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Notations and Abbreviations

Notations

〈·, ·
〉
L2 L2-inner product

N The set of natural numbers

R The set of real numbers

1 Matrix with all ones

‖ · ‖2 L2 norm

‖ · ‖F Frobenius norm

Ai,j Entry of the matrix A at the crossing of i-th row and j-th column

Abbreviations
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CNN Convolutional Neural Network

DNN Deep Neural Network

LSTM Long Short Term Memory

mIoU Mean Intersection-over-Union

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PIDE Partial Integro-Differential Equation

ResNet Residual Neural Network

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent
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Chapter 1

Introduction

Recent advancements in storage capacities and digitalization of data from all walks
of life have made it possible to create and store huge amounts of raw data that is almost
impossible to process manually. Deep learning is a class of machine learning methods that
has garnered a lot of attention in the last couple of decades in this regard. Deep Neural
Networks (DNNs) can be used to train machines to learn from examples, to recognize
patterns in the data effectively and to make predictions on unseen examples. They have
had a lot of success especially in supervised learning, where the relation between the data
and the labels is highly nonlinear [GBC16]. The inputs are transformed through a series
of layers with nonlinear transformations that contain trainable weights, and the network
progressively extracts higher-level features from the input as the layers get deeper. These
deep architectures learn very complex mappings and can represent a wide range of functions.
DNN has found several applications in the last decade, such as natural language processing
[CW08] and solving partial differential equations (PDEs) [SS18], just to name a few.

Convolutional Neural Networks (CNNs) are a special class of neural networks. They
make use of spatial correlations between features by introducing a series of spatial convolu-
tion operators into the network with compactly supported stencils/kernels and point-wise
nonlinearities, where the trainable kernel weights capture hierarchical patterns. CNNs
increase the computational efficiency of the network due to the sparse connections between
the features and due to the reduction in the number of weights via parameter sharing.
Moreover, in [Zho20], it is argued that CNNs can approximate any continuous function
to an arbitrary accuracy if the depth of the neural network is large enough. CNNs were
introduced in the 1990s in order to solve character recognition tasks [LBB+98]. However,
larger datasets, better algorithms and architectural designs, as well as improvements in
computer hardware, have only recently made it possible to train truly deep CNNs. CNNs
got widespread recognition in recent years when a deep CNN was used to beat the state-of-
the-art architectures in the ImageNet image classification challenge [KSH12]. Over the last
decade, CNNs have led to significant improvements in several machine learning tasks, such
as image classification [KSH12; SZ15], semantic segmentation [LSD15] and object detection
[CKZ+15; RHG+15]. In recent years, there have been several advancements with respect
to initialization strategies [HZR+15; GB10], optimization algorithms [COO+18; MS12;
BCN18] or changes in the number of channels or filter sizes [SVI+16].

There are several challenges when it comes to designing and training a neural network.
Firstly, the training of deeper networks becomes more challenging because the parameter
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Chapter 1. Introduction

space is high-dimensional. The performance of the DNN is also very much dependent on
the choice of the optimization algorithm [BCN18]. For example, gradient descent is a
first-order optimization algorithm, which means that it does not take the second derivatives
of the cost function into account. Due to the non-convexity of the optimization problem,
it is possible that we do not have global optimal solutions because the optimizer is stuck
in a local minimum. Secondly, in very deep networks, the features from the earlier layers
are ‘washed out’ through repeated multiplication or convolution with weight matrices,
making it hard for the deeper layers to learn the appropriate gradient directions [SGS15b].
Besides, there is the well-known issue of exploding and vanishing gradients [PMB13]. As the
gradient information is backpropagated [LBD+89], repeated multiplication or convolution
with small weights makes the gradient very small in the earlier layers. To circumvent this
problem, several suggestions have been made, for example, the use of Batch Normalization
[IS15] or careful initialization [HZR+15; GB10]. Furthermore, the long training time of
very deep networks is another persistent issue. The forward and backward passes scale
linearly with the depth of the network. Architectures like the ResNet-152 [HZR+16a]
require several weeks to converge on the ImageNet dataset [DDS+09], even with several
modern GPUs at its disposal.

The performance of a neural network is very much driven by its depth [SZ15]. It is a
modern practice to develop deeper and deeper networks that can generalize better on test
data. However, stacking together several convolutional layers in conventional feed-forward
network architectures typically results in poor propagation. Very often, the accuracy
stagnates and degrades subsequently as the network becomes deeper [GB10; SGS15b]. The
quantum leap came when He, Zhang, Ren et al. introduced the so-called Residual Neural
Networks (ResNets) in [HZR+16a] to alleviate this issue by using identity skip connections
as bypassing paths, which made the training hundreds of layers possible and accelerated
the convergence of deep networks. Since then, ResNets have been employed in several
computer vision tasks, such as semantic segmentation [PHM+17] and object detection
[HGD+17].

By introducing a small step size hyperparameter h, the forward propagation of ResNets
can be interpreted as an explicit Euler discretization of an initial value problem that is gov-
erned by time-dependent nonlinear partial/ordinary differential equations (PDEs/ODEs),
where each discretization step in the time domain can be seen as one layer of the ResNet
[Wei17; HR17]. With this approach, we have a vast and rich theory of numerical methods
and stability theory of PDEs/ODEs at our disposal, which can be used to understand
neural networks better. With the help of this continuous interpretation, the learning
problem can be recast as a parameter estimation of an inverse problem.

The stability of the forward propagation of a neural network is of prime importance.
The output of a neural network or the solution to the underlying PDE/ODE is sensitive to
perturbations of the input data that are not perceived by the human eye, which makes
a network vulnerable to adversarial attacks [ZAG18; MDFF16]. A network with such
instabilities is also harder to train in practice. The forward propagation of the network is
stable if the PDE/ODE itself admits stable solutions. Based on this observation, several
new architectures have been proposed, which are inspired by stable and well-posed solutions
of the underlying PDE/ODE of the neural network [HR17; CMH+18b].

In CNNs, the convolution operation is local, and as a consequence, each layer draws
inferences based on the information that is present in a small spatial neighborhood of
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the image (receptive field) and therefore lacks a holistic view of the feature maps. This
is known as the field-of-view problem [LLU+16]. Recently, there have been attempts to
model the spatial dependencies in an image [JSZ+15]. To make sure that the output layer
has a large receptive field and no information of the image is left out while making the
inference, modern architectures tend to go deep. By stacking more convolutional and
pooling layers, the receptive field is increased, and large parts of the image end up having
an indirect influence on the output layer. This is helpful for databases with long-range
spatial dependencies.

However, the number of trainable weights increases rapidly with depth, and they impose
challenges when using mediocre computational hardware with memory constraints. Thus,
the dilemma is whether one should have a very deep network that has a better performance
due to its widened receptive field but makes the training harder for any optimizer or to
have shallower networks that are easier to train but perform relatively worse.

Objectives and own contributions

The aim of this thesis is to propose neural networks that tackle the problems of stability
and field-of-view of a CNN. The Hamiltonian model from [CMH+18b] is used as the base
architecture due to its stable forward propagation that preserves information as the features
propagate through the layers. Instead of increasing the network’s depth or width to improve
a neural network’s performance, the introduction of nonlocal operators is proposed. Spatial
nonlocality is ubiquitous in computer vision, and its presence in the networks has been
shown to work well for object detection and video classification tasks [WGG+18].

• Therefore, four integral-based spatially nonlocal operators are proposed that address
the issue of field-of-view and reduce the need for deeper networks if one needs better
performance. Three of them are pseudo-differential operators, namely fractional
Laplacian and inverse fractional Laplacian operators that arise in several problems
in physical sciences and applied mathematics [Cap67; Yam12]. The other operator is
a global version of the well-known (weighted) Laplacian operator.

• The proposed operators are discretized in a Nonlocal Block and the associated
forward propagation is inspired by partial integro-differential equations (PIDEs).
These operators, although dense, are implemented efficiently and inserted into the
Hamiltonian model such that we have a relatively low extra computational cost and
very little increase in the number of trainable parameters. Moreover, they can be
inserted into any neural network without any further effort.

• To examine their effectiveness, new network designs are proposed, and the resulting
neural networks are then tested on several image classification benchmark datasets
and on a synthetic dataset that depicts the need for spatial long-range interactions
in a network. Additionally, this thesis demonstrates a real-world application, namely
the networks are used for semantic segmentation tasks in autonomous driving.

• Their better efficacy in comparison to the state-of-the-art deeper architectures is
studied, and their robustness to noise and perturbations to the input features, along
with the networks’ performance in the presence of less training data, is assessed.

3
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• The optimal architectural design for the proposed neural networks is investigated.
More precisely, the effect of the power of the fractional Laplacian and the inverse
fractional Laplacian on the test accuracy and the consequences of over-usage of these
integral-based operators are studied.

• Finally, the extra computational costs of the proposed neural networks along with
their forward propagation stability is investigated.

Outline of this work

This thesis is organized as follows. In Chapter 2, a general introduction to Convolutional
Neural Networks and its building blocks are discussed. The Residual Neural Network
(ResNet) is introduced, and its link with stable dynamical systems is reviewed. Then, a
few PDE/ODE-based stable CNN architectures are discussed, which have been proposed
in the last couple of years. Chapter 3 introduces the PIDE-inspired nonlocal operators,
and a few inherent properties of such operators are explored and reviewed. These nonlocal
operators are then discretized in Chapter 4, and several strategies to save computational
costs are proposed. This chapter also talks about the implementation details for the
nonlocal operators and for the proposed CNNs in general. In Chapter 5, the numerical
experiments related to image classification and semantic segmentation are conducted, where
the proposed networks are put to test, and their effectiveness is examined. Also, we explore
subtle changes in the network design and their effects on performance. Chapter 6 deals
with the forward propagation stability of the proposed CNNs and the computational cost
associated with them. The concluding Chapter 7 summarizes the results and provides a
more general outlook on the topic. In the end, some related ideas for future research are
mentioned.
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Chapter 2

Basic tools in Deep Neural
Networks and their stability

In this chapter, we have a brief overview of Deep Neural Networks (DNNs) and
Convolutional Neural Networks (CNNs) and several basic notions related to it. We look at
the well-known Residual Neural Networks (ResNets) and link it to ordinary and partial
differential equations (ODEs/PDEs). Then, we review several stable architectures that
have been proposed in this regard. Finally, we discuss a few recent works and results in
this field of neural architectures with a dynamical system’s viewpoint.

2.1 Deep feedforward networks for classification and seg-
mentation tasks

A supervised learning problem can be seen as a data fitting problem in a high-
dimensional space. One such machine learning task is image classification, which involves
assigning each element of a dataset to one of the many classes or categories of images. It
forms the basis for several other computer vision tasks such as detection, segmentation and
localization. Let each d-channel image be of dimension Rh×w×d, with each image belonging
to one of the k classes. Then the objective is to find a classifier map J : Rh×w×d 7→ Rk
such that for a given x ∈ Rh×w×d, we have

J (x) ≈ ei ∈ Rk,

if x belongs to class i, 1 ≤ i ≤ k, ei being the basis vector with all zeros except at position
i. The task of semantic segmentation is similar and can be seen as a multi-dimensional
extension of the image classification task. Here, each pixel of each image is supposed to
be assigned to one of the many classes (car, bus, etc.), i.e. each pixel gets a meaning so
that in the end, individual objects on an image can be distinguished from one another (see
section 5.5).

The idea of a Deep Neural Network (DNN) is to emulate the visual cortex [LP16],
where simple cells respond to specific edge-like patterns within their receptive field, and
complex cells have larger receptive fields and are locally invariant to the exact position of
the pattern on the image [HW62]. A DNN has layers of neurons that are connected to
each other, and the signal is passed via these connections to adjacent neurons, depending
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Chapter 2. Basic tools in Deep Neural Networks and their stability

on the state of each neuron. Recent research has shown that DNNs perform really well in
modeling and inferring from complex datasets. The uniqueness of DNNs in comparison
to other machine learning techniques lies in the fact that simple functions are used to
approximate very complex ones.

We will be using feedforward networks for supervised learning, where connections
between the nodes or neurons do not form a cycle, and the signal passes through in one
direction only. Let x ∈ Rd be the input layer to the neural network. Let dl be the number

of nodes in layer l, and let x
(l)
m be the m-th node in the l-th layer, m = 1, . . . , dl. Then the

feedforward network can be seen as a network of connections, with each arrow representing
the weight with which each node value is multiplied in order to compute the nodes of the
next layer (see Figure 2.1). If the values of the l-th layer are given, then the activation of
the j-th node in the l + 1-th layer is given as

x
(l+1)
j = σ

(
dl∑
m=1

w
(l)
m,j x(l)

m + b
(l+1)
j

)
, (2.1)

where w
(l)
m,j , b

(l+1)
j represent the trainable weights and biases respectively, and σ is the

activation function (see page 10). Such connections can be easily represented using a
matrix-vector product.

For classification tasks, the last layer is passed through a softmax function (see section
2.2) to obtain the probability of the input belonging to each of the k classes. Each node
in the hidden layers is passed through an activation function (see section 2.2), which
makes the model highly nonlinear. This concatenation of nonlinear transformations tries to
approximate the classifier map J . To improve this approximation and to make sure that it
is as close as possible to J , the network is trained, i.e. a certain loss function is optimized
with respect to the trainable weights that connect the neurons, as we will see in section
2.3.2. Such networks extract features from raw data and can learn hidden features and
relations between attributes. These relations are later used to predict results on unseen
samples. For a detailed summary of deep learning, see [VBG+17]. For image processing,
often, not every neuron is connected to another. The convolution operator is used instead
to maintain sparsity of connections and nevertheless learn abstract details in an image and
make predictions based on it.

2.2 Building blocks of Convolutional Neural Networks

Convolution is one of the most important and fundamental concepts in signal and
image processing and analysis. Convolutional Neural Networks (CNNs) are neural networks
that use convolutions on data with grid-like topology, like images or videos. CNNs have
garnered a lot of interest in recent years. The first real breakthrough came in 2012, when
the network AlexNet [KSH12] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) by using convolution layers, which was not common at the time. The idea is to
replace fully-connected layers in a neural network with convolution filters, whose weights
are trainable, and after the neural network has been trained for a certain number of epochs,
these filters start to look out for various features in the image. The convolution filters
make use of both spatial and channel-wise information that is present within local receptive
fields at each layer.
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Figure 2.1: A fully-connected 4-layered feedforward neural network.

Convolution

Definition 2.1. Let x ∈ Rh×w be a 1-channel image and let K ∈ Rf×f be a convolution
filter. Then the per-channel convolution (with stride 1) of x and K is given by

(K ∗ x)i,j :=

f∑
p,q=−f

Kp+f+1,q+f+1 xi+p,j+q (2.2)

for i = 1, 2, . . . , h and j = 1, 2, . . . , w.

The filter size f×f is generally much smaller than the actual image size h×w. Here, the
negative indices of x can be treated in various ways. For instance, they can be considered
as zeros. Strictly speaking, the operation should be called cross-correlation. Convolution
involves an additional step of flipping the kernel. However, in machine learning, the flipping
plays no significant role, and therefore both operations are mentioned interchangeably in
the literature.

We will be dealing with mainly 3D images, and we use the so-called 2D convolutions
to this end, where we perform channel-wise convolution and add the results depth-wise
(see Figure 2.2).

Definition 2.2. Let x ∈ Rh×w×d be a d-channel image and let Kl ∈ Rf×f×d be c
convolution filters, l = 1, 2, . . . , c. Then the 2D convolution of x, expressed by the map
κ : Rh×w×d 7→ Rm×n×c, is given by

[κ(x)]l :=

d∑
i=1

Kl,i ∗ xi + bi1 (2.3)

for l = 1, 2, . . . , c, where xi ∈ Rh×w and [κ(x)]l represent each channel of the input and
output respectively, Kl,i ∈ Rf×f is the i-th channel of filter Kl, as defined in equation
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Chapter 2. Basic tools in Deep Neural Networks and their stability

(2.2), bi is a trainable, per-channel bias parameter, and 1 ∈ Rm×n is the matrix with all
ones. The output of this operation is sometimes called feature maps, i.e. each feature map
is the output of each of the c filters.

d

w

h

kernel

Figure 2.2: Kernel sliding over a 3-channel image.

There are a couple of advantages to this approach. Instead of flattening the image, as
is the case in fully-connected layers, we can keep the 2D structure, thereby preserving the
local information. Also, instead of each neuron being connected to another, we have the
advantage of sparse connections (only a few input neurons contribute to a given output
neuron), and kernel weights are instead shared throughout the image. The kernel is much
smaller than the image, which makes sure that we have a certain number of trainable
parameters that do not depend on the input size. Typically, one uses a stack of such layers,
with deeper layers learning more abstract details, like faces, etc., while shallower layers
learn edges or patterns in a certain direction.

Similarly, one can define a convolution operation with stride s > 1, where the filter f
jumps or slides over by s pixels (horizontally or vertically) after the computation of each
node of the output feature maps. This can be seen as a way of subsampling the image.
Moving the kernel by jumps of two pixels, for instance, is equivalent to moving the kernel
by jumps of one but retaining only odd output nodes.

Remark. Note that the height and width of the output image are reduced after the
convolution. We would be using zero-padding, i.e. padding the input image with a certain
number of bands of zeros before the convolution operation so that the output image is of
the desired dimensions. Other common padding options include, among others, symmetric
and periodic padding.

Such a discrete convolution can be seen as a matrix-vector product. For a 2D convolution,
the linear transformation is a doubly block circulant matrix. It is a matrix made up of
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2.2. Building blocks of Convolutional Neural Networks

circulant matrix blocks, each of which is also a circulant matrix (see [GBC16]). This is
what distinguishes CNNs from classical neural networks that have dense matrices.

Example 2.3. Let x be a 4× 4 image and let K =

k1 k2 k3

k4 k5 k6

k7 k8 k9

 be a 3× 3 filter. Then

the convolution (with zero-padding) can be represented as

K ∗ x̃ = M · x̃ =


A2 A3 O O
A1 A2 A3 O
O A1 A2 A3

O O A1 A2

 · x̃ ,

where O ∈ R4×4 is the null matrix, A1, A2, A3 ∈ R4×4 are tridiagonal matrices, i.e. A1 =
tridiag(k1, k2, k3), A2 = tridiag(k4, k5, k6), A3 = tridiag(k7, k8, k9). Here, tridiag(a, b, c)
stands for matrices with a, b and c on the subdiagonal, diagonal and superdiagonal
respectively and zeros otherwise, and x̃ ∈ R16 is the flattened column vector of the zero-
padded version of x so that the output image is of the same spatial dimensions. For a
multi-channel input image, one can similarly just stack up such doubly circulant matrices.
Although this matrix representation is easy to implement using the Kronecker product,
for example, it is memory inefficient due to the storage of repeated entries of the sparse
doubly circulant matrix M . Instead, several more efficient implementations, such as the
im2col method [VAG17], are used.

