we can formulate a convergence rate of the combina-
tion technique, which we want to match. (This is not a strict algorithm;
adjustments might need to be made, for example if the convergence only
sets in after a certain finite number of levels.) Now there are two general
approaches:

1. We have a wanted precision ε. Based on this precision we choose our
level of the format and the required truncation ranks.

2. We have a given maximal level m of the format. Based on this we
wish to achieve the best precision ε possible and choose the required
ranks accordingly.

First we consider the first case. Based on the starting precision for level
1 and the expected rate of convergence we estimate for which level this
precision is achieved. This is only a rough estimate, recall that there are
constants involved in the convergence rate estimate. If these constants are
too big it might be necessary to adjust our estimate later. Again, this is
only a rough estimate, but given not too big constants we can hope to at
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least make statements along the line of: for level m our approximation is
exact up to i decimal places.

When we have this level m for our wanted precision ε (if we want to
be sure we have to actually compute the combination technique approxi-
mation error for this level) we can consider truncation. The second case
now proceeds similarly from here, only we first need to estimate the possible
precision ε for the given level m. We have the value of the singular values
of all the projected functions needed available, theoretically we could now
formulate some very complicated optimization algorithm.

To actually keep the choice of truncation ranks calculable by hand we
instead choose a simpler idea. First we check whether all singular values
after a certain fixed number are completely insignificant.

Hereby we keep in mind in which way we calculate the truncation, for
example in this work we consider the squared and normalized singular values.
Here it is of course possible to consider other options, as long as we stay
consistent and consider the resulting truncation error in a compatible norm.

In this context we consider complete insignificance to be a singular value
which is either of the size of the precision of the format (which is determined
by the precision of the integration necessary for the projection or even the
precision of our SVD-algorithm) or compared to our wanted precision ε
completely insignificant. In this work we consider this to be the case when
the singular value (in our case normed and squared) is smaller than ε ·10−4.
The factor 10−4 is chosen arbitrarily, as this seemed to be insignificantly
small in our case.

If indeed all singular values (of all grids) are of insignificant size after a
fixed number we treat the function as a function of said rank and truncate
to this rank accordingly.

In the case that this is not the case we have to proceed a bit more gener-
ally: the idea is that based on our wanted precision we discard (truncate) all
singular values which we judge to be significantly smaller than the wanted
precision. All in all the added together, discarded (squared and normalized)
singular values of all grids have to be smaller than the wanted precision.

If we do not wish to calculate this (even roughly) we can consider (6.22)
and simply truncate uniformly only the minimum amount of completely in-
significant singular values. Even this minimal truncation reduces the com-
putational complexity of further calculations with the format and of course
storage space.

In conclusion following this procedure of balancing the errors (eventually
in multiple iterative steps) leads to a Combi-format with the same precision
as the combination technique of the same level. This leads to the conclu-
sion that the Combi-format can show the same rate of convergence as the
combination technique, while reducing the size of the format. Unfortunately
there are no precise estimates of how strong this reduction is, beyond the
very rough (6.25).
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7 Praxis

In the following section we consider the concepts necessary to implement the
Combi-format in praxis. First we describe the algorithm we implemented
for this work, which is the calculation of the approximation error of the
Combi-format, measured in the analytical error. For this we need to be able
to calculate the Combi-format of a given function (section 7.1.1) and then
also the analytical approximation error as described in section 7.2. Finally
in section 7.3 we demonstrate the results of this algorithm tested on different
functions.

7.1 Algorithmic Considerations

Here we consider the algorithm necessary to create the Combi-format and to
calculate its precision, i.e. the approximation error. Furthermore we explain
how to implement the concepts discussed in this work in praxis.

7.1.1 Calculating the Combi-format

The first step to being able to calculate the Combi-format is to calculate
the combination technique. We already discussed the basics of implementing
the combination technique in section 3.2.

In the code accompanying this work we consistently implemented the
d-dimensional formula (9.1). This keeps the code general and we avoid pro-
gramming everything twice. As is noted in the explanation to (9.1), the def-
inition of the d-dimensional formula is compatible with the two-dimensional
one.

As a short recall: This means we need to calculate and store the object
Plf for all l ∈ ICm, where ICm is the index-set of grids in the combination
technique (of level m) we wish to calculate. We have already discussed how
to calculate Plf in section 2.1.4.

Again, we wish to solve
MlXl = Bl

where Ml = M
(1)
l ⊗ . . .⊗M

(m)
l . With M

(k)
l =

(
〈φlk,i, φlk,j〉L2(Ωk)

)
i,j∈∆lk

for

k = 1, . . . ,m and Bl =
(
〈f, φl,i〉L2(Ω)

)
i∈∆l

. The i ∈ ∆l signifies a combined

index (a precise definition can be found in section 8), which combines the
two indices i = (i1, i2) into one running index, since we need Bl to be a
vector in this two-dimensional case5.

5We do not specify how exactly the bijection underlying the combined index is defined,
it only needs to be consistent, meaning compatible with the ordering in Ml. As we see in
section 8 the big-endian ordering fulfils this condition.
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Fortunately, it holds that (A⊗B)−1 = A−1⊗B−1.As such we can formu-

late Xl =

((
M

(1)
l

)−1
⊗ . . .⊗

(
M

(m)
l

)−1
)

Bl, where the M
(k)
l presumably

have a structure that makes them easy to invert.

This is due to the fact that the M
(k)
l are the mass matrices of the chosen

one-dimensional basis which, if it is a well-chosen basis, has an exploitable
structure. We can note here that there exist an algorithm to transform
a hierarchical hat-basis into the non-hierarchical one and back, which is
important because the mass-matrix of the non-hierarchical hat-basis is a
diagonal one, which is very easy to invert.

In the code attached to this work we do not use that algorithm and
instead rely on the so-called finger-structure of the hierarchical hat-basis
mass-matrix, which makes the matrix easier to invert than an arbitrary one.

In the above way we again circumvent the curse of dimensionality, since
inverting a d−tensor naively has a complexity with d in the exponent. We
are however not able to consider each direction (dimension) independently
of each other, since Bl is not (in general) in tensor-product form. This is
due to the fact that f , the function we wish to approximate, is in general
not in tensor product form.

We also need to define Mk
l for calculating the scalar product later on.

It holds
Mk

l =
(
〈φl,i, φk,j〉L2(Ω)

)
i∈∆l,j∈∆k

.

The relation between the mass-matrix of level l and these mass-matrices of
mixed levels is

Ml
l = Ml.

In the code attached to this work we define a struct (a kind of class)
named SubspaceD ID to store all information we need to now for each sub-
grid. Since our code is for a general d-dimensional case we also use tensors
instead of matrices and vectors, for the code we use the library ITensor [8].
Tensors will be introduced in section 8, for now all we need to know is that
tensors include both matrices and vectors.

To compute the projections Plf , we first need the tensors Ml and Bl.
Because the numerical integration needed for the computation of Bl can be
very costly (in our experience the by far costliest computation step) we only
wish to calculate each Bl once and then store it for later use, preferably in a
file. In our code this is accomplished by the function loop Btensor, which
computes the Bl for the full formats of the given levels.

Then we calculate for each subspace (using the function Combi.Xtensor)
the projection, resulting in a tensor Xl

6. Afterwards the truncation is cal-
culated, using either rank- or singular-value-truncation

6Here the concept of tensors is very useful, since Xl as we calculate it is a vector, but
to truncate it we have to reshape it into a matrix
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Since we do not, in the course of this work, wish to store the Combi-
format, we do not actually compute the whole format at once. Instead we
have an operation we wish to perform on the format (in our case this would
be measuring the approximation error). Then we only calculate one sub-
grid at once, perform the wanted operation on it and then calculating the
next, only storing the result of the operation. Why we chose this method is
explained in the following paragraph.

Parallelisation The Combi-format inherits from the combination tech-
nique the fact that it is a sum of independent from each other operations.
This independence is important in praxis, since it allows for parallelization.

In general, we do not only wish to calculate the Combi-format, but
actually perform a calculation on or with it. In this work that is “just”
measuring the approximation error (see the next subsection) between the
Combi-format and the continuous function but in general we can consider
other operations as well.

Let us say that we wish to perform an operation on the Combi-format,
the only restriction being that it has to be a linear operation. Then it is the
point of the Combi-format that we perform this operation on each of the sub-
grids individually and only at the end actually evaluate the expression. This
means that the operation and the calculation of the Combi-format before
that can be parallelized, by putting each sub-grid on a separate thread.

For example, if we wish to perform an operation L : V̂m −→ R, which is
linear in its argument, on a function f̃ = CFm,rf , then we consider

L (CFm,rf) =
∑

m≤|l|1≤m+1

(−1)m+1−|l|1L
(
T l
r(Plf)

)
. (7.1)

Here we use parallelization by calculating L
(
T l
r(Plf)

)
for each l ∈ ICm on a

separate thread. Afterwards the results from the separate threads only need
to be added together with the appropriate weights defined in the formula
above.

