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1 Introduction

Empirical research in economics is concerned with quantifying economic rela-
tionships and empirically evaluating economic hypotheses and models with
statistical (or econometric) methods. Ranging from data analysis to the
creation and assessment of complex dynamic models, econometricians use
a wide spectrum of mathematical, statistical and computational techniques
to combine observations with theory. Therefore, econometrics constitutes
a basic pillar for the utilization of economic theory by policy makers like
central banks and national governments.
The standard approach for evaluating data of an economic phenomenon can
be separated in two steps: Firstly, a model has to be formalized which in-
cludes important variables and characterizes a mathematical relation between
them. The structural approach in economic modeling tries to identify causal
relationships or mathematically describable characteristics in the examined
phenomenon and assumes that the resulting model correctly specifies this
phenomenon. As this assumption can usually not be justified rigorously,
quasi- or semi-structural models are used which view structural assump-
tions as approximation or abstraction of reality or leave some features of the
phenomenon unspecified ([7], [42]). Non-structural models rely even less on
structural assumptions and only analyze correlation between the observed
variables [77].
In contemporary econometrics, neither structural nor non-structural models
are considered to be deterministic. Therefore, the observable data is treated
as realizations of random variables. Furthermore, unobservable variables
are introduced which account for errors and noise in measurement or for un-
specified structural components. Together this implies that most currently
used econometric models are statistical models.
Three types of variables can be encountered in an econometric model, which
can be explained exemplary by considering a prototypical linear model,

Y = X β+ε . (1.1)

It contains a dependent variable or regressand Y ∈ R (usually the out-
come of an economic action) and the explanatory variables or regressors
X ∈ R1×q, ε ∈ R (usually some features or inputs to the acting individual).
Here, X and Y are observable to the researcher, i.e. he can observe realiz-
ations {xn, yn | n = 1, ..., N} of the random variables X and Y , while ε is
unobservable with known or unknown distribution F .
Another design decision regards the parametrization of the proposed model:
The linear model (1.1) is parametric with respect to the finite-dimensional
parameter β ∈ Rq. Leaving F unspecified yields a non-parametric model
as the search space for the parameter F is infinite-dimensional. Often, this
is avoided by assuming that F constitutes a Gaussian (or some other para-
meterized) distribution which is fully characterized by two finite-dimensional
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parameters, the mean and the variance.
Once the structure and relevant variables for the model have been determ-
ined, the second step is to estimate the proposed model, i.e. evaluate it with
the observed data. Within the given structure, an estimator is optimal if
it gives the “best” specification of the model for the observed data. Com-
mon metrics for the quality of an estimator are unbiasedness, consistency,
asymptotic normality, efficiency and robustness.
Various estimators have been designed for finding the optimal parameters.
The most popular estimators, in particular Least Squares, Maximum Likeli-
hood and Generalized Method of Moments estimators, are tailored to para-
metric models and can be summarized in the class of extremum estimators
[45]. For collected data points zn = (xn, yn), these estimators maximize an
objective function QN which is constructed from the data z1, ..., zN .
Different estimators have different requirements regarding the distribution
of observable and unobservable variables, especially whether the samples/
observations are independent or correlated. In fact, often model assumptions
are made in order to allow the estimation using a particularly well-behaved
estimator. For example, the unobservable variable ε in (1.1) is usually as-
sumed to have mean 0 and constant variance for all individuals and to be
uncorrelated between individuals in order to allow estimation with the best
linear unbiased estimator, the Least Squares estimator.
On the other hand, with growing and less expensive computational power,
more difficult and comprehensive models became feasible in the past dec-
ades. This encouraged the development of ever more complex designs where
both, models and estimators, involve complex mathematical expressions like
differential equations, dynamic problems or multivariate integrals. In this
context, the increasing demand for fast converging and precise approxim-
ation techniques led to a variety of numerical methods enabling the eval-
uation of multidimensional problems for many individuals, countries, firms
and time-periods.
For example, the objective function QN of Maximum Likelihood and Gener-
alized Method of Moments estimators can be interpreted as an approxima-
tion of an integral over the data space. Similarly, the unobservable variables
in a model are usually integrated out to obtain a mean prediction which
leads to multidimensional integrals. These integrals are typically only tract-
able if strong assumptions on the model are made, otherwise they need to
be approximated.
As most intractable integrals in econometrics emerge from unobserved sto-
chastic components, a classic remedy is to simulate those stochastic com-
ponents using Monte Carlo techniques ([39], [84]). Then, the integral is
approximated with a quadrature rule using the simulated values (xn) as

3



basis, i.e.

QN (f) :=

N∑
n=1

wnf(xn) ≈ I(f) :=

∫
Ω
f(x)dx (1.2)

for some integrand f on the domain Ω ⊂ Rd. With uniform weights wn =
1/N for all n = 1, ..., N , this leads to a robust but only rather slowly conver-
ging approximation with probabilistic error rate O(N−1/2). However, the
great advantage of this rate is its independence of the dimension d. The
canonical extension of one-dimensional rules, the product rule, succumbs to
the curse of dimensionality [3]: For an r-times differentiable integrand, its
convergence rate O(N−r/d) decreases exponentially in d and is therefore not
competitive for high-dimensional integrals.
Higher-order algorithms like Sparse Grid (SG) [24] or Quasi Monte Carlo
(QMC) quadrature ([12], [53]) may replace classic simulation techniques and
help to break the curse of dimensionality. Depending on the regularity r of
f , they achieve deterministic error rates O(N−r log(N)t(r,d)) which are only
impaired by the secondary rate log(N)t(r,d) with some scalar t(r, d) > 0
and can therefore outperform Monte Carlo simulations. While Quasi Monte
Carlo quadrature aims at finding seemingly random but more evenly dis-
tributed nodes in Ω, Sparse Grid quadrature strategically omits most of the
nodes of the product rule to reduce computational effort.
The Sparse Grid technique has also been used in other fields of numerical
simulation, e.g. for partial differential equations, molecular dynamics or
machine learning ([9], [32], [88]). In general, it could be applied whenever a
high-dimensional net or tensor product causes computational problems due
to the exponential increase in the number of nodes or cross-products.

Given the available numerical quadrature algorithms and the need for ac-
curate and fast integral approximations in econometrics, this thesis seeks to
provide a systematic overview of occurrences of multidimensional integrals in
econometrics. Once the necessary background is introduced, an analysis of
the integrands for regularity clarifies whether and when higher-order quad-
rature rules can improve computability of econometric models.
Developing such a comprehensive survey is difficult as econometric theory
consists of a wide variety of custom-made tools and techniques. We be-
gin this endeavor in Part I of this thesis by generalizing existing works on
SG quadrature in econometrics. As result, parameterized sets of integrals
emerge as the correct framework for econometric quadrature, where the op-
timal formula has to be identified depending on the parameter specification.
Based on the works of Heiss and Wintschel ([47], [48]), Judd and Skrainka
[50] and Griebel and Oettershagen ([33], [34]) we derive parameterized sets
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of integrals for Generalized Linear Mixed models (GLMM) of the form

I(y|β0,Σ, φ) =

∫
Rq
f(y|β0, u, φ)h(u|Σ)du (1.3)

and analyze them in terms of regularity. Here, f constitutes a distribution
from an exponential family and h some distribution which specifies correla-
tion between the unobservable variables u.
We find that regularity assumptions of higher-order quadrature rules are
usually fulfilled as f and h comprise smooth probability density functions
(p.d.f.) for almost all model specifications. Yet, the constant in the O-
notation of the convergence rate is highly dependent on the parameters
θ = (β0, φ,Σ) and may cause a suboptimal pre-asymptotic convergence
performance for SG and QMC quadrature. Only for very high N > 107

the higher main rate O(N−r) surpasses the secondary log-rate and the O-
constant and enters an asymptotic convergence phase.
We obtain similar results for integrals from two exemplary Dynamic Eco-
nomic models: For the presented Dynamic Discrete Choice model ([1], [55]),
the choice of a smoothing parameter has major impact on the performance
of higher-quadrature rules but also affects the approximation result. Fur-
thermore, we consider a simple Neo-classical Stochastic Growth model [49]
with many parameters which we independently vary. While similar beha-
vior as before could be observed for some of those parameters, particularly
for changes of the variance Σ, others seem to have a smaller effect on the
O-constant.
Moreover, econometricians are often interested in rough but fast approxim-
ations (often about 2 or 3 accurate digits) rather than high-precision res-
ults as the models are approximations or not completely correctly specified
themselves. Choosing a fixed quadrature rule for an entire model class is
therefore not practical. Even for one model specification (e.g. Mixed Logit
or Probit), it is appropriate to choose an optimal quadrature rule depending
on the tested parameter vector. In Chapter 4, we present examples where
SG or QMC quadrature are superior and where Monte Carlo simulation is
sufficient, and give heuristics for determining the proper quadrature rule.
In the course of investigating integrals in econometric models, we realized
that estimating model parameters inherently comprises the simulation of an
integral. Part II of this thesis deals with a new approach to computing es-
timators by using the SG method on nested integrals with an intermediate
function.
Two important classes of extremum estimators, M-estimators and General-
ized Method of Moments (GMM) estimators, are defined as maximizers of
objective functions QN . In their exact form they fulfill beneficial properties
like consistency and asymptotic normality [69]. Yet, QN often contains an
intractable integral and has to be approximated, e.g. if one of the models in
part I is estimated. Continuing the work of Griebel et al. [34], we prove con-
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sistency and asymptotic normality for approximated GMM-estimators. This
justifies the use of deterministic approximation algorithms like SG quadrat-
ure for the GMM objective function whereas this was previously only the
case for simulated QN .
Subsequently, we observe that QN is already the Monte Carlo simulation of
an expected value over the observable variables, so QN acts as approxim-
ator for a multidimensional integral. Together with the approximation of
QN itself we obtain the approximation of two nested integrals

I(θ) =

∫
Ω1

F

(
z, θ,

∫
Ω2

ϕ(x, z|θ)dx
)
dz (1.4)

for some parameter θ, functions F,ϕ and integration domains Ω1,Ω2 which
are each defined by the estimation method and the model.
The expression (1.4) denotes an integral on the tensor product domain
Ω1 × Ω2. Continuing the works by Griebel, Harbrecht and Multerer [30], [31]
we adapt the sparse tensor product space method for integration on Ω1 × Ω2:
Given two quadrature rules Q1 and Q2 with N1 and N2 quadrature nodes
on Ω1 and Ω2, respectively, the classic tensor product approach evaluates
Q2 for every node x1 of Q1, thus requiring N1 ·N2 evaluations of ϕ in total.
Similar to the SG method, sparse tensor product (STP) or Multilevel quad-
rature omits many of the quadrature nodes (x1, x2) strategically such that
the number of nodes is only of order O(max{N1, N2} log(max{N1, N2})) in-
stead of order O(N1 ·N2). In particular, we prove that with STP quadrature
the lower convergence rate of Q1 and Q2 in each separate domain can almost
be preserved for the product domain and is only impaired by a log-factor.
This implies that STP quadrature can achieve a similar convergence rate
with considerably fewer quadrature nodes. To account for the intermediate
function F , we require F to be Hölder continuous.
Finally, we test sparse tensor product quadrature for the Maximum Likeli-
hood estimator of a Mixed Logit model [83], the GMM estimator of a Probit
model [68] and for one nested integral arising directly from a Mixed Probit
model. Our results clearly display that STP quadrature outperforms quad-
rature on the full tensor product and can therefore reduce the computational
effort for the computation of estimators.

Contributions
The main contributions of this thesis are:

• Classification and extension of existing applications of Sparse Grids
and Frolov quadrature in econometrics to the class of Generalized Lin-
ear Mixed models. Exemplary applications of higher-order quadrature
to integrals from Dynamic Economic models.

• Identification and evaluation of parameterized sets of integrals as the
correct framework for the application of higher-order quadrature to
econometric integrals.
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• Proof of consistency and asymptotic normality for (deterministically)
approximated Generalized Method of Moments estimators.

• Adaption of the Sparse Tensor Product method to quadrature on
product domains and extension of the concept to nested integrals with
intermediate function.

Structure
The following overview summarizes the preceding paragraphs and illustrates
the structure of this thesis:

• In Chapter 2, we present the class of Generalized Linear Mixed models
(GLMM) and two examples for Dynamic Economic models (DEM) all
of which incorporate intractable multidimensional integrals. We derive
several specifications of GLMM and observe that all examples yield
parameterized sets of integrals.

• Chapter 3 introduces modern methods for the approximation of mul-
tidimensional integrals, in particular SG quadrature and its generaliz-
ations and Frolov cubature.

• In Chapter 4, these methods are applied to the previously obtained
integrals and we examine how they perform for several combinations
of parameters.