Pooling

To make sure that only the most important information propagates through the neural
network, and to reduce computational effort at the same time, one performs pooling.
Essentially, the pooling operation replaces the output of each pixel with a summary of
its nearby outputs. For example, max pooling [ZC88] takes the maximum value within a
small rectangular patch of the image. Other pooling options include L1 or L2 norms on
the rectangular patch [SKM+13], average pooling and a stochastic combination of average
pooling and max-pooling [YWC+14]. Average pooling, for example, can be seen as a
convolution (with stride 2) of the image with a 2× 2 convolution filter, i.e.

(P ∗ x) :=
1

4

((
1 1
1 1

)
∗ x

)
, (2.4)

with P being the pooling kernel. The added benefit of such an operation is that it makes the
network invariant under certain transformations, like spatial invariance to input translations.
Such invariances are crucial in determining if some features are present in an image or
not. It also shortens the training time and combats the problem of overfitting in a network
during training, i.e. when the network performs significantly worse on the test examples in
comparison to its performance on the training examples.
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Chapter 2. Basic tools in Deep Neural Networks and their stability

Batch Normalization

Batch Normalization (BN) [IS15] is a computation to normalize each batch of features
by the batch mean and the batch standard deviation. This computation speeds up the
training, makes the optimization landscape smoother and makes the neural network more
robust to the choice of hyperparameters of the network.

Definition 2.4. Let {x(1),x(2), · · · ,x(s)} be a batch of features. Then the Batch Normal-
ization B is defined as

B(x(i)) :=
γ(x(i) − µ)√

σ2 + ε
+ β for i = 1, 2, · · · , s, (2.5)

where µ =
1

s

s∑
i=1

x(i) and σ2 =
1

s

s∑
i=1

(x(i) − µ)2, ε is some small value to avoid diving by

zero, and γ and β are learnable scale and shift parameters.

Batch normalization adds some noise to each hidden layer’s activations, which has a
slight regularizing effect. Besides, it makes the training of deeper networks much easier.
The network can use a higher learning rate without any major issues, such as the well-
documented issue of vanishing or exploding gradients [PMB13]. Although the advantages
of Batch normalization are well documented, the reasons for its effectiveness are still being
discussed.

Remark. Batch normalization is generally used in training only. The moving average and
variance from training are then used on the test data to track the test accuracy.

Activation functions

To introduce nonlinearity in the model and increase the model’s expressive power, the
output of a node in each layer is passed through a nonlinear activation function σ : R 7→ R.
Common activation functions include σ(x) = tanh(x) and the rectified-linear unit or ReLU
function σ(x) = max(0, x) [NH10]. ReLU function is nearly linear, and hence preserves
many of the properties that make optimizing linear models easy. Also, using ReLU leads
to a sparsity of connections, with many neurons being zero.

There are two other activation functions that are usually used on the nodes of the last
layer of a neural network, namely the sigmoid activation function

S(x) =
1

1 + e−x
, (2.6)

which is used for binary classification tasks, and the softmax function S : Rk 7→ Rk,

[S(x)]i :=
exi

k∑
j=1

exj

, (2.7)

which is used for multi-class classification. It returns a probability distribution consisting
of k probabilities that are proportional to the entries of the input vector x and are actually
the different probabilities of the image/pixel belonging to each of the k classes.

10



2.3. Residual Neural Networks and PDEs/ODEs

Figure 2.3 shows a typical VGG-type CNN architecture [SZ15] for a k-class image
classification task, where the input image is passed through several convolutional layers,
followed by pooling. The feature size decreases gradually via pooling, and the number of
channels is increased to assist the learning of more abstract features as the network gets
deeper. Finally, the feature maps are flattened and connected to fully-connected layer(s)
with softmax activation.

64
22
4
×
22
4

conv1

128

11
2
× 11

2

conv2

256

56
× 56

conv3

512
28
× 2

8

conv4

1024 14
×1
4

conv5

1

40
96

fc6

1

k

fc7+softmax

Conv+ReLU

Pooling

Fully Connected+ReLU

Figure 2.3: A typical VGG-type CNN with increasing number of channels and decreasing
spatial feature size.

2.3 Residual Neural Networks and PDEs/ODEs

2.3.1 Residual Neural Networks

The depth of a neural network plays a key role in its performance [SZ15]. Deeper
networks offer computational efficiency for more complex tasks [BCV13]. However, the
optimization of such a network is considerably more difficult, and there is no guarantee
that we have global optimal solutions due to the non-convexity of the optimization problem.
When training such deeper and deeper neural networks, often the accuracy rather saturates
and then degrades rapidly [SGS15b]. Intuitively, the performance of the deeper networks
should ideally be at least as good as that of the shallower networks, if not better. To
tackle this problem, [HZR+16a; HZR+16b] came up with the novel idea of identity skip
connections or shortcut connections.

Let Y0 be the input to the neural network. The forward propagation of a Residual
Neural Network (ResNet) with N layers is given by

Yj+1 = Yj + F(Yj ,Kj) for j = 0, . . . , N − 1, (2.8)

where Yj are the feature values in the j-th layer, Kj are the learnable (convolutional and
BN) weights in the j-th layer, and F is the residual module that can come in various forms,
for example, F(Y,K) = σ(KY + b) or F(Y,K) = −K2σ(K1Y + b), where K = {K1,K2},
i.e. the residual module has two convolutional layers. σ(·) is the activation function
(assumed to be ReLU here) applied component-wise. So essentially, in each step of the
iteration, the residual module tries to learn the update made to Yj .

11
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Remark. Note that the residual module depends not just on layer weights Kj , but also on
layer biases bj . For simplicity, however, we write F(Yj ,Kj) instead of F(Yj ,Kj , bj). Also,
to be precise, if we were to include all the components of the residual block, the forward
propagation in a residual block of ResNet [HZR+16a] could be written as

Yj+1 = Yj + σ(B(Kj,2 σ(B(Kj,1Y + bj)))),

with B representing the Batch Normalization (BN) layer. This equation follows the sequence
of convolution-BN-ReLU. In a follow-up paper [HZR+16b], He, Zhang, Ren et al. suggest
another sequence for computations, namely BN-ReLU-convolution.

Although ResNet has had a lot of success in several competitions such as ILSVRC
[RDS+15], Microsoft COCO [LMB+14] and Pascal VOC challenge [EEVG+15], it was not
the first to make use of these shortcut connections. In [SGS15a], Highway Networks with
gated shortcut connections are proposed. It was inspired by Long Short Term Memory
(LSTM) recurrent networks [HS97], where the parameterized gates control how much
information is allowed to flow across the shortcut. Therefore, ResNets can be seen as a
special case of Highway Networks, but tests have shown that Highway Networks perform
no better than ResNets.

The success of ResNets has made it possible to train up to hundreds of layers and still
achieve compelling performance. Whereas AlexNet [KSH12], GoogLeNet [SLJ+15] and
VGG19 [SZ15] have 8, 22 and 19 layers respectively, the ResNet architecture featured 152
layers. Szegedy, Ioffe, Vanhoucke et al. showed in [SIV+17] that residual links in fact
speed up the convergence of very deep networks. Consequently, over the past few years,
ResNets and residual connections have been used in several fields, not just in classification
tasks. These include, among other areas, machine translation [WSC+16], object detection
[HZR+16a; HGD+17] and semantic segmentation [PHM+17].

Remark. One thing to remember is that, in equation (2.8), the dimensions of Yj and
F(Yj ,Kj) must be the same. But in a typical network for image classification and
segmentation tasks, the width or the number of feature maps of the network increases
as we go deeper into the network since deeper convolutional layers use more filters. To
circumvent this issue, several strategies are suggested in [HZR+16a]. When the dimensions
increase, one can pad zeros to match dimensions, or one can use 1 × 1 convolution to
increase the number of channels of the skip connection Yj , which would introduce a few
extra training parameters.

2.3.2 PDE/ODE formulation of ResNets

The forward propagation of a ResNet can be seen as a discretization of an underlying
nonlinear ordinary differential equation (ODE), and in special cases, as a discretization
of an underlying partial differential equation (PDE). Weinan, Haber and Ruthotto were
among the first to come up with the idea of adding a step size h to the equation of the
forward propagation of ResNets [Wei17; HR17], i.e.

Yj+1 = Yj + hF(Yj ,Kj) for j = 0, . . . , N − 1. (2.9)

This equation could then be interpreted as a forward Euler discretization of the initial
value problem

12



2.3. Residual Neural Networks and PDEs/ODEs

Ẏ(t) = F(Y(t),K(t)), Y(0) = Y0, (2.10)

with the input layer being Y(0) and the output layer values Y(T ) being the solution to the
initial value problem at time T , with T being related to the depth of the network. Thus,
each layer of the network can be seen as the discretization of the continuous solution at
discrete time points in [0, T ], and the problem of learning the network weights Kj can be
seen as a parameter estimation problem or an optimal control problem that is governed by
equation (2.10).

With this interpretation, we have a vast mathematical framework of PDEs/ODEs,
which could provide insights regarding the behavior of CNNs. In fact, in [TG18], it has
been shown that the variational limit of ResNets results in an ODE system. In [ZHW+19],
Zhang, Han, Wynter et al. claim that the presence of the step size h in ResNet-like
networks stabilizes the gradients, allows larger learning rates (and hence faster convergence
of the training), makes the network more robust to noise, and facilitates training of deeper
networks with greater ease. From a dynamical systems viewpoint, the better performance
of deeper networks can be attributed to the increase in the number of time steps while
integrating an underlying PDE/ODE, which results in a more refined approximation of
the continuous-time solution to the PDE/ODE.

After the computation of the final layer YN , the results are generally connected to a
dense layer, followed by the use of the softmax function while dealing with classification
problems. Let the result of this computation be called YN+1, with W representing the
weights and biases of this extra layer. Let the collection of weights and biases of the
other layers be represented as K = {Kj}j=Nj=1 , b = {bj}j=Nj=1 respectively. Then the learning
problem can be cast as a high-dimensional, non-convex optimization problem

min
K,W,b

1

2
S(YN+1,C) +R(K,W, b)

such that Yj+1 = Yj + hF(Yj ,Kj) for j = 0, . . . , N − 1,

(2.11)

where S is the loss function that is convex in the first argument and measures the closeness
of the prediction to the ground truth. Usually, S is assumed to be the least-squares function
and cross-entropy loss function for regression and classification tasks respectively [GBC16].
C is the label or the ground truth for the example Y0 that is propagated through the
network, and R is a convex regularizer that penalizes large weights that are undesirable
(see section 4.3).

Example 2.5. To demonstrate why deeper networks are necessary, we look at a simple
working example. The task is to classify points in Y0 ∈ R3, with each coordinate chosen
uniformly from [0, 40] such that start vectors with ‖Y0‖ ≤ 20 belong to one class, those
with 20 < ‖Y0‖ ≤ 40 belong to another class, and the rest of the points belong to the third
class. A given random start vector Y0 ∈ R3 is propagated through the network governed
by the equation

Yj+1 = Yj + hKTσ(KYj) for j = 0, . . . , N − 1,

where the weight matrix K =

θ1 + θ2 −θ1 −θ2

−θ2 θ1 + θ2 −θ1

−θ1 −θ2 θ1 + θ2

 is kept constant over the
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N layers, θ1, θ2 are the two trainable parameters, and tanh is used as the activation
function. The forward propagation is performed for two cases, namely h = 1, N = 10 and
h = 0.05, N = 200. This means that we are integrating the underlying ODE to a final
time T = 10 in both cases, with a different number of integration steps, i.e. once with a
shallower network and once with a deeper one. After the final layer, the softmax function
is applied to YN to obtain YN+1. The objective is to minimize the loss

min
θ1,θ2

1

2

∥∥YN+1(θ1, θ2)−C
∥∥2

2
,

with C being the one-hot encoded vector, which states the class to which Y0 belongs.
The loss landscape with respect to the parameters in this simple example is shown below
(Figure 2.4). The plot shows that the deeper networks lead to a smoother loss landscape,
which is often necessary for stability during the forward propagation and, of course, a
smoother landscape is easier to optimize via backpropagation [LBD+89].

Figure 2.4: Loss landscape with respect to θ1, θ2 for different depths of the network.

Convolution as partial differential operators

With the introduction of the dummy time variable, we have a time derivative in the
forward propagation. In special cases, such as image classification or segmentation, one
mainly has spatial convolution weights Kj for each layer, instead of dense weight matrices.
In such cases, the convolution weights can be expressed as a linear combination of spatial
differential operators or as a coupled system of partial differential operators in case of
multi-channel convolutions [RH20]. As a result, in the case of CNNs, equation (2.8) is
a forward Euler discretization (in the time domain) of an underlying partial differential
equation due to the inherent presence of spatial derivatives in the residual function F . The
CNN layer weights determine the order, type and stability of the underlying PDE. This
connection motivates us to use the powerful tools of PDEs that have been used for the last
couple of decades in image segmentation [MS89], registration, filtering [PM90; Wei98] and
restoration [AK06]. Since we are dealing with image classification and segmentation, which
involves convolutional layers, we refer to the ODE and PDE interpretation interchangeably,
but we keep in mind that the convolution operation has an inherent spatial aspect to it.
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2.4 Stable architectures for PDE/ODE-based ResNets

When one has to solve the inverse dynamic problem (2.11), the first question that
comes to mind is if the forward propagation through the network is stable, i.e. if the output
of the network varies continuously with respect to its input. This is because, in a network
with unstable forward propagations, the network is sensitive to perturbations in the input
image. Similar images might propagate through the network and yield vastly different
outputs and predictions [GSS15], leaving the network vulnerable to adversarial attacks,
and therefore the network generalizes poorly on test data. Also, such instabilities make the
network harder to train via backpropagation. The well-known problem of exploding and
vanishing gradients [PMB13] is also related to the stability of the forward propagation,
with exploding gradients suggesting that the output of the network is highly sensitive to
the inputs, and vanishing gradients indicating the insensitivity of the output with respect
to the input. To remedy this, we look into the stability of underlying PDEs/ODEs and
link it to the stability of the forward propagation of the network.

2.4.1 Stability of PDEs/ODEs

Definition 2.6 ([RH20]). Let Y(T,K(T )) be the solution to the initial value problem
(2.10), with the initial value Y(0) = Y0. Let Ỹ(T,K(T )) be another solution with the
initial value Ỹ(0) = Ỹ0. Then the given PDE/ODE is stable if there exists an M > 0
independent of the final time T such that

‖Y(T,K(T ))− Ỹ(T,K(T ))‖F ≤M‖Y0 − Ỹ0‖F , (2.12)

where ‖ · ‖F is the Frobenius norm.

Theorem 2.7 ([AP98]). The solution to the PDE/ODE (2.10) is stable if K(t) changes
sufficiently slowly and

max
i
Re(λi(J(t))) ≤ 0, ∀t ∈ [0, T ], (2.13)

where Re(·) is the real part and λi(J(t)) is the i-th eigenvalue of the Jacobian (with respect
to Y(t)) of the right-hand side of equation (2.10).

Lemma 2.8 ([AP98; Asc08]). The forward propagation, given by the forward Euler dis-
cretization (2.9), is stable if

max
i
|1 + hλi(Jj)| ≤ 1, ∀j = 0, 1, . . . , N − 1, (2.14)

where Jj stands for the Jacobian of the right-hand side of equation (2.9) at the j-th time
step.

2.4.2 ODE- and PDE-based neural architectures

There have been several approaches to enforce stability in a neural network, such
as Lipschitz regularization [FCA+18] and weight normalization [MKK+18]. Using the
interpretation of ResNets as a discretization of a PDE/ODE, Chang, Meng, Haber et
al. suggest several stable neural architectures in [CMH+18b], which are based on the
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stability theory of PDEs/ODEs. They do this by making structural changes in the forward
propagation and by restricting the space of CNNs in a way such that the underlying
PDE/ODE obeys Theorem 2.7, which is satisfied if the real parts of the eigenvalues of the
Jacobian of the right-hand side of the PDE are negative. To be more precise, we want the
eigenvalues of the Jacobian of the right-hand side of any PDE to be imaginary because, as
Haber and Ruthotto pointed out in [HR17], while Theorem 2.7 is necessary for the stability
of the forward propagation, it is not sufficient for a well-posed learning problem that is
given by equation (2.11). Positive eigenvalues amplify the signal in a network, whereas
negative eigenvalues might lead to damping, and the energy in the system is dissipated over
time. Both are related to the vanishing and exploding gradient issue in neural networks or
correspondingly related to the over-sensitivity/insensitivity of the output features with
respect to the input features. Hence, we would like to keep the real parts of the eigenvalues
of the Jacobian as close to zero as possible. Using this idea, three new architectures have
been proposed in [CMH+18b] that make this possible by design.

Hamiltonian network

By introducing an extra augmented variable and two sets of convolution filters K1,K2,
the forward propagation can be interpreted as a Hamiltonian system, where we have a
system of PDEs

Ẏ(t) = KT
1 (t)σ(K1(t)Z(t) + b1(t)),

Ż(t) = −KT
2 (t)σ(K2(t)Y(t) + b2(t)).

(2.15)

Here, Y(t) and Z(t) are channel-wise partitions of the input features (see Figure 2.5), and
for our purposes of image classification and segmentation, Ki is the convolution operator,
and KT

i is its transpose. One can rewrite equation (2.15) as

(
Ẏ(t)

Ż(t)

)
=

(
KT

1 (t) 0
0 −KT

2 (t)

)
σ

((
0 K1(t)

K2(t) 0

)(
Y(t)
Z(t)

)
+

(
b1(t)
b2(t)

))
(2.16)

The eigenvalues of the Jacobian matrix of the right-hand side of the equation above
can be shown to be all imaginary [CMH+18b], thereby making the forward propagation
stable and well-posed for all choices of the (convolutional) weights that the optimizer
chooses while solving equation (2.11), where this new system of PDEs governs the forward
propagation. Besides, the Hamiltonian systems are known to conserve energy. So the
forward propagation, in this case, is expected to only moderately amplify or damp the
features, as it is propagated down the network.