This procedure cuts down on computation time significantly, even on an
(at the time of this writing) average computer without multiple processors
the time effort is cut approximately in one fourth of the non-parallel com-
putation. On an actual computer-cluster of sufficient capabilities (it needs
to be able to perform O(dm) threads at once and the communication time
for the results of the threads cannot be significant) the computation time is
approximately O((dm)−1) as long as the non-parallel computation.

This is a massive reduction in computation time and one of the reasons
why the Combi-format and the combination technique are used. The possi-
bility to parallelize is a huge advantage over other non-parallel methods.
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7.2 Approximation-error Calculation

The one operation we wish to perform on the Combi-format is the calculation
of the approximation error. This is how we justify our concept: We wish to
show that the Combi-format converges to the exact solution, and that the
rate of convergence signifies practical usability.

To do this we first need to consider how to measure the error. Mainly
we will focus on the analytical error, this means we calculate for a function
f ∈ H:

‖f − CFm,r(f)‖2L2(Ω) = 〈f, f〉L2(Ω)−2 〈f, CFm,r(f)〉L2(Ω)+〈CFm,r(f), CFm,r(f)〉L2(Ω) .

On the right hand side of the equation above there are three terms which
need to be computed separately.

The Norm 〈f, f〉L2(Ω): This is exactly the square of the L2(Ω)−norm
of the function f , meaning we need to calculate the norm of f . If it is
a-priori known or can be calculated analytically somehow, the exact term
can be used. However, since in general the exact norm of the function is
not known, this usually needs to be done via numerical integration. Here
it is extremely important to choose the precision of this integration to be
much higher than the precision of the numerical integration performed to
approximate the projection in the Combi-format. Otherwise the error of this
numerical integration would reduce the following calculations to nonsense.

The mixed Term 〈f, CFm,r(f)〉L2(Ω): Here we use the procedure of ap-
plying an operator to the Combi-format as discussed before, in this case the
operator in question is the scalar product with f : L = 〈f, ·〉L2(Ω) . As such
it holds

〈f, CFm,r(f)〉L2(Ω) =
∑

|l|1=m+1

〈
f, T l1,l2r Pl1,l2f

〉
L2(Ω)

−
∑
|l|1=m

〈
f, T l1,l2r Pl1,l2f

〉
L2(Ω)

.

Now we use the fact that each element in a space Vl has a unique basis-
representation, recall (1.19) for the hierarchical representation thereof, which
is also unique. Therefore we can write

T l
rPlf=̂

∑
i∈∆l

f̃l,iφl,i.

Here the matrix7 Xl,r = T l
r(Plf) has the coefficients f̃l,i, meaning

Xl,r =
(
f̃l,i

)
i∈∆l

.

7Recall that we had to reshape Xl, which was originally a vector, for the truncation.
To not overload notation we omit the operator indicating this here and everywhere in this
work.
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Since we wish to compute the summands in the sum of the combination
technique in parallel (which we can do as explained above), we can consider
these summands independently of each other. This means we consider only
one summand identified by its level-index l ∈ ICm:〈

f, T l
r(Plf)

〉
L2(Ω)

=

〈
f,
∑
i∈∆l

f̃l,iφl,i

〉
L2(Ω)

=
∑
i∈∆l

〈
f, f̃l,iφl,i

〉
L2(Ω)

=
∑
i∈∆l

f̃l,i 〈f, φl,i〉L2(Ω)

= BlXl,r

where Bl (reshaped as a matrix) is defined as in section 7.1.1 above.
Concluding, we need to perform one matrix-matrix multiplication per

summand, so for level m a total of 2m + 1 matrix-matrix multiplications.
The matrices Bl we have already calculated for the projection as described
above, to speed up computation significantly they ought to be stored in
memory.

The Format 〈CFm,r(f), CFm,r(f)〉L2(Ω) : This is the square of the norm
of the function f approximated in the Combi-format, which means we need
to compute that norm.

Since we can in general not assume that the bases of the different sub-
grids are orthogonal to each other, it is easily seen that the computation of
this term is no longer linear but quadratic, it involves two nested loops.

〈CFm,r(f), CFm,r(f)〉L2(Ω) =∑
l∈ICm

∑
k∈ICm

(−1)m+1−|l|1(−1)m+1−|k|1
〈
T l
rPlf, T

k
r Pkf

〉
L2(Ω)

Then, analogously to above, we represent T l
rPlf in its unique basis rep-

resentation, resulting in

〈CFm,r(f), CFm,r(f)〉L2(Ω)

=
∑
l∈ICm

∑
k∈ICm

(−1)2(m+1)−|l|1−|k|1

〈∑
i∈∆l

f̃l,iφl,i,
∑
j∈∆k

f̃k,jφk,j

〉
L2(Ω)

(7.2)

=
∑
l∈ICm

∑
k∈ICm

∑
i∈∆l

∑
j∈∆k

(−1)2(m+1)−|l|1−|k|1 f̃l,if̃k,j 〈φl,i, φk,j〉L2(Ω) (7.3)

=
∑
l∈ICm

∑
k∈ICm

(−1)2(m+1)−|l|1−|k|1XT
l,rM

k
l Xk,r, (7.4)
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where Xl,r is defined as above and Mk
l as in section 7.1.1.

This means that for each grid denoted by l ∈ ICm we need to calculate∑
k∈ICm

(−1)2(m+1)−|l|1−|k|1Xl,rM
k
l XT

k,r.

As such every sub-grid in the format requires one full loop over the whole
format. Should the choice of basis guarantee some sort of orthogonality (that
certain sub-grids are orthogonal to others) this can be reduced somewhat.

Our case makes the two nested loops fully necessary. In the code this sec-
ond loop can be found in the functions ind subspace error nl , ind subspace error sv nl

and ind subspace error cut nl.

7.2.1 Interpolation Error

In section 2.3 we considered the difference between linear and standard infor-
mation. Recall that projection, which we have consistently used throughout
this work, is linear information. Interpolation on the other hand is consid-
ered standard information, and relating it to projection is therefore still an
open problem and highly non-trivial.

But we can nonetheless use interpolation in formulating an error analysis:
The interpolation error (meaning the error between the exact function and
the approximated one calculated by computing the difference of function
evaluations) bounds the analytic error from above. It can therefore be used
for quickly bounding the error, especially if algorithms for efficient evaluation
exist.

Since we use hierarchical hat-bases this means one needs an algorithm for
calculating the transformation from hierarchical values to nodal values. This
collection of algorithms is an integral part of using sparse grids in practice.
For these algorithms consult for example [7, Technical Reference].

7.3 Convergence Analysis in Praxis

Now that we have defined the algorithm we wish to consider in this work,
we turn towards the actual praxis. In the previous we have formulated a
few properties of the Combi-format, including a convergence analysis and a
heuristic for choosing the truncation ranks. These we wish to illustrate with
practical examples.

In the following we therefore consider different examples in praxis, to
show the behaviour and advantages of our Combi-format. As such we ap-
ply the format on functions from different function classes and of different
smoothness. This is not an exhaustive study, but does show the versatility
of the format.
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Figure 6: The function (7.5): on the left evaluated for different fixed values
in the second coordinate and on the right as a contour-plot.

A rank-8 function The first function we consider is the following

f(x, y) =
8∑
i=1

sin(i · π · x) · sin(i · π · y). (7.5)

We show this function in Figure 6, once evaluated for fixed values of the
second coordinate and once as contour-plot. It is a wave-function, a sum
of products of sinus functions. This means it holds f ∈ C∞ and therefore

also f ∈ H(s1,s2)
mix ([0, 1]2) for all s1, s2 > 0. More colloquially said: f is a very

smooth function.
Since we also know that the function sin(i · π · x) is linearly independent

of sin(j · π · x) when i > j, we can conclude that f is of rank 8. Since
(x = 0 ∨ y = 0)⇒ f(x, y) = 0 holds, f is zero on the boundary and there-
fore fulfils all conditions for the Combi-format (f ∈ L2([0, 1]2) trivially).

In Figure 7 we can fist see the convergence for the Combi-format without
any truncation, which is merely the combination technique. We can also see
that for a given level l of the format, the convergence rate of the combination
technique is essentially O(2−2l) = O(h2) for h = 2−l. This is exactly the
result we expect from our theory, also consult Theorem 12. Our function

might be in H
(s1,s2)
mix for all strictly positive s, but we have s1 ≤ r1 and s2 ≤

r2 with r1, r2 being defined by the polynomial exactness of the underlying
spaces. For our particular sparse-grid setup it holds r1 = r2 = 2, which
explains the convergence rate.

This convergence does not set in immediately, which is due to the struc-
ture of the function f . Initially, the mesh-width of the grids is not fine
enough to catch the high oscillation parts of f . The Figure 6 illustrates this,
if one imagines a sparse grid of a lower level (m < 6) laid over the function,
one can see that some of the smaller contour-circles lie completely between
the grid-points. This phenomenon makes the considerations necessary for
the choosing of truncation ranks harder.
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Figure 7: The convergence of a rank-8 function (7.5) approximated in the
Combi-format measured in the analytical error.