• In Chapter 5, we analyze two important classes of estimators, M- and
GMM-estimators, and extend the definitions to include their approx-
imated counterparts. Furthermore, we state conditions under which
the approximated estimators preserve consistency and asymptotic nor-
mality.

• Lastly, we see in Chapter 6 how estimation can be linked to integration
on a tensor product space. We prove error bounds for sparse tensor
product quadrature and underscore them with numerical results.

The chapters are grouped in two parts devoted to the respective general
topic. References and literature reviews are given at the beginning of each
chapter.
As this thesis merges topics from econometrics and numerical mathematics,
different customs for the notation of mathematical expressions meet. Since
this is a mathematical thesis, we rely on the more consistent mathematical
notation and try to fit the econometric terms in this framework.
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Part I

Quadrature in Economic Models
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2 Econometric Models

2.1 Objective

Econometric modeling is concerned with describing a statistical relation
between economic quantities based on the qualitative analysis of an economic
phenomenon. These quantities are divided into three types: Observable de-
pendent variables (also regressands or outcome variables) and observable
and unobservable explanatory variables (also regressors or control variables
for the observable and residuals for the unobservable variables). The goal
is to design a statistical model which reproduces the original data generat-
ing process and quantifies the dependence of the outcome on the regressors.
Usually the researcher attempts to account as much variance as possible to
observable variables and only little variance to the unobservable residuals
or “errors”.
Often parametric models are used to reduce model complexity: Instead of
considering a distinct variance parameter for every observation a shared
probability distribution is assumed from which all observations are (inde-
pendently or dependently) drawn and which is parameterized by finitely
many parameters. This approach also simplifies the estimation of the model
where the optimal parameter or parameter vector in terms of a given error
criterion is determined.
In this chapter, we introduce one general class of econometric models, Gen-
eralized Linear Mixed models (GLMM), and two examples from the broad
spectrum of Dynamic Economic models (DEM). With the unobservable re-
siduals they include a stochastic component which is integrated out by tak-
ing the expected value over the unobservables. Hence, the described models
include the computation of high-dimensional, analytically intractable integ-
rals which require numerical approximation.
GLMM are used for the evaluation of a wide variety of economic problems,
e.g. from educational and transportation but also medical research. We de-
velop them step by step starting with the simple linear regression model for
continuous and unbounded data. Following the comprehensive discussion
by McCullagh and Nelder [65] we extend it to Generalized Linear models
which already encompass specifications for bounded and discrete data. Fi-
nally, GLMM further extend this notion and incorporate correlation between
subgroups of data by allowing for random effects in the model. Based on
[21], [67] and [83] we present several specifications of GLMM, mostly from
Discrete Choice modeling, and identify why and which multidimensional in-
tegrals arise in GLMM.
In the third section of this chapter, we consider two examples for DEM and
observe that they also require multidimensional integration. Based on the
extensive presentation by Aguirregabiria et al. [1] and the seminal works by
Keane and Wolpin ([57], [56]) and Eisenhauer [16] we shortly derive a gen-

10



eral Dynamic Discrete Choice model (DDCM) and point out how integration
comes to play in its evaluation. Afterwards we study a simple Neo-classical
Stochastic Growth model which already served as prototypical model for the
application of higher-order interpolation methods ([8], [49], [61]).

2.2 Linear and Generalized Linear Models

We assume that a researcher has collected data on some economic phe-
nomenon, such that the set of observations consists of outcomes yn ∈ Ω ⊆ R
and explanatory factors xn ∈ R1×q for n = 1, ..., N .
The basic linear regression model is widely used in non-structural modeling
but is often also justified by structural assumptions. It proposes a linear
relation between explanatory and outcome variables with error term εn,

yn = xn β+εn for n = 1, ..., N . (2.1)

The unknown parameter vector β ∈ Rq determines the exact relationship
and needs to be estimated. Estimation is based on collected data of the
observable variables and further explained in Chapter 5. We treat X, Y
and ε as random variables with N independently distributed realizations
x1, ..., xN , y1, ..., yN and ε1, ..., εN and obtain

Y = X β+ε

as relation of stochastic components. We call η := X β the (linear) predictor.
One can think of the error term as defective observations, unobserved het-
erogeneity in the examined agents (e.g. individuals, groups of individuals,
companies, countries, ...) or missing factors in the proposed model.
Models with multiple outcomes are equivalently derived. In general, we as-
sume in this thesis that J outcomes are observed, yn ∈ Ω ⊂ RJ , and each
observed regressor is a matrix xn ∈ RJ×q, i.e. q factors are considered for
each outcome. To complete the regression (2.1), also the residual variables
are vector-valued, εn ∈ RJ .
Several assumptions regarding distribution and correlation of ε are normally
made to enable easier estimation and interpretability. These include E[ε] = 0
and constant, finite variance for all observations and that realizations of ε
may be uncorrelated between individuals.
However, while linear models with Gaussian errors are frequently and suc-
cessfully applied in natural and social science, they are not suitable for any
circumstances. For instance, count data can only incorporate non-negative
errors and bounded outcome variables cannot be represented properly by an
unbounded linear predictor.

Generalized Linear models (GLM) address this issue and relax the con-
ditions on ε and the relation between X and Y . Popular examples are the
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Logit and the Probit model for discrete data e.g. from Discrete Choice mod-
eling and the Poisson model for count data e.g. from damage modeling or
the evaluation of drug treatments.
The GLM consists of three components:

• A linear predictor η := Xβ,

• an exponential family of distributions f for Y with mean E(Y ) = µ,
and

• a link function g s.t. g(µ) = η.

Generalized Additive Models use non-linear predictors η of the form η =
β0 +

∑q
j=1 fj(Xj) where the fj are components of the vector-valued func-

tion f . Since for most econometric applications a linear setting is sufficient
we focus on the more common GLM which introduces flexibility into the
standard linear model via the link function g and the distribution f .
Via g(E(Y )) = η = X β the outcome Y is again modeled by the explanatory
variables X and the parameter vector β. Instead of adding an unobserved
variable ε with mean 0, this variability is directly incorporated in Y by spe-
cifying a distribution f for Y . The mean of µ of Y is used to parameterize
f .
The choice of a distribution f is determined by its domain (finite, countably
infinite, bounded continuous or unbounded continuous) and the assumptions
of the researcher. A GLM requires that its probability density function f
has the general form of an overdispersed exponential family,

f(y|ζ, φ) := exp

(
T (y) · θ(ζ) + b̃(ζ)

a(φ)
+ c(y, ϕ)

)
,

where T (y) is a sufficient statistic and · denotes the dot-product. If ζ = θ(ζ),
then f is in natural form. This can simply be achieved by considering
a transformation of the parameter ζ, i.e. θ = θ(ζ). The replacement
b(θ) = b̃(ζ) is well defined for exponential families and this transforma-
tion. Additionally, we usually assume that y is a sufficient statistic by the
choice of the link function and hence obtain a distribution from a natural
exponential family,

f(y|θ, φ) := exp

(
y · θ + b(θ)

a(φ)
+ c(y, ϕ)

)
.

The functions b, c fix the distribution type (Gaussian, Poisson, Multinomial,
...) while the parameters θ and φ and the function a serve to parameterize
the exact shape. Here, θ is called the natural parameter and can be written
w.r.t. the mean µ = E(Y ) of Y as

g̃(µ) = θ .
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The function g̃ : M→RJ is defined on the set M ⊂ R where M is the domain
of the mean µ. It is uniquely determined by the choice of b and c and is
bijective and differentiable for exponential families. In fact, MuCullagh and
Nelder [65] show

µ = ∇θb(θ) ,

so g̃ = ∇θb−1.
Furthermore, φ is called the dispersion parameter and determines the vari-
ance of Y . Assuming the information inequality holds we get

Var(Y ) = a(φ)∇θθb(θ) .

We write ∇θθb(θ) as the variance function V (µ) and consider it as function
of the mean via the canonical link g̃.
Most models assume a(φ) = φ

w for a known prior weight w and even assume
a fixed value φ = φ0 if the main concern of estimation is the natural para-
meter θ. The simultaneous modeling of more than one shape determining
parameter (e.g. for a negative binomial distribution) is realized in the con-
text of vector GLMs yet this thesis focuses on the given GLM representation
as it already covers the most common models in applied econometrics. One
exception are the later reviewed Linear Quantile Mixed models.
The link function g : M→RJ relates the mean µ = E(Y ) with the predictor
η,

g−1(η) = µ .

Similar to g̃, g is defined on the domain M of the mean µ and assumed to be
bijective and differentiable. Indeed, g̃ is called the canonical link function
as it arises naturally from the distribution f .
The link function transforms the unbounded range of the linear predictor
to the allowed range for µ. This concerns primarily models for count data,
i.e. M = [0,∞) or M = N0, and models for categorical data where µ =
(µ1, ..., µJ) denotes the probabilities for each of the J possible outcomes.
We can then rewrite f in terms of the parameter β of the predictor

f(y|β,X, φ0) = exp

(
y · g̃(g−1(X β)) + b(g̃(g−1(X β)))

a(φ0)
+ c(y, φ0)

)
(2.2)

and reduce the estimation to the original parameter β. In particular, we see
that only the inverse of the link function g is required. The representation
(2.2) implies the convenient choice g = g̃, yet other options have also proven
valuable. Link functions are typically derived in the context of a particular
model and can then be examined theoretically.
Usual link functions for binomial data (i.e. Y ∈ {0, 1} and µ ∈ [0, 1]) are
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• the Logit function

g(µ) = log

(
µ

1− µ

)
, (2.3)

• the Probit function

g(µ) = Φ−1(µ) (2.4)

where Φ is the c.d.f. of the Gaussian distribution,

• and the complementary log-log function

g(µ) = cloglog(µ) := log(− log(1− µ)) . (2.5)

The Gaussian c.d.f. in the Probit function can theoretically be replaced
by the c.d.f. of any probability distribution on R. The Probit function
can be adapted for general categorical data with µ ∈ [0, 1]J by using a
multivariate Gaussian c.d.f.. For the Logit function, the typical extension
to the multivariate case is

g−1
i (η) =

exp(ηi)∑J
j=1 exp(ηj)

(2.6)

for i = 1, .., J . Categorical observations often arise from Discrete Choice
models where an individual or agent has the choice between J ≥ 2 altern-
atives. Then we call E(Yi) = µi = P (Yi = 1, Yj = 0 for j 6= i) the choice
probability for choice i.
For data with positive mean the power family of link functions is available,

gλ(µ) =

{
µλ , for λ 6= 0 ,

log(µ) , for λ = 0 .

In the multivariate case, these links are applied componentwise. The as-
sociated exponential families with positive mean are Poisson and Negative
Binomial distribution for count data and Gamma and inverse Gaussian dis-
tribution for scale data (i.e. continuous positive data).
Finally, we state the associated canonical link functions:

• Binomial: g̃(µ) = log
(

µ
1−µ

)
,

• Multinomial: g̃i(µ) = log(µ) for i = 1, ..., J ,

• Poisson: g̃(µ) = log(µ),

• Negative Binomial with number of failures r: g̃(µ) = log
(

µ
µ+r

)
,
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Distribution f canonical link g̃(µ) = other possible links g(µ) = log-partition b(g̃(µ)) =

Categorial log(µ) Φ−1, other inverse CDFs 0

Bernoulli Logit(µ) := log( µ
1−µ)

Φ−1, cloglog,
other inverse CDFs 0

Poisson log(µ) 1
µ , µ

λ µ

Negative binomial
(for fixed r) log

(
µ
µ+r

)
log(µ), µλ r log

(
r

µ+r

)
Gamma

(for fixed ν) −1/µ log(µ), µλ − log(µ)

Inverse Gaussian
(for fixed ν) 1/µ2 log(µ), µλ 2

µ

Gaussian
(for fixed σ) µ (Identity link) - µ2/2

Laplace µ (Identity link) - (not an exponential family)

Table 1: Specifications of Generalized Linear Models (bracketed variables
are fixed dispersion parameters).

• Gamma with scale parameter ν: g̃(µ) = − 1
µ ,

• Inverse Gaussian with shape parameter ν: g̃(µ) = 1
µ2

,

• Gaussian: g̃(µ) = µ.

All combinations are also collected in Table 1. Here, f is defined for one-
dimensional outcomes y and can be extended to a vector of J independently
distributed outcomes yi by taking the J-fold product of f . Otherwise, each
outcome can be considered separately by means of a J-dimensional vector of
J independent distributions f from Table 1. Correlation between y1, ..., yJ is
introduced by an additional mixing distribution in the following section. In
principal, many more exponential families and link functions are conceivable
but their treatment is rather theoretical. Actual applications rely, as far as
our research went, solely on the mentioned distributions and functions.