The discretization of equation (2.15) is done using the Verlet integration since such
symplectic methods capture the long time features of Hamiltonian systems really well
[Asc08]. With the Verlet scheme, we arrive at the following pair of coupled equations:

Yj+1 = Yj + hKT
j1 σ(Kj1Zj + bj1),

Zj+1 = Zj − hKT
j2 σ(Kj2Yj+1 + bj2).

(2.17)
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This computation is placed in a Hamiltonian Block, as shown in Figure 2.5. Xj is assumed
to be the input to the Hamiltonian Block, Yj ,Zj are channel-wise partitions of Xj , and
Xj+1 is the output of the Block that is obtained by the channel-wise concatenation of
Yj+1 and Zj+1.

Xj

Yj

Zj

Conv. K1+Bias

BN + ReLU

Conv. KT
1

+

h

Conv. K2+Bias

BN + ReLU

Conv. KT
2

h
− Zj+1

Yj+1

Xj+1

Figure 2.5: The Hamiltonian Block with channel-wise partition and concatenation.

Leapfrog network

In a special case of Hamiltonian networks, the PDE from equation (2.15) can also be
discretized using the symplectic leapfrog scheme, where one of the kernels is an identity
matrix and one of the activation functions is an identity function. In such a case, we get a
second-order initial value problem

Ÿ(t) = −KT (t)σ(K(t)Y(t) + b(t)), Y(0) = Y0, (2.18)

which is inspired by the system of coupled PDEs/ODEs for a Hamiltonian system, with
one variable being eliminated. It can be shown that for this PDE, the eigenvalues of
the Jacobian of the right-hand side are imaginary since this is just a special case of the
Hamiltonian network, which makes the forward propagation stable. Using the leapfrog
discretization, we have the discretized solution

Yj+1 =

{
2Yj − h2 KT

j σ(KjYj + bj), j = 0,

2Yj −Yj−1 − h2 KT
j σ(KjYj + bj) j > 0.

(2.19)

Midpoint network

The right-hand side of equation (2.10) can be altered to contain an anti-symmetric
transformation

F(Y,K) = σ((K−KT )Y + b).

Since the eigenvalues of an anti-symmetric matrix are always imaginary, the well-posedness
and stability of the forward propagation are maintained (see [CCH+19]). The equation
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can be discretized using the central finite difference scheme

Yj+1 −Yj−1

2h
= σ((K−KT )Yj + b), (2.20)

which, when rearranged, can be written as

Yj+1 =

{
2hσ((Kj −KT

j )Yj + bj), j = 0,

Yj−1 + 2hσ((Kj −KT
j )Yj + bj), j > 0.

(2.21)

Remark. This network is very similar to the AntisymmetricRNN suggested in [CCH+19].
There, Chang, Chen, Haber et al. use the same anti-symmetric matrices to maintain forward
stability of the RNN but with forward Euler discretization instead of the central differencing
scheme. At the same time, they introduce a tiny diffusion term to the right-hand side of
equation (2.21) to make sure that the forward Euler scheme stays stable, thereby satisfying
Lemma 2.8. Also, note that the Midpoint and the Leapfrog network have a single layer only,
i.e. at each iteration, we perform a convolution and a transposed convolution operation,
whereas, in the Hamiltonian Block (Figure 2.5), we have a two-layer block, i.e. convolution
and transposed convolution are performed twice each.

Reversibility of the Networks

The three networks described above are reversible at least algebraically. This means
that, given the activations of the last couple of layers, one could compute the activations
of the shallower layers. Therefore, while performing backpropagation, one does not need to
store the activations of most of the hidden layers, and hence, the network has a relatively
small memory footprint. This, of course, increases the number of floating-point operations
performed during training. The trade-off is not so huge, and a lot of the machine learning
problems are anyway bound by memory constraints and not by computational constraints.
For example, the Leapfrog method can be back-computed if we have the activations of the
last two layers:

Yj = 2Yj+1 −Yj+2 − h2 KT
j+1 σ(Kj+1Yj+1 + bj+1), (2.22)

for j = N − 2, N − 3, . . . , 0. Similarly, if one rewrites equation (2.17) as

Yj+1 = Yj + G(Zj),

Zj+1 = Zj +H(Yj+1),
(2.23)

then for j = N − 1, N − 2, . . . , 0, the algebraically reversible equation reads

Zj = Zj+1 − G(Yj+1),

Yj = Yj+1 −H(Zj).
(2.24)

As shown in [CMH+18b], although the network might be algebraically reversible, one
needs to have restrictions on the residual functions G,H. To this end, the hyperparameter
h plays a crucial role in making sure that the backward propagation is numerically stable.
Besides, there have been a few other suggestions on reversibility in ResNets. A reversible
variant of ResNet is suggested in [GRU+17], but the network lacks the stable forward
propagation discussed above. Note that the reversibility can only be performed between
pooling operations, i.e. on a per-Unit basis (see Figure 4.1). Recently, in [LHP19], an
invertible pooling operator was suggested to make the CNN completely reversible.
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2.5 Related network architectures and recent work

Over the last couple of years, the ResNet has been widely researched, and several
improved versions have been proposed. Xie, Girshick, Dollár et al., in [XGD+17], proposed
a modified architecture (ResNeXt), where they propose wider networks instead of deeper
ones, with multi-branch convolutions and aggregated residuals. It is a bit similar to the
well-known multi-branch Inception module [SLJ+15; SVI+16; SIV+17], where results of
convolutional layers of different receptive field sizes are concatenated. In [HLVDM+17],
the so-called DenseNet is proposed. Here, all layers with the same feature map size are
connected with each other, i.e. more than one identity skip connection is used, and the
input to each layer consists of feature maps (of similar size) of all the earlier layers. This
supposedly enables feature reuse, making the network parameter-efficient. In [ZK16],
Zagoruyko and Komodakis propose a new network (Wide ResNet), where they add more
filters in each layer of the ResNet to increase the width of the network.

One drawback of ResNets is that very deep networks take a lot of time to train. To
tackle this issue, in [HSL+16], the idea of randomly dropping layers of a ResNet during
training is introduced, but the entire network is used during test time. This way, ResNets
can be interpreted as an ensemble of networks with varying depths. This allows better
information and gradient flow in deeper networks. It reduces training time substantially
and improves the test error, which shows that there is a certain amount of redundancy in
deeper networks. At the same time, this adds to the many benefits of skip connections
because removing a layer from a traditional architecture such as VGG [SZ15] leads to a
huge loss in performance (see [VWB16]). The dropping of ResNet layers can also be seen
as skipping one time step in the discretization of the underlying PDE/ODE and has been
studied in [CMH+18a]. Furthermore, in the same paper, a way of accelerating the training
of ResNets was proposed, i.e. a multi-level strategy, where we first start with a shallow
network, and step by step, more and more residual blocks are added, with the trained
weights of the shallow network being prolongated to the deeper network. This way, one
has a good starting guess for the newly added residual blocks in the deeper network, and
it has shown to save training time, in comparison to the training time for networks that
are quite deep from the beginning itself.

This idea of viewing DNNs as a discretization of a dynamical system or as a solution
to an optimal control problem is currently being widely researched and has been used for
a variety of learning tasks. For example, in [LCT+18], the training is cast as a control
problem, and the necessary optimality conditions in continuous time are formulated using
the Pontryagin’s maximum principle. In [SM17; LS17a], a continuous flow model for ResNet
is proposed, with the data flow being seen as the solution of the transport equation along
the characteristic line. The relation between ResNets and the control problem of PDEs
on manifolds is explored in [LS17b]. On the other hand, a more sophisticated differential
equation solver is used in [CRB+18] to solve the forward propagation problem. Zhang
and Schaeffer, in [ZS19], interpret ResNets as an optimal control problem with differential
inclusions and provide several continuous-time stability results. In [Ces10], the neurons are
modeled as discrete dynamical systems, and the effects of synaptic plasticity are studied.

The ODE/PDE interpretation of ResNets has also been used to train and test ResNets
on different image resolutions [HRH+18]. Networks that were trained on low-resolution
images, for instance, can be tested on high-resolution images and vice versa. The dynamical
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system view has also made its way into Recurrent Neural Networks (RNN). In [CCH+19],
the same antisymmetric weight matrices are used to stabilize the network, which in turn
helps in capturing long-term dependencies and outperforms the traditional LSTM models.

Even within the PDE/ODE framework, several discretization methods have been
researched so far. Since a higher-order numerical scheme can have a lower truncation
error, which leads to better accuracy, implicit and explicit Runge-Kutta methods [AP98]
have been proposed as a discretization scheme for the forward propagation [ZCF18]. In
[HLT+19], Haber, Lensink, Treister et al. introduce a semi-implicit discretization method
[AP98] to accelerate the communication between the pixels, which is crucial in learning
long-range correlations in an image. This has shown to work well for problems, where the
output feature is high-dimensional, for example, in image segmentation or depth prediction
in images. Reshniak and Webster go one step further in [RW19] and work with fully
implicit residual blocks that are defined as fixed points of certain nonlinear transformations.
This stabilizes the forward and backward propagation of the network. In [YWL+19], Yang,
Wu, Li et al. propose an adaptive time-stepping scheme that depends on the parameters
of the current step. Lastly, Lu, Zhong, Li et al., in [LZL+18], show that ResNets and
other network architectures such as PolyNet [ZLCL+17], FractalNet [LMS16] and RevNet
[GRU+17] can all be seen as different time-stepping schemes of the underlying differential
equation that governs the forward propagation. Furthermore, they use the linear multistep
(LM) numerical scheme for ODEs in their model. Moreover, one can view the Midpoint
and Leapfrog discretizations as special cases of the LM-architecture. A summary of the
different architectures and their discretization schemes is provided in Table 2.1 below.

Network Forward propagation Numerical scheme

ResNet [HZR+16a] Yj+1 = Yj + F(Yj) Forward Euler

RevNet [GRU+17]
Yj+1 = Yj + F(Zj)
Zj+1 = Zj + G(Yj+1) Forward Euler1

PolyNet [ZLCL+17]
Yj+1 = Yj + F(Yj) + F(F(Yj))

≈ (1− hF)−1 Yj
Backward Euler2

FractalNet [LMS16] fj+1(Y) = [(fj ◦ fj)(Y)]⊕ [conv(Y)] Runge-Kutta3

AntisymmetricRNN
[CCH+19]

Yj+1 = Yj +hσ((Kj−KT
j )Yj +VjXj +

bj)
Forward Euler4

LM-ResNet
[LZL+18]

Yj+1 = (1− kj)Yj + kjYj−1 + F(Yj) Linear multistep5

Table 2.1: Discretization schemes for various neural architectures.

1Forward Euler for a coupled system of ODEs
2PolyNet can be seen as a one-step approximation of the Backward Euler scheme
3⊕ represents a join operation that merges the result of two convolution layers
4Xj is the input to the RNN at time step j
5kj ∈ R is a trainable parameter
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Chapter 3

Nonlocal and pseudo-differential
operators for Deep Learning

In a Convolutional Neural Network, the pooling operation has another important role
to play. The pooling or subsampling of the image and the convolution operations allow
far-away pixels in an image to communicate with each other, thereby exploiting long-range
correlations in an image and improving the predictions made by the network. At the
same time, convolution is a local operation, and therefore each convolutional layer’s values
depend only on the information present in certain local patches of the image. This is
known as the field-of-view problem [LLU+16].

In fully-connected networks, the value of each neuron depends on the entire input
to the network. On the other hand, the value of a neuron in a convolutional layer only
depends on a certain subset of the input. This region in the input is the receptive field
for that neuron. In learning tasks with images, each neuron in the output layer should
ideally have a big receptive field, i.e. the values of the output neurons should indirectly
depend on large parts of the image so that no important information of the image is left
out when making the predictions. The receptive field size of a neuron can be increased, for
example, by stacking more convolutional layers and thereby making the network deeper.
This increases the receptive field size linearly in theory because each extra layer increases
the receptive field size by the filter size. Meanwhile, pooling or subsampling allows each
pixel to cover a larger area and facilitates information travel over larger distances, which
increases the receptive field size multiplicatively. This also justifies the initial successes of
AlexNet [KSH12], where convolutional and pooling layers were used in combination on
a large scale for the first time. Most modern architectures have a combination of both
convolutional and pooling layers to widen the field-of-view. For an empirical study on
receptive fields, see [ZKL+15].

Just stacking up convolutional and pooling layers can have several disadvantages. In
a deeper network, for example, the optimization problem (2.11) might be hard to solve
and repeatedly performing local operations can be computationally inefficient because, as
pointed out before on page 14, from a dynamical systems view, the convolution operations
can be seen as a linear combination of spatial differential operators, and are hence local.

Long-range and nonlocal dependencies are ubiquitous in several fields, such as financial
markets [Con05], video processing [BST+95] or physical sciences [DGL+12; CL06; WA05].
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In image processing, nonlocal methods can be found, for example, in image denoising
[BCM05a; DFK+07; BCM05b], image regularization [GO07] or image recovery [LZO+10].
Even in the area of deep learning, applications such as natural language processing use
LSTM modules [HS97] to model long-range dependencies. In [WGG+18], a nonlocal
operation is suggested that has been shown to work well for video classification. In section
6.2, we will see a few drawbacks of it, in comparison to the ones proposed in this thesis.

We now look at a few integral-based spatially nonlocal operators that could be used
in CNNs to address this issue. The underlying and associated partial integro-differential
equation (PIDE) is then discretized in a so-called Nonlocal Block and inserted in the neural
network. By direct computation of interactions between each pair of pixels or pair of
patches in an image, these operators make sure that the field-of-view increases drastically.
Consequently, the information travels larger distances for a fixed number of layers in a
neural network. This allows the network to learn global features from each example of
the dataset. In other words, to achieve a certain given amount of accuracy on the test
data, one needs fewer layers in the network since the far-apart pixels communicate and
learn long-range dependencies in the image quicker. We will later see in section 4.2 that
these operators, although dense, can be designed in a way so that we have relatively low
computational costs.

3.1 The nonlocal diffusion operator

Definition 3.1. Let Ω = Rn and let u : Rn → Rn be any function, then for x,y ∈ Ω, the
nonlocal diffusion operator can be defined as

Lu(x) :=

∫
Ω

ω(x,y)[u(y)− u(x)] dy, (3.1)

where the kernel ω has the following two properties:

(i) ω is symmetric: ω(x,y) = ω(y,x), ∀x,y ∈ Ω,

(ii) ω is positivity-preserving: ω(x,y) ≥ 0, ∀x,y ∈ Ω.

The kernel can be viewed as a function that measures the affinity or similarity between
points in Ω. The aim is to apply such an operator on a discrete image u, where u : Ω→ Rc
is the discrete image with c channels, and u(x) is the set of pixel values of all the channels
at a discrete spatial point x ∈ Ω from the image domain Ω (the pixel strips in Figure 4.2).
For details regarding the implementation of this operator, see section 4.2.

Note that this is just the global analogue of a local Laplacian operator. The Laplacian
is a differential operator, and hence local. Each output is dependent on its neighboring
values and not on all the values in the domain. Therefore, in a local setting, for each value
x ∈ Ω, the integral in equation (3.1) is computed over a subset of the domain Ω and not
over the entire domain.

Such operators have been an upshot of several image processing tasks. For example,
for x,y ∈ Ω, consider the functional

J(u) :=
1

4

∫
Ω×Ω

ω(x,y)[u(x)− u(y)]2 dx dy, (3.2)
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3.1. The nonlocal diffusion operator

which sums up weighted variations of the function u (similar total variational denoising in
image processing). While minimizing the functional, the corresponding Euler-Lagrange
descent flow is given by

ut(x) = −J ′(u)(x) = −
∫
Ω

ω(x,y)[u(x)− u(y)] dy = Lu(x). (3.3)

Therefore, starting from an initial input image u0(x), the associated partial integro-
differential equation (PIDE) can be written as

ut(x, t) = Lu(x), u(x, 0) = u0(x), (3.4)

which is essentially a nonlocal weighted linear diffusion equation. The kernel function
ω : Ω× Ω→ R is here assumed to be of Hilbert-Schmidt type [RR06], i.e.∫

Ω

∫
Ω

|ω(x,y)|2 dx dy <∞. (3.5)

3.1.1 Interpretations of the nonlocal diffusion operator

There are several interpretations of the nonlocal diffusion operator that arise from
different mathematical applications. We provide two of them below.

Weighted graph Laplacians

The nonlocal diffusion operator can be seen as a continuous generalization of graph
Laplacians. Let G = (V,E) be a connected undirected weighted graph with finite vertex
and edge sets V and E respectively. Each pair of vertices l, k ∈ V is connected by an
edge ek,l ∈ E with a weight wk,l. The weights are symmetric and positive, i.e. wk,l = wl,k
and wk,l ≥ 0, ∀l, k. The discrete function u : V → R represents the value of each vertex,
i.e. u(k) ∈ R is the value of u at vertex k. Then the weighted graph Laplacian [CG97] is
defined as

∆G(u(k)) :=
∑
l∈ρ(k)

wk,l (u(l)− u(k)), for k, l ∈ V, (3.6)

where ρ(k) is the set of vertices that are connected by an edge to the vertex k. The
corresponding weighted Laplacian matrix L, which is the difference of the degree matrix
and the adjacency matrix of the graph, can be defined as

Ll,k =


∑

l∈ρ(k)

wk,l if l = k,

−wl,k if vertices l and k are connected by an edge,

0 otherwise.

(3.7)

If for a given vertex, we allow only the nearest four vertices to be connected to the given
vertex with edge weights 1

h2
, then the weighted graph Laplacian reads

∆G(u(k)) =
1

h2

∑
l∈ρ(k)

(u(l)− 4u(k)), for k, l ∈ V, (3.8)
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Chapter 3. Nonlocal and pseudo-differential operators for Deep Learning

which is the discretized approximation of the Laplacian differential operator on a 2D grid
with the discrete nodes being separated by a step size of h. Graph Laplacian finds its use
in several image processing tasks such as image segmentation [Gra06] and graph-based
semi-supervised learning [LC09].