For this function we do not need to worry about that though, since
the first important result found in the figure is that indeed, the Combi-
format with rank-truncation after rank 8 shows the same convergence as the
combination technique. This means that the approximate function CT mf
has indeed rank 8 in praxis, as it should as discussed in the theory.

Also visible is the fact that truncating before rank 8 cuts off too much
information: the Combi-format converges towards a function which is not
the function f .

In Figure 8 we can see the convergence behaviour for the singular-value-
truncation. We can compare to the singular values of the different sub-grids
(the plot only shows half of the ones with |l|1 = m + 1, since the function
is symmetric the plot for the sub-grid of level (i, j) is the same as the one
for the sub-grid of level (j, i) ) shown in the second, lower plot. The plot
shows the normalized and squared value of the singular values of Plf for the
shown l. Normalized and squared in this case means the value of the i-th
singular value is

σ2
i∑min(l1,l2)

α=1 σ2
α

.

The second plot also helps us to choose truncation ranks: We can see
that the function is only of rank 8 by the fact that all the others are of the
size of the calculation error. Since we chose the precision of the integration
for the projection to be 10−12, this is the maximum precision we can expect
of our method. We can also see that all the significant (squared) singular
values are above ε = 10−3.

What can be clearly seen in Figure 8 is the fact that the singular-value-
truncation with ε = 10−3 is again just the combination technique, no trun-
cation actually takes place. For ε = 10−2 on the other hand the truncation
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Figure 8: First: The convergence of the function (7.5) in the Combi-format
with different truncations; below that the singular values of the projected
functions on a number of sub-grids identified by their level-indices.
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Figure 9: The function (7.6): on the left evaluated for different fixed values
in the second coordinate and on the right as a contour-plot.

cuts off too many singular values to still converge in an acceptable matter.
This validates our above statements.

As a conclusion we can formulate that it does hold true that a function of
rank r is approximated via the Combi-format by a function of at most rank
8. Truncating this function further or applying singular-value-truncation on
the other hand makes no practical sense. An explanation for this is given
by the singular values of the respective sub-grids; they do not decrease fast
enough to make further truncation in any way useful.

This is still an important result: the biggest sub-grid we calculated for
the plots is of level (6, 6), this results in a matrix of size 63× 63 with a total
of 3969 entries that need to be stored and are used in further calculations
we might want to do with the format. After truncating after rank 8 we need
to store (in the SVD) two matrices of size 63×8, or only 1008 entries. That
is a reduction by a factor of 1008

3969 = 16
63 ≈ 0.254, so almost a quartering of

the data size.
Further abstracted we replace a matrix of size 2L − 1 × 2L − 1 by two

of size 2L − 1× 8. The higher the level is, the more we gain from using the
Combi-format instead of just the combination technique, which is exactly
what we wanted as it gives us a justification for its existence.

An absolute-value function The second function we consider is a func-
tion with a “kink”, a function based on an absolute value function:

f(x, y) = sin(πx) · sin(πy)
1

|x · y − 0.25|+ 1
. (7.6)

It is shown in Figure 9.
We need to multiply the fraction with the absolute value function by a

product of sinus functions to fulfil the boundary condition. (Of course we
could also use other functions which are zero on the boundary, for example
polynomials. In this case we chose the sinus function.)
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Figure 10: First: The convergence of the function (7.6) in the Combi-format
with different truncations; below that the singular values of the projected
functions on a number of sub-grids identified by their level-indices.

Since f contains an absolute value function in the shown form it is only

in H
(1,1)
mix

(
[0, 1]2

)
. As such the rate of convergence we can expect from the

combination technique is slower than for the function above, only O(h) =
O(2−l) for level l.

This convergence can indeed be observed in Figure 10.
First we again study the second, lower plot showing us the singular values

of the projected functions. This time there is no sudden fall after a fixed
rank, we cannot determine the rank of the function off this plot. What we
can determine is that only very few (squared and normalized) singular values
are smaller than ε = 10−6. We can, even without precisely calculating the
sum of the squared and normalized singular values which are smaller than
10−6, estimate that said sum is smaller than 10−6. Considering the rate of
convergence the combination technique for our function achieves, we assume
that this is not significant for the levels that we can compute (if we were to
calculate far higher levels this might of course change). Indeed, we can see
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in the upper plot that truncating at ε = 10−6 achieves the full convergence
up to the level we have computed.

Checking the precise values of the singular values from the output of the
program tells us that for l = (6, 6) we reduced the rank of our approximate
function on that sub-grid by 29 compared to the combination technique.
This is of course not such a significant reduction as for the function above,
but it is still significant when justifying our new format: It reduces com-
putational complexity for all calculations one wishes to perform with the
function as approximated by the Combi-format.

When we were choosing to truncate at ε = 10−6 above, we did not use
our notion of complete insignificance (recall section 6.4) and instead chose
a bigger factor to determine significance. This does show that the factor of
10−4 we chose (arbitrarily) for our notion of complete insignificance is chosen
to be very much “on the safe side”. When we do not need to consider
generality but rather a specific function, we can evidently achieve better
results with specifically chosen bigger factors (in our case we could estimate
the precision of the combination technique to be between the fourth and
fifth decimal point, as such the factor was between 10−1 and 10−2).

However, the chosen factor cannot be to big, this is shown in the plot
for truncation at ε = 10−5. In this case the factor is bigger than 0.1 and as
can be seen in Figure 10 in the upper plot the Combi-format with singular-
value-truncation at ε = 10−5 does not reach the error of the combination
technique or the Combi-format with singular-value-truncation at ε = 10−6.
Even though it is only visible for level 11, the Combi-format with singular-
value-truncation at ε = 10−5 does not reach the optimal convergence. This
is easy to explain: we do not only consider one grid, but rather 2m + 1
(for m = 11 that makes 23) many. Even with some potential error deletion
through the combination technique, a factor of more than 0.1 is not enough
to balance this out.

Strictly speaking we do not truncate on all of the 2m+ 1 grids, some are
too small and already have a small enough rank. For m = 11 and ε = 10−5

respective ε = 10−6 in the above example we only need to consider 10 grids
(recall that we did not show all grids in Figure 10) which even have singular
values that are smaller than 10−5. From this we follow that a factor that is
smaller than 0.1 should be enough to achieve the wanted convergence. This
naturally leads us to truncating at 10−6, which as discussed above achieves
the wanted convergence rate.

All of the above considerations reinforce that our heuristic for choosing
the truncation ranks works as we had hoped.
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Figure 11: The function (7.7): on the left evaluated for different fixed values
in the second coordinate and on the right as a contour-plot.

A piecewise polynomial function The final figure we consider is shown
in Figure 11. It is a piecewise polynomial function, defined as

f(x, y) =


16 · x · y · (1− x) · (1− y) if r ≤ 0.15

0.6 if 0.15 ≤ r ≤ 0.3 or 0.7 ≤ r ≤ 0.85

8 · x · y · (1− x) · (1− y) if 0.3 ≤ r ≤ 0.5

−8 · x · y · (1− x) · (1− y) if 0.5 ≤ r ≤ 0.7

(7.7)
where for the sake of readability we have set r := 4 · x · y · (1− x) · (1− y).

The function is a continuous piecewise polynomial, as such the distinct
pieces might be very smooth, but the overall function (consider especially

the “kink” at 0.5) is only inH
(1,1)
mix

(
[0, 1]2

)
which as in the function above sets

our expected rate of convergence for the combination technique to O(h) =
O(2−l) for level l.

This is indeed visible in both of the convergence plots, in the upper plot
of Figure 12 and the plot of Figure 13.

Considering the lower plot of Figure 12 we can again not determine that
the function is of a certain rank. But, since in the maximal level we can
compute (based on our computers capabilities; in this case level 9) a singular
value with size smaller than 10−10 is completely insignificant, we can indeed
practically treat the function f as almost a rank-15 function. In Figure
13 this statement is proven true: truncating after rank 15 converges as the
combination technique and therefore the fastest we can possibly achieve in
this setting.

The upper plot shows the same principle, only this time with the singular-
value-truncation in mind: considering that all the significant singular values
(so all minus those smaller than computational precision and in this case
the 16th, which is smaller than 10−10) are bigger than 10−4, if we truncate
at 10−4, these singular values will remain and those we deemed insignificant
will be discarded. From this we arrive at the same truncation as after rank
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Figure 12: First: The convergence of the function (7.7) in the Combi-format
with different truncations; below that the singular values of the projected
functions on a number of sub-grids identified by their level-indices.
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Figure 13: The convergence of the function (7.7) approximated in the
Combi-format with different truncations and measured in the analytical er-
ror.

15, which achieves the same rate as the combination technique.
In this particular case it is worth noting that the integration necessary

for the projections took a long time, over ten hours on a standard laptop.
As such we have limited ourselves to at most nine levels of the format.