2.3 Generalized Linear Mixed Models (GLMM)

The setting of the previous section with observations zn = (xn, yn), n =
1, ..., N , and the linear predictor η = X β is well suited for cross-sectional
data where the observations are assumed to be independent and identically
distributed for all N observed agents. This changes if clustered data is used:
Here, the individuals are sorted in groups so that correlation between the
observations in one group is allowed.
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A classic example for such data comes from educational research: Test res-
ults ynk and explanatory variables xnk like sex or education of the parents
are observed for students n = 1, ..., N across several colleges k = 1, ...,K.
While still considering a linear relationship between ynk and xnk it is reason-
able to assume an unobservable college-specific random effect uk additional
to the student-specific random effect εnk,

ynk = xnk β+uk + εnk . (2.7)

In this so called random intercept model, the random variable U with real-
izations uk, k = 1, ...,K, is assumed to follow some random, typically a
Gaussian, distribution with mean 0. The unobservable residual (uk +εnk) is
not independent for each separate individual n but correlated for individuals
in group k.
The model (2.7) can be extended to a random effects or mixed model by
considering another set wnk ∈ RJ×p of observable explanatory variables and
a vector-valued random effect uk ∈ Rp with some multivariate distribution
and E[U ] = 0 so that

ynk = xnk β+wnkuk + εnk . (2.8)

A simpler form (for p = q and xnk = wnk),

ynk = xnk(β+uk) + εnk , (2.9)

can be obtained when we assume that uk is not some feature of the group
k but in fact the variation of the parameter vector β in every group, i.e.
βk := β+uk is drawn independently from a probability distribution for
all groups k = 1, ...,K. A prominent example is the cluster interpretation
of panel data: Here, every “group” of observations is actually the set of
observations for one person at different points in time. Then, the parameter
vector βk might be different for every individual k but constant over time
while the residual εnk is independent for every observation at every time.
As for the standard linear model in the previous section, we can generalize
the mixed model (2.9) by introducing a link function g and assuming an
exponential family distribution f for ynk. We again use the linear predictor

η = X β = X(β0 +U)

but assume that the previously fixed parameter vector β is now composed
of a fixed component β0 and a random effect U with realizations uk, k =
1, ...,K. Together with a distribution h with mean 0 and variance Σ for U ,
the components f , g, h and η constitute a Generalized Linear Mixed model
(GLMM).
While the random intercept model (2.7) features the easily calculable ran-
dom effects estimator (an extension of Least Squares) this estimator cannot
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be used for GLMM. Instead, a likelihood approach is applied for which the
likelihood of the outcome Y = ynk, given the data xnk and a guess for the
estimated parameter β0, is calculated. As we do not want to model uk
separately for every k we integrate it out and obtain

P (y|β0,Σ, φ) =

∫
Rq
f(y|β0, u, φ)h(u|Σ)du (2.10)

where the values of Σ, φ are design choices or separately estimated.
For most of the specifications in Table 1 and common choices for h, this in-
tegral has no analytic solution and therefore must be computed numerically.
Instead, every combination of such specifications for f , g and h leads to a
different parameterized set of integrals which has to be analyzed numeric-
ally.
GLMM extent the GLM from the previous section so naturally the spe-
cifications in Table 1 for f and g hold also for GLMM. As for GLM, the
established notation allows for much more variation in the choice of f , g
and h than actually used. The additional distribution h is often assumed to
be multivariate Gaussian for similar reasons as for the derivation of the lin-
ear model. Alternatively, the multivariate Laplace distribution can be used.
For most choices of f , g and h, the integral (2.10) has no analytic solution.
Instead, every combination (f, g, h) leads to a different set of integrals which
are parameterized by (β0,Σ, φ) and have to be computed numerically.

In the following, we derive four model specifications with different integ-
rals (2.10) and see how they fit in the setting of Generalized Linear Mixed
models. They are widely used in econometrics and related statistical fields
like psychology, medicine and social science.
In the context of Discrete Choice models (DCM) two popular variants, the
Mixed Logit and the Multinomial Probit model, are derived: Here, we are
interested in understanding how an individual chooses between finitely many
alternatives. For each alternative we want to find a choice probability as a
function of the observed attributes for each individual. In the finite case we
can compute a probability for each outcome separately, hence the outcome
is described by a multinomial distribution. In terms of GLMM, the mean µ
becomes a vector of means so that

µi = P (Y = i) = E[1{Y=i}]

for every choice i where the expectation is taken over the distribution of Y .
Discrete Choice models have been used for many years in different branches
of econometrics: research applications include the analysis of market equilib-
ria [4], transportation ([5], both for Mixed Logit) or debt crisis in developing
countries ([35], for Multinomial Probit). Train [83] gives a comprehensive
overview of various models, applications, estimation techniques and respect-
ive numerical methods.
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Normally, a latent variable model is deployed where the choice is made ac-
cording to some unobserved utility measure and the alternative with max-
imal utility is chosen. Let J be the number of alternatives and β ∈ Rq a
vector of parameters for the utility measure U(x, β) ∈ RJ . For each indi-
vidual we observe a vector (or matrix) of exogenous variables X ∈ X ⊂ RJ×r
and a choice Y ∈ {1, ..., J}. Here X is the domain for the random variable
X and we require r ≥ q so that the model is identified. Furthermore, we
suppose there are unobservable factors ε ∈ RJ which affect the utility and
are distributed according to a known (or assumed) distribution. The com-
mon utility function U : X × Rq→RJ is linear in X and β, assumes r = q
and is additive in ε,

U(X,β) = X β+ε .

Then Y = i exactly if Ui(X,β) > Uj(X,β) for all j 6= i where Ui are the
components of the vector U , i.e. the utility of the particular choice i. In
order to find the choice probabilities

P (Y = i|X,β) = Pr ((X β)i − (X β)j > εj − εi : ∀j 6= i) (2.11)

we need to propose a distribution for ε. The Mixed Logit model assumes an
extreme value distribution with p.d.f.

f(εj) = e−εje−e
−εj

for j = 1, ..., J , while the Multinomial Probit model uses a multivariate
Gaussian distribution N (0,Σ) with covariance matrix Σ ∈ RJ×J .
The choice probabilities for Mixed Logit are based on the choice probabilities
of the more basic Logit model which assumes a fixed parameter vector β:
Given the error εi, we have

P (Y = i|X,β, εi) = Pr ((X β)i − (X β)j + εi > εj : ∀j 6= i)

=
∏
j 6=i

e−εje−e
−(εi+(X β)i−(X β)j)

and then integrate over the distribution of εi to obtain

P (Y = i|X,β) =

∫
R
P (Y = i|X,β, εi)e−εie−e

−εidεi

=
e(X β)i∑J
j=1 e

(X β)j
.

Thus we have derived and justified the link function described in (2.6). If
the available data is in panel form or clustered, we need to define a mixing
distribution h for β in order to specify correlation within a series or a cluster
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of choices. As mentioned for the general GLMM, we then want to estimate
mean β0 and variance Σ of h instead of every single parameter vector βk for
every individual (”cluster”) k = 1, ...,K. Hence, we integrate β out

P (y = i|X,β0,Σ) =

∫
Rq

e(X β)i∑J
j=1 e

(X β)j
h(β |β0,Σ)d β . (2.12)

This constitutes the Mixed Logit choice probabilities for i = 1, ..., J . The
commonly used mixing distribution is the Gaussian, leading to an intractable
integral. Other mixing distributions are possible but McCulloch and Searle
[66] point out that the choice of mixture seems to have only marginal effect
on the model performance.
The Multinomial Probit model is even easier derived from (2.11). Since
only the differences in utility affect the choice we can define Ũij = Ui − Uj ,
Ṽij = (X β)i − (X β)j and ε̃ij = εi − εj for i 6= j and rewrite (2.11) as

P (Y = i|X,β) = Pr
(
Ũij > 0 : ∀j 6= i

)
. (2.13)

The vector ε̃i = (ε̃i1, ..., ε̃i(i−1), ε̃i(i+1), ..., ε̃iJ)T ∈ RJ−1 is again normally

distributed with covariance matrix Σ̃i derived from Σ. Then (2.13) evaluates
to

P (Y = i|X,β) =

∫
RJ−1

1{Ṽij+ε̃ij>0 ∀j 6=i}φ(ε̃i)dεi = Φ(Ṽi) , (2.14)

where φ is the p.d.f. and Φ is the c.d.f. of ε̃i. This resembles the link function
in (2.4). The multivariate c.d.f. Φ cannot be computed analytically for non-
trivial Σ and also has to be approximated numerically. In contrast to the
Mixed Logit model, this means that the integral does not stem from a mixing
distribution h but directly from the assumed probability distribution in the
utility function.
Within-cluster or -series correlation is usually expressed already by the freely
chosen covariance matrix Σ. Hence, an additional mixing distribution is
rarely used, but mentioned e.g. in [66] and [83] as possibly beneficial but
even less feasible numerically. We examine an approach to reduce quadrature
costs for such a double or nested integral in Section 6.3 and present results
in Section 6.4.

For count data we cannot estimate a probability for every natural num-
ber k ∈ N0. Instead, Poisson and Negative Binomial distribution define
probabilities for every k in terms of one or two parameters and thus also
fix mean and variance of the outcome. Hence, estimation is concerned with
finding those values. Count data arises in different contexts, e.g. in health
economics or research on labor mobility (for further references see [87]) and
modeling approaches for it are a recurrent topic in textbooks ([29] or, in the
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context of GLM, [65]). Mixed Poisson models are mentioned e.g. in [62] and
[66] but infrequently used due to intractable integrals of the form (2.10).
Zhao et al. [89] and Zhu and Lee [90] consider data from medical research
and provide first approaches to approximate the integrals by Monte Carlo
simulation. An alternative to the fully mixed model is the Poisson-Gamma
model which is equivalent to Negative Binomial regression.
Similar to the DCM above, we let β ∈ Rq be a parameter vector and X ∈ Rq
be the vector of q observed attributes for each count y ∈ N0 for a single in-
dividual (or firm, country,...). We use again the linear predictor η = X β.
The Poisson distribution has proven to be suitable for many instances of
count data and was originally deployed by Bortkiewicz (1898) to the infam-
ous Prussian horse-kicking data.
The Poisson distribution comes from an exponential family and is given by

Pr(y = k|µ) =
µk

k!
e−µ

for mean µ > 0. Then the link function g s.t. g(η) = µ must take positive
real values. Usually the canonical link g = log is applied leading to

Pr(y = k|X,β) =
1

k!
ekX βe−e

X β
.

Now, a general mixing distribution h for β can account for correlations
between counts, e.g. for groups of individuals or for a series of counts for
one individual. We parameterize h again by β0 and Σ and get

Pr(y = k|X,β0,Σ) =

∫
Rq

1

k!
ekX βe−e

X β
h(β |β0,Σ)d β .

Analogous to the Mixed Logit model this integral cannot be computed ana-
lytically, e.g. if h denotes the Gaussian p.d.f.

Finally, we return to continuous data on the real line and the original
model

Y = X β+ε .

In Section 2.2, we mentioned that often i.i.d. ε ∼ N (0, σ) is assumed, among
other reasons due to the simple least squares estimator which arises from this
assumption. However, the Gaussian distribution is a light-tailed distribution
which can be problematic in two cases: The true distribution might deviate
strongly from the Gaussian, so the narrow dispersion of mass around the
mean might be too restrictive. The second, related issue are outliers in the
data which highly affect and distort the least squares estimator.
One solution for this difficulty is the choice of a more robust distribution.
The Laplace distribution with p.d.f.

f(z|m, b) =
1

2b
exp

(
−|z −m|

b

)
(2.15)
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has heavier tails as the Gaussian and leads in the linear regression model
to the Least Absolute Deviations estimator. Kotz et al. [58] propose a
multi-variate extension with mean µ ∈ Rd and covariance Σ ∈ Rd×d,

f(z|µ,Σ) =
2 exp(zTΣ−1µ)

(2π)d/2 det(Σ)1/2

(
ztΣ−1z

2 + µTΣ−1µ

)ν/2
Kν

(√
(2 + µTΣ−1µ) (ztΣ−1z)

)
for z ∈ Rd and ν = 2−d

2 and the modified Bessel function of second kind Kν .
In the context of GLM and GLMM, models with Gaussian or Laplacian f
do not require a link function g as the mean µ can be any real number (or
vector in Rq). Yet, we can still introduce a mixing distribution for β. The
resulting model is simply known as Linear Mixed model for Gaussian errors
and has been referred to as Linear Quantile Mixed model by Geraci and Bot-
tai [22] for Laplacian errors. It does not directly fit in the presented GLM
framework as the Laplace distribution is no exponential family for variable
mean µ. We still describe it in this context as it poses similar computational
questions and can at least be characterized in terms of a vector-GLM, which
omits the assumption that f is from an exponential family.
The survey [21] reviews four combinations of Gaussian and Laplace distribu-
tion for errors and random effects. It demonstrates that once more numerical
approximation of an integral is necessary if the Laplacian is involved: Let
the error ε be i.i.d. according to the p.d.f. from (2.15) with m = 0 for some
scale b > 0. Given a sample β from the mixing distribution h(β |β0,Σ), the
outcome Y is Laplace distributed with mean µ = E[Y ] = X β. We integrate
over the random effect and get the p.d.f. of Y ,

f(y|X,β0,Σ) =

∫
Rq

1

2b
exp

(
−|y −X β |

b

)
h(β |β0,Σ)d β .