Markov chains and jump processes

The nonlocal diffusion operator can also be seen as a random walk Markov chain on Ω.
Let Ω be the finite set of discrete states x1,x2, . . . ,xM ∈ Ω. Let Q(xi) :=

∑
xj∈Ω

ω(xi,xj)

for xi,xj ∈ Ω, then the transition kernel of the discrete-time, time-homogeneous Markov
chain on Ω can be defined as

P(xi,xj) :=
ω(xi,xj)

Q(xi)
, (3.9)

which is positivity-preserving but no longer symmetric. At the same time, we have∑
xj∈Ω

P(xi,xj) = 1 for all xi ∈ Ω. Hence, each entry of the matrix P(xi,xj) can be viewed

as the one-step transition probability from state xi to state xj . Then

xN+1
i =

∑
xj∈Ω

P(xi,xj) xNj (3.10)

governs the discrete-time Markov jump process, with xNi being the probability mass of
state xi at a discrete time point N . Therefore the nonlocal diffusion operator from equation
(3.1) can be written as a difference of probabilities for a state xi between two consecutive
time steps:

xN+1
i − xNi =

∑
xj∈Ω

P(xi,xj) [xNj − xNi ]. (3.11)

3.1.2 Properties of the nonlocal diffusion operator

The nonlocal diffusion operator L has many properties that are similar to a typical
elliptic operator. We look at a few of them below.

Theorem 3.2. Let the nonlocal diffusion operator L be defined as in equation (3.1). Then
L has the following properties:

(a) If u(x) ≡ const for all x ∈ Ω, then Lu(x) ≡ 0 for all x ∈ Ω.

(b) −L is a positive semi-definite operator, i.e.〈
− Lu(x), u(x)〉L2 ≥ 0

for all x ∈ Ω and for any function u, where 〈·, ·
〉
L2 is the L2-inner product.

(c) The mean of the output of the nonlocal operation is zero, i.e.∫
Ω

Lu(x) dx = 0.
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3.1. The nonlocal diffusion operator

Proof.

(a) Since u(x) is a constant for all x ∈ Ω, the term [u(y) − u(x)] inside the integral
vanishes for all x ∈ Ω, which proves the claim. Note that this property of L having
only constant functions in its null space is equivalent to the graph Laplacian matrix
L from equation (3.7) having a zero eigenvalue of multiplicity one, which holds for
any connected graph.

(b)

〈
− Lu(x), u(x)

〉
L2 = −

∫
Ω×Ω

ω(x,y)[u(y)− u(x)]u(x) dy dx

=

∫
Ω×Ω

ω(x,y)[u(x)− u(y)]u(x) dy dx

=
1

2

∫
Ω×Ω

[
ω(x,y)

(
u(x)− u(y)

)
u(x)

+ ω(y,x)
(
u(y)− u(x)

)
u(y)

]
dy dx

=
1

2

∫
Ω×Ω

(
u(y)− u(x)

)2

ω(x,y) dy dx ≥ 0,

where the third equality is due to the symmetry between x and y.

(c) ∫
Ω

Lu(x) dx =

∫
Ω×Ω

ω(x,y)[u(y)− u(x)] dy dx

=
1

2

∫
Ω×Ω

[
ω(x,y)

(
u(x)− u(y)

)
+ ω(y,x)

(
u(y)− u(x)

)]
dy dx

= 0.

Now we look at several defining properties of the underlying PIDE from equation (3.4)
that characterize the feature transformations that the operator performs.

Theorem 3.3. Let the nonlocal diffusion operator L be defined as in equation (3.1). Then
the associated descent flow (3.4) has the following properties:

(a) The mean value of u is preserved across the time horizon, i.e.

1

|Ω|

∫
Ω

u(x, t) dx =
1

|Ω|

∫
Ω

u0(x) dx for all t ≥ 0,

where u(x, 0) = u0(x) and |Ω| is the measure of the domain.
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(b) The system governed by equation (3.4) has energy decay i.e.

d

dt
‖u(x, t)‖2L2 =

d

dt

∫
Ω

u(x, t)2 dx ≤ 0 for all x ∈ Ω.

(c) The solution to equation (3.4) converges to a constant function, namely to the mean
value of u0(x):

lim
t→∞

u(x, t) =
1

|Ω|

∫
Ω

u0(x) dx.

Proof.

(a) We compute the time derivative of the mean value to get

d

dt

∫
Ω

u(x, t) dx =

∫
Ω

ut(x, t) dx =

∫
Ω

Lu(x) dx = 0,

where the second last equality above is by equation (3.4) and the last equality is due
to part (c) of the previous theorem.

(b) Using part (b) of the last theorem, we get

d

dt

∫
Ω

u(x, t)2 dx =
d

dt

〈
u(x), u(x)

〉
L2 = 〈u(x), ut(x)〉L2 =

〈
u(x),L(x)

〉
L2 ≤ 0.

(c) The last inequality is strictly less than zero unless L(x) ≡ 0 and u is a constant func-
tion. Hence, we have a convergence to a constant function. Since the corresponding
graph Laplacian matrix L has a zero eigenvalue of multiplicity one, it can be shown
that there exists only one steady-state solution ut(x, t) = L(x) = 0, which is the
mean value of u0(x).

Since the operator L performs diffusion, the features tend to smooth out over time,
and hence reduce the variance of the image/features. We will see later that though the
nonlocal interactions help in image classification and segmentation, over-using it can damp
the features leading to loss of information (see section 5.3.3). We can quantify this in the
next lemma.

Lemma 3.4. Let u(x, t) be the solution of equation (3.4). Let the variance be defined as

Var[u(x)] :=
1

|Ω|

∫
Ω

(
u(x)− 1

|Ω|

∫
Ω

u(y) dy

)2

dx.

Then we have
d

dt
Var[u(x)] ≤ 0.
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Proof.

d

dt
Var[u(x)] =

2

|Ω|

∫
Ω

(
u(x, t)− 1

|Ω|

∫
Ω

u(y) dy

)
ut(x, t) dx

=
2

|Ω|

∫
Ω

(
u(x, t)− 1

|Ω|

∫
Ω

u(y) dy

)
L(x) dx

=
2

|Ω|

(∫
Ω

u(x)Lu(x) dx− 1

|Ω|

∫
Ω

u(y) dy ·
∫
Ω

Lu(x) dx

)

=
2

|Ω|

∫
Ω

u(x)Lu(x) dx

≤ 0,

where the last two lines were obtained using results from Theorem 3.2.

3.2 Pseudo-differential operators

Now we look at a few pseudo-differential operators that can also be represented as
integral-based global operators whose implementations introduce nonlocality into the neural
network. The aim is to define an operator O such that the associated forward propagation
for a given input image u0(x) is governed by a PIDE that is similar to the form

ut(x, t) = Ou(x), u(x, 0) = u0(x). (3.12)

3.2.1 The fractional Laplacian operator

Fractional differential operators appear in several interesting problems in applied
mathematics [Yam12], physical sciences [Cap67; SV14], volume-constraint problems [DG13]
and in financial mathematics as a pricing model for American options [Sil07]. Let us first
define a few related concepts before we define the operator itself.

Definition 3.5. The Schwartz space of rapidly decreasing C∞ functions on Rn is defined
as

S(Rn) := {f ∈ C∞(Rn) : ∀α, β ∈ Nn, ‖f‖α,β <∞},

where ‖f‖α,β := sup
x∈Rn

|xα(Dβf)(x)| for every multi-index α, β.

The functions in this space have derivatives that exist over the entire domain and tend to
vanish faster than any inverse power of x, as x→ ±∞.

Definition 3.6. Let Ω = Rn, 0 < s < 1, then the fractional-order Sobolev space is defined
as

Hs(Ω) :=

{
u ∈ L2(Ω) :

∫
Ω

∫
Ω

[u(y)− u(x)]2

|x− y|n+2s
dy dx <∞

}
,
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where the Gagliardo seminorm and the norm are defined as

|u|2Hs(Ω) :=

∫
Ω

∫
Ω

[u(y)− u(x)]2

|x− y|n+2s
dy dx,

‖u‖Hs(Ω) :=
(
‖u‖2L2(Ω) + |u|2Hs(Ω)

)1/2

It can be shown that H1(Ω) ⊆ Hs(Ω) and that the space of compactly supported
smooth functions C∞(Rn) is dense in Hs(Rn) even for 0 < s < 1 [DNPV12]. Analogously,
one can define the fractional trace theorem, the fractional Sobolev inequality, etc.

Definition 3.7. For u ∈ S(Rn), 0 < s < 1, the fractional Laplacian operator (−∆)s is
defined as a singular integral operator as

(−∆)su(x) := cn,s P.V.

∫
Rn

[u(x)− u(y)]

|x− y|n+2s
dy = cn,s lim

ε→0+

∫
Rn\Bε(x)

[u(x)− u(y)]

|x− y|n+2s
dy, (3.13)

where P.V. stands for the Cauchy principal value (of the improper integral), cn,s is a
constant depending on n, s and is defined as

cn,s =
4sΓ(n/2 + s)

πn/2|Γ(−s)| ,

where Γ is the gamma function with its improper integral representation for a > 0 given by

Γ(a) =

∞∫
0

xa−1e−x dx

and the identity Γ(a) = Γ(a+1)
a can be used to uniquely extend the integral definition to all

negative real numbers except the integers that are less than or equal to 0.

Note that this operator can be seen as a special case of the nonlocal diffusion operator
defined by equation (3.1), with Ω = Rn and kernel ω(x,y) = |x− y|−(n+2s) and with the
flipped term u(x)− u(y) instead of u(y)− u(x). The term is flipped because we want both
operators to be elliptic, and the corresponding Poisson problem for the nonlocal diffusion
operator is written as −Lu(x) = 0, i.e. with an extra negative sign in front, whereas for
the pseudo-differential operator, we have (−∆)su(x) = 0.

Connection to pseudo-differential operators

This operator can in fact be defined as a pseudo-differential operator, which shows the
origins of the operator and also characterizes the operator in the Fourier space. Let the
Fourier transform and the inverse Fourier transform of u ∈ S(Rn) be denoted by

û(ξ) := Fu(ξ) :=

∫
Rn

u(x)e−2πix·ξ dx, ξ ∈ Rn,

u(x) := F−1û(x) :=

∫
Rn

û(ξ)e2πix·ξ dξ, x ∈ Rn.

28



3.2. Pseudo-differential operators

Definition 3.8. Let Ω ⊂ Rn be open, 0 ≤ ρ ≤ 1, 0 ≤ δ ≤ 1, m ∈ R, n ∈ N, n ≥ 1. Then
the space of symbols of order m and of type (ρ, δ), denoted by Smρ,δ, is the space of all
p ∈ C∞(Ω × Rn) such that for all compact sets K ⊂ Ω and all multi-indices α, β ∈ Nn,
there is a constant CK,α,β such that

| ∂αx ∂βξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−ρ|β|+δ|α|,

where x ∈ K, ξ ∈ Rn.

Definition 3.9. Let u ∈ S(Rn), p ∈ Smρ,δ. A pseudo-differential operator P (x, D) on Rn
with symbol p(x, ξ) is defined as

P (x, D)u(x) :=

∫
Rn

p(x, ξ) û(ξ) e2πix·ξ dξ. (3.14)

It can be then shown that the fractional Laplacian is the pseudo-differential operator
[DNPV12] with the Fourier symbol (2π|ξ|)2s and satisfies

F ((−∆)su)(ξ) = (2π|ξ|)2s û(ξ) for 0 < s ≤ 1. (3.15)

For s = 1, we get the classical Laplacian (−∆) with the Fourier symbol (2π|ξ|)2:

−∆u(x) = −∆(F−1û(x)) = −∆
[ ∫
Rn

û(ξ)e2πix·ξ dξ
]

=

∫
Rn

(2π|ξ|)2 û(ξ)e2πix·ξ dξ = F−1

(
(2π|ξ|)2 û(ξ)

)
For classical PDE operators, the corresponding Fourier symbol is generally a polynomial in
ξ, but by using symbols that are not only a function of ξ but also a function x, we arrive
at a large plethora of pseudo-differential operators.

Note that there are several other equivalent definitions of the fractional Laplacian
operator that are defined via heat semi-groups [ST10], as an infinitesimal generator of
Lévy processes [App09] (similar to the usual Laplacian that is the negative generator of
Brownian motions), or as an inverse of the Riesz potential, etc. (see [Kwa17]). For our
purposes of image classification and segmentation, we will be using the singular integral
operator definition (Definition 3.7) that defines the output of the operator point-wise.

Remark. In [LLH+19], the result of the operator (−∆)1/2 acting on several basic functions
such as the sin, cos and exponential functions are illustrated. Moreover, it can be shown
that the classical Laplacian is a limit case of the fractional one [Sti10], i.e. for a certain
class of bounded functions u, x ∈ Rn, we have the point-wise limits

lim
s→0+

(−∆)su(x) = u(x), lim
s→1−

(−∆)su(x) = −∆u(x).

Also, one can have the corresponding Poisson problem with Dirichlet boundary conditions
for 0 < s < 1

(−∆)su = f in Ω,

u = g in Rn \ Ω,
(3.16)
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which has been an area of active research recently [AB17; ROS14; BDPM18]. In [AB17],
Acosta and Borthagaray discuss the well-posedness of the problem (3.16) and suggest finite
element algorithms for the homogeneous exterior boundary condition. Note that all the
different definitions and interpretations of the fractional Laplacian are generally restricted
to bounded domains, and the associated boundary conditions lead to very distinct operators
that need to be treated differently. For example, the singular integral operator definition
needs prescribed values on the entire region outside the domain (i.e. Rn \ Ω), not just of
the boundary values, whereas some definitions only need prescribed boundary values.

Addressing the singularity

The kernel under the integral in equation (3.13) has a singularity when x = y, but for
u ∈ S(Rn), we can write

∫
Rn

[u(x)− u(y)]

|x− y|n+2s
dy ≤ C

∫
BR(x)

|x− y|
|x− y|n+2s

dy + ‖u‖L∞(Rn)

∫
Rn\BR(x)

1

|x− y|n+2s
dy

= C

( ∫
BR(x)

1

|x− y|n+2s−1
dy +

∫
Rn\BR(x)

1

|x− y|n+2s
dy

)

= C

( R∫
0

1

|r|2s dr +

∞∫
R

1

|r|2s+1
dr

)
< +∞.

C is a positive constant depending on n and ‖u‖L∞ . The integral shown above is finite
only for 0 < s < 1/2, but we can make the integral in equation (3.13) well-defined for
0 < s < 1.

Lemma 3.10. The fractional Laplacian operator given by (3.13) can also be written as

(−∆)su(x) :=
cn,s
2

∫
Rn

[2u(x)− u(x + y)− u(x− y)]

|y|n+2s
dy. (3.17)

Proof.

cn,s
2

∫
Rn

[2u(x)− u(x + y)− u(x− y)]

|y|n+2s
dy

=
cn,s
2

lim
ε→0+

∫
Rn\Bε(0)

2u(x)− u(x + y)− u(x− y)

|y|n+2s
dy

=
cn,s
2

lim
ε→0+

[ ∫
Rn\Bε(0)

u(x)− u(x + y)

|y|n+2s
dy +

∫
Rn\Bε(0)

u(x)− u(x− y)

|y|n+2s
dy

]

=
cn,s
2

lim
ε→0+

[ ∫
Rn\Bε(x)

u(x)− u(η)

|x− η|n+2s
dη +

∫
Rn\Bε(x)

u(x)− u(ζ)

|x− ζ|n+2s
dζ

]
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= cn,s lim
ε→0+

∫
Rn\Bε(x)

u(x)− u(η)

|x− η|n+2s
dη

= cn,s lim
ε→0+

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy

= (−∆)su(x),

where the third equality is due to change of variables η := x + y, ζ := x−y and the second
last equality was just a relabeling of η to y.

Using this reformulation of the fractional Laplacian and the second-order Taylor
expansion of u and assuming u to be smooth, the integral term∫

Rn

[2u(x)− u(x + y)− u(x− y)]

|y|n+2s
≤ ‖D

2u‖L∞
|y|n+2s−2

is integrable at the origin for any 0 < s < 1. Thus, we can remove P.V. from the integral
as long as u ∈ S(Rn). The idea is that, near x, [u(x) − u(y)] has the approximation
∇u(x) · (x− y), and the term under the integral is of the form

∇u(x) · (x− y)

|x− y|n+2s
.

This term is odd with respect to x, and consequently, it averages out for any y in the
neighborhood of x by symmetry, and the immediate neighborhood does not contribute to
the integral.

3.2.2 The inverse fractional Laplacian operator

Now we try to define an analogous operator (−∆)−s for s > 0, i.e. an inverse fractional
Laplacian, which we will see, is also a nonlocal operator. Note that, similar to equation
(3.15), we have

F ((−∆)−su)(ξ) = (2π|ξ|)−2s û(ξ) for 0 < s < n/2. (3.18)

One needs the restriction 0 < s < n/2 because if s ≥ n/2, the Fourier symbol/multiplier
(2π|ξ|)−2s fails to define a tempered distribution [Sil07], where the space of tempered
distributions is the continuous dual of the Schwartz space S(Rn). The symbol (2π|ξ|)−2s is
decaying with respect to s, and in the sense of distributions (see [Ste70]), such symbols
have the Fourier inverse

F−1(|ξ|−2s) = cn,−s|x|−(n−2s).

Using the inverse property for convolutions

f ∗ g = F−1{F{f} ·F{g}}

and equation (3.18), we get the following equality

(−∆)−su(x) =
(
cn,−s|x|−(n−2s)

)
∗ u(x) = cn,−s

∫
Rn

u(y)

|x− y|n−2s
dy. (3.19)
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Chapter 3. Nonlocal and pseudo-differential operators for Deep Learning

Definition 3.11. For u ∈ S(Rn), 0 < s < n/2, the inverse fractional Laplacian operator
(−∆)−s is defined as an integral operator as

(−∆)−su(x) := cn,−s

∫
Rn

u(y)

|x− y|n−2s
dy, (3.20)

where cn,−s is the constant given by

cn,−s =
Γ(n/2− s)
4sπn/2Γ(s)

.

The right-hand side of the definition is called the Riesz potential. Riesz potential is an
important tool in harmonic analysis and linear PDEs [Hör15]. This singular integral is
well-defined, provided u decays sufficiently rapidly at infinity (see [Ste70]), for instance, if
u ∈ Lp(Rn) with 1 ≤ p < n

2s . For a more in-depth study of Riesz and Riesz-like potentials,
see [Lan72; Rub96].

Recently, a fundamental solution for the case s = n/2 has been proposed [Sti19], which
can also be used in the neural network as a nonlocal operation. As pointed out in [Ste70],
the logarithmic kernel defined below can be seen as a vague limit of the Riesz potentials
defined by (3.20).

Definition 3.12. Let u ∈ S(Rn) with
∫
Rn
u = 0, x ∈ Rn, and s = n/2. Then we have

(−∆)−su(x) := cn

∫
Rn

(
− 2 log |x− y| − γ

)
u(y) dy, (3.21)

where the Euler-Mascheroni constant γ is given by

γ = −
∞∫

0

e−r log r dr ≈ 0.5772156649,

and the constant cn is given by

cn =
1

(4π)n/2Γ(n/2)
.