Conclusion All in all we can say that our theoretical considerations are
validated by the practical experiments. We show that the Combi-format can
reach the same order of convergence as the combination technique in praxis,
while also reducing the cost in a number of variables sense.

This reduction in cost is achieved via a reduction in rank, which is es-
pecially significant for functions of a fixed rank (as our first example) or
function which are very close to being functions of a fixed rank (as in the
third example). But even for other functions such a reduction can be ob-
served, without losing convergence.

The result of the Combi-format achieving the same rate of convergence
as the combination technique is only for the case of having a fixed level
(the truncation ranks depend on the level, as such there is no simple way to
consider a limit to infinity), but since this is necessary in praxis it does not
pose a problem, as observable above.

Also observable is that our heuristic for choosing the truncation ranks
achieves the wanted results and is therefore useful. This concludes that we
have a justification for our new Combi-format: we achieve in context optimal
convergence with a reduction in storage cost compared to other methods.
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A B C
n1 n3

n2 n1 n

n2

Figure 14: Three different tensors in tensor diagram notation: (1) The 3-
tensor A ∈ Rn1×n2×n3 . (2) The 2-tensor B ∈ Rn1×n2 , which is a matrix. (3)
The 1-tensor C ∈ Rn, which is a vector.

Part III

Outlook on higher Dimensions

The results of the previous part show that the Combi-format can justify
its existence. However, although considerations in two dimensions are not
unimportant, the true importance of the combination technique and un-
derlying that the sparse grid method lies in higher dimensions. There are
multiple fields in mathematics which rely on great amount of data in many
dimensions, for example in finance or machine learning.

As such the true test of the Combi-format is not whether it can be
useful in two dimensions, but whether it can show similar results in higher
dimensions.

Unfortunately, the singular value decomposition does not easily gener-
alize to more than two dimensions and there is no Eckart-Young-Mirsky
theorem for this case. Therefore we generalize matrices to tensors in the
following section 8 and then generalize the SVD to tensor decompositions,
specifically the tensor train decomposition. This decomposition defines the
tensor-train format, often only called TT-format, which we will define in
section 8.1.

Following this we can then define the Combi-format for more than two
dimensions in section 9 and give an outlook on the results possible. Due to
the lack of a Eckart-Young-Mirsky theorem the formulated error estimate is
less precise than for the two dimensional case, but we are still able to show
convergence in our practical example in section 9.4.

8 Tensors and the TT-format

When we consider more than two dimensions, we need to generalize the
concept of matrices to higher dimensions. This is the field of tensors in
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Figure 15: A step-by-step illustration of the tensor-matrix-by-tensor multi-
plication A · x in the tensor diagram notation.

numerics (there are various definitions of what a tensor is in the different
sciences, for us it is a generalization of a matrix).

Since especially in practical applications tensors can become unwieldy
quickly, there are multiple so-called tensor formats, which represent the full
tensor in some easier to handle form. The field of tensor representations
is a wide one with many applications, mostly in areas where a lot of data
is needed. In this context we will consider some concepts from the area of
low-rank tensor decompositions. Introductions to this topic can be found
for example in [35, 24].

Definition 17 (Tensor). A d−tensor x ∈ Rn1×...×nd is a d-dimensional
array. It is defined over directions or modes {1, . . . , d}, the length in each
direction given by the mode sizes n1, . . . , nd .

A tensor matrix A ∈ Rn1×...×nd×m1×...×md is also a tensor, which oper-
ates on tensors.

In Figure 15 the use of a tensor matrix is illustrated. The mode sizes are
also sometimes called the dimension of the direction (or mode) in question.
To not add to the potential confusion we will not use this in this work,
although it appears in the cited literature.

In Figure 14 some examples of tensors are illustrated in tensor diagram
notation [5]. Often we will not write the mode size on the “arms” repre-
senting the modes, but rather the name of its index. We use Einstein nota-
tion to sum over common indices, which gives meaning to expressions like
Ax ∈ Rm1×...×m2 , as diagrammed in Figure 15. Summing over a common
index to essentially make one tensor out of two is also known as a contrac-
tion (over the index). Adding two tensors of the same size or multiplying
one by a scalar works analogously to matrices.
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Matricization Actually using tensors of more than two dimensions (that
being matrices) in their form as a multidimensional array can be cumber-
some. Also many concepts (like SVD and orthogonalization) are only defined
in two dimensions, and as such a method to represent a tensor as a matrix
is very helpful and in some situations even necessary. The following is based
on [30], some more details can also be found in [35, 11].

First we need to define the concept of a combined index, which we have
already briefly seen in section 7.1.1. A combined index of dimension d is
defined as

i1i2 . . . id−1id = g(i1, . . . , id)

with an in theory arbitrary bijection g. Two examples of possible bijections
are the commonly used little-endian

i1i2 . . . id−1id = i1 + (i2 − 1)n1 + . . .+ (id − 1)n1 . . . nd−1

and big-endian,

i1i2 . . . id−1id = id + (id−1 − 1)nd + . . .+ (i1 − 1)n2 . . . nd

lexicographical orderings.
In this work we mostly use the latter, because of its compatibility with

the Kronecker (tensor) product. On the other hand the little-endian index
grouping is often found in programming environments. Transitioning from
one to the other is unproblematic via another bijection, but it is important
to remember to do so, especially in praxis.

Now we can define a matricization of a tensor x(i1, . . . , id) as a matrix
defined as

X(ij1 · · · ijk , ijk+1
· · · ijd) = x(i1, . . . , id)

where the jn, n = 1, . . . , d are a reordering of the set {1, . . . , d} . In many
cases we keep the ordering of the indices and can then formulate

X
ik+1,...,id
i1,...,ik

= X(i1 . . . ik, ik+1 . . . id) = Xk.

This form of matricization is also called an unfolding. To simplify the nota-
tion we generally write the column-indices as superscript and the row-indices
as subscript, understanding that they are combined indices even without the
bar over them, in the interest of not overloading the notation.

8.1 Defining the Tensor Train Format

The Tensor Train Format (often just TT-format) is a low rank represen-
tation format for a tensor. It is based on decomposing the d-tensor into
3-tensors via singular value decomposition. In a numerics context it was
introduced in [35], although it has (for example in physics) been known for
some time under the name of matrix product states (MPS).

The following is strongly based on [30].

73



Definition 18 (TT format). If x ∈ Rn1×...×nd is a d-tensor, then
x̄ = (x(1), . . . ,x(d)) is its representation in the TT format, defined by:∑

α

x(1)(α0, i1, α1)x(2)(α1, i2, α2) · · ·x(d)(αd−1, id, αd).

All tensors are in boldface lettering, and x̄ is the tensor in the TT format.
It is itself a vector of TT cores x(p) ∈ Rrp−1×np×rp , p = 1, . . . , d which are
3-tensors. αp = 1, . . . , rp are called rank indices, their number rp TT ranks
(often only ranks, the distinction from matrix ranks clear from the context).
The vector of TT ranks is r(x̄) = (r1, . . . , rd−1), we can set r0 = rd = 1
without loss of generality to unify notation.

8.1.1 The TT-decomposition

This section’s results are described in the following Theorem [35, Section 2]:

Theorem 19. For each d-tensor x ∈ Rn1×...×nd whose unfoldings have ranks

rankXk = rk,

there exists a TT-decomposition (??) with ranks no higher than rk, for k =
1, . . . , d.

Proof. This proof is a constructive argument, which defines a process by
which one can decompose any tensor and which can be used as the proof
of concept of the Algorithm 8.1.1. It can be found in more detail at [35,
Theorem 2.1].

First, we consider the matricizations of x, specifically X1. This matrix
can be decomposed via the SVD, as

X1 = UΣV T .

Since the TT-format does not contain tensor-cores of singular values we
immediately contract Σ and V T and name the result also V .

This results in a decomposition (this time written down in the index
form8):

X(i1, i2 . . . id) =

r1∑
α1=1

U(i1, α1)V (α1, i2, . . . , id) .

Here, the tensor U only depends on i1 and α1 and is therefore a good
candidate for x(1). Also note that the ranks of U are (1, r1), as stated in the
theorem.

Now we wish to iterate and further decompose V , which we can do by
considering it as a (d − 1)-tensor v = V (α1i2, i3, . . . , id). In order to fulfil

8Remember: r0 = rd = 1; which is why α0 and αd can be neglected
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Figure 16: An illustration of the TT-decomposition of a 3-tensor x, accord-
ing to the TT-SVD-algorithm.

the rank-requirement of the theorem we only need to ensure that the ranks
of the matricizations of v (which determine the TT-rank via the SVD, as
above) are also maximum rk for k = 2, . . . , d. Writing Vk in terms of A and
U and separating column- and row ranks assures us that the condition holds
and we have

rank Vk ≤ rk,

where Vk = V (α1i2 . . . ik, ik+1 . . . id).
Continuing inductively we now separate the index (α1, i2) from the others

via V2 and the SVD and get

v(α1i2, i3, . . . , id) =
∑
α2

U(α1, i2, α2)V ′(α2, i3, i4, . . . , id),

where U is x(2) this time. Through repeating this step we receive the entire
TT-decomposition.