Concluding this section, we see that the GLMM framework offers plenty of
options to the researcher to specify and adapt the traditional linear model
to his economic problem and data. Yet, many of these options include an
intractable multidimensional integral and can only be computed at high
cost.

2.4 Dynamic Economic Models (DEM)

Researchers are often concerned with describing economic processes where
utility is not only defined at one particular moment in time but over the
course of a longer time period. In such cases, a decision for a job or the al-
location of resources in a factory not only determines the immediate return
but also influences future decisions and expected utilities. The static GLMM
is unable to incorporate such inter-temporal correlations for highly-involved
multidimensional models. Hence, a dynamic approach is used, where the
utility over all time periods is maximized by applying Bellman’s principle
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of optimality to compute the optimal choice at each time step. Depending
on the model formulation and solution method this strategy might create a
large state space for each time period, where every state has to be evalu-
ated to determine the optimal choice. In other cases the characterization of
stochastic PDEs for the model parameters allows for more direct iterative
techniques.
In the following, we present two dynamic economic models from quite differ-
ent branches of economics: The Dynamic Discrete Choice model (DDCM) is
the natural extension of the static Discrete Choice model encountered in the
previous chapter. We now assume that the decision maker takes his future
decisions into account and therefore might make choices whose benefit will
only be rewarded in the future.
The second example originates in macroeconomics. In contrast to the pre-
viously developed models from microeconomics the following Neo-classical
Stochastic Growth model (NSGM) is concerned with the simulation of na-
tional economies. Based on quantities such as capital, consumption, invest-
ments and productivity it solves the Social planner’s problem of maximizing
the long-term overall welfare (from today’s point of view for the current and
all future periods).
As before, both models require the computation of a multidimensional in-
tegral which stems from the definition as stochastic models via unobservable
variables. However, the derivation of these integrals is less canonical as for
GLMM and often depends on the maximization algorithm. Hence, both
cases can only exemplary illustrate the advantages of higher-order quadrat-
ure for the solution of Dynamic Economic models.

Dynamic Discrete Choice models
The GLMM with a multinomial distribution is designed to model static

DCM. We allowed correlation between individuals in clusters but evaluated
choices only at one particular moment for those individuals. However, eco-
nomists are also interested in investigating how agents make choices over a
long period of time e.g. in labor economics [56] or industrial organization
[80] (further research areas are referenced in [55]). This changes the setting
from single independent choices to series of choices which are correlated
temporally.
If the choices made by an individual are short-sighted (i.e. not taking future
decisions into account), then we can form a cluster out of a series of (inde-
pendent) choices and model the clustered data with a GLMM. This is not
possible anymore if the individual uses his knowledge about the existence of
future decisions and can make assumptions regarding the expected utility of
a certain decision. Allowing for foresighted planning introduces a dynamic
component into the previously static model.
We will base our definition of Dynamic Discrete Choice Models (DDCM)
on the review paper by Aguirregabiria [1] and the review chapter by Keane
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[55]. They define DDCMs in the context of utility and demonstrate why
this new model class again requires the computation of a high-dimensional
integral.

We assume a setting with finitely many time periods t = 0, ..., T where
an individual n makes one decision dnt per time period. In each time period
he has the choice between M alternatives dnt ∈ D := {1, ...,M}. For each
decision we have observable variables xnt and unobservable variables εnt.
Here “observable” and “unobservable” refer to the researcher whereas the
decision maker perceives all variables and incorporates them into his decision
process. We summarize them into the state vector snt := (xnt, εnt). The
researcher can only collect data for xnt hence he cannot know the entire
state vector. We denote the state space of all state vectors by S and the
state space of observable variables by X .
In static decision models, for a given time step this utility of a choice only
depends on the current data (exogenous variables) and parameters:

U
(m)
nt = U(m, snt) = x

(m)
nt β+εnt

for a utility function U = U(d, s), a decision d and a state s. As mentioned in
2.2 most models rely on linear predictors/utility functions as they are easier
to interpret. The residual εnt can be interpreted as the error in measurement
as well as factors the researcher does not know. The decision is then modeled
as

d
(m)
it =

{
1, if U

(m)
nt ≥ U

(m′)
nt for all m′ 6= m.

0, otherwise.

for all m ∈ D.
In the dynamic case, we assume that the agent takes into account how his
decision influences future states and utilities. E.g. an individual choosing to
go to school in period t will be better educated in period (t+ 1) than if he
did not and can factor this in with regard to his later choice of occupation.
Hence, he can include this knowledge to make his decision not only based
on the immediate utility but on the discounted utility for all future time
periods.
Let δ ∈ (0, 1) be the discount factor which discounts future utilities according
to how distant in the future they are. Then, the expected utility for every
time period t and a series of choices {dn(t+τ)}τ=0,...,T−t is defined as

E

[
T−t∑
τ=0

δτU
(
dn(t+τ), sn(t+τ)

)
|dnt, snt

]
(2.16)

and its maximization can be rephrased as a Dynamic Programming (DP)
problem. Using the Bellman principle of optimality we obtain the Value
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function (of the state snt),

V (sit) = max
d∈D

{
U(d, snt) + E

[
T∑

τ=t+1

δτ−1U(dnτ , snτ )

∣∣∣∣d, snt
]}

= max
d∈D

{
U(d, snt) + δ

∫
V (sn(t+1))dF (sn(t+1)|d, snt)

}
.

The probability measure F (sn(t+1)|d, snt) represents the individual’s beliefs
about the future depending on the choice he makes in time step t. It in-
cludes the distribution G of the unobserved variables εn(t+1) as well as the
Markov transition probabilities for the states xn and therefore is a product
of continuous and discrete probability measure. The expectation in the up-
per form is defined over all future states sn(t+1), ..., snT .
Finally, the value function V (snt) cannot be computed since snt still includes
unobservable components. An observable solution of the DP-problem is ob-
tained by integrating over the remaining unobservable factor εnt

V̄nt = V̄ (xnt) :=

∫
Rq
V (snt)dG(εnt) . (2.17)

For finite horizons T <∞, a standard approach to solving this DP-problem
is backwards induction. Starting with V̄nT we iteratively compute V̄n(T−1),
V̄n(T−2), ... and so on. The individual has multiple alternatives in each time
period which influence the state vectors in later periods. Hence, we have
to compute V̄nt for all xnt ∈ X . If X is discrete, we can solve the problem
exactly, otherwise we have to rely on discretization or interpolation.
Nevertheless, even in the discrete case, finding the exact maximum of (2.16)
is usually not feasible. We need to integrate over the εnt for each state
xnt rendering the evaluation of the value function numerically challenging
already for one state. Unfortunately the number of states is growing expo-
nentially with T since every additional time period introduces another layer
of alternatives for the agent. Therefore, it is important to make the integ-
ration step numerically as cheap as possible in order to be able to compute
as many states x ∈ X as possible and approximate the exact solution of
the DP-problem well. Another method to reduce computational costs is to
decrease the number of states for which the utility is calculated. Keane and
Wolpin present in [57] an interpolation method which interpolates between
a small sample of states. Since this thesis is focused on investigating the
approximation of integrals this method is left for further research.
The optimal policy function can be found by computing the value function
in (2.17). For precomputed V̄n(t+1) the integral writes

V̄nt =

∫
Rq

max
d∈D

U(d, snt) + V̄n(t+1)dG(εnt) .
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So far, we have not discussed any assumptions on the exact form of U
and how the unobservables εnt are distributed. Neither did we specify the
transition process xnt → xn(t+1) and how it depends on the decision dnt.
Basic specifications of DDCM have been established by Rust ([79], [80]) and
by Keane and Wolpin [56].
Rust makes comparatively strong assumptions on U and εnt: He assumes
additive separability for U , meaning U(d, s) = Ũ(d, x) + ε, and that the
unobservables are i.i.d.. Then, ε is assumed to follow an extreme value
distribution so the integral again results in the Logit term from Section
2.2. The term Ũ is typically a (piecewise) linear function in x but in any
case does not affect the integration problem. Under these conditions analytic
solutions for the choice probabilities of the DDCM are available, so numerical
approximation is not necessary.
Keane and Wolpin relaxed some of these restrictions to allow for a more
realistic reasoning, e.g. in modeling of the career choices of young men ([16],
[56]). They drop the additive separability of U and assume a multivariate
Gaussian distribution with mean 0 and covariance structure Σ for the εnt. In
particular, Σ permits correlation between the outcome of different choices.
A generalized version of the utility function used by Keane and Wolpin is

U(d, s) =

{
Ũ(d, x) + ε for d ∈ D′ ,
eŨ(d,x)+ε for d ∈ D \ D′

where D′ is a subset of D. The assumptions for Ũ remain similar to Rust’s
model.

Neo-classical Stochastic Growth models
Lastly, we consider a Neo-classical Stochastic Growth model which can

be used to model the allocation of capital kt and consumption ct of nations
or companies. Basic forms of such models are stated with infinite horizon,
and a numerical solution is only possible under additional constraints on the
evolution of capital and productivity rates. The standard solution approach
then involves reformulation of the maximization problem as Euler formula,
time iteration and polynomial interpolation of policy functions for kt and ct.
The model is quite simple to estimate if only one nation or company is
considered but becomes numerically challenging for the multi-country case.
Several research works on the interpolation of multidimensional functions
in these models examined advanced numerical methods which can circum-
vent the curse of dimensionality. Sparse grid interpolation was first used by
Krueger and Kubler [61] in a International Real Business Cycle model and
further investigated in [8] and [64]. Judd, Maliar and Maliar applied sparse
grid interpolation to a multi-country NSGM ([49], [51]).
However, not only interpolation suffers from numerical infeasibility for high
dimensions but also multidimensional intractable integrals appear in these
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models. As research on numerical properties has, to date, focused on in-
terpolation, this leaves us the opportunity to further improve the numerical
performance by employing higher-order quadrature methods to these integ-
rals. As prototypical example we present the model also used by Judd et
al..
The so called social planner is concerned with maximizing the welfare

U = max
{kit+1,c

i
t}t∈N0 ,i=1,...,J

E

[
J∑
i=1

λi
∞∑
t=0

βt ui(cit)

]
(2.18)

of nations i = 1, ..., J for an infinite time span where capital kit and con-
sumption cit of each nation i fulfill the budget constraint

J∑
i=1

cit + kit+1 =
J∑
i=1

(1− δ)kit + aitf
i(kit) . (2.19)

The associated productivity parameters ait are subject to external shocks
εit+1 ∼ N (0,Σ) which are i.i.d. over time and develops with

log ait+1 = ρ log ait + εit+1 (2.20)

for i = 1, ..., J . The parameter vector θ = (β, δ, ρ,Σ) comprises the discount
factor β ∈ (0, 1], the capital depreciation rate δ ∈ (0, 1], the autocorrelation
coefficient ρ ∈ (−1, 1) and covariance matrix Σ ∈ RJ×J .
The solution of (2.18) under the condition that (2.19) and (2.20) hold is
given by stochastic processes {kit+1, c

i
t}t∈N0,i=1,...,J which are measurable

w.r.t. {ait}t∈N0 . Judd et al. assume f i = f and ui = u for all i = 1, ..., J
and assign equal weights λi = 1 to each country so that we have cit = ct for
all t ∈ N0. For strictly increasing, continuously differentiable and concave
utility and production functions u and f the Euler equation

kit+1 = E

[
β
u′(ct+1)

u′(ct)

(
1− δ + ait+1f

′(kit+1)
)
kit+1

]
(2.21)

for i = 1, ..., J provides a solution {kit+1, ct}i=1,...,J for every time period t.
The expectation is taken over the unobserved shocks εt+1. The state space in
this model formulation is formed by the known state variables (kit, a

i
t)i=1,...,J

and it is our goal to find policy functions kit+1 = K(kit, a
i
t) for capital and

ct = C(kt, at) for consumption.
The expected value on the right hand side of (2.21) can usually not be
evaluated analytically, hence numerical quadrature is necessary here.
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3 Multidimensional Quadrature Rules