The integral operator, defined by equation (3.20), can be seen as a special case of the
Hilbert-Schmidt integral operator [RR06] that is continuous and hence bounded, if the
kernel is well-defined.

Definition 3.13. Let Ω ⊂ Rn be open and connected, and let k : Ω × Ω → R be a
Hilbert-Schmidt kernel, i.e. ∫

Ω

∫
Ω

|k(x,y)|2 dx dy <∞. (3.22)

Then for u ∈ L2(Ω), the Hilbert-Schmidt integral operator T : L2(Ω;R) → L2(Ω;R)
corresponding to the kernel k is given by

T u(x) :=

∫
Ω

k(x,y)u(y) dy. (3.23)
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3.2. Pseudo-differential operators

Lemma 3.14. Let Ω ⊂ Rn and let k be a Hilbert-Schmidt kernel. The corresponding
Hilbert-Schmidt operator T : L2(Ω;R)→ L2(Ω;R) is bounded.

Proof. For u ∈ L2(Ω), using the Cauchy-Schwarz inequality, we have

‖T u‖2L2(Ω) =

∫
Ω

[ ∫
Ω

k(x,y)u(y) dy

]2

dx

≤
∫
Ω

(∫
Ω

|k(x,y)|2 dy
)(∫

Ω

(u(y))2 dy
)
dx

=
(∫

Ω

∫
Ω

|k(x,y)|2 dy dx
)(∫

Ω

u(y)2 dy
)

= C‖u‖2L2(Ω).

As such, the Riesz potential kernel
1

|x− y|n−2s
may not always satisfy the square-

integrability condition (3.22). While implementing these nonlocal operators for images,
the methods used to bypass this issue and to avoid the blowing up of values are discussed
in sections 4.2.2 and 4.2.3. Besides, in the case of the log kernel from equation (3.21),
the kernel is no longer positivity-preserving. Sections 4.2.2 and 4.2.3 also talk about the
implementation of the log kernel that makes sure that it stays well-defined. It is interesting
to note that the kernels of the pseudo-differential operators are translation invariant and
isotropic. Also, from equation (3.19), it is clear that the operators from equations (3.20)
and (3.21) can be seen as convolutions on a global scale (spatially), whereas the operators
L and (−∆)s from equations (3.1) and (3.13) respectively define a diffusion-like operator
on a global scale (spatially).
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Chapter 4

PIDE-based discretization of
nonlocal operators and
implementation details

In this chapter, we first look at the implementation of the Hamiltonian network that
will be used as the base network. Then, several discretization details about the Nonlocal
Blocks, which contain the proposed integral operators, will be introduced. We explore a
few strategies to reduce the computational effort of such global operators and discuss how
the tensors are dealt with when such operators are applied on images or feature maps.
Finally, the general implementation details for the numerical experiments, including the
regularization techniques, are discussed.

4.1 Hamiltonian networks with Verlet scheme

The ODE and PDE-based networks discussed before have the advantages of stable
forward propagation and reversibility during backpropagation. Among all the three ODE-
based networks suggested by Chang, Meng, Haber et al. in [CMH+18b], the Hamiltonian
network, using the Verlet scheme from equation (2.17), performs the best on standard
benchmarks, possibly due to its two-layer network, where each Hamiltonian Block has two
convolution and two transposed convolution operations. Hence, for the experiments, this
network will be used as the base architecture, and changes are made to it by introducing
nonlocality in the network. Similar to the ResNet architecture, several of the Hamiltonian
Blocks (Figure 2.5) are stacked up to form a Unit and several of these reversible Units
together form the entire Network. Figure 4.1 shows a 2-Unit Hamiltonian network, where
we see that the input is passed through an initial convolution layer and then through each
Unit of the network.

Similar to the original ResNet architecture [HZR+16a], after each Unit (consisting of
m Hamiltonian Blocks), a pooling operation reduces the feature map size by half, and the
number of channels is increased by using a 1× 1 convolution layer (with ReLU). After the
final Unit, the features are subsampled and then passed on to the fully-connected layer
(for image classification tasks), where the predictions are made. The number of Units in
the model is kept fixed. In our case, the networks will always contain three Units, but the
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Figure 4.1: The Hamiltonian Network with two Units having three Hamiltonian reversible
Blocks each when used for image classification.

number of Blocks (m) in each Unit (along with the feature map size and the number of
channels in each Unit) is varied to alter the depth of the neural network. In terms of the
ODE/PDE interpretation, each Block represents a time step of the discretization, with N
and h deciding the depth of the network and the final output YN being the output of the
last Block. The Leapfrog and the Midpoint network architectures are treated similarly,
where the forward propagation in the Blocks are governed by equations (2.19) and (2.21),
and m Blocks are stacked together to form a Unit.

4.2 Implementation of Nonlocal Blocks

We now look at how the global operators are included in the network. To this end, the
nonlocality is added after the second Block in each Unit of the network, i.e. the feature
maps that are obtained after the second Block are passed through the Nonlocal Block.
The output of the Nonlocal Block is then fed into the next normal Block (Hamiltonian,
Midpoint, etc.).

4.2.1 Nonlocal diffusion operator

Let X be the input to the Nonlocal Block that is supposed to contain the nonlocal
interactions. Let Xi denote each pixel of the image. For instance, for an input X with 16
channels, Xi ∈ R16 stands for the 16 channel values for each pixel position. These vectors
will be called pixel strips from here on. To implement the nonlocal diffusion operator L,
defined by equation (3.1), in the Nonlocal Block, one can discretize the PIDE-inspired
operator using a 2-step/2-stage computation as follows:

[B1]i = Xi + hK1

[
1∑

j

ω(Xi,Xj)

∑
j

ω(Xi,Xj)(Xj −Xi)

]
,

[B2]i = Xi + hK2

[
1∑

j

ω(Xi,Xj)

∑
j

ω(Xi,Xj)
(

[B1]j − [B1]i

)]
,

(4.1)

where [B1]i and [B2]i are the individual pixel strips of the intermediate feature maps B1

and the output feature maps B2 respectively, h is the discretization step size, and K1, K2

are 1×1 convolution operators, followed by ReLU activation and Batch Normalization. The
output B2 is then fed into the next normal Block in the Unit. This 2-stage discretization
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4.2. Implementation of Nonlocal Blocks

strengthens the nonlocal interactions between the features further and can be roughly seen
as a forward Euler scheme (in time) for the PIDE

ut(x, t) = L(u(x) + hLu(x)), u(x, 0) = u0(x), (4.2)

where u0(x) is the initial value.
There are several things to note here. The kernel ω(x,y) measures the affinity or

similarity between each pair of pixel strips of the image/feature maps. For choosing
the right kernel, there are several suggestions made by Wang, Girshick, Gupta et al. in
[WGG+18], such as the Gaussian function ex

Ty, the embedded Gaussian eθ(x)Tφ(y) and the
embedded dot product θ(x)Tφ(y). All these kernels seem to work equally well. We will be
using the scaled embedded dot product λθ(x)Tφ(y), where θ and φ are 1× 1 convolutional
embeddings, and λ > 0 is a scaling factor. Essentially, it means that the input X is passed
through two different 1× 1 convolutions to obtain embeddings θ(X) and φ(X). Then the
kernel ω measures the affinity between the pairs of pixel strips θ(Xi) and φ(Xj) (see Figure
4.2).

One can also use the scaled Gaussian kernel if one needs a positivity-preserving kernel
eλθ(x)Tφ(y). Note that the embedded kernels are not symmetric. If one needs a symmetric
kernel with embeddings of the input, then one can pre-embed the features to get θ(X)
and then feed it to the PIDE-inspired Nonlocal Block with the kernel ω(Xi,Xj) in (4.1)

replaced by ω(θ(Xi), θ(Xj)). Then one can use the scaled Gaussian kernel ω(x,y) = eλx
Ty

or the scaled dot product ω(x,y) = λxTy, both of which are symmetric.

C W

H

θ(X)

θ(Xi)

C W

H

φ(X)

φ(Xj)

Figure 4.2: Pixel strips of embedded versions of X with C channels, which are used to
compute the kernel entry ω(Xi,Xj).

The factor
∑

j ω(Xi,Xj) is a normalizing factor. For the sake of simplicity, and for
easier gradient computations, as suggested in [WGG+18], we choose this factor to be
N , where N is the number of pixel strips in the input X. For instance, in Figure 4.2,
the number of pixel strips is 36 for a 6× 6 image. Without this normalizing factor, the
computations might blow up for inputs/images of larger sizes.

After the normalization, a 1× 1 convolution K1 is applied, along with ReLU and Batch
normalization, and then the result is added to the pixel strip of the original input, i.e. Xi.
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Chapter 4. PIDE-based discretization of nonlocal operators and implementation details

Instead of simply discretizing the PIDE (equations (3.4) and (3.12)) using the forward
Euler scheme, this computation is iteratively repeated several times, as shown in Figure 4.3.
This allows us to extract more nonlocal information from the dataset. Here, we restrict
ourselves to a two-stage forward propagation.

X
X

S
ta
ge

1

h + B1

S
ta
ge

2

h + B2 B2

Figure 4.3: The two-stage computation of a Nonlocal Block with skip connections.

The advantage of this multi-stage operation is that one can perform nonlocal operations
several times, which widens the field-of-view of the network further, but the kernel ω is
computed only once at the start, which saves computational time and effort. At the same
time, one cannot have too many stages in one Nonlocal Block because, for instance, after
Stage 5, we have the output B5, but the pre-computed kernel would fail to characterize
the affinity between pairs of pixel strips of the features properly since the features would
change quite a bit after each stage (see section 5.3.3).

This Nonlocal Block differs from the one suggested in [TSD+18] because, as shown in
Figure 4.3, it contains identity skip connections. Similar to skip connections in ResNets,
which have performed well for deep networks, skip connections in the Nonlocal Block are
introduced to make sure that the Nonlocal Block does not impede the flow of information,
which would force the network to perform worse. The experiments in section 5.3.1 confirm
this, showing that including skip connections in the nonlocal computations can be beneficial.
This way, in the worst case, in the presence of Nonlocal Blocks, the network at least does
not deliver a worse performance than the performance of a network without the nonlocality.

The affinity kernel is stored in a matrix form for each batch of training data. We can
reorder the terms in equation (4.1) to enable faster computations of tensors. For example,
a part of the term in the first equation of (4.1) can be written as∑

j

ω(Xi,Xj)(Xj −Xi) =
∑
j

ω(Xi,Xj)Xj −
∑
j

ω(Xi,Xj)Xi (4.3)

=
∑
j

ω(Xi,Xj)Xj − Xi

∑
j

ω(Xi,Xj). (4.4)

The second part of this term is just the sum of the i-th row of the matrix representing ω,
times the pixel strip Xi. Similarly, for the second stage, we have

[B2]i = · · ·
[
· · ·
∑
j

ω(Xi,Xj)[B1]j − [B1]i

∑
j

ω(Xi,Xj)

]
. (4.5)
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4.2. Implementation of Nonlocal Blocks

The exact details of how the tensors are dealt with and propagated forward in the
Nonlocal Block are shown in Figure 4.4, where the shape of the input to the Nonlocal
Block is assumed to be H ×W × 1024, 1024 being the number of channels of the input. H
and W are the spatial height and width of the feature maps respectively. The diagram
only shows the computations for one stage of the Nonlocal Block since the other stages are
just repetitions but with a pre-computed kernel ω.

xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H×W×512

512×HW

(Kernel ω)
HW×HW

×

H×W×1024

HW×1024

HW×1024

H×W×1024

HW×1024

HW × 1

(row sum)
•

HW×1024
−

1
N

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024

H×W×1024

BN+act+

B1,2

Figure 4.4: Forward propagation of tensors in a Nonlocal Block with the nonlocal diffusion
operator L.

In Figure 4.4, ⊗ represents matrix multiplication, ⊕ and 	 denote element-wise addition
and subtraction respectively, and � denotes dot product. For the dot product, each row of
the tensor with shape HW × 1024 is multiplied by a corresponding element from the row
vector of shape HW × 1. The first multiplication is used to compute the kernel ω. The
second multiplication represents the first term in equations (4.4) and (4.5), and the dot
product is used to compute the second part of equations (4.4) and (4.5).
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Chapter 4. PIDE-based discretization of nonlocal operators and implementation details

Subsampled Nonlocal Blocks

As we will see later in section 6.1, this global computation can be very expensive.
In order to minimize the floating-point operations, several remedies exist. Firstly, all
the convolutions in the Nonlocal Block are 1 × 1 convolutions. This itself reduced the
computational effort drastically. Secondly, the embeddings θ and φ can be used to reduce
the number of channels by half, as shown in Figure 4.4. This reduces the computation of a
Nonlocal Block by half when the kernel ω is computed.

There is one more way of reducing the computational effort of the Nonlocal Blocks,
namely subsampling the image before the affinity of the pixel strips is computed. This is
shown in Figure 4.5. Compare this figure to Figure 4.2.

C W

H

θ(X)

θ(Xi)

C W
′

H ′

φ(X̂) (subsampled)

φ(X̂j)

Figure 4.5: Pixel strips of embedded versions of X with C channels, which are used to
compute the subsampled version of the kernel entry ω(Xi, X̂j).

Figure 4.5 shows how the input X (of shape H ×W ×C) is spatially subsampled to X̂
(of shape H ′ ×W ′ × C) before the affinity between the regions of the image is computed.
Experiments have shown that this has very little impact on the performance of the network.
This tells us that we do not need to compare each pair of pixel strips. Instead, it is good
enough if we compare patches of the image with each other and learn the correlations
between them while we compute the kernel ω. The computational savings due to this
subsampling trick [WGG+18] are discussed in section 6.1. In terms of the entire Nonlocal
Block itself, Figure 4.6 shows how the feature maps are transformed when we use the
subsampling trick. The nonlocality is still preserved in this case, but the computations
are sparser. For instance, if we use a 2 × 2 pooling operation, the number of pairwise
computations reduces by a quarter.

4.2.2 Fractional Laplacian operator (−∆)s

As discussed before, the fractional Laplacian operator (3.13) can be seen as a special
case of the nonlocal diffusion operator with kernel ω(x,y) = |x− y|−(n+2s). This means
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4.2. Implementation of Nonlocal Blocks

xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H′×W ′×512

512×H′W ′

(Kernel ω)
HW×H′W ′

×

H′×W ′×1024

H′W ′×1024

(subsampled)

HW×1024

H×W×1024

HW×1024

HW × 1

(row sum)
•

HW×1024
−

1
N

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024

H×W×1024

BN+act+

B1,2

Figure 4.6: Forward propagation of tensors in a subsampled Nonlocal Block with the
nonlocal diffusion operator L.

that the discretization follows a similar procedure. In this case, we have the following
two-stage forward propagation:

[B1]i = Xi + hK1

[
cn,s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n+2s

2

(Xi −Xj)

]
,

[B2]i = Xi + hK2

[
cn,s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n+2s

2

(
[B1]i − [B1]j

)]
,

(4.6)

where θ and φ are again 1× 1 convolutional embeddings, ‖ · ‖2 is the L2 norm, 0 < s < 1,
and λ > 0 is a scaling constant that is used to have greater control over the diffusion kernel.
A small value of λ leads to a weak interaction between the different pixel strips, whereas a
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Chapter 4. PIDE-based discretization of nonlocal operators and implementation details

large value of λ damps the signal quickly. The rest of the expression is implemented in a
similar fashion, with normalizing constant N , etc. The tensors in the Nonlocal Block are
computed similarly, as shown in Figure 4.4, and its subsampled version is shown in Figure
4.6. In the case of pseudo-differential operators, the ⊗ symbol for the kernel computation
represents pair-wise distance computations. The other ⊗ symbol in the figures still stands
for matrix multiplication. The only difference here is that we compute (Xi −Xj) (and
([B1]i− [B1]j)), instead of (Xj−Xi) (and ([B1]j− [B1]i)), to be in line with the definitions
of the two operators. However, this does not make any difference to the learning problem.
The forward propagation of the features through this 2-stage process can be again seen as
a discretization of an underlying PIDE (equation 4.2).

Besides, we have a singularity in the kernel if the embeddings of the pixel strips,
i.e. θ(Xi) and φ(Xj), are the same. From section 3.2.1, we know that there is no net
contribution to the integral when y → x. Hence we just perform a safe divide, i.e. the
kernel entry

ω(Xi,Xj) =
λ∥∥θ(Xi)− φ(Xj)

∥∥n+2s

2

is replaced with 0 if the denominator turns out to be zero.
While computing the pairwise distances, if the mini-batch size is large, the tensors get

replicated and thus consume a lot of memory. To overcome this problem, we can use the
identity

‖x− y‖2 = ‖x‖2 − 2x · y + ‖y‖2.
This reduces the memory footprint by quite a bit. For instance, if we have matrices
A ∈ R36×6 and B ∈ R9×6 that contain the values of 36 and 9 pixel strips of the two
embeddings respectively (see Figure 4.5), then the square of the pairwise distance is
roughly represented as follows(

...

)
36×1

− 2
[
A ·BT

]
+
(
. . .
)

1×9
,

with 36 × 1 and 1 × 9 representing the squared L2 norms of the 36 and 9 pixel strips
respectively. The addition and the subtraction is done row-wise and column-wise, not
element-wise. For example, each of the 36 entries of the 36 × 1 vector is added to the
corresponding row of the 36× 9 matrix that results from the dot product operation.

4.2.3 Inverse fractional Laplacian operator (−∆)−s

The inverse fractional Laplacian operator for 0 < s < n/2, defined by equation (3.20),
can be discretized in a similar fashion using a two-stage method with skip connections:

[B1]i = Xi + hK1

[
cn,−s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n−2s

2

Xj

]
,

[B2]i = Xi + hK2

[
cn,−s∑

j

ω(Xi,Xj)

∑
j

λ∥∥θ(Xi)− φ(Xj)
∥∥n−2s

2

[B1]j

]
.

(4.7)
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4.3. Regularization

For the case s = n/2, we have a log kernel (equation 3.21), which is implemented in
the Nonlocal Block as

[B1]i = Xi + hK1

[
cn∑

j

ω(Xi,Xj)

∑
j

(
− 2λ log

(∥∥θ(Xi)− φ(Xj)
∥∥

2

)
− γ
)

Xj

]
,

[B2]i = Xi + hK2

[
cn∑

j

ω(Xi,Xj)

∑
j

(
− 2λ log

(∥∥θ(Xi)− φ(Xj)
∥∥

2

)
− γ
)

[B1]j

]
.