Now we have a method for computing the TT-format of a tensor. But
analogous to the discrete truncation via SVD defined in Definition 15 we do
not only want to compute the format, we also wish to truncate. An idea
is of course to just compute the TT-format as described in the proof above
and then truncate it, a process called rounding the tensor, which will be
defined and described in the section 8.2.

However, this is unnecessarily complicated and also computationally ex-
pensive, as we would have to compute the full format of a tensor which
might possibly be approximated to a very high precision by a tensor with
far smaller ranks. This low-rank approximation tensor does not only need
far less storage space, but is also far less expensive to compute.

As such we consider Theorem 19, but instead of setting rankXk = rk as
our TT-ranks, we want to choose our truncation ranks r̂k ≤ rk. There are
different ideas for how to choose them, which we will discuss in the following.
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The general idea of the truncated TT-format is detailed in step 4 of the
TT-SVD-Algorithm: instead of (as in the proof of the theorem) calculating
the full SVD, we instead truncate it after a before chosen rank. In other

words, in step 4 we use the operator T
(rk−1nk,

lenght(t)
rk−1nk

)

rk .

Algorithm 1 TT-SVD

Require: d−tensor x ∈ Rn1×...×nd , truncation ranks r = (rk)
d−1
k=1

Ensure: d−tensor ȳ = Υrx ∈ Rn1×...×nd in the TT-format with TT-ranks
r

1: Initialization: t = x, r0 = 1
2: for k = 1, . . . , d− 1 do
3: t := reshape(t, rk−1nk,

lenght(t)
rk−1nk

)

4: Compute the truncated SVD: t = UΣV T + E where rank(Σ) = rk
5: Set y(k) = reshape(U, rk−1, nk, rk)
6: t := ΣV T

7: end for
8: Set y(d) = t
9: return ȳ =

(
y(1), . . . ,y(d)

)
Following from this we can define:

Definition 20 (Truncated-TT-Operator). For a d−tensor x ∈ Rn1×...×nd

and truncation ranks r = (rk)
d−1
k=1, we define the truncated TT-format

ȳ = Υrx (8.1)

as the output of Algorithm 8.1.1.
Here, the operator Υr for a given r assigns each input-tensor the output

of Algorithm 8.1.1.

Error Estimates We can estimate the error between the input of the
Algorithm 8.1.1 and its output, as long as we choose the truncation ranks r
in a certain way. These estimates were formulated by I. Oseledets in [35].

Low-ranking tensors do not often occur in praxis, as such we replace the
requirement rank Xk = rk by

Xk = Rk + Ek, rank Rk = rk, ‖Ek‖F = εk, k = 1, . . . , d− 1. (8.2)

From this we can formulate an error estimate for the approximation by the
algorithm.

Theorem 21. For each d-tensor x ∈ Rn1×...×nd whose unfoldings have ranks
fulfilling (8.2) the TT-SVD-Algorithm 8.1.1 computes a tensor y in the TT-

76



format with TT-ranks rk and

‖x− y‖F ≤

√√√√d−1∑
k=1

ε2
k. (8.3)

Proof. We proof this using induction. For d = 2 we are considering the SVD
and the statement of the theorem follows from (4.22).

Let d > 2 be arbitrary and start by considering the first unfolding X1.
It is decomposed as

X1 = U1Σ1V
T

1 + E1 = U1Z1 + E1

where Z1 = Σ1V
T

1 is the matrix that goes into the iteration in the TT-
SVD-Algorithm. Z1 is also equivalent to a (d − 1)−tensor z1 analogous to
the proof of Theorem 19. It will be approximated by some tensor ẑ1 in
the following. This approximation will in iteration become y, as per the
algorithm. As such we need to consider it in our error estimate, and not the
original Z1.

However we first consider the error estimate, knowing U1E1 = 0 by
properties of the SVD:

‖x− y‖2F =
∥∥∥A1 − U1Ẑ1

∥∥∥2

F
= ‖A1 − U1Z1‖2F +

∥∥∥U1

(
Ẑ1 − Z1

)∥∥∥2

F

and then by definition and the knowledge that U1 has orthonormal columns,
we can formulate by properties of the SVD:

‖x− y‖2F ≤ ε
2
1 +

∥∥∥Ẑ1 − Z1

∥∥∥2

F
.

Now it remains to confirm that the unfoldings of z1 are bounded by the
property (8.2) to be able to iterate. This is fairly easy to do once we consider
Z1 = UT1 X1 and since U1 is orthonormal, this has to hold. Iterating through
this induction we arrive at∥∥∥Ẑ1 − Z1

∥∥∥2

F
≤

d−1∑
k=2

ε2
k.

This, together with the estimate above, closes the proof.

As a direct consequence of this we can formulate the following corollary,
which guarantees us quasi-optimality when it comes to tensor-approximation
via the TT-SVD-Algorithm:

Corollary 1 (Quasi-optimality). For each d-tensor x ∈ Rn1×...×nd and
ranks r, a best-approximation of x in the Frobenius-norm with TT-ranks
bound by r exist, which will be called xbest. Also the approximation y com-
puted by the TT-SVD-Algorithm is quasi-optimal:

‖x− y‖F ≤
√
d− 1

∥∥∥x− xbest
∥∥∥
F

The proof to this can be found in [35, Corollary 2.4].

77



8.2 Basic Operations

We introduce another notation mostly used for tensor representations of
matrices, although it works for such representations of vectors as well [28].

Definition 22. Let A be a TT core of ranks (p, q) and mode size m.
Then we define TT blocks of the core A as a vector in Rm: Uα,β, α =
1, . . . , p, β = 1, . . . , q with A(α, i, β) = (Uα,β)i. This ensures that A can be
represented by its core matrixU1,1 · · · U1,q

...
. . .

...
Up,1 · · · Up,q


This notation is especially useful to describe large tensor matrices (in

[28] it is used to define explicit representations), especially when combined
with the following definition of the rank core product “on”.

Definition 23 (rank core product). Let cores A(1) ∈ Rr0×m1×r1 and A(2) ∈
Rr1×m2×r1 be represented by their TT blocks U

(1)
α0,α1 and U

(2)
α1,α2 , 1 ≤ αk ≤ rk

for k ∈ {0, 1, 2} of mode sizes m1 and m2, respectively. The rank product
A(1) on A(2) is defined as a core of ranks (r0, r2) consisting of blocks

Uα0,α2 =

r1∑
α1=1

U (1)
α0,α1

⊗ U (2)
α1,α2

for all valid values of α0, α2 and mode size m1m2.

For example,[
U1,1 U1,2

U2,1 U2,2

]
on
[
V1,1 V1,2

V2,1 V2,2

]
=

[
U1,1 ⊗ V1,1 + U1,2 ⊗ V2,1 U1,1 ⊗ V1,2 + U1,2 ⊗ V2,2

U2,1 ⊗ V1,1 + U2,2 ⊗ V2,1 U2,1 ⊗ V1,2 + U2,2 ⊗ V2,2

]
and if we set U (i) as the core matrix of some core u(i) then it holds that
A = A(1) on A(2) on · · · on A(d) and we can write:

αA + βB =
[
A(1) B(1)

]
on
[
A(2)

B(2)

]
on · · · on

[
αA(d)

βB(d)

]
. (8.4)

It stands to note that this is not a unique representation of this addition, in
fact one with lower ranks might exist, just a simple one in terms of writing
and computing. Important to note: to avoid confusion, core matrices will
always be in square brackets, while ordinary matrices will be in parentheses.

An important conclusion is the fact that operations on tensors in the
TT-format are performed on a core by core principle. This means that the
tensors involved are generally of far smaller size than for the same operation
on full tensors. This reduction in complexity is an important benefit of
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using the TT-format instead of full tensors. It is in analogue to the tensor
product form of the projections we wish to consider. Only instead of in
tensor product form, tensors in the TT-format are in a low-rank form ( only
a tensor in TT-format with ranks uniformly 1 is in fact in tensor product
form).

For more complex operations in the TT-format consider [35, 24]. There
is the concept of rounding, by which we compute a truncated SVD for each
core to reduce rank, for example after having performed an addition. This
is done by computing the QR-decomposition of both the cores adjacent to
the considered rank in the direction of said rank. Then the truncated SVD
of the product of the two R-matrices (which contain all the non-orthogonal
data) is computed and the matrices re-multiplied to get the cores back.

As such it becomes clear why we wish to truncate while computing the
TT-format, not only does it stop us from having to compute the full (po-
tentially of high rank) format, truncating while computing also involves less
decomposing and reshaping than rounding.

Also important is the concept of matrix-vector multiplication and com-
puting the norm, more details can be found in [35, 24].