3.1 Objective

High dimensional integrals appear not only in econometrics but also in vari-
ous other fields like physics, engineering or finance. As they are often not
analytically solvable there have been many attempts to find fast and precise
quadrature rules which are applicable in as many situations as possible.
We consider quadrature rules of the following kind:

QN (f) :=

N∑
n=1

wnf(xn) ≈ I(f) :=

∫
Ω
f(x)dx (3.1)

for a function f : Ω → R on the domain Ω ⊂ Rd. We assume that Ω is
closed and bounded and w.l.o.g. let Ω = [0, 1]d. For n = 1, ..., N , the points
xn ∈ Ω are called (quadrature) nodes and wn ∈ R weights.
There are two measures to determine the power of a quadrature rule: Poly-
nomial exactness specifies the maximal degree of polynomials which are
integrated exactly by a formula. It can be extended to exactness regard-
ing any Chebychev system of functions instead of polynomials (see [33] for
definition and applications of this generalization).
The error of a quadrature rule w.r.t. the true value,

EN (f) := | I(f)−QN (f)| , (3.2)

typically depends on the dimension d and regularity conditions of f . Often,
the error EN (f) can be bounded asymptotically for N→∞ by a function
g(N) which we call convergence rate. It is commonly given in Landau nota-
tion EN (f) = O(g(N)) so that constant factors are incorporated in the O
since they are only relevant for small N .
Numerical analysis is usually concerned with one of the following two issues
in understanding EN (f): The first case arises if f is fixed. Then, a quadrat-
ure rule can be tailored directly to the properties of f leading to a minimal
error EN (f). Yet, such a rule often does not approximate other functions
very well or only with unnecessary high computational costs.
The second setting asks for an optimal N -point quadrature rule for a space
F of considered functions. The worst case error of a rule QN

e(QN ) = e(QN ,F) := sup
f∈F ,||f ||≤1

EN (f)

depends only on F and denotes the operator norm of || I −QN || for F . Then,
the optimal error bound among all N -point rules is defined as

e(N) = e(N,F) := inf
QN

e(QN ,F)

27



for the space F of considered functions. For some function spaces, e.g.
periodic Sobolev spaces on [0, 1], optimal bounds e(N) have been proved
although the corresponding rules are not always known.
The worst case error of QN is frequently bounded asymptotically by a term
of the form O(N−γ log(N)t(r,d)) where γ > 0 and d is the dimension of the
domain. If F is defined via some kind of regularity, then r stands for the
minimal regularity of functions in F . In this case, the pure polynomial
rate O(N−γ) is rarely achieved and the number t(r, d) > 0 in the factor
log(N)t(r,d) indicates how large this deviation is for given r and d. Further-
more, the bound for e(QN ) differs depending on the chosen F-norm || · || and
can have different constants in the O-notation up to possibly exponentially
increasing constants in r or d.
However, the general rate e(QN ) does not necessarily describe the approx-
imation behavior of a particular function well for small N : Since

EN (f) ≤ e(QN )||f || ,

also the norm of f and the constant in the O-estimate of e(QN ) enter in the
error of QN . Hence, the rate e(QN ) is not sharp for small N if high constants
are involved. Instead, a suboptimal convergence behavior is observed at first,
with the rate N−γ only kicking in for large N . This can be prohibitive of
using a rule with optimal error bound if available computing capacities are
limited or temporal restrictions hold so that the optimal main rate cannot
be exploited for large N .
In order to observe the convergence behavior for integrals from real world
applications we consider series Ql = QNl of quadrature rules such that Nl

is dependent on the level l, and Nl < Nl+1 with liml→∞Ql(f) = I(f).
Consequently, we then write El for the error.
For nested rules we obtain the helpful consequence, that the set of nodes for
the l-th level is a subset of the nodes for the (l+1)-th level, so we can use
previous function evaluations for higher levels. This strategy often requires
that Nl may grow exponentially with l, e.g. Nl = O(2l) for the Trapezoid
and the Clenshaw-Curtis rule. Alternatives, which are maximally nested in
the sense that Nl+1−Nl = 1, are randomly drawn nodes, nodes from Halton-
or Sobol-sequences or Leja-points. Gaussian quadrature rules provide non-
nested nodes although there are extensions by Kronrod [60] and Patterson
[74] which introduce nestedness for Gauss-Legendre points.

This chapter is structured as follows: Firstly, we shortly recall the well-
known quadrature on one-dimensional domains and present several formulas
and their properties.
We then move to multidimensional quadrature which is also called cubature.
Herein, we see that using the d-fold product of a one-dimensional rule in d
dimensions entails the curse of dimension indicating the exponential growth
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of computational costs for the same convergence rate. We describe a prac-
tical alternative to the product rule, the so called Sparse Grid method which
is also known as Smolyak rule [82]. Sparse Grids (SG) have originally been
developed in order to define grids and according spaces of basis functions on
which partial differential equations can be solved [88]. Further applications
include sparse grids in machine learning and data mining (see [9] and [18]
for more references).
Our presentation of the sparse grid construction and the underlying one-
dimensional quadrature formulas is based on the seminal paper by Gerstner
and Griebel [24] and the review article by Bungartz and Griebel [9]. Finally,
our examination of Sparse Grids concludes with the depiction of extensions
of the basic SG approach to functions with boundary singularities and ad-
aptive quadrature rules ([23], [33]).
Subsequently, we move to the Monte Carlo (MC) method which chooses the
quadrature nodes randomly from a uniform distribution on Ω. It offers the
appealing property of a convergence rate which is independent of d. MC
integration is covered in many text books on numerical integration in mul-
tiple dimensions, e.g. in [70].
Quasi Monte Carlo (QMC) methods seek to mimic the uniform distribution
of MC integration but choose the nodes deterministically, leading to more
evenly distributed nodes which avoid large “gaps”. This property is also
called low discrepancy. We describe families of (digital) nets and series and
of lattice rules which have been most popular in the past. In particular,
we include Frolov cubature which almost achieves the optimal bound in the
considered Sobolev spaces of mixed regularity. We base our review on the
presentation in [12], [13], [70] and [52].
Lastly, we consider alternatives to the uniform weight quadrature (i.e. MC
and QMC rules) and introduce optimal weights cubature ([72]). Depend-
ing on the selected function space optimal weights cubature enables fast
convergence rates even for random point sets.

3.2 One-dimensional Quadrature and the Product Rule

The approximation of integrals in one dimension, i.e. Ω = [0, 1], is one of
the fundamental fields of interests in numerical mathematics. Over the past
decades and centuries, a versatile toolbox containing various different quad-
rature formulas with different properties has evolved and is consequently
also the starting point for discussions of multidimensional integration ([11],
[41]). We start by presenting three important groups of one-dimensional
quadrature formulas.

Newton-Cotes formulas rely on the polynomial interpolation of the integ-
rand and use equidistant points on an open or closed interval. Depending on
the number N quadrature nodes, different weights can be computed yield-

29



ing formulas like the Trapezoid-, Simpson- or Midpoint rule. The associated
weights are obtained by the integration of Lagrange polynomials and lead
to a polynomial degree of exactness N . Basic Newton-Cotes formulas can
be composed such that for the space of r-times differentiable functions Cr,
r ∈ N the optimal error bound

e(QNewton-Cotes, Cr) = e(N, Cr) = O(N−r)

is achieved.
However, these rules suffer from instability for large N due to Runge’s phe-
nomenon [78], meaning that large deviations occur close to the boundary.
This can be mitigated by using a composite rule: Ω is iteratively subdivided
into smaller intervals where on each of them a basic formula is applied. For
example, the iterated Trapezoid rule leads to a nested rule with an almost
duplication Nl = 2l−1 + 1 of the number of nodes in each level and achieves
quadratic convergence

e(QIterTrapez
l , C2) = O(N−2

l ) .

Using basic formulas with smaller step size (i.e. more nodes) generates
iterated quadrature rules of higher order.

Clenshaw-Curtis quadrature is motivated by the change of variables x =
cos(θ) and relaxes the limitation to equidistant points. It instead uses zeros
or extrema of Chebychev polynomials as nodes. The latter choice produces
nested points if we set Nl = 2l−1 + 1. Clenshaw-Curtis formulas yield Nl−1
as degree of polynomial exactness and are adaptive to the regularity of the
integrand in the sense that

e(QCC
l , Cr) = O(N−rl )

for functions f ∈ Cr(Ω) and any r ∈ N. There are further variations of the
Clenshaw-Curtis rule like Filippi or Féjer formulas.

Finally, Gaussian quadrature is designed to realize the maximally pos-
sible polynomial exactness 2N − 1 for N nodes. We consider a weighted
integral with weight function ω : Ω→R

Iω(f) :=

∫
Ω
f(x)ω(x)dx .

Different formulas have been found for several weight functions: Relevant
cases for us are

• The Gauss-Legendre formula for ω ≡ 1,

• the Gauss-Laguerre formula for ω(x) = e−x on Ω = [0,∞), and
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• the Gauss-Hermite formula for ω(x) = e−x
2

on Ω = R.

The weights are again computed by integrating Lagrange basis polynomials,
but the nodes are chosen as the zeros of a polynomial pN of degree N . Here,
pN is the unique polynomial (up to scalars) which is orthogonal to the space
PN−1 of polynomials of degree ≤ N − 1 w.r.t. the scalar product

〈f, g〉ω :=

∫
Ω
f(x)g(x)ω(x)dx .

The same error bounds as for Clenshaw-Curtis formulas hold, i.e.

| Iω(f)−Qω(f)| = O(N−r)

for f ∈ Cr and any r ∈ N.
However, most Gauss quadrature formulas (and in particular the ones men-
tioned above) are not nested. Kronrod [60] developed an extension of the
N -point Gauss-Legendre formula by adding N+1 points which are the zeros
of the N + 1-th Stieltjes polynomial w.r.t. the N -th Legendre polynomial.
Patterson [74] iterated this construction to get a nested Gauss-Patterson
formula for Nl = 2l − 1 based on the 3-point Gauss-Legendre formula. It
has polynomial degree of exactness 3l−1−1 for l ≥ 2 and preserves the error
bounds El(f) = O(N−rl ) for f ∈ Cr.
However, this method cannot be used for all N -point Gauss-Legendre for-
mulas, e.g. the 2-point rule can only be extended 4 times. In particular,
Patterson’s as well as Kronrod’s techniques cannot necessarily be applied for
other weight functions, e.g. Gauss-Hermite and Gauss-Laguerre quadrature
cannot be expanded in this way [54].

Moving from a one-dimensional to a d-dimensional domain Ω = [0, 1]d the
first, straight-forward idea is to use the available formulas in each dimension
separately. For d formulas Qli on [0, 1], l1, ..., ld ∈ N,

Qd(l1,...,ld) = Ql1 ⊗ · · · ⊗Qld(f) :=

Nl1∑
n1=1

· · ·
Nld∑
nd=1

wl1n1 · · ·wldndf(xl1n1 , ..., xldnd)

(3.3)

yields the so called product rule. Letting l = li for i = 1, ..., d, the error
bound O(N−rl ) for level l and Nl nodes in one direction persists for f ∈ Cr.
But the total number of nodes for Qd(l,...,l) is N = Nd

l =
∏d
i=1Nli , so this

bound actually deteriorates to

| I(f)−Qd(l,...,l)(f)| = O(N−r) = O(N
− r
d

l ) .