(4.8)

For the case 0 < s < n/2, the kernel entry is again replaced with zero, in case the
denominator happens to be zero. For the case s = n/2, if the term log

(
‖θ(Xi)− φ(Xj)‖2

)
turns out to be undefined, the term is then replaced by − γ

2λ
so that it does not contribute

to the overall sum.
These two operators are different from the previous two discussed in this chapter.

While for the diffusion-like operators, the kernel is integrated with the term Xj −Xi (and
[B1]j − [B1]i), for these two operators, we have the term Xj (and [B1]j) only. This is
reflected in the performance of the overall network, as we will see in section 5.3.1. The
computations and forward propagations of the tensors for these two Nonlocal Blocks
with subsampling are shown in Figure 4.7. The non-subsampled version can be found in
Appendix A.1.

The PIDE-based Nonlocal Blocks discussed here have several advantages over other
layers in the neural network. Firstly, it is clear that for all the operators introduced
here, the pixel strips’ values of the Nonlocal Block output depend on each pixel strip
of the input tensor. This Block is also different from a fully-connected layer because
it computes activations based on relationships between different regions of the image,
and these long-range dependencies are a function of the input data. This is different
in a fully-connected layer, where the relationship is established using trainable weights.
Secondly, a fully-connected layer can usually only be added at the end of the network due
to computational cost reasons, and the local information is lost by flattening the image. On
the other hand, the Nonlocal Block can be added anywhere in the network, and it preserves
the 2D structure of images. Besides, the output and input shapes of this implementation
are the same. Therefore, this Block can be plugged into any neural network architecture
associated with computer vision to accelerate the communication of information across
pixels.

4.3 Regularization

Regularization is a process of adding information to the objective function in order
to solve an ill-posed problem. In a neural network, it reduces the generalization error
[GBC16], i.e. the error generated while using the model on the test data. Regularization is
a technique that is also used to tackle underfitting and overfitting. In overfitting, the model
performs well on the training data but poorly on the test data that it has not seen before.
On the other hand, underfitting occurs when the model fails to learn and perform well on
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xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H′×W ′×512

512×H′W ′

(Kernel ω)
HW×H′W ′

1
N ×

H′×W ′×1024

H′W ′×1024

(subsampled)

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024
BN+act

H×W×1024

+

B1,2

Figure 4.7: Forward propagation of tensors in a subsampled Nonlocal Block with the inverse
Laplacian operator (−∆)−s.

the training data itself because the model is not complex enough to learn the characteristics
of the data. Several strategies have been used in the deep learning community in this regard,
such as shake-shake regularization [Gas17]. Dropout [SHK+14], for instance, randomly
drops nodes from the network during training to reduce the complexity of the model. Other
techniques to reduce the generalization error, such as data augmentation, are also quite
popular, which we will discuss in the next section.

The weight-decay or L2 regularization (sometimes written as L2 or L2) will be used
in our experiments. It penalizes large weights in the hidden layers of the network and is
equivalent to the well-known Tikhonov regularization. Let K denote some (convolutional)
weights of the network, then the L2 regularizer is given by

R(K) =
α1

2
‖K‖2F , (4.9)

where ‖ · ‖F represents the Frobenius norm, and α1 is the regularization hyperparameter
that controls the trade-off between larger and smaller trainable weights. Very small values
of α1 lead to overfitting. Meanwhile, larger values of α1 lead to underfitting because it
incentivizes the network to push many network weights close to zero, which drastically
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reduces the expressive power and the complexity of the model. In fact, from an optimal
control viewpoint, these regularization terms can be seen as running costs for the model,
whereas the loss function S from equation (2.11) can be seen as the terminal cost.

From Theorem 2.7, we know that for a stable forward propagation, we would ideally
want the weight matrices K(t) to change smoothly with time, i.e. we would like convolution
weights to be piecewise smooth in time. To this end, as suggested in [CMH+18b], we use
weight smoothness decay in combination with L2 regularization. The smooth weight decay
can be written as

R(K) = α2 h
N−1∑
j=1

2∑
k=1

∥∥∥∥Kj,k −Kj+1,k

h

∥∥∥∥2

F

, (4.10)

where h is the step size, α2 is again a hyperparameter, and j represents each time step
or each Block of the PDE-based neural network. Here it is assumed that there are two
convolution layers/weights K1 and K2 in each Block/time step (in Hamiltonian Blocks, for
example). This regularization favors weights that vary smoothly between adjacent layers
of the network, i.e. piecewise smooth dynamics are favored. Because of the unique nature
of Nonlocal Blocks, the weight smoothness decay is only applied to the normal Blocks and
not to the Nonlocal Blocks, whereas L2 weight decay is applied to all the convolutional
network weights. Both the regularization terms are then added to the objective function
(2.11), which the optimizer tries to then minimize.

4.4 Further implementation details

After the opening layer of 3× 3 convolutions, the original Hamiltonian network consists
of 3 Units [CMH+18b], with a pooling and a zero-padding layer between the Units, where
the feature map size is halved, and the number of feature maps is increased by padding
zeros (Figure 4.1). For our experiments, the Hamiltonian network is re-implemented. We
will be using 3 Units with m Hamiltonian Blocks with average pooling with pool size 2
(window size over which the maximum or the average is taken) to decrease the size of the
feature map, followed by 1× 1 convolution (with ReLU) instead of zero-padding to increase
the number of channels. The convolutions within each Block are all 3 × 3 convolutions
with spatial zero-padding to maintain feature map size. For the image classification task,
the number of nodes in the fully-connected layer is equal to the number of image classes in
the dataset. Therefore, a normal Hamiltonian network has 12m+ 2 layers, with 4m layers
in each Unit (2 convolutions and 2 transposed convolutions per Hamiltonian Block).

The Nonlocal Block is then added after the second Block in each Unit, and this network
is trained and tested on several image classification benchmark datasets, such as CIFAR-10,
CIFAR-100 [Kri09] and STL-10 [CNL11], in order to assess the performances and effects
of each nonlocal operator in the network. The networks are also used for the semantic
segmentation task in autonomous driving. To this end, the BDD100K dataset [YCW+20]
is used, which is a large-scale dataset of visual driving scenes.

CIFAR-10 consists of 50,000 training images and 10,000 testing images in 10 classes,
where the resolution of each RGB image is 32× 32. CIFAR-100 contains the same images,
with the same train-test split, but the images are categorized in 100 classes. STL-10
consists of 96×96 RGB images, and therefore the network needs a larger receptive field due
to the higher resolution of the images. The training and test sets contain 5000 and 8000
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images, respectively. Apart from the high resolution, the classification task for STL-10
is more challenging also because of the relatively small number of training samples. For
the semantic segmentation task, the BDD100K dataset consists of 7000 and 1000 training
and test images (RGB images) respectively, with each pixel belonging to one of the 20
classes. The resolution of each image is 1280× 720. To demonstrate the performance for
the segmentation task, we use small networks, and therefore we resize the images to a
resolution of 160× 90. This is done by removing every second row and column from each
image and performing the same operation iteratively on the resulting image.

For training with CIFAR-10 and CIFAR-100, the mini-batch size is kept at 100. The
per-pixel mean from the input image is subtracted before training [KSH12], and the means
of the training data are used to perform per-pixel mean subtraction on the test data.
Common data augmentation techniques [LXG+15] are performed, such as padding 4 zeros
around the image, followed by random cropping and random horizontal flipping. This
makes the network more robust and helps it to generalize better. At the end of the network,
before the fully-connected layer, we have an average pooling layer with a pool size of 2
(Figure 4.1). For subsampling within the Nonlocal Block, max-pooling is performed with a
pool size of 2, i.e. 2× 2 patches of the image are used to compute the affinity kernel ω.

For the STL-10 dataset, the mini-batch size is 50. The same preprocessing and data
augmentation techniques are used but with a padding of 12 zeros around the image before
cropping, instead of 4, because the images in the STL-10 dataset are significantly larger. At
the end of the network, before the fully-connected layer, we have an average pooling layer
with pool size 8. For subsampling within the Nonlocal Block, max-pooling is performed
with a pool size of 4, i.e. in this case, 4× 4 patches of the image or feature maps are used
to compute the affinity kernel ω.

For the segmentation task with the BDD100K dataset, the mini-batch is of size 8.
This value is intentionally kept small to avoid a large memory footprint due to the kernel
computation and the relatively high image resolution. For the data augmentation, the per-
pixel mean subtraction is performed, and then the image is randomly flipped horizontally.
In a usual neural network for semantic segmentation tasks, the image is subsampled several
times and then upsampled again to get a high-dimensional output. We use a simple
architectural design here, i.e. the pooling layers that are shown in Figure 4.1 are left
out. This way, the spatial dimensions of the image are maintained. At the end of the
network, instead of a fully-connected layer, the output of the last unit is passed through
1× 1 convolutional layer with 20 filters, which gives us the prediction of each of the pixels
in the image. For subsampling within the Nonlocal Block, max-pooling is performed with
a pool size of 3.

All the networks are implemented and trained using the Tensorflow library [AAB+16]
with a single Nvidia Tesla P100 GPU. The deeper networks (section 5.3.4) and the networks
for the semantic segmentation task (section 5.5) are trained using an Nvidia Tesla V100
GPU. All the trainable weights in the neural network are initialized based on the suggestions
in [HZR+15]. The discretization step size h is kept between 0.04 and 0.08. Very small
values of h lead to slow propagation of the information down the network, and as a result,
the network performs worse. On the other hand, we see exploding gradients and sudden
feature transformations in the network for bigger values of h, which cause instability and
adversely affect training and convergence. For a more in-depth analysis on the effects and
advantages of the parameter h, and for the right choice of the value of h, see [ZHW+19].
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The loss function S in equation (2.11) is chosen to be the cross-entropy loss function
(also called the log-loss function). Stochastic Gradient Descent (SGD) is used as the
optimizer with momentum 0.9 and with a learning rate of 0.01 for the first epoch to warm
up the training. Then we go back to a learning rate of 0.1 and decay it by a factor of 10
after 80, 120, 160 and 180 training epochs. The weight decay constant α1 for weights in the
normal Blocks is 2× 10−4 for CIFAR-10/CIFAR-100/BDD100K and 5× 10−4 for STL-10.
The weight smoothness decay constant α2 is 1×10−8. The reason for such a small value for
α2 is that in our case, we have a Nonlocal Block after the second Block in each Unit. While
we do want the weights to vary smoothly, the weights and the features of the second and
third Hamiltonian Block will be invariably quite different because of the presence of the
nonlocal operation between the two Blocks. Therefore, α2 is kept smaller than the value
suggested in [CMH+18b]. As discussed before, the convolutional weights in the Nonlocal
Block are only regularized by weight decay (2× 10−4 for all the datasets–CIFAR-10/100,
STL-10, BDD100K) and not by the weight smoothness decay. The scaling factor λ is 0.1
for all the nonlocal operators with the dimensional constant n = 2.
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Chapter 5

Numerical Experiments

All the four PIDE-based Nonlocal Blocks given by equations (4.1), (4.6), (4.7) and
(4.8) are added to the Hamiltonian network. Their performances on several benchmark
datasets are then compared to ResNets of a similar size and to the original Hamiltonian
network without the Nonlocal Block. We look at the effects of architectural changes on the
performance and the robustness of the networks to noise. Finally, the neural networks are
used for the semantic segmentation task in autonomous driving. We will call the networks
with the Nonlocal Blocks as Nonlocal Hamiltonian networks, and the one without the
nonlocality is just called Hamiltonian network. Each experiment is run five times with
different random seeds, and the median test accuracy is reported in each case.

5.1 Architecture of the Hamiltonian network

In [CMH+18b], the smallest Hamiltonian network proposed by Chang, Meng, Haber
et al. is a network with 74 layers, with 6 Hamiltonian Blocks in each of the three Units
(6-6-6). The initial convolutional layer has 32 filters, and the number of channels in each
Unit is {32, 64, 112}. Such architectures with three Units have been used in ResNets and
RevNet, and have become a common blueprint for a well-performing CNN. Now, we try to
change the number of Blocks in each Unit and see the corresponding effects on performance.
Note that the majority of the network weights come from the third Unit because of the
higher number of channels, which considerably increases the trainable convolutional weights
in a network. For example, while testing this network on the CIFAR-10 database, the
Hamiltonian network has 0.50M parameters (M stands for million). Therefore, if we want to
have a different Hamiltonian network with a given number of trainable weights, say around
0.50M parameters, then one way to achieve this is by removing a lot of the Hamiltonian
Blocks in earlier Units, and then in return adding a Block or two in the third Unit to
maintain the total number of weights in the network. Or conversely, we can have a lot of
extra Blocks in the earlier Units and remove a couple of Blocks from the last Unit. In
order to see what effect these architectural changes have on the Hamiltonian network, these
networks are tested on the benchmark datasets for image classification (Table 5.1) and
compared to the original Hamiltonian network proposed in [CMH+18b].

The (6-8-5) architecture results are comparable to the (6-6-6) architecture, and at
times worse. The (2-3-7) architecture performs significantly worse than the other two
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Units Channels
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

6-6-6 32-64-112 0.50 92.75 0.67 70.38 0.50 79.95

2-3-7 32-64-112 0.49 92.02 0.65 69.53 0.48 79.25

6-8-5 32-64-112 0.49 92.78 0.65 70.31 0.48 79.90

Table 5.1: Test accuracy for different number of Blocks in each Unit of the Hamiltonian
network.

networks. This confirms the fact that the earlier layers are very important to the networks.
In [HSL+16], Huang, Sun, Liu et al. randomly drop certain layers while training, but the
probability of the later layers being dropped is higher than the ones for the earlier layers.
This is because the earlier layers extract low-level features that will be used by later layers.
Therefore, we do not drop any Blocks in the earlier Units of the network. Since we see no
increase in test accuracy for different number of Blocks in each Unit, we stick to the simple
(6-6-6) architecture for our experiments. This way, for each feature map size, i.e. for each
Unit, the network has equal expressive power. Later on, in section 5.3.4, the performance
of deeper networks (18-18-18) is discussed, where the improvement in accuracy is mainly
driven by the extra Blocks in the earlier Units.

5.2 Q-tips dataset with nonlocal dependence

We first test the four networks on a synthetic dataset called Q-tips that was introduced
by Haber, Lensink, Treister et al. in [HLT+19] in order to test the extent of the receptive
field of a network in semantic segmentation. For purposes of image classification, the
dataset is slightly modified. Each image consists of a black midsection with a colored
square at the end of the stick. The stick belongs to one of 15 classes, depending on the
colored markers (red, green, blue, yellow and pink) that are present on each end, as shown
in Figure 5.1. Hence, in order to classify the image properly, the network needs to facilitate
long-range communication between the regions of the image, and without information
about both ends of the stick, the image will be classified wrongly by the network.

The dataset consists of 512 training and validation examples. Each of the images is
a 64 × 64 3-channel image with a stick of length l, width w and rotational orientation
r, where the values are chosen from a discrete uniform distribution with l ∈ U{32, 60},
w ∈ U{4, 8}, r ∈ U{−180, 180}. The pixel values are normalized to [0, 1], and then a
Gaussian noise η ∼ N (0, 0.3) is added to make the classification task more challenging.

The number of Hamiltonian Blocks in each Unit of the network is equal to 6. The
initial convolutional layer has 32 filters, and the number of channels in each Unit is {32, 64,
112}. This way, the original Hamiltonian network has 0.50M trainable parameters for the
Q-tips dataset. Then the Nonlocal Block with each of the four operators is added, and this
results in a network with 0.56M trainable parameters. ResNet-44 [HZR+16a] is chosen for
comparison because it is a network of a similar size, in terms of the number of trainable
parameters (0.66M).

The training is performed with a mini-batch size of 50. The learning rate for SGD is
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Figure 5.1: Image classes for the Q-tips dataset with Gaussian noise.

kept at 0.01, and the training is done for 30 epochs. All the other hyperparameters are the
same as in the CIFAR-10 setting discussed in the last chapter.

The training curves can be seen in Figure 5.2 for the four nonlocal operators, with
s = 1/2 for the pseudo-differential operators. The networks start the training pretty
equally, and at times ResNet is better than the Nonlocal Hamiltonian networks, but after
a few epochs, the nonlocal interactions come to the fore, and we see that the Nonlocal
Hamiltonian networks accelerate the exchange of information between far away pixel in the
images due to the networks’ wider field-of-view, and therefore we have faster convergence
of the training. On the other hand, the training curve for ResNet stagnates after a while,
which suggests that ResNets need a deeper network with more convolutional layers to learn
more about the dataset. The test curves are not considered in this case because the data
is not complex enough. Therefore, there is a lot of fluctuation in the test accuracy when
the network is training.

5.3 Nonlocal Hamiltonian networks on image classification
benchmark datasets

5.3.1 Training on benchmark datasets

The Nonlocal Hamiltonian networks, with the different PIDE-based Nonlocal Blocks
given by (4.1), (4.6), (4.7) and (4.8), are inserted in each Unit of the network and tested
on the benchmark datasets CIFAR-10, CIFAR-100 and STL-10. The network architecture
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Figure 5.2: Training accuracy for Nonlocal Hamiltonian networks and ResNet-44 on the
Q-tips dataset with Gaussian noise.

(6-6-6) is used, with {32, 64, 112} being the number of channels in the three Units. The
value of s for the pseudo-differential operators is 1/2. In the next section, the effect of s on
the performance is explored. The rest of the implementation details have been discussed
in the previous chapter. The original Hamiltonian network, ResNet-44 and PreResNet-20
[HZR+16b] are used as baseline networks for comparison and are trained on each of the
three datasets. The main results with the test accuracies are shown in Table 5.2. The best
result for each benchmark dataset is marked in boldface.