An important conclusion is that all these operations are performed on a
core by core principle. This means that the tensors involved are generally of
far smaller size than for the same operation on full tensors. This reduction
in complexity is an important benefit to using the TT-format instead of full
tensors.

8.3 Continuous Case

Analogous to section 4, where we consider the SVD in the continuous and
discretized case, there is also a continuous version of the TT-format. It is
based on the same principle as the tensor format, but applied to continuous
functions via the continuous SVD and not tensors. The following results are
based on the ones from [13].

As in [13] we consider f ∈ Hk(Ω1 × . . . × Ωd). In constructing the
continuous TT-decomposition, we proceed as in Theorem 19, using the con-
tinuous SVD as defined in section 4.1. This ansatz leads us to separating
the variables x1 ∈ Ω1 and (x2, . . . , xd) ∈ Ω2 × . . .× Ωd as

f(x1, . . . , xd) =

∞∑
α1=1

σ(1)
α1
φ(1)
α1

(x1)ψ(1)
α1

(x2, . . . , xd).

The (1) in the superscript is there to clarify that these objects are defined
by the first application of the continuous SVD, which is the splitting off of

Ω1. For example, the in the following appearing φ
(2)
α2 is different from φ

(1)
α1 ,

not even defined over the same domain.
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Now we proceed similarly to the discrete case by separating the combined
index (α1, x2) ∈ N × Ω2 from (x3, . . . , xd) ∈ Ω3 × . . . × Ωd. Again, we use
the continuous SVD to get(

σ(1)
α1
ψ(1)
α1

(x2, . . . , xd)
)∞
α1

=
∞∑

α2=1

σ(2)
α2

(
φ(2)
α1,α2

(x2)
)∞
α1

ψ(2)
α2

(x3, . . . , xd),

here in convenient vector notation, since without loss of generality the indices
αi run to infinity.

Repeating this separation step until all directions are separated provides
us the wanted format

f(x1, . . . , xd) =

∞∑
α1=1

· · ·
∞∑

αd=1

φ(1)
α1

(x1)φ(2)
α1,α2

(x2) · · ·φ(d−1)
αd−2,αd−1

(xd−1)φ(d)
αd−1

(xd)

(8.5)

with σ
(d−1)
αd−1 ψ

(d−1)
αd−1 (xd) = φ

(d)
αd−1(xd).

Having d-many nested sums going from 1 to ∞ makes this format only
theoretically calculable. As such we of course wish to truncate, which leads
to the following definition.

Definition 24 (Continuous TT-Format). For a function f ∈ Hk(Ω1× . . .×
Ωd) we define the continuous TT-format with ranks r ∈ Nd−1 by

fTT
r (x1, . . . , xd) =

r1∑
α1=1

· · ·
rd∑

αd=1

φ(1)
α1

(x1)φ(2)
α1,α2

(x2)

· · ·φ(d−1)
αd−2,αd−1

(xd−1)φ(d)
αd−1

(xd), (8.6)

defined using the TT-decomposition from above.

It is very important to note here that the functions φ
(i)
αi−1,αi in (8.6) are

not the same as in (8.5). This is due to the fact that by truncating to rank
ri in step i we change the function to be approximated in step i+ 1 (which

would be ψ
(i)
αi ), which of course iterates down the following steps.

We already encountered similar behaviour in the proof of Theorem 21,
which is the analogy to the following theorem for the error estimate. First
we need a few definitions: Analogously to (8.2) we define√√√√ ∞∑

αk=rj+1

(
σ̃

(j)
αj

)2
= εj , (8.7)

where σ̃
(j)
αj is the singular value computed in the j-th step of the continuous

TT-format and is notably not the same as for the not truncated decompo-
sition. And for an estimate independent of the singular values in question
we choose an ε ∈ R+ and set:

r1 = ε−
1
k , r2 = ε−

2
k , . . . , rd−1 = ε−

d−1
k . (8.8)
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Theorem 25. For a function f ∈ Hk(Ω1 × . . . × Ωd) and a rank vector
r ∈ Nd−1 we can formulate the error estimate

∥∥f − fTT
r

∥∥
L2(Ω1×...×Ωd)

≤

√√√√d−1∑
j=1

ε2
j

where εj is defined as in (8.7).
Independently of the singular values we can formulate for a function

f ∈ Hk+1(Ω1 × . . .× Ωd) and a desired accuracy ε :∥∥f − fTT
r

∥∥
L2(Ω1×...×Ωd)

.
√
dε,

where the ranks r are given by (8.8).

The proof for both can be found in [13, Section 4.2]. The first state-
ment is also completely analogous to the proof of Theorem 21. The second
statement in contrast needs a lot more analytical groundwork, which can be
found in the above cited work in all its details.

In the two-dimensional case we now tried to relate the continuous case to
the discretized one. Unfortunately for more than two dimensions this is not
possible in the same way. This is due to the fact that, as described above,
the error of the truncation propagates through the following terms. These
accumulating errors make relating the two cases not practically possible.

9 The higher dimensional Combi-format

Having now defined the concept of a tensor and the TT-format, we can
generalize the two-dimensional Combi-format to more dimensions.

For this we first need to consider the combination technique in more
than two dimensions, which we will do in the following section. Then we
can define the generalized Combi-format and consider its properties.

As already mentioned, formulating a convergence theory is more difficult
in higher dimensions, a precise estimate even impossible due to the lack of
an Eckart-Young-Mirsky theorem. Still we will formulate what is possible
in section 9.3 and then briefly show convergence in praxis on one example.

9.1 Combination technique for higher Dimensions

As we wish to proceed as in the two-dimensional case, we need to define
the combination technique for higher dimensions. The general idea remains
the same; if we recall the visual representation in the coordinate system we
are now considering more than two axes. This results in an outer sum over
d-many terms.
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For a function u ∈ H ⊂ L2(Ω) the d-dimensional general combination
technique of level m (also compare to [22, Chapter 3.2]) is given by the
formula

CT mu =
d−1∑
i=0

(−1)i
(
d− 1

i

) ∑
|l|1=m+(d−1)−i

Plu. (9.1)

If we compare the formula (9.1) for d = 2 to our first definition of the
combination technique at (3.1), we see that the two definitions are equiva-
lent.

It is important to remember the combination factor
(
d−1
i

)
, which is not

necessary in the two-dimensional case.
Analogous to the two-dimensional case (recall (3.2)) we can rewrite

CT mu =
∑
l∈ICm

(−1)m+(d−1)−|l|1
(

d− 1

m+ (d− 1)− |l|1

)
Plu (9.2)

with the d-dimensional index-set

ICm =
{

l ∈ Nd|m ≤ |l|1 ≤ m+ (d− 1)
}
. (9.3)

This is again compatible with the definition (3.3) of the two-dimensional
case.

The results of section 3 generalize for this higher-dimensional setting.
For storage cost and computational complexity we do need to adjust the
number of summands (the size of the index-set ICm).

9.2 Combi-format for higher Dimensions

Having done all the preparatory work, we can now define the Combi-format
in its general form. As discussed we do this with the help of the TT-
format. This also guarantees that the Combi-format for higher dimensions
is compatible with the definition for two dimensions.

Analogously to (6.1) we can now define the Combi-format also for higher
dimensions, using a low-rank tensor-approximation-scheme instead of the
SVD. In general we will consider the TT-format as defined in Definition 18
and therefore the truncated TT-format operator Υr as defined in Definition
20.

Therefore we get

CFm,ru =
∑
l∈ICm

(−1)m+(d−1)−|l|1
(

d− 1

m+ (d− 1)− |l|1

)
Υrl (Plu) (9.4)

where r = (rl)l∈ICm is the matrix (vector of vectors) of truncation rank-
vectors indexed by the grid it is applied to.
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We will in general for each TT-format truncate the whole format with
the same rank rr, so the vector of vectors that is the the index r of the
Combi-format is usually only a vector. If all TT-formats are truncated in
the same way, we replace this index by an integer r.

The Combi-format inherits its properties from the combination tech-
nique and the TT-format. Since the TT-format is based on the SVD, these
properties are analogous to the two-dimensional case. Most importantly:
the Combi-format is not linear.

What we can do is adding two Combi-formats of the same level, by
adding the TT-formats of corresponding level-indices l. Adding two tensors
in the TT-format is explained in (8.4). For the sake of efficient computing
a re-orthogonalization should be performed after an addition. Since adding
two tensors (in the TT-format, by the described method) together results in
a tensor having the sum of the ranks of the original tensors as the maximal
rank, we might also want to truncate again. Strictly speaking we do not
know the rank of the resulting tensor (only the maximum possible one) and
can therefore not write down the resulting format in the same way as above.
Truncating in the re-orthogonalizing by some chosen ranks would resolve
this notational problem.

A point we do wish to highlight is the fact that using the TT-format in
contrast to full tensors in the combination technique makes computations
easier. We have briefly discussed this in section 8, when we considered the
properties of the TT-format. Since computations are generally done on a
core-by-core principle and these cores (themselves tensors) are much smaller
than the full tensor, the computational complexity is much reduced. More
details can be found in [35].