This means that the product rule has an error bound which decreases ex-
ponentially fast with the dimension d for a rule with Nl nodes. This phe-
nomenon is called curse of dimensionality and has been described first by
Bellman [3].
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3.3 Sparse Grid Quadrature

The Smolyak or Sparse Grid (SG) method presents an option to circumvent
this problem. So far, we discussed convergence rates of quadrature errors
for spaces such as Cr. These results can be generalized to Sobolev spaces

Hr(Ω) := {f : Ω→R : Dαf ∈ L2(Ω) ∀|α|1 ≤ r} ,

where the partial derivatives Dα are defined in the weak sense. For the
multiindex α ∈ Nd0, we introduce the norms |α|∞ := maxi=1,...,d |αi| and
|α|1 := |α1|+ · · ·+ |αd|. This leads to the notion of a Sobolev space of mixed
regularity

Hr
mix(Ω) := {f : Ω→R : Dαf ∈ L2(Ω) ∀|α|∞ ≤ r} ,

which demands that more mixed derivatives are bounded than in the usual
case. This is the right setting for the investigation of SG quadrature.
We again consider one of the one-dimensional formulas Ql from Section 3.2
and compute the difference formulas

∆l(f) := Ql(f)−Ql−1(f) (3.4)

for l ≥ 1 and Q0(f) := 0. Here, Γl = {xli , i = 1, ..., Nl} defines the set
of nodes for Ql and Γl ∪ Γl−1 is the node set of ∆l. With this telescopic
decomposition of Ql we can reproduce the product rule as

Ql1 ⊗ · · · ⊗Qld(f) =
∑
|k|∞≤l

∆k1 ⊗ · · · ⊗∆kd(f)

for indices k ∈ Nd.
The origin of the SG method lies in the observation that for large |k|1 the
terms ∆k1 ⊗ · · · ⊗∆kd only contribute little to the overall sum. Their con-
tribution becomes even more negligible when compared to the cost for their
computation, i.e. the number of function evaluations. This motivates the
truncation of the sum to

Qdl (f) =
∑

|k|1≤l+d−1

∆k1 ⊗ · · · ⊗∆kd(f) . (3.5)

In some cases the function evaluation f(x) is exceptionally costly, e.g. if it
includes solving an ODE or approximating an integral itself. The formula
stated in (3.5) might include multiple computations of f at some nodes. We
can rewrite it such that f is only computed once at every node and the
weights are precomputed. We define difference grids Ξl := Γl \ Γl−1 where
Γ0 := ∅ and write the node grid as

Γdl :=
⋃

|k|1≤l+d−1

Ξk1 × · · · × Ξkd .
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Figure 1: Sparse grid points for Trapezoid, Clenshaw-Curtis and Gauss-
Legendre formulas.

Examples of sparse grid points can be seen in figure 1 for underlying Trapezoid,
Clenshaw-Curtis and Gauss-Legendre formulas. The weights for each unique
node in Γdl can be computed in advance based on the underlying one-
dimensional formula. Novak and Ritter [71] calculated the size of the sparse
grid

N
(d)
l := #Γdl =

∑
|k|1≤l+d−1

mk1 · ... ·mkd = O(Nl log(Nl)
d−1) ,

for mki = #Ξki . Although this estimate holds for nested and non-nested
rules alike, the constant in O(Nl log(Nl)

d−1) is smaller for nested rules since
nestedness is passed on from one to multiple dimensions, i.e.

Γdl ⊂ Γdl+1 .

In both cases the size of the SG rule is substantially smaller than the number
of nodes Nd

l for the product rule. It is reduced to an almost linear term with
an additional log-factor instead of an exponential dependence on d.
If the product rule is already implemented, we can conveniently expand the
form (3.5) to

Qdl (f) =
∑

l≤|k|1≤l+d−1

(−1)l+d−|k|1−1

(
d− 1

|k|1 − l

)
Qk1 ⊗ · · · ⊗Qkd(f)

to utilize the existing implementation. SG quadrature in this form is also
called combination technique.
Although we reduced the number of nodes considerably compared to the
product rule the error bound for sparse grid quadrature remains almost
unchanged. For the SG formula based on Clenshaw-Curtis or Gauss formulas
we have the bound [86]

e(QSG
l , Hr

mix) = O(N−rl log(Nl)
(d−1)(r+1)

2 ) . (3.6)
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The algebraic convergence of order r is preserved and only impaired by a
log-factor. However, the pre-asymptotic behavior might not reflect this rate
as the constant can be quite high and exponentially dependent on r and d.
Polynomial exactness is also transferred from one to multiple dimensions.
Here, the corresponding d-dimensional space of polynomial is constructed in
the same fashion as the SG rule by

Pdl := {Pk1 ⊗ · · · ⊗ Pkd | |k|1 = l + d− 1}

from the spaces Pki of one-dimensional polynomials of degree ≤ ki.

Extensions of the sparse grid method
There have been several approaches to further improve sparse grids quad-
rature for specific regularity conditions and integrands. These include an-
isotropic and dimension-adaptive sparse grids [23] and SG quadrature for
integrands with boundary singularities [33].
One way to generalize sparse grids is to change the index set A ⊂ Nd in the
summation. Originally we had

A1 =
{

(k1, ..., kd) ∈ Nd : |k|1 ≤ l + d− 1
}
.

Changing the norm | · |1 to | · |v for any v ∈ Rd+ and defining

|x|v :=
d∑

k=1

vkxk

leads to a sparse grid that emphasizes certain dimensions over others. This
way pre-existing knowledge about the regularity of the integrand in multiple
dimensions can be incorporated and more specific refinements of the grid are
possible where necessary.
If such knowledge is not available, we can build up the index set iteratively.
In [23], a corresponding algorithm is explained which is not only based on
the estimated error of the terms ∆k1⊗· · ·⊗∆kd but also on the cost of each
additional step.
Finally, Oettershagen and Griebel [33] investigate a technique to account
for boundary singularities of the integrand. Such singularities might arise
when transforming an integral on [0,∞)d or Rd to the bounded domain Ω.
They apply Generalized Gaussian formulas which are based on a Chebychev
system of basis functions instead of polynomials.
Two useful Chebychev systems correspond directly to weight functions for
Gaussian quadrature: Instead of polynomials in x, polynomials in the trans-
formed argument ψ(x) are used to build the space PN−1 for which an or-
thonormal polynomial pN is sought and whose zeros serve as quadrature
nodes (cf. Section 3.2). The transform ψ = log is motivated by the Gauss-
Laguerre formula and adds weakly differentiable functions with one bound-
ary singularity in Ω to the space of fast approximated integrands. Similarly,
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ψ = erf−1 where erf is the Error function (motivated by Gauss-Hermite)
accounts for weakly differentiable functions with boundary singularities on
both sides of the interval [0, 1].
The error bounds of Gaussian quadrature are preserved but now extended to
functions with algebraic boundary singularities. Additionally, they appear
to be transferred to the multidimensional case for (adaptive) sparse grids
[33].
This concludes our short review of SG quadrature. Due to our focus on un-
derstanding econometric integrals as parameterized sets of integrals, we only
apply isotropic SG rules based on Clenshaw-Curtis or (generalized) Gauss
formulas in this thesis and leave adaptive approaches for further research.
Furthermore, the idea of reducing the number of nodes in a d-fold tensor
product gives rise to sparse tensor product quadrature which we investigate
in Chapter 6.

3.4 Monte Carlo Quadrature

In contrast to product and SG rules which are inherently based on one-
dimensional rules we can also define nodes directly in Ω = [0, 1]d. We
distinguish probabilistic Monte Carlo and deterministic Quasi Monte Carlo
methods. They both solely rely on the proper choice of nodes and use the
uniform weight 1

N for all nodes. Hence, all nodes contribute equally to the
total result.
Monte Carlo (MC) quadrature can be derived from a probabilistic point of
view. We understand I(f) as the expected value over the random variable
f(X) where X is uniformly distributed on Ω. The nodes x1, ..., xN are
drawn independently and randomly from a uniform distribution and yield a
quadrature formula which is exact for all f ∈ L2(Ω) in expectation,

E

[
1

N

N∑
n=1

f(xn)

]
=

1

N

N∑
n=1

E[f(xn)] = E[f(x)] = I(f) .

Consequently, we do not consider the error EN (f) but instead the root mean
square error

MSE[f ] := E[| I(f)−QN (f)|2] =
Var(f)

N

which implies a “probabilistic” convergence rate of O(N−
1
2 ), independent

of the dimension d. This means that even for integrands f with very low
regularity in a high-dimensional domain at least a slow convergence can be
assured. In particular, MC integration attains a faster convergence rate
than the product rule if d > r

2 and f ∈ Hr
mix and is often faster than SG

quadrature for small N .
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A further advantage is the sample variance of QN (f) which provides a dir-
ectly available error estimate for any N . Additionally, simple implement-
ations of QN only require a sufficiently good pseudo random number gen-
erator. Thus, for both mathematical and implementational reasons, MC
quadrature is very popular among econometricians and often used without
further analysis of other alternatives.
Yet, the probabilistic nature of the MSE does not allow a direct compar-
ison with the deterministic error bounds from previous sections. The mean
squared error does not comprise a norm, thus, common proof techniques,
e.g. for error bounds of tensor product quadrature rules (see Chapter 6),
have to be adapted for this different error measure.
Furthermore, the actual performance of MC integration also depends on the
possibly large factor Var(f). Variance reduction techniques try to mitigate
this dependence in the constant of the rate. E.g. we can lower Var(f) by
drawing the samples xN from a distribution Φ with p.d.f. ϕ and use the
identity ∫

Ω
f(x)dx =

∫
Ω

f(x)

ϕ(x)
dΦ(x) .

If f and ϕ are shaped similarly (i.e. dist(f, ϕ) is minimized by ϕ for some
distance measure dist), then the variance of the new integrand f

ϕ can be con-
siderably smaller than Var(f). This method is called importance sampling.
Other techniques include stratified sampling and correlated sampling.
Importance sampling promoted the interest in sampling from distributions
other than the uniform one. Since most econometric models assume Gaus-
sian errors the question arose how to draw samples from multivariate Gaus-
sian distributions with arbitrary covariance structure. In the 1980s and
1990s importance sampling techniques like the GHK-Simulator [25], [39]
and Markov Chain Monte Carlo methods like Gibbs Sampling [19] were de-
veloped to tackle this problem. Hajivassiliou compares several methods sim-
ulating Gaussian distributions in [38]. Genz’ approach [20] relies on trans-
formations of the covariance matrix and is also applicable to t-distributions.

3.5 Quasi Monte Carlo Quadrature

Even though the convergence rate of MC quadrature is independent of the
dimension, it is also distinctly slower than one-dimensional and SG quadrat-
ure. Quasi Monte Carlo (QMC) quadrature improves the random approach
by choosing its points deterministically. They are designed to cover Ω evenly
which is often achieved by minimizing the discrepancy of the node set. With
lattice rules and (digital) nets and sequences we describe two main families
to define such node sets and also give examples for each family.
Random points might leave large portions of the integration domain empty
and without any quadrature node. We see in figure 2 how QMC rules can
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Figure 2: (Quasi) Monte Carlo points in two dimensions: Randomly drawn,
from the Sobolev sequence and from the Chebychev-Frolov lattice

provide a more uniform distribution. Beside the classification into lattice
rules and nets and sequences (and some others) we can differentiate between
closed and open rules. The former recompute the nodes x1, ..., xN for every
N from scratch while the latter reuse already computed nodes and hence
values f(xn).
As mentioned in Section 3.1 optimal error bounds e(N,F) have been com-

puted for several function spaces, e.g. Besov and Triebel-Lizorkin spaces
(which are generalizations of Sobolev spaces) [85]. Their bound also hold
for Sobolev spaces which are our primary subject of interest and reads

e(N,Hr
mix) = O(N−r log(N)

d−1
2 ) .

Thus, the optimal rate from one-dimensional quadrature can be transferred
to the multidimensional case at the cost of a log-factor with exponent in-
dependent of regularity r. In fact, this is even possible for Sobolev spaces
with differing regularities in each dimension r = (r1, ..., rd) if we set r =
min{r1, ..., rd} in the above formula and replace d by the multiplicity of r in
{r1, ..., rd}.
Unfortunately, the error for the SG quadrature (3.6) does not fulfill this
rate as its log-exponent does depend on r and therefore prolongs the subop-
timal pre-asymptotic phase caused by the higher secondary rate. Kacwin et
al. [53] prove that Frolov cubature attains the optimal bound for Sobolev
spaces, although the pre-asymptotic behavior seems to be problematic.
A comprehensive overview of digital nets and their construction is given in
[13]. Dick, Kuo and Sloan explain both families in their review article [12]
and give an introduction into error analysis and proper function spaces for
QMC quadrature. We will follow their presentation in this and the next sec-
tion. Furthermore, we consider lattices based on Frolov cubature which have
been developed by Kacwin et al. ([52], [53]) after their original proposition
by Frolov [17].
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(Digital) nets and sequences
With nodes from nets or sequences we attempt to equip certain cubic sub-
sections of Ω = [0, 1]d with the same number of points. The resulting node
set ΓN is well-distributed in Ω. The following definition from [12] is also
known as (t,m, s)-net with the replacement s for d.

Definition 3.1. ((t,m, d)-net)
Let t ≥ 0, m ≥ 1, d ≥ 1 and b ≥ 2 be integers with t ≤ m. A (t,m, d)-
net in base b is a point set Γ consisting of bm points in [0, 1)d such that all
elementary boxes of the form

d∏
j=1

[
aj

bkj
,
aj + 1

bkj

)
(3.7)

for kj ∈ N0, 0 ≤ aj ≤ bkj − 1 where k1 + · · ·+ kd = m− t contain exactly bt

points.

This gives a node set of size N = bm−tbt = bm since there are
∏d
j=1 b

kj =

bm−t elementary boxes for every choice (k1, ..., kd) ∈ Nd. The (t,m, d)-net
becomes finer for smaller t or larger (m− t) since this implies that more and
smaller boxes have to be covered. The net is a closed rule since we cannot
simply increase N = bm and retain the same nodes. A similar definition for
an open rule is the following.