Network
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

ResNet-44 0.66 92.64 0.66 69.51 0.66 75.79

PreResNet-20 0.57 92.35 0.59 71.07 0.57 77.39

Hamiltonian-74 0.50 92.75 0.67 70.38 0.50 79.95

Nonlocal diffusion L

0.56

93.27

0.72

71.81

0.55

82.62

Pseudo-differential (−∆)1/2 93.21 71.84 81.88

Pseudo-differential (−∆)−1/2 93.08 71.24 81.56

Pseudo-differential (−∆)−1 92.88 71.25 80.73

Table 5.2: Test accuracies on benchmark datasets for different Nonlocal Hamiltonian
networks.
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The figures in Table 5.2 show that all of the Nonlocal Hamiltonian networks perform
better on the benchmark datasets. They also have fewer parameters than the baseline
networks of ResNet and PreResNet networks (for CIFAR-10 and STL-10). The Nonlocal
diffusion L network performs the best, closely followed by the Pseudo-differential (−∆)1/2

network, which can be seen as a special case of the nonlocal diffusion operator, as pointed
out in section 3.2.1. The inverse Laplacian operator (−∆)−1 with the log kernel performs
the worst, but it nevertheless outperforms the baseline networks. Besides, the accuracies
of the networks are rather comparable to that of ResNet-56 and ResNet-110 and not to
ResNet-44 (see [HZR+16a]). This shows that the presence of nonlocal interactions greatly
reduces the need for deeper networks to achieve a certain level of accuracy. The better
performance of the proposed neural networks in comparison to ResNets is quite encouraging
because, at the time of writing this thesis, on CIFAR-10 and CIFAR-100 datasets, the
BiT-L network [KBZ+19], which is considerably larger than the networks discussed here,
has the best test accuracy, namely 99.37% and 93.51% respectively. It is based on the
ResNet architecture, and it uses transfer learning to produce very compelling results.

The Nonlocal diffusion network performs better than the one suggested in [TSD+18],
which did not have any skip connections in the Nonlocal Block. This suggests that
introducing skip connections within the Nonlocal Block makes sure that the network learns
only the update (or the residual) made to the identity function, and hence avoids any
impedance when the information travels through the Nonlocal Block.

The Nonlocal diffusion L network and the Pseudo-differential (−∆)1/2 network perform
comparatively better than the other two proposed neural networks. This is possibly because
of the difference term [u(x)− u(y)] (and [u(y)− u(x)]). When computing each pixel in
the output feature map, this term compares and computes the relative differences between
the neighboring pixel values of the input feature map, whereas the operator (−∆)−1/2

just computes a weighted sum of u(y) (see Definition 3.11). Also, we see the biggest
increase in accuracy for the STL-10 dataset. This is due to the fact that the images in this
dataset are relatively larger than the ones in CIFAR-10/100, and therefore the nonlocality
plays a more vital role in widening the receptive field of the network, which enables direct
communication between pixels on opposite ends of the image. The test accuracy curves
(till the 160th epoch) for the Nonlocal diffusion network with each of the three datasets
are shown in Figure 5.3. The Hamiltonian-74 is used for comparison since it has the best
performance out of all the three baseline networks. The test accuracy curves for the other
Nonlocal Hamiltonian networks can be found in Appendix A.2.

The Nonlocal Hamiltonian networks can actually achieve better results for the STL-10
dataset. With a larger step size h, around 84%-84.5% test accuracy on STL-10 can be
attained. The value of h is intentionally kept low because, as pointed out in [ZHW+19],
a small h encourages the model to have smaller weights. A model with larger weights
tends to suffer from overfitting. Such models are also vulnerable to adversarial attacks.
For example, the Pseudo-differential (−∆)1/2 network was trained with a higher value of
h, namely h = 0.15, and it achieved a median test accuracy of 84.12%. In this case, the
real parts of the eigenvalues of the weight matrices K1, K2 in the Nonlocal Block, along
with the eigenvalues of the symmetric parts of the weight matrices (see section 6.2), can be
found in Appendix A.3. Furthermore, while running the experiments, with a higher value
of h like 0.2, the network often ended up being untrainable due to exploding gradients.
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Figure 5.3: Test accuracy curves for the Nonlocal diffusion L network in comparison to the
original Hamiltonian network.

5.3.2 Effect of the parameter s

The pseudo-differential operators, given by Definitions 3.7 and 3.11 (for n = 2), hold
only for 0 < s < 1. In the previous sections, the experiments were conducted using s = 1/2.
In this section, we vary the power of the fractional Laplacian and the inverse fractional
Laplacian operator and see if it has any effect on the performance of the corresponding
networks.

Nonlocal Network s
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

(−∆)s
1/2

0.56

93.21

0.72

71.84

0.55

81.88

1/4 93.17 71.56 81.70

3/4 93.24 71.73 81.72

(−∆)−s
1/2 93.08 71.24 81.56

1/4 93.11 71.29 81.43

3/4 93.02 71.32 81.54

Table 5.3: Test accuracies on benchmark datasets for Nonlocal Blocks containing pseudo-
differential operators with different values of s.

The two pseudo-differential operators are implemented in the PIDE-based Nonlocal
Block with s = 1/4 and s = 3/4. The results of the tests can be seen in Table 5.3. We see
very minimal changes to the performance of the network for each of the three datasets.
This indicates that the nature of the nonlocal operator plays a more important role than
the power of the fractional Laplacian and the inverse fractional Laplacian. This is to say,
any value of s between 0 and 1 works for the two pseudo-differential operators, and the
performance is rather determined by the nature of the nonlocal interaction between the
pixels strips and not by the value of s in the kernel of the integral operator.

5.3.3 Multi-stage Nonlocal Blocks

The discretizations of the nonlocal operators have a 2-stage computation (Figure 4.3).
To see the effect of the number of stages in the Nonlocal Block, the Nonlocal diffusion
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network with four stages is taken as an example and is trained on the datasets (Table 5.4).

# Stages
CIFAR-10 CIFAR-100 STL-10

Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

2 0.56 93.27 0.72 71.81 0.55 82.62

4 0.59 93.09 0.76 71.25 0.59 81.36

Table 5.4: Test accuracies on benchmark datasets for the Nonlocal diffusion L network
with different number of stages in the Nonlocal Block.

The figures show that too many stages in the Nonlocal Block damp the signal in the
network, and hence, the network performs worse or at least does not perform any better
than the network with a 2-stage Nonlocal Block. This is in line with the observations
made in [TSD+18] and is also discussed in Lemma 3.4. Operators similar to the inverse
fractional Laplacian also suffer from instabilities if the number of stages is increased (see
[TSD+18]). Therefore, although a nonlocal operation of this kind improves performance
when the number of stages is kept low, overusing the nonlocal operation can lead to a lossy
network. Also, the affinity kernel ω is computed once at the beginning of each Nonlocal
Block to save computational cost. The features change so much after the first few stages
that the kernel ω cannot depict the affinities accurately anymore after several stages.

Besides, although the Nonlocal Block has only a small number of trainable parameters,
and the increase in the number of parameters is small for a 4-stage network, the nonlocal
operation has a computational cost (due to pairwise distance calculations, etc.), and
one should try to keep this to a minimum. Too many stages lead to a large number of
floating-point operations, with very little or no gain in performance.

5.3.4 Deeper Nonlocal Hamiltonian networks

In this section, we show that the PIDE-based Nonlocal Blocks also work for deeper
architectures. To this end, we use the Hamiltonian-218 network with 18 Blocks in each
Unit (18-18-18) with {32, 64, 128} number of channels in the three Units. Then we add
the Nonlocal Block just before the last Hamiltonian Block in each Unit, as proposed in
[WGG+18]. These networks are then trained and tested on the CIFAR-10 dataset, with
ResNet-110, ResNet-164 and the original Hamiltonian-218 as baselines.

Table 5.5 shows that the proposed neural networks compete well and at times outperform
the state-of-the-art networks of a similar size. In comparison to the original Hamiltonian-218
network, all the Nonlocal Hamiltonian networks show accuracy improvements in the presence
of the Nonlocal Block in their Units. Three out of the four Nonlocal Hamiltonian networks
outperform the ResNet-164 network, although the ResNet-164 network has substantially
more trainable parameters. This reiterates the fact that the nonlocal connections and their
larger receptive fields somewhat compress the ResNet-like architectures. These connections
partially alleviate the necessity to have very deep networks, and hence, we can save training
time by training shallower networks with Nonlocal Blocks in them.
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Network
CIFAR-10

Params (M) Acc. (%)

ResNet-110 1.73 93.65

ResNet-164 2.61 93.79

Hamiltonian-218 1.78 93.64

Nonlocal diffusion L

1.85

93.96

Pseudo-differential (−∆)1/2 94.04

Pseudo-differential (−∆)−1/2 93.86

Pseudo-differential (−∆)−1 93.77

Table 5.5: Test accuracies on benchmark datasets for different Nonlocal Hamiltonian
networks with 18 Hamiltonian Blocks in each Unit.

5.4 Robustness to noise and training data subsampling

The nonlocality of a network has a couple of knock-on effects, such as robustness to
noise and to training data subsampling, which makes the networks more appealing in
comparison to several traditional neural architectures. For the experiments in this section,
we use the shallower networks (6-6-6) because the aim is to check how robust each network
is and not to challenge the state-of-the-art networks by achieving better test accuracies.

5.4.1 Robustness to noise

Neural networks are vulnerable to adversarial examples, which leads to misclassification
of examples that have been slightly perturbed [SZS+14; GSS15]. In fact, in [TSE+19], it
is claimed that there is always a trade-off between adversarial robustness and accuracy.
Therefore, the aim of each network should be to keep the sensitivity of the features to
perturbations in the inputs in check, and if possible, offer relatively high performance at
the same time. To examine this property, the Nonlocal Hamiltonian networks are tested on
images with Gaussian noise, similar to the experiments in [ZS19]. The network is at first
trained on uncorrupted training sets. After that, some noise is added to the test examples,
and these examples are used to assess the predictions made by the network.

For a given test image x, the corrupted image is obtained via x 7→ x + η, where
η ∼ N (0, σ2), and σ is chosen to be 0.02. The test accuracies are shown in Table 5.6, with
the best result marked in boldface. In most cases, we see that the proposed networks
perform better than the baseline neural networks. Interestingly, although the Pseudo-
differential (−∆)1/2 network performed slightly worse than the Nonlocal diffusion network
on the benchmark datasets (section 5.3.1), it seems to be at times more robust to noise
than the Nonlocal diffusion network. This shows that a higher test accuracy of a network
does not automatically mean more robustness to noise. The results also show that the
Nonlocal Hamiltonian networks are better equipped to keep the sensitivity of the network
to perturbations in check.
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Network
CIFAR-10 STL-10

Acc. (%) Acc. (%)

ResNet-44 89.48 75.23

PreResNet-20 88.12 74.04

Hamiltonian-74 89.50 79.75

Nonlocal diffusion L 89.81 80.52

Pseudo-differential (−∆)1/2 90.25 79.94

Pseudo-differential (−∆)−1/2 89.62 80.10

Pseudo-differential (−∆)−1 89.55 79.43

Table 5.6: Test accuracies on benchmark datasets for different Nonlocal Hamiltonian
networks in the presence of Gaussian noise.

5.4.2 Robustness to data subsampling

Often, the challenge in deep learning is to acquire enough labeled data. Therefore, it is
advantageous if a neural network can generalize relatively well, even when only a fraction of
the entire dataset is used during training. To verify this property for the proposed Nonlocal
Hamiltonian networks, the networks are trained on a fraction of the entire training data,
and the accuracy of their predictions on all the test examples is observed (Table 5.7).

For CIFAR-10, the networks are trained with 5%, 10% and 15% of the training data,
but for STL-10, it is 10%, 20% and 40% because of the smaller size of the dataset. It is
to be noted that with lesser training data, there is generally a larger variance of the test
accuracy over different random seeds. In most cases, the proposed networks have a better
test accuracy in comparison to the baseline networks. The pseudo-differential operators
(−∆)1/2 and (−∆)−1/2 work relatively better than the other two operators. The results
show that the Nonlocal Hamiltonian networks, on average, need lesser training data to
learn the features in the dataset and to achieve a certain generalization power.

Network
CIFAR-10 STL-10

5% 10% 15% 10% 20% 40%

ResNet-44 59.23 74.60 81.52 42.71 55.27 67.23

PreResNet-20 67.04 76.58 81.20 46.06 58.96 68.44

Hamiltonian-74 68.28 77.07 81.31 44.80 59.07 68.61

Nonlocal diffusion L 68.94 77.20 81.66 46.26 58.76 69.95

Pseudo-differential (−∆)1/2 68.61 77.19 81.76 47.28 58.49 69.58

Pseudo-differential (−∆)−1/2 69.12 77.53 81.34 46.65 59.47 68.88

Pseudo-differential (−∆)−1 68.47 77.33 81.68 45.58 59.07 68.96

Table 5.7: Test accuracies on benchmark datasets with decreased training data for different
Nonlocal Hamiltonian networks.
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5.5 Semantic segmentation on BDD100K

The semantic segmentation task can be viewed as a multi-dimensional classification
problem, where each pixel is assigned a particular label. The aim of the learning problem
is to predict the class of each pixel and thereby partition the image into different image
classes or objects. This gives us an idea of where the object is present in the image and
which pixels belong to it. This is of paramount importance, for example, for self-driving
cars because the position and type of the object in front are necessary inputs to any
self-driving algorithm. Other applications of segmentation include disease diagnosis and
prevention, where one can perform tumor segmentation from medical images [HDWF+17].
The pixel-level, fine-grained control is also critical in the field of robotics and image search
engines.

The Nonlocal Hamiltonian networks are used to segment images from the BDD100K
dataset [YCW+20], which consists of images with everyday driving scenarios. An example
of an image, along with its segmentation mask, is provided in Figure 5.4. Our aim here is
to show the increase in performance due to the presence of nonlocal connections and not
to challenge the state-of-the-art networks. Therefore, we have simple architectures with no
pooling layers to maintain the spatial dimension of the feature maps, and we work with
smaller image resolutions, as mentioned in section 4.4.

Figure 5.4: Input images and corresponding labels from Berkeley DeepDrive (BDD100K)
dataset for the semantic segmentation task [YCW+20].

To evaluate the performance, two metrics will be used. The first one is the pixel
accuracy, which simply reports the fraction of pixels in the image that are classified
correctly. We can represent pixel accuracy as

pixel accuracy =
TP + TN

TP + TN + FP + FN
, (5.1)

where, for a class c, TP (true positive) is the number of pixels classified correctly as c, FP
(false positive) is the number of pixels classified incorrectly as c, TN (true negative) is the
number of pixels classified correctly as not c, and FN (false negative) is the number of
pixels classified incorrectly as not c. This metric can be misleading at times when we have
an imbalanced representation of classes in the images.

The second metric that we use is the Intersection-over-Union (IoU) metric (or the
Jaccard index ). It tries to estimate the overlap between the ground truth and the prediction,
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5.5. Semantic segmentation on BDD100K

and it maintains equal weights for all the classes. The IoU metric is given by

IoU =
TP

TP + FP + FN
. (5.2)

This is calculated on a per-class basis, and the mean is then taken over all the classes,
which gives us the meanIoU (mIoU) metric. If the denominator is zero, i.e. if the class does
not show up in a batch of images, then the value is set to 1 since the network correctly
predicts the absence of that particular class.

Network
BDD100K

Params (M) P. Acc. (%) mIoU (%)

ResNet-44 0.66 83.50 63.42

PreResNet-20 0.57 77.86 52.12

Hamiltonian-74 0.49 84.47 64.40

Nonlocal diffusion L

0.54

84.80 67.01

Pseudo-differential (−∆)1/2 85.24 66.71

Pseudo-differential (−∆)−1/2 85.21 66.52

Pseudo-differential (−∆)−1 84.95 66.26

Table 5.8: Pixel accuracies and meanIoU for the semantic segmentation task on the
BDD100K dataset using the Nonlocal Hamiltonian networks.

The results for the proposed neural networks (with the 6-6-6 and {32, 64, 112} archi-
tecture) can be seen in Figure 5.8. When we consider the pixel accuracy and the mIoU
metric, the Nonlocal Hamiltonian networks perform better than the baseline networks.
The Nonlocal Hamiltonian networks’ metric values are very close to each other. In terms
of pixel accuracy, the Pseudo-differential (−∆)−1/2 network and the Pseudo-differential
(−∆)1/2 network perform slightly better than the other two Nonlocal Hamiltonian networks.
Surprisingly, the PreResNet-20 network performs relatively poorly in comparison to the
other networks. Since the pixel accuracy metric can sometimes be misleading, we can
look at the mIoU metric to have a better understanding of each network’s performance.
In this regard, the Nonlocal diffusion network performs marginally better than the other
Nonlocal Hamiltonian networks. We see that the Nonlocal Hamiltonian networks have
a performance gain of around 2–2.5 mIoU percentage points when we compare it to the
original Hamiltonian network and around 3–3.5 mIoU percentage points when we compare
it to ResNet-44.

To make sure that the networks actually learn to segment the images from driving
scenes into semantically meaningful parts, we look at the predictions made by the networks.
Figure 5.5 shows the true label of a test image (with a taxi) and the different predictions
made by some of the networks discussed above. ResNet-44 has several pixels that are
wrongly labeled ‘black’. The Hamiltonian network, on the other hand, partly classifies
the sky as a car. There are, of course, images where the baseline networks have better
predictions, but Table 5.8 suggests that, on average, the Nonlocal Hamiltonian networks
have better predictions.
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Figure 5.5: The true labels/masks of a test image from the BDD100K dataset and the
predictions made by the different networks.

The results discussed here can be improved by performing segmentation using traditional
encoder-decoder models that subsample the image several times and then upsample it back
to get the predictions, i.e. the full-resolution segmentation map. Common architectures in
this regard include the Fully Convolutional Network (FCN) [LSD15] and U-Net [RFB15],
which contains skip connections for the upsampling layers. The results can also be improved
by using other data augmentation techniques that have not been used here, or by using a
deeper network, which might be necessary because of the high resolution of the images in
the BDD100K dataset.
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Chapter 6

Computational cost and forward
propagation stability

6.1 Computational cost of the Nonlocal Blocks

The Nonlocal Blocks come with a computational cost that needs to be taken into
consideration while inserting it into any neural network. Several strategies to reduce the
number of floating-point computations have been discussed in section 4.2.1. The number of
FLOPs (multiply-adds) associated with the proposed networks for the image classification
task are shown in Table 6.1.

Network
CIFAR-10 CIFAR-100 STL-10

FLOPs (M) FLOPs (M) FLOPs (M)

ResNet-44 98.3 98.3 879.5

Hamiltonian-74 159.6 159.9 1432.5

Nonlocal diffusion L 192.9 193.2 2003.7

Pseudo-differential (−∆)1/2 193.4 193.7 2012.5

Pseudo-differential (−∆)−1/2 193.2 193.5 2011.0

Pseudo-differential (−∆)−1 193.6 193.9 2019.5

Table 6.1: Number of floating-point operations (multiply-adds) for each of the networks
when trained on the image classification benchmark datasets.