We have chosen the TT-format due to its beneficial properties and its
compatibility with the SVD. An idea for further study is to consider other
low-rank tensor-decompositions, for example the hierarchical tucker format
(also known as HT-format) [11].

9.3 Convergence

In contrast to the two-dimensional case we cannot formulate a precise con-
vergence theory. For more than two dimensions the problems we already
had in two dimensions still persist, while we also get more new problems.
This is due to one part of what is often also referred to as the Eckart-Young
theorem (see for example [26, 37, 36] ), which states that there is no such
thing as the SVD in more than two dimensions. Or more generally: there is
no method which produces a low-rank best-approximation in a least-squares
sense for an arbitrary tensor x.

We have already in a way considered this when we formulated Corollary
1. The only result we can provide is that our approximation is quasi-optimal.
This does give us hope for the practical application; in the field of higher
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dimensional tensor formats and algorithms based on them there are many
examples where practical computation outperforms the difficult to formu-
late theory (for example the AMEn-Algorithm for iterative solving of linear
systems [6]).

We pursued multiple ideas for our convergence proof in the two dimen-
sional case. The first idea, switching the order of operations, fails to gener-
alize. We could generalize the difference of switching the order of operations
to Υ l

rPlf − Plf
TT
r where fTTr is defined as in Definition 24. However try-

ing to bound this term would not work in even the limited fashion of the
two-dimensional case.

All in all this leads to a similar situation as in the two dimensional case:
the only estimate we can formulate is based on the triangle inequality and
heavily dependent on the function in question.

More precisely formulated we use the same idea as (6.15)

‖f − CFm,r(f)‖ ≤ ‖f − CT m(f)‖+ ‖CT m(f)− CFm,r(f)‖ ,

only this time over more than two dimensions.
The first summand is still the convergence of the combination technique,

only now in higher dimensions. We have not found an explicit proof for
higher dimensions in the literature, but in [17] it is said that the proof does
generalize for higher dimensions, it only becomes a lot more work to write
down and is notationally difficult. Also the constant does depend on the
dimension.

The second summand is now a sum of differences between discretized
functions and their approximation via the truncated TT-format. Here we
can again refer to Corollary 1, which at least gives us quasi-optimality of
this approximation.

If we want to actually bound the error of this approximation we need to
consider Theorem 21. This results in an estimate

‖CT m(f)− CFm,r(f)‖ ≤
∑
l∈ICm

∥∥∥(Id− Υ l
rl

)(Plf)
∥∥∥ (9.5)

≤
∑
l∈ICm

√√√√d−1∑
k=1

(
εkl
)2

(9.6)

where we have defined the εkl in accordance with Theorem 21 as

X l
k = Rl

k + El
k, rank Rl

k = (rl)k ,
∥∥∥El

k

∥∥∥
F

= εkl , k = 1, . . . , d− 1.

with X l
k being the k-th unfolding of the tensor Xl = Plf .

This estimate now depends directly on the singular values of the TT-
decomposition in each step. These cannot easily be bounded. While we do
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have Theorem 25, bounding the discretized singular values by the continuous
ones is not analogous to the two-dimensional case. This is due to the fact
that both the truncation and the discretization error propagate through the
format. As such relating the discrete TT-format to the continuous one is
not as easily done as for the SVD and requires further study.

Concluding we can say that while we have some results that give us hope
that the Combi-format should show usable convergence in praxis, a precise
convergence theory cannot be formulated (yet).

Choice of Truncation-ranks Due to the fact that this second term is
the one that is determined by the chosen truncation ranks the question on
how to choose these ranks is not answerable as in the two-dimensional case.

Theorem 21 and the above give us an idea on how to bound the error
using the singular values of unfoldings of the tensor. Due to the already dis-
cussed propagation of the truncation error through the format, this is how-
ever not a precise bound. What remains is the quasi-optimality of Corollary
1, which gives us the factor

√
d− 1 we have to consider additionally.

Generally, we proceed as in the two-dimensional case discussed in section
6.4. Instead of relatively straightforwardly considering one truncation, we
need to consider all d − 1 many. This means instead of adding up all the
discarded singular values of all grids as in (6.24) in Theorem 16, we now
need to consider (9.6) and the additional factor of quasi-optimality

√
d− 1.

How to maybe optimize this has to be studied in future.

9.4 Praxis

In the following we apply the Combi-format for higher dimensions in praxis.
As shown above with the rise of dimension the computational complexity
also gets higher. We did not in the scope of this work employ a scientific
computer cluster to solve our approximation problem and were therefore
limited by practicability. As such we do not do any in depth analysis of
difficult functions, but rather just show the most important fact to show:
Convergence.

This is our proof of concept: the Combi-format converges in higher di-
mensions as well, and provides a reduction in computational complexity.

This is the function

f(x, y, z) = exp(π · x · y · z · (1− x) · (1− y) · (1− z))− 1 (9.7)

defined on [0, 1]3 . Since exp(0) = 1 this function is indeed zero on the bound-

ary and therefore fulfils the requirements (f ∈ L2
(

[0, 1]3
)

rather trivially).

Due to the outer exponential function we can expect a very high smooth-
ness, but due to the polynomial exactness of our space still only being two
in each direction (recall Theorem 12 and the convergence considerations for
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Figure 17: The convergence of the function (9.7) approximated in the
Combi-format with different truncations and measured in the analytical er-
ror.

the rank-8 function in section 7.3) we can only expect a convergence rate of
O(2−2l) = O(h2) for level l. This rate is indeed visible in Figure 17.

Also visible is the convergence behaviour of the Combi-format for dif-
ferent truncations. All truncations are to be understood as being the same
throughout the format; when we rank-truncate after rank 4, we truncate
for all tensors in the format uniform: all TT-ranks to 4. In this case, for
the maximum level of the format we consider, the Combi-format shows the
same convergence as the combination technique (as visible in Figure 17).
The same holds for singular-value-truncation at 10−6.

At such low levels as we are considering for ease of calculations (maxi-
mum level 6 is not a lot for more advanced computers) the full potential of
the Combi-format is not realized, but even for such low levels we do see a
reduction in size of the considered tensors. Especially in higher dimensions
this does have an exponential effect.

Other Environments The code in this work was written in Julia [1],
with help of the ITensor [8] module for the tensors and the TT-format. It
can of course be transferred into other languages, using other libraries.

The operations that need to exist in the wanted environment are higher-
dimensional integration, basic matrix calculations (including inverting) the
SVD and/or some way of calculating and storing the TT-format directly. In
the following we give a not at all exhaustive overview over different possible
programming environments.

The ITensor module exists also for C++; there are also multiple libraries
for higher dimensional integration in C++. There also exist a TT-toolbox
for MATLAB just called TT-Toolbox [33] and one for Python, called ttpy

86



[34]. Both are written and maintained by Ivan Oseledets. For both languages
libraries for higher dimensional integration also exist.

Finally there is the t3f [32] library for working with tensors in the TT-
format in TensorFlow (which is build in Python). The documentation on
this library also has a site comparing different libraries for implementing the
TT-format, including the above named.

All in all we can see that although the TT-format is not a standard in
most programming environments, there are nonetheless multiple options for
implementing our code in other environments. Since our code is not highly
complex we can assume that porting the code into a different language is not
very difficult. As such our Combi-format can with a little effort be used in
projects that might for example require a different programming language
than Julia.

10 Conclusion

In this work we have introduced the Combi-format, a method for solving
operator equations like function approximation or differential equations. It
is based on the combination technique for sparse grids and the singular
value decomposition and aims to improve the former with use of the latter.
Furthermore, to achieve usability for higher dimensions the tensor train
format is utilized.

We have succeeded in the goal to improve the combination technique.
If we choose the truncation in a balanced way the Combi-format (for two
dimensions) achieves the same order of convergence as the combination tech-
nique. This is the same order of convergence as straightforward approxima-
tion onto the sparse grid. We have also shown this convergence order in
praxis on a few examples.

While the cost of computing the format is slightly bigger than computing
the combination technique due to having to perform additional singular
value decompositions, the Combi-format generally has a reduced number
of variables. Therefore the storage cost of the format is less and further
computations we may wish to perform with it have less computation cost.

In higher dimensions we have at least shown that achieving the same
order of convergence as the combination technique is possible, even if we
cannot formulate an efficient algorithm to compute the truncation ranks
needed for it. Also the use of the TT-format simplifies calculations in higher
dimensions.

Unfortunately the proof for the order of convergence is not optimal,
maybe a better analysis can be found. As it is the general rate of conver-
gence is not meaningful for choosing truncation ranks, and the more specific
version is not computable a-priori. But since almost all values we need to
choose the truncation ranks in a useful matter need to be computed anyway
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we have formulated an algorithm to do this. In future this might actually be
formulated to be done by a computer and not a mathematicians judgement.
Additional work may also be done to adapt this format to using further
optimizations like dimensionally-adaptive sparse grid methods.