Definition 3.2. ((t, d)-sequence)
Let t ≥ 0 and d ≥ 1 be integers. A (t, d)-sequence in base b is a sequence of
points Γ = (x0, x1, ...) in [0, 1)d such that for any integers m > t and l ≥ 0,
every block of bm points

xlbm , ..., x(l+1)bm−1

in the sequence Γ forms a (t,m, d)-net in base b.

The digital construction scheme gives a method to build such nets and
sequences. It is based on the solution of linear equations in finite fields Zp.
Here as well as for lattice rules, number theoretic techniques come to play
when developing and analyzing new quadrature formulas.
The most common example for a digital (t, d)-sequence is the Sobol sequence
which was first constructed by Sobol in 1967. Niederreiter (1987) introduced
the general (t, d)-sequences and gave a generalized version (the Niederreiter
sequence) of the Sobol sequence. We abstain from discussing the construc-
tion here since we use the Sobol sequence only as a benchmark for SG and
Frolov quadrature. This allows for a direct comparison with results presen-
ted in finance and economics which to date mainly rely on MC integration
and sometimes QMC quadrature.
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The same holds for the popular Halton sequences which can neither be put
into the concept of (t, d)-sequences nor the following lattice rules.
We already mentioned that the proposed QMC rules shall cover Ω evenly.
How well a set of points is distributed in Ω is normally measured in terms of
the discrepancy. There are multiple definitions of discrepancy for different
purposes but we only consider the star discrepancy

D∗Γ := sup
z∈[0,1)d

∣∣∣∣∣∣ 1

N

∑
x∈Γ

1[0,z](x)−
d∏
j=1

zj

∣∣∣∣∣∣
for a set Γ consisting of N points. Here [0, z] is the box spanned by the
intervals [0, zi] for i = 1, ..., d and 1[0,z](x) = 1 only if xi ∈ [0, zi] for i =
1, ..., d.
A classical estimate for the error term is the Koksma-Hlawka inequality

EN (f) ≤ D∗ΓV (f)

for a function f of bounded variation V (f) in the sense of Hardy and Krause.
The sequences presented above are constructed s.t. D∗Γ is as small as pos-
sible, hence the name low-discrepancy sequences. Bounds of the form

D∗Γ = O

(
log(N)d−1

N

)
have been shown for many of these constructions. This is a significant
improvement compared to MC integration and comes only at the cost of the
demand for bounded variation of the integrand. On the other hand, if more
knowledge concerning the regularity of the integrand is available, the bound
for e(N,Hr

mix) implies that even better rates are possible for N -point rules.

Lattice rules
Lattice rules originated from the desire to utilize the maximal regularity
of the integrand and achieve higher-order convergence rates. A lattice Λ is
a discrete subset of Rd which is closed under addition and subtraction. If
Zd ⊂ Λ and ΓN := Λ ∩ Ω denotes the node set of a quadrature rule with
uniform weight 1

N , then this rule is called a lattice rule. It can be seen as a
generalization of the trapezoid rule since the projection of ΓN on each axis
produces a set of equi-distant points.
One of the first lattice rules were the good lattice points (Korobov, 1959).
For a generating vector z = (z1, ..., zd) ∈ Zd we define the quadrature points
as

xn =
{nz
N

}
for n = 1, ..., N

where {a} is the fractional part of a ∈ R and z has no common factor with
N . The additional condition gcd(zi, N) = 1 for all i = 1, ..., d assures that
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all one-dimensional projections of the lattice rule each contain N distinct
values.
A simple example is the Fibonacci rule for d = 2 based on the sequence
(Fk)k∈N0 of the same name which sets z = (1, Fk) and Nk = Fk+1. Although
there is no apparent generalization to higher dimensions, the Fibonacci lat-
tice seems to fulfill certain optimality conditions in R2.
A different approach is followed by Frolov cubature rules,

QN (f) =
1

N

∑
x∈Zd∩Ω

f(ANx) ,

where AN = N−
1
dA is defined for A ∈ Rd×d with det(A) = 1. Since we

assumed Ω = [0, 1]d (or, more generally, that Ω is bounded and closed) at
the beginning of this chapter, N = #Z ∩ Ω is finite. If the lattice A(Zd) =
{Az | z ∈ Zd} is admissible in the sense that

inf
x∈Zd\{0}

∣∣∣∣∣
d∏
i=1

(Ax)i

∣∣∣∣∣ > 0 ,

then QN attains universal optimality for many useful function spaces (e.g.
the aforementioned mixed Sobolev and Besov spaces with zero boundary
conditions). Here, “universal” indicates that the optimal convergence rate is
obtained for any regularity r ∈ N, i.e. the same rule can be used for arbitrary
smooth integrands and will always provide the maximal convergence.
This distinguishes Frolov quadrature from other formulas which all have
either some maximal regularity which they can utilize or have a worse than
optimal log-exponent. However, the constant in the O-notation depends on
the choice of A and can be hindering for the actual applicability of Frolov
cubature. In particular, the search for matrices A which yield a constant-
minimizing or (in the case of high dimensions) any admissible lattice has
not yet terminated.
One way for finding such a matrix was already given by Frolov: Consider a
polynomial p(x) that fulfills the following conditions

• p has integer coefficients,

• p has leading coefficient 1,

• p is irreducible over Q and

• p has distinct roots ξ1, ..., ξd.

Then the corresponding Vandermonde matrix
1 ξ1 ξ2

1 . . . ξd−1
1

1 ξ2 ξ2
2 . . . ξd−1

2
...

...
...

. . .
...

1 ξd ξ2
d . . . ξd−1

d

 ∈ Rd×d

40



constitutes an admissible lattice.
For d = 2m, Chebychev polynomials meet these assumptions [52]. While
there are other techniques for most of the low dimensions d = 2, 4, 8, ... for
some cases like d = 7, 13 satisfactory polynomials were only found by brute
force [53]. The corresponding nodes for the Frolov formula in up to 10 dimen-
sions can be found on the website of the Institute for Numerical Simulation
Bonn (https://ins.uni-bonn.de/content/software-frolov).

3.6 Optimal Weights Cubature

While the aforementioned MC and QMC methods all use the uniform weight
1
N a recent work by Oettershagen [72] evaluates the utilization of so called
optimal weights. Based on the notion of Reproducing Kernel Hilbert spaces
and a given set of points in Ω we can obtain optimal weights for these points
by solving a system of linear equations.
We start the derivation of this technique with a definition from [12].

Definition 3.3. (Reproducing Kernel Hilbert space)
A Hilbert space HK of functions f : Ω→R on a set Ω with inner product
〈·, ·〉HK is a reproducing Kernel Hilbert space (RKHS) with kernel K : Ω ×
Ω→R if

(i) K(·, x) ∈ HK for all x ∈ Ω and

(ii) f(x) = 〈f,K(·, x)〉HK for all x ∈ Ω and all f ∈ HK .

The kernel K defined by the above conditions is unique for HK and also
satisfies

(iii) K(x, y) = K(y, x) for all x, y ∈ Ω, and

(iv) that the kernel matrix G(ΓN ) for any set ΓN = {x1, ..., xN} of pairwise
distinct points xi ∈ Ω defined by

Gij := K(xi, xj)

is positive definite.

In particular, the Riesz-representer of the point evaluation functional
δx : f 7→ f(x) is K(·, x) for any x ∈ Ω. By the Riesz-representation theorem,
a representer can be found for any bounded linear functional in the dual
space H∗K of HK , thus also for the error functional EN : f 7→ I(f)−QN (f)
of a quadrature rule QN . Using this representer, a closed form expression
for the worst case error e(QN ,HK) can be derived [72]

e(QN ,HK)2 = ||EN ||2H∗K =

∫
Ω

∫
Ω
K(x, y)dxdy − 2

N∑
n=1

wn

∫
Ω
K(xn, x)dx

+

N∑
n=1

N∑
m=1

wnwmK(xn, xm) . (3.8)
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The transformed expression greatly simplifies the identification of sharp
bounds. Hence, many research works focused on calculating such bounds
for RKHS like periodic and non-periodic Sobolev spaces and the space of
absolutely continuous functions.
For fixed nodes x1, ..., xN , the worst case error is minimized w.r.t. the
weights w1, ..., wN by computing the partial derivatives and setting them to
0. This leads to the system

b(ΓN )m :=

∫
Ω
K(xm, x)dx+

N∑
n=1

wnK(xm, xn) for m = 1, ..., N .

Thus, the optimal weights vector w∗(ΓN ) = (w∗1, ..., w
∗
N ) is given by

w∗(ΓN ) = G(ΓN )−1b(ΓN ) . (3.9)

It is noteworthy that these weights can be computed for any set of pairwise
distinct points including the random points from MC integration. We only
need to identify the correct RKHS and corresponding kernel K(·, ·) in order

to solve (3.9). Then optimal weights improve the MC-rate from O(N−
1
2 ) to

EN (f) = O(N−r+
1
2 log(N)rd−

1
2 )

for f ∈ H̃r
mix([0, 1]d), the periodic Sobolev space.

For the non-periodic case and for the optimally weighted Halton sequence
similar results could be obtained. For other RKHS it remains unclear
whether this rate can actually be achieved. Furthermore, the solution of
the system (3.9) requires O(N3) operations which is expensive for large N .
Concluding, the optimal weights approach gives us the chance to exploit
regularity even if only random points are available. In particular, we can
almost reach the optimal rate with this approach and are only hindered by
the dependence of the log-factor on r.
This is of major importance for the computation of likelihoods as defined
in Section 5.2. There, the quadrature points are measurements or observa-
tions which are inherently random, so we only treat them as basis for Monte
Carlo integration. Most notably, if we can determine the domain of the data
samples and their (approximate) distribution, optimal weights might allow
us to boost convergence rates drastically.
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4 Numerical Results

4.1 Objective

In Chapter 2 we encountered and described various econometric models
which all included the computation of a multidimensional integral. These
integrals often cannot be evaluated analytically, thus numerical approxim-
ation is necessary. This chapter is concerned with the application of the
quadrature methods we developed in the previous sections to these econo-
metric integrals.
Our simulations show that SG and Frolov cubature provide viable alternat-
ives to currently dominating methods and perform considerably better for
Probit and Mixed Logit models. Similar results could be obtained for in-
tegrals arising from the Neo-classical Stochastic Growth model in Section
2.4. However, they are less useful for Linear Quantile Mixed and Dynamic
Discrete Choice models where they only match the performance of QMC
rules.
We can retrace these differences directly to kinks or even singularities of
the integrands. Kinks are a frequent issue in econometric integrals as they
are often defined via an indicator function 1S for some subset S ⊂ Ω. A
smoothing operator can mitigate this problem but leads to biased results.
In contrast to common numerical analysis which focuses on the regularity
of the integrands we examine parameterized sets of integrals where regular-
ity is not enough to achieve fast and precise approximations: Even though
all integrands lie in the same function space, different specifications lead to
better or worse convergence plots. This issue is clearly visible for Mixed
Poisson and NSG models. Already a small change in the assumed covari-
ance matrix, mean or other parameters strongly influences the performance
of SG and Frolov quadrature.
This leads us to the conclusion that a direct relation between model and
function space does usually not exist. A general preference for one quadrat-
ure rule for every specification of a particular model cannot be justified and
a separate choice of quadrature has to be made for any newly considered
model specification. Still, our survey offers some heuristics and first results
about where the application of higher-order rules is beneficial for the estim-
ation process.
In the following, we present approximation results for all of the described
models and specifications from Chapter 2, i.e. various GLMM (Section 2.3)
and two exemplary DEM (Section 2.4). As the integrals are not analytically
solvable the approximated values cannot be compared with the exact result.
Instead for all integrals a “true” result Ĩ(f) is computed with the respective
best performing quadrature rule and a high number of nodes. For better
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comparability we then plot the relative error

Rl(f) =
|Ql(f)− Ĩ(f)|
|Ql(f)

against the number of nodes (i.e. function evaluations) Nl in each level l.
Depending on the performance we present results for a varying set of quad-
rature rules. In general, MC and QMC quadrature based on Sobol and
Halton sequences serve as benchmark for high-order rules. For Frolov cub-
ature, we use the precomputed points by Kacwin et al. [53], available on
https://ins.uni-bonn.de/content/software-frolov for integrals of di-
mension 10 or less. Finally, the applied SG quadrature rules are based
either on the one-dimensional Gauss-Hermite or Clenshaw-Curtis formula.
In some cases it proved to be sufficient to display convergence for one of the
two formulas whereas both rules performed reasonable in other cases.