To ensure the stability of the forward propagation, we can observe that the Hamiltonian-
74 network has roughly 1.5 times more FLOPs than the traditional ResNet-44. Also, the
ResNets generally have only two convolutional layers in a Residual Block. In comparison,
Hamiltonian Blocks have 2 convolutions and 2 transposed convolutions, which explains
the higher number of FLOPs. The Nonlocal Blocks by themselves add very little extra
floating-point operations for CIFAR-10 and CIFAR-100 but nevertheless help the networks
achieve better accuracy on the benchmark datasets. Therefore, instead of stacking more
convolutional layers to improve the performance of a given network, adding a Nonlocal
Block can be an effective and efficient way of widening the field-of-view and thereby
improving performance.
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When it comes to datasets like STL-10 (or ImageNet, etc.), there is a trade-off that
needs to be taken into consideration. Often, the training of networks is bound by memory
constraints and not by computational constraints. In such cases, this increase is within
acceptable limits. But when the aim is to bring down the number of floating-point
operations, one could use the subsampling trick in the Nonlocal Block that was mentioned
in section 4.2.1. This drastically reduces the number of floating-point operations for the
computations of the kernel ω while measuring the affinity between each pair of pixel
strips/sections of the image, without changing the nonlocal nature of the Block. Table 6.2
shows the effect of the subsampling pool size on the number of floating-point operations
for the Nonlocal diffusion network while training on the STL-10 dataset. As mentioned
before, for the experiments in the previous chapter, the subsampling in the Nonlocal Block
is performed using max pooling with a pool size of 2 and 4 for CIFAR-10/100 and STL-10,
respectively.

Network
Subsample STL-10

pool size FLOPs (M)

Nonlocal diffusion L

0 9341.2

2 3471.4

4 2003.7

6 1731.9

8 1636.8

12 1568.9

Hamiltonian-74 NA1 1432.5

Table 6.2: Number of floating-point operations (multiply-adds) depending on the sub-
sampling pool size in the Nonlocal Blocks while training the Nonlocal diffusion network on
the STL-10 dataset.

The zero in the table stands for non-subsampled Nonlocal Blocks. Clearly, the compu-
tational cost is quite high if no subsampling is performed. When the pool size is increased,
the number of floating-point operations gradually approaches the number of FLOPs for the
original Hamiltonian network (on STL-10). When the pool size is too large, the nonlocal
character of the Block is degraded a bit. Instead of comparing individual pixel strips, we
compare the affinity between large sections of the image. The nonlocal interactions are
therefore not sensitive and strong enough. Consequently, this would lead to very little
increase in performance when the PIDE-based Nonlocal Block is inserted into any neural
network. Thus, it is a balancing act between computational costs versus the increase
in performance of a network in the presence of Nonlocal Blocks. One has to choose the
fitting pool size for the subsampling in the Nonlocal Block, based on the computational
constraints that one has and the resolution of each image in the dataset.

Independent of the choice of the pool size, the presence of Nonlocal Blocks in a neural
network does not worsen the performance of the network. It rather improves performance,

1Not applicable because the original Hamiltonian network has no Nonlocal Blocks
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and the increase in performance is dependent on the pool size of the subsampling in
the Nonlocal Block. Therefore, for a given network, adding Nonlocal Blocks is a more
effective way of improving performance than adding another normal Block (Hamiltonian,
Residual, etc.), which would increase the number of trainable parameters and would make
the network deeper and would make the optimization more challenging. On the other hand,
one should remember that, as pointed out before, too many Nonlocal Blocks can damp
the information that gets propagated down the layers and therefore wipe out any relevant
differences and variations in the feature maps. That is to say, the normal Blocks are also
necessary, and the Nonlocal Blocks should only be placed sporadically between the normal
Blocks of the network due to damping effects and computational cost reasons.

Note that, the number of FLOPs increases roughly quadratically when the pool size is
decreased by half. For example, as we halve the pool size from 8 to 4, 4 to 2 and 2 to 0, the
increase in FLOPs is roughly 400M (1636.8M to 2003.7M), 1500M (2003.7M to 3471.4M)
and 6000M (3471.4M to 9341.2M) respectively. The number of FLOPs roughly quadruples
when the pool size is halved.

6.2 Stability of the PIDE-based forward propagation

It is crucial that the newly introduced PIDE-based Nonlocal Block does not introduce
any instabilities in the forward propagation. If it did, then it would nullify the advantage of
the ODE/PDE-based Hamiltonian network having the stability of the forward propagation.
This would, as discussed before, lead to oversensitivity or insensitivity of the output on the
input data. The depth of the network and the spectral norms of the weight matrices have
a major role to play in this regard. To investigate this, we look at the spectral nature of
the weights in the Nonlocal Block.

Other than the embeddings, the Nonlocal Block has two 1× 1 convolutional layers K1

and K2 for the two stages. For the four Nonlocal Hamiltonian networks used in sections
5.2 and 5.3.1, the weights of the convolution layers have the dimensions K1,2 ∈ R32×32,
K1,2 ∈ R64×64, K1,2 ∈ R112×112, and they belong to Unit 1, Unit 2 and Unit 3 of the network
respectively. The outputs of these transformations are the feature maps that are used
later on in other Blocks of the network. Thus, we look at the eigenvalues of these matrices
to see how the features are transformed by these trainable weights. Figures 6.1 and 6.2
show the real parts of the eigenvalues of the weight matrices K1 and K2 in each Unit of
the Nonlocal diffusion network while training on CIFAR-10 and STL-10, respectively. The
real parts of the eigenvalues for the other Nonlocal Hamiltonian networks can be found in
Appendix A.4.

The plots show that the real parts of the eigenvalues of the trainable weights are mostly
very close to zero. The plus sign in each plot indicates the fraction of eigenvalues that
have positive real parts. In the ideal case, this value should stay close to 0.5. Too many
eigenvalues with positive real parts would lead to amplification of the signal leading to
instabilities in the forward propagation. On the other hand, too many eigenvalues with
negative real parts would lead to a lossy network. The plots for the Nonlocal diffusion
network are pretty symmetric. The plots for the Pseudo-differential networks (−∆)1/2,
(−∆)−1/2 and (−∆)−1 (Figures A.7, A.8, A.9, A.10, A.11 and A.12) show that the real
parts are slightly more asymmetrically distributed, which partly explains their relatively
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Figure 6.1: Real parts of the eigenvalues of weight matrices K1, K2 in the Nonlocal Block
placed in each Unit of the Nonlocal diffusion L network while training on CIFAR-10.

Figure 6.2: Real parts of the eigenvalues of weight matrices K1, K2 in the Nonlocal Block
placed in each Unit of the Nonlocal diffusion L network while training on STL-10.

worse performance.

There is another way of looking at the properties of the transformations carried out by
the trainable weight matrices K1 and K2. Let K ∈ {K1,K2}. Then the amplification or
damping of the features by K ∈ Rn×n is mainly determined by the associated quadratic
form xTKx ∈ R, for x ∈ Rn. We can decompose K into a symmetric and an antisymmetric
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part

K =
K +KT

2
+
K −KT

2
= Ks +Kas.

Then the quadratic form of K is given by

xTKx = xT
(K +KT

2

)
x + xT

(K −KT
2

)
x = xTKsx,

where the quadratic form of the antisymmetric matrix Kas is zero because, for any anti-
symmetric matrix M , we have

xTMx = (xTMx)T = xTMTx = −xTMx.

This implies that 2 xTMx = 0 or xTMx = 0. Therefore, the quadratic form of the
symmetric part of K, i.e. the quadratic form of Ks, determines the spectral properties of
the transformations. Since Ks is symmetric, the eigenvalues are all real.

Figures 6.3 and 6.4 show the eigenvalues of the symmetric parts of the weight matrices
K1 and K2 in each Unit in the Nonlocal diffusion network while training on CIFAR-10
and STL-10 respectively. The eigenvalues of the symmetric parts for the other Nonlocal
Hamiltonian networks can be found in Appendix A.5.

Figure 6.3: Eigenvalues of the symmetric parts of weight matrices K1, K2 in the Nonlocal
Block placed in each Unit of the Nonlocal diffusion L network while training on CIFAR-10.

The plots show that most of the eigenvalues are well-bounded and symmetric unlike
the network suggested in [WGG+18], where the eigenvalues of the symmetric part are
significantly larger when multiple stages are added to the Nonlocal Block, as shown in
[TSD+18]. This well-boundedness of the eigenvalues makes the task of the optimizer easier,
which leads to faster convergence. The plus sign with the number next to it indicates the
fraction of positive eigenvalues. The values are relatively high for the Pseudo-differential
(−∆)−1 network (K2 in Figure A.18), despite having a small value of h, which partially
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explains why this network performs relatively worse than all the other three proposed
neural networks.

Figure 6.4: Eigenvalues of the symmetric parts of weight matrices K1, K2 in the Nonlocal
Block placed in each Unit of the Nonlocal diffusion L network while training on STL-10.
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Chapter 7

Conclusion and Outlook

The aim of this thesis was to combine the concepts of forward propagation stability and
widened receptive fields of neural networks through spatially nonlocal integral operators.
To this end, four global integral operators are proposed, which are inspired by the weighted
Laplacians and by the pseudo-differential operators, namely the fractional Laplacian and
the inverse fractional Laplacian. The operators are implemented in Nonlocal Blocks,
where the forward propagation of the features through these Blocks is governed by the
discretization of an underlying PIDE. These Nonlocal Blocks are then added to each Unit
of the stable Hamiltonian network, which is inspired by Hamiltonian systems.

To improve a network’s performance, the recent trend is to have deeper or wider
networks. Instead, this thesis proposes a network design involving Nonlocal Blocks that
introduce nonlocal connectivities between pairs of regions of the image that accelerate
the communication between far-away pixels and thereby widen the receptive field of the
network. Due to an appropriate combination of local and nonlocal information, the network
gets a more comprehensive view of each example during training. As a consequence, this
helps the network to generalize better on unseen test examples. For instance, there can be
images in a dataset, where a person is wearing a shirt with a dog on it. If the network
does not have a wide enough receptive field, it would fail to realize that the image actually
shows a person, and would rather classify the image as a dog. Such cases can be avoided if
the network allows interactions between different regions of the image.

These nonlocal operators, although dense, are discretized in an efficient way using 1× 1
convolutions and pooling such that we have a relatively low extra computational cost and
very little increase in the number of trainable parameters. Similar to ResNets, the Nonlocal
Blocks contain skip connections, which make sure that their presence does not hinder the
flow of information in the network.

The nonlocality tackles the dilemma of network depth versus accuracy, which was
mentioned before in the first chapter. It reduces the need for deeper networks in order to
achieve a certain level of accuracy and therefore can be very beneficial when one wants to
train a deep network but has computational constraints. Instead, one can have a slightly
shallower network with the nonlocal operators inserted into the networks and thereby
possibly save training time. The proposed neural networks achieve better accuracy than the
original Hamiltonian model and the widely-used state-of-the-art ResNets. The Nonlocal
diffusion L network and the Pseudo-differential (−∆)s network perform slightly better than
the other two proposed networks. Moreover, the PIDE-based Nonlocal Block maintains
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the 2D structure of the images and has the same output shape as the input shape. Hence,
they can be seamlessly inserted into any network. This can be useful if a neural network
is to be trained and tested on a dataset that warrants nonlocal connections between the
regions of the image, such as the synthetic Q-tips dataset.

The Nonlocal Blocks come with a computational cost, which can be adjusted based
on the pool size of the subsampling in the Nonlocal Block. For most pooling sizes, the
increase in computational cost is within acceptable limits. Moreover, just the presence of
nonlocality, irrespective of the subsampling pool size, improves the performance of the
network, especially for larger images.

Using spectral properties of the transformation matrices, we show that the Nonlocal
Blocks do not destabilize the original Hamiltonian network in any way, and consequently,
the stability of the forward propagation is still preserved. This stability provides an added
benefit, i.e. the proposed networks are more robust to noise and perturbations of the input
features and therefore more robust to adversarial attacks. The networks’ global properties
help them tackle local perturbations. Furthermore, the proposed nonlocal neural networks
perform better than the baseline networks when the amount of training data is reduced.
This makes them more appealing in applications, where there is a dearth of labeled data.

For future work, the PIDE-based Nonlocal Hamiltonian networks can be applied to
other computer vision tasks, such as object recognition, where the nonlocal interactions
can be crucial, and the output of the network is high-dimensional, or it can be employed
in unsupervised learning tasks. While using the nonlocal operators, often, the mini-batch
size is reduced to keep the memory footprint in check, although this has an adverse effect
on the training time. Other strategies, such as reducing the channels of the embeddings
(Figures 4.6 and 4.7) from 1024 to 256, can reduce the memory costs while computing
the kernel. The effects on performance for such a drastic reduction in the number of
channels in the embeddings need to be explored. Besides, the nonlocal diffusion operator
L can be seen as a global weighted graph Laplacian. So it would be interesting to see
if it finds any use in Graph Convolutional Networks (GCNs) [KW17]. Moreover, the
nonlocal nature could be tested in combination with higher-order discretizations [ZCF18]
or implicit discretizations [HLT+19; RW19] of the underlying PDE/ODE of the neural
network. Implicit discretizations are actually known to broaden the receptive field of the
network [HLT+19]. Hence, a connection to nonlocal operators is an interesting topic for
further research. Furthermore, one could try out other nonstandard kernels (periodic,
polynomial, etc.) [DMS09], kernels such as rational quadratic or locally stationary kernels
[Gen01], and see their effects on the learning problem. Some kernels, such as the Gaussian
and the Laplacian kernel, show no significant improvements in performance. Some of them
might be harder to implement without large computational costs if the dimension of the
input features is high. It also needs to be investigated if the performance of the Nonlocal
Hamiltonian networks is dependent on the optimizer used during training. One could try
second-order methods while training [BCN+11] to see if the networks generalize better.

The interpretations of ResNets and very deep networks, in general, are still an on-going
research topic and hopefully, the dynamical system view coupled with spatially nonlocal
operators will shed some light on the understanding and interpretability of these networks.
This thesis hopes to contribute to the research on structural diversity [ZLCL+17] by
providing alternative network designs, which could inspire further work in this direction in
the future.
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Mathématiques Pures et Appliquées 101.3 (2014), pp. 275–302.

[RR06] Michael Renardy and Robert C Rogers. An introduction to partial differ-
ential equations. Springer Science & Business Media, 2006.

[Rub96] Boris Rubin. Fractional integrals and potentials. Vol. 82. CRC Press, 1996.

[RW19] Viktor Reshniak and Clayton Webster. ‘Robust learning with implicit
residual networks’. In: arXiv preprint arXiv:1905.10479 (2019).

[SGS15a] Rupesh K Srivastava, Klaus Greff and Jürgen Schmidhuber. ‘Training very
deep networks’. In: Advances in Neural Information Processing Systems.
2015, pp. 2377–2385.

76



References

[SGS15b] Rupesh Kumar Srivastava, Klaus Greff and Jürgen Schmidhuber. ‘Highway
networks’. In: arXiv preprint arXiv:1505.00387 (2015).

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and
Ruslan Salakhutdinov. ‘Dropout: A simple way to prevent neural networks
from overfitting’. In: Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958.

[Sil07] Luis Silvestre. ‘Regularity of the obstacle problem for a fractional power
of the Laplace operator’. In: Communications on Pure and Applied Math-
ematics 60.1 (2007), pp. 67–112.

[SIV+17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke and Alexander A Alemi.
‘Inception-v4, inception-resnet and the impact of residual connections on
learning’. In: Thirty-first AAAI Conference on Artificial Intelligence. 2017.

[SKM+13] Tara N Sainath, Brian Kingsbury, Abdel-rahman Mohamed, George E
Dahl, George Saon, Hagen Soltau, Tomas Beran et al. ‘Improvements to
deep convolutional neural networks for LVCSR’. In: 2013 IEEE Workshop
on Automatic Speech Recognition and Understanding. IEEE. 2013, pp. 315–
320.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan et al. ‘Going deeper with convolutions’.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 1–9.

[SM17] Sho Sonoda and Noboru Murata. ‘Double continuum limit of deep neural
networks’. In: ICML Workshop Principled Approaches to Deep Learning.
2017.

[SS18] Justin Sirignano and Konstantinos Spiliopoulos. ‘DGM: A deep learn-
ing algorithm for solving partial differential equations’. In: Journal of
Computational Physics 375 (2018), pp. 1339–1364.
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Appendix

A.1 Non-subsampled Nonlocal Block for the inverse Lapla-
cian operator

xH×W×1024

θ : 1× 1 φ : 1× 1

×
H×W×512

HW×512

H×W×512

512×HW

(Kernel ω)
HW×HW

1
N ×

H×W×1024

HW×1024

HW×1024

H×W×1024

K1,2 : 1× 1

H×W×1024
BN+act

H×W×1024

+

B1,2

Figure A.1: Forward propagation of tensors in a non-subsampled Nonlocal Block with the
inverse Laplacian operator (−∆)−s.

81



Appendix

A.2 Test accuracy curves for the Nonlocal networks

Figure A.2: Test accuracy curves for the Pseudo-differential (−∆)1/2 network in comparison
to the original Hamiltonian network.

Figure A.3: Test accuracy curves for the Pseudo-differential (−∆)−1/2 network in compar-
ison to the original Hamiltonian network.

Figure A.4: Test accuracy curves for the Pseudo-differential (−∆)−1 network in comparison
to the original Hamiltonian network.
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A.3 Spectral properties of weight matrices K1, K2 for larger
h

Figure A.5: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while training on
STL-10 with larger values of h.

Figure A.6: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while
training on STL-10 with larger values of h.
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A.4 Real parts of the eigenvalues of weight matrices K1, K2

Figure A.7: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while training on
CIFAR-10.

Figure A.8: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while training on
STL-10.
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Figure A.9: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)−1/2 network while training on
CIFAR-10.

Figure A.10: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)−1/2 network while training on
STL-10.
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Figure A.11: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)−1 network while training on
CIFAR-10.

Figure A.12: Real parts of the eigenvalues of weight matrices K1 and K2 in the Nonlocal
Block placed in each Unit of the Pseudo-differential (−∆)−1 network while training on
STL-10.
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A.5 Eigenvalues of the symmetric parts of weight matrices
K1, K2

Figure A.13: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while
training on CIFAR-10.

Figure A.14: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)1/2 network while
training on STL-10.
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Figure A.15: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)−1/2 network while
training on CIFAR-10.

Figure A.16: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)−1/2 network while
training on STL-10.
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Figure A.17: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)−1 network while
training on CIFAR-10.

Figure A.18: Eigenvalues of the symmetric parts of weight matrices K1 and K2 in the
Nonlocal Block placed in each Unit of the Pseudo-differential (−∆)−1 network while
training on STL-10.
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