Concluding this work, I have defined the new Combi-format which can
justify its higher computation costs by a reduction in storage space and easier
computations while still achieving a competitive order of convergence.

A Documentation

The following appendix contains a documentation of the code accompany-
ing this work. The code is written in the Julia programming language [1].
Also used are the modules (basically what libraries are in C-like languages)
HCubature [27] for the multi-dimensional integration and ITensor [8] for
the tensors.

A.1 Modules

We define the code for this work within a module, fittingly called Combi.

Combi - Module

module Combi

export SubspaceD ID , f , loop Btensor ,
l oop CF er ro r n l , l o op CF er ro r sv n l ,
l o op CF er ro r cu t n l , p a r a l l e l s v v

us ing De l im i t edF i l e s , LinearAlgebra ,
ITensors , HCubature , ITensors .HDF5

The module containing all needed functions for the Combi-format.

A.2 Types

Types are similar to the concept of a class in object-oriented programming.
The following struct is used to collect all necessary data for each sub-grid
in the Combi-format.

SubspaceD ID - Type

s t r u c t SubspaceD ID
dim : : I n t e g e r
l e v e l : : Vector
s t r i d : : S t r ing
idx nr : : I n t e g e r
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t o l : : Float64
c u t o f f : : I n t e g e r
index : : Vector

end

A struct that contains all identifying information for a sub-grid in the
Combi-format.

Arguments

� dim::Integer : The dimension of the sub-grid (the number of
directions)

� level::Vector : The level of the grid in all directions

� str id::String : Identifying string used for file in- and output
(generally the same for the whole format)

� idx nr::Integer : Index of the sub-grid in the Combi-format

� tol::Float64 : If singular-value-truncation is used, this is the
tolerance

� cutoff::Integer : If rank-truncation is used, this is the max.
rank

� index::Vector : These are the indices of the sub-grid needed for
the module “ITensor”

A.3 Constants

These are strings used whenever files need to be accessed. They are assigned
the directory of the folders in which these files are stored. When first build-
ing the module Combi these strings need to be changed in the source file
Helpfct.jl.

Combi.bfolder - Constant
Directory of the folder for the results of loop Btensor

Combi.ifolder - Constant
Directory of the folder for the results of fint

Combi.cfolder - Constant
Directory of the folder for the results of loop CF error nl, loop CF error cut nl,
loop CF error sv nl

Combi.sfolder - Constant
Directory of the folder for the results of parallel svv
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A.4 Functions

Finally we define the functions (also called methods) for the Combi-format
and the calculation of the approximation error as described in section 7.1.

Exported: We export the following functions.

Combi.f - Function

f ( x )

The function we wish to approximate on the unit cube. x has to be of
an appropriate type to be numerically integrated.

Combi.loop Btensor - Function

loop Btensor ( a : : Integer , b : : Integer ,
s t r i d : : Str ing , dim : : Integer ,
t o l : : Float64 =1.e=16)

Loops ind Btensor of dimension dim from level a to b (both inclusive)
and writes results to file identified by str id. Also executes fint.

Combi.loop CF error nl - Function

l oo p C F e r ro r n l ( a : : Integer , b : : Integer ,
s t r i d : : Str ing , dim : : Integer , s t r o u t : : S t r ing )

Loops parallel CF error nl of dimension dim from level a to b (both
inclusive) and writes results to file identified by str out. This is the
combination technique, not truncated.

Combi.loop CF error sv nl - Function

l o o p C F e r r o r s v n l ( a : : Integer , b : : Integer ,
s t r i d : : Str ing , dim : : Integer , s t r o u t : : Str ing ,
t o l : : Float64 )

Loops parallel CF error sv nl of dimension dim from level a to b

(both inclusive) and writes results to file identified by str out. This
uses singular-value-truncation with tolerance tol.

Combi.loop CF error cut nl - Function

l o o p C F e r r o r c u t n l ( a : : Integer , b : : Integer ,
s t r i d : : Str ing , dim : : Integer , s t r o u t : : Str ing ,
cut : : I n t e g e r )
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Loops parallel CF error cut nl of dimension dim from level a to b

(both inclusive) and writes results to file identified by str out. This
uses rank-truncation with max rank cut.

Combi.parallel svv - Function

p a r a l l e l s v v ( f l e v e l : : Integer , s t r i d : : Str ing ,
s t r o u t : : S t r ing )

Calculates the singular values for all sub-grids of level flevel using
calc sv. Uses function values from the files identified by str id and
writes to a file identified by str out.

Implementing the Combi-format: The above functions call on the fol-
lowing ones to actually implement the Combi-format (and perform the ap-
proximation error calculation). All functions starting with “parallel CF”
implement the sum of the Combi-format by calling, in parallel, the as-
sociated functions starting with “ind subspace”. These functions perform
the necessary calculations on a particular sub-grid, creating the necessary
SubspaceD ID.

parallel CF error nl - Function

Calls ind subspace error nl in parallel and calculates the error for
the whole format of level flevel, dimension dim and identifier str id.
This is the combination technique, not truncated. This is not linear!

parallel CF error sv nl - Function

Calls ind subspace error sv nl in parallel and calculates the error
for the whole format of level flevel, dimension dim and identifier
str id. This uses singular-value-truncation with tolerance tol. This
is not linear!

parallel CF error cut nl - Function

Calls ind subspace error cut nl in parallel and calculates the error
for the whole format of level flevel, dimension dim and identifier
str id. This uses rank-truncation with max rank cut. This is not
linear!

ind subspace error nl - Function

Calculates the error on an individual sub-grid characterized by the
arguments.

This creates a SubspaceD ID and then calls ind norm for the whole
Format. This is the combination technique, not truncated. This is not
linear!
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ind subspace error sv nl - Function

Calculates the error on an individual sub-grid characterized by the
arguments.

This creates a SubspaceD ID and then calls ind norm sv for the whole
Format. This uses singular-value-truncation with tolerance tol. This
is not linear!

ind subspace error cut nl - Function

Calculates the error on an individual sub-grid characterized by the
arguments.

This creates a SubspaceD ID and then calls ind norm cut for the whole
format. This uses rank-truncation with max rank cut. This is not
linear!

Basics: There are also the functions returning and/or calculating the basic
components of the format.

b - Function

Basic hat function of level 1.

Btensor - Function

Returns the right-hand-side tensor for projection onto the subspace
defined by Ssp.

write Btensor - Function

Loads the right-hand-side tensor (result of Btensor) from file.

load Btensor - Function

Writes the right-hand-side tensor (result of Btensor) to a file.

Calls Btensor.

fint - Function

Writes the result of fnorm for f and with tolerance tol in file identified
by str id.

fnorm - Function

Computes the L2-norm of f with tolerance tol over unit cube of dimen-
sion dim.

Mtensor - Function

-Returns the mass-matrix of mixed spaces as a tensor in direction
ind for the sub-grid defined by Ssp and Sspt.

-Returns the mass-matrix as a tensor in direction ind for the sub-
grid defined by Ssp.
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Mtensor inv - Function

Returns the inverted mass-matrix as a tensor in direction ind for the
subspace defined by Ssp.

Xtensor - Function

Returns the grid-tensor of the subspace defined by Ssp.

Xttensor - Function

Returns the grid-tensor of the subspace defined by Ssp in TT-Format,
without explicit truncation.

Xttensor sv - Function

Returns the grid-tensor of the subspace defined by Ssp in TT-Format,
with singular-value-truncation

Xttensor cut - Function

Returns the grid-tensor of the subspace defined by Ssp in TT-Format,
with rank-truncation.

calc sv - Function

Calculates and returns the normed and squared singular values of the
sub-grid identified by Ssp. This is ONLY for 2D.

Basics of error calculation: Much the same as above, the following
functions calculate parts of the analytical error on the subspaces.

calc error m - Function

Calculates the local error of the subspace defined by Ssp.

calc error sv m - Function

Calculates the local mixed error of the subspace defined by Ssp, with
singular-value-truncation.

calc error cut m - Function

Calculates the local mixed error of the subspace defined by Ssp, with
rank-truncation.

ind norm - Function

Calculates the scalar product X ·M ·XT
2 for X defined by Ssp and X2

by Sspt without truncation.

ind norm sv - Function

Calculates the scalar product X ·M ·XT
2 for X defined by Ssp and X2

by Sspt with singular-value-truncation.
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ind norm cut - Function

Calculates the scalar product X ·M ·XT
2 for X defined by Ssp and X2

by Sspt with rank-truncation.

Help-functions: The following functions are routines which perform some
necessary calculations that are used in the other functions.

There is ctrafo, which performs a coordinate transform; level order

returns the level of a basis function; nlev iterates over level-indices; smm,
total smm and it smm calculate the number of level-indices of certain parts
of the combination technique.

More details can be found in the code.
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Multiskalenräumen”. Dissertation. Universität Bonn, Apr. 2000.

[30] Antonia Krendelsberger. “Niedrigrang-Tensormethoden zum Lösen lin-
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