Bhat [6] was one of the first to investigate Halton-points for quadrature
in econometrics and used them to compute a Mixed Logit model. The
application of SG quadrature on Mixed Logit and Probit models was first
investigated by Winschel and Heiss ([47], [48]), Judd and Skrainka [50] and
Oettershagen ([33], [72]). Our simulations support their results and illustrate
them in a broader context by including Mixed Poisson and Linear Quantile
Mixed models and adding Frolov cubature as another alternative to sequence
based QMC.
As yet, approximation of integrals in DDCM is based solely on Monte Carlo
integration ([1], [15], [55]). Similarly, SG and Frolov quadrature apparently
has not yet been considered for NSGM although the product rule seems to
be sufficient in many cases ([49], [63]).
In the following two sections, we will denote quadrature based on Sobol-
or Halton-sequences jointly as QMC quadrature and state results for Frolov
cubature separately although it is also a QMC rule by nature. This notation
is reasonable since Frolov cubature, in contrast to Sobol and Halton rules,
is able to achieve optimal error bounds and has not yet been examined for
the application to econometric integrals.

4.2 Quadrature for GLMM Integrals

In Chapter 3, we established two important criteria for the integrand to
achieve high convergence rates, namely regularity and boundary conditions.
We recall that for GLMM the integrand s is specified by the distribution
of the outcome f , the link function g and the mixing distribution h and
parameterized by mean and covariance of the latter

s(u|y, β0,Σ, φ0) = f(y|β0, u, φ0)h(u|Σ)

= exp

(
yT g̃(g−1(X(β0 +u))) + b(g̃(g−1(X(β0 +u))))

a(φ0)
+ c(y, φ0)

)
h(u|Σ) .
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The most popular combinations are presented in Table 1 and Section 2.3.
In general, the subject of interest is the natural parameter θ, so a(φ0) and
c(y, φ0) constitute constants in terms of u and the functions a and c can
be neglected in the examination of regularity of s. The functions b and g̃
presented in Table 1 are all smooth in their domains except for possible sin-
gularities at the boundaries. Nevertheless, in the setting of an exponential
family they yield smooth functions in terms of the mean µ. The only excep-
tion is the Laplace distribution with p.d.f. (2.15) which is only continuous
in µ.
The dependence on µ is converted to a dependence on β0 +u via the link
function g, more specifically via g−1. Any (inverse of a) link function in
Table 1 including the canonical links is again smooth in its domain, hence
we expect the successful applicability of high-order quadrature methods.
This is also backed by the usual choice of a multivariate Gaussian for the
mixing distribution h which is also smooth. In contrast, the multivariate
Laplacian exhibits a singularity at 0 and, indeed, all formulas based on reg-
ularity failed immediately for it in our simulations so they are not included
for further examination.
However, both Gaussian and Laplacian are defined on the whole space Rd,
so the (Q)MC rules characterized in sections 3.4 and 3.5 cannot directly
be applied as they are designed for Ω = [0, 1]d (or any bounded domain).
Hence, the integrand has to be transformed to fit Ω. This transformation
naturally induces singularities at the boundaries. Yet, the term e−x

2
of the

Gaussian can mitigate them if the singularities are of lower order. Simple
trial and error showed that the tangens-transformation has sufficiently flat
singularities, so the transformed integrand has zero boundary in Ω.

Analogous to the structure of Section 2.3, we start with integrals arising
from the Mixed Logit model: For dimensions q = 2, 4, 8, 12 of the para-
meter vector β = β0 +u and J = 8 alternatives we draw a random vector
x ∈ [0, 1]J×q of observed exogenous factors in the Mixed Logit model. The
number of alternatives can be arbitrary in this setting as the probability is
computed separately for every choice. We let β0 = (0.2, ..., 0.2)T be a guess
for the mean of the mixing distribution and let its covariance Σ = Σρ be
parameterized by ρ = 0.2 where Σii = 1 and Σij = ρ.
In accordance with our knowledge about the regularity of the integrand, fig-
ure 3 displays the clear superiority of SG and Frolov quadrature compared
to (Q)MC rules for low dimensions 2 and 4. The proposed rates from Sec-
tion 3.3 even lead to exponential convergence. For q = 8 and q = 12 this
behavior cannot be preserved as the log-factor dominates the performance
before the main rate kicks in. This pre-asymptotic phase is problematic in
real-world applications as econometrics only rarely require high precision
approximations and are rather interested in rough but easily obtainable es-
timates.
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Figure 3: Multinomial Mixed Logit for dimensions 2, 4, 8, 12 (left to right,
top to bottom) with Gaussian mixing distribution.

The general advantage of the Gauss-Hermite formula over Clenshaw-Curtis
follows from its definition for the weight function e−x

2
. Thus, the Gauss-

Hermite points have the whole real line as domain and the tangens-trans-
formation can be omitted. The form e−x

2
, or e−x

T x in the multivariate case,
can be recovered for arbitrary positive definite covariance matrix by linearly
transforming the integration variable with the matrix C from the Cholesky
decomposition Σ = CCT .
Yet, the performance of SG quadrature not only depends on the dimension
but is also affected by the chosen parameters. In figure 4, we investigated
quadrature for fixed dimension q = 4 and scaled covariance matrices κΣ0.3

with κ = 0.1, 2, 100, 1000. In the latter two cases, SG quadrature does
not exhibit any converging behavior at all, while Frolov cubature maintains
a better rate.
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Figure 4: Multinomial Mixed Logit for dimensions 4 with Gaussian mixing
distribution and covariance κΣ0.3 with ρ = 0.3 and κ = 0.1, 2, 100, 1000
(left to right, top to bottom).

We can explain the erratic, diverging nature of the SG plots in figure 4
despite the expected higher-order convergence rate with constants in the
O-notation: In the previous chapter we estimated the approximation error
by

E(f) = | I(f)−Q(f)| ≤ || I −Q|| · ||f || ≤ C(r, d)N−r log(N)t(r,d)||f ||
= O(N−r log(N)t(r,d)) (4.1)

for regularity r and some exponent t(r, d). The constant C(r, d) can be ex-
ponentially dependent on r or d and therefore extend the pre-asymptotic
phase notably before the main rate N−r kicks in. The additional factor
||f || in the O-constant depends not only on f but also on the choice of a
norm || · ||. Hence, predictions from the error bound (4.1) should be treated
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Figure 5: Mixed Poisson model for dimensions 2, 4, 8, 12 (left to right, top
to bottom) with Gaussian mixing distribution N (0, 0.1Σ0.2).

sensibly for low N as the bound might strongly depend on “invisible” con-
stants in the O-notation. While the log-factor only flattens the curve the
O-constant leads to curves as in figure 4 or later in figures 6 and 12.
It particular, we realize that the analysis of quadrature rules for economet-
ric parameterized integrals cannot be executed along the lines of classical
numerical mathematics: For a set of integrals, e.g. all GLMM integrals, one
would normally try to find a function space which includes all integrands and
then determine a quadrature rule which achieves the optimal convergence
rate in this function space. This approach is not practical here although the
described integrands have sufficient regularity to be in a Sobolev space of
mixed regularity, as the constant in the error bound is problematic for small
N . On the other hand, it is not reasonable to consider adaptive quadrature
methods, since it would require to much computational effort to generate
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Figure 6: Mixed Poisson model for dimensions 4 with Gaus-
sian mixing distribution N (µ, κΣ0.3) and combinations (µ, κ) =
(0, 0.1), (4, 0.1), (0, 10), (8, 0.1) (left to right, top to bottom).

an individual rule for each integral from the parameterized set of integrals.
Instead, it is possible to identify regions of parameters where SG quadrature
outperforms currently used methods and others where (Q)MC quadrature
is optimal. In figure 4, we observe that low covariance parameters justify
the use of SG quadrature whereas Frolov cubature is the better choice for
higher covariance.
For the Mixed Poisson model in figure 5, we used the same specifications
for x, J and β0 but scaled κΣ0.2 with κ = 0.1. Then similar results as for
Mixed Logit and low covariance could be achieved: Considerable improve-
ments result from SG quadrature for low to moderate dimensions but they
quickly vanish for higher q due to the unfavorable log-factor in the error
bound and the resulting pre-asymptotic behavior. Still, figure 5 shows that
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Figure 7: Linear Quantile Mixed model with Gaussian mixing distribution
for dimensions 2, 4, 8, 12 (left to right, top to bottom).

a sparse grid based on the Gauss-Hermite rule can keep up with (Q)MC
rules even in higher dimensions.
As for Mixed Logit these results depend on the choice of parameters. Fig-
ure 6 displays convergence plots for four combinations of mean µ and scale
parameter κ of the Gaussian mixing distribution N (µ, κΣ): Again a high
value for κ extends the pre-asymptotic phase of the SG rule significantly so
that Frolov cubature and even Sobol- and Halton rules are better choices
for moderately accurate approximations.
This is different for increased mean: Here SG quadrature is the best choice
even for higher µ since the pre-asymptotic behavior is poor not only for SG
but also for QMC rules. In particular, we note that SG quadrature indeed
achieves an exponential convergence rate once the pre-asymptotic phase is
left.
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Figure 8: Multinomial Probit for dimensions 2, 4, 8, 12 (left to right, top to
bottom).

For the Linear Quantile Mixed model the failure of SG quadrature is caused
by the lacking regularity of the Laplace p.d.f. due to the absolute value
in the exponent (see equation (2.15)). For non-differentiable functions the
main term of any error bound is limited to O(N−1), so the pre-asymptotic
phase due to the log-factor extends even further for SG quadrature. Simil-
arly, QMC rules follow the MC-rate O(N−1/2) in their pre-asymptotic phase
until the better main rate dominates. Hence QMC rules are superior to MC
integration for low dimensions but match it for only higher dimensions and
moderate N .
The Multinomial Probit choice probability defined by (2.14) cannot directly
be approximated by the given quadrature rules. The Genz-algorithm [20]
which is equivalent to the GHK-simulator ([39], [57]) transforms the integral
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to the unit cube

I(v) =

∫
(0,1)d−1

d∏
i=1

v̂i(w1, ..., wi−1)dw (4.2)

where d = J − 1 for the number of choices J and

v = (Ṽki)
J
i=1,i 6=k = ((X β)k − (X β)i)

J
i=1,i 6=k (4.3)

for a fixed choice k ∈ {1, ..., J}. The v̂i are recursively defined by

v̂i(w1, ..., wi−1) = Φ

C−1
ii ·

vi −
i−1∑
j=1

CijΦ
−1(wj v̂j(w1, ..., wj−1))

 .

Here, Φ is the c.d.f. of the standard univariate Gaussian and C is a factor
from the Cholesky decomposition of Σ. The inverse c.d.f. Φ−1 induces a
boundary singularity for the integrand in (4.2) but the product over the v̂i
is still analytic for w ∈ (0, 1)d−1. Due to the discontinuity in the integrand
in (2.14) it is impractical to apply SG quadrature to the untransformed in-
tegral.
Instead, Oettershagen and Griebel [33] propose to use a Sparse Grid which
is based on a generalized Gauss formula. In our case, this formula is gen-
erated similarly to conventional Gauss-formulas only that polynomials in
log(x) are used instead of polynomials in x. This way, r-times differentiable
functions with boundary singularities are included in the space of functions
for which a main rate of O(N−r) is achieved. This property is preserved for
multidimensional integrands and SG quadrature.
In figure 8, we compute the Probit integral for covariance matrix Σ0.2 and
v = (0.5, ..., 0.5): For J =3, 5, 9, 13 (hence dimension 2, 4, 8, 12), the plots
display that SG quadrature again surpasses (Q)MC for low dimensions while
the secondary rate again reduces this advantage for higher dimensions. Fro-
lov cubature does not perform well for Probit as the transformed integrand
does not meet the zero boundary condition.
Oettershagen and Griebel explored further variants of generalized Gauss-SG
quadrature with other basis functions instead of common polynomials and
showed that the above results also sustain for other parameter combinations.

We summarize the results for GLMM integrals in Table 2 where each
cell indicates whether the respective quadrature rule performs well in terms
of its optimal convergence rate for the respective model and specification.
The table illustrates that MC and QMC quadrature provide viable methods
for a wide variety of integrals but are often surpassed by at least one of the
higher-order rules.
In particular, it makes sense to switch between quadrature methods de-
pending on the choice of parameters and specification of the model. Often,
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Model

MC: O(N−1/2),

Sobolev/Halton-QMC:

O(N−1 log(N)d−1)

SG (Gauss-Hermite or CC):

O(N−r log(N)(d−1)(r+1)/2)
Frolov:

O(N−r log(N)(d−1)/2)

Mixed Logit
(small κ) Yes.

Yes
(for small to moderate d). Yes (for small d).

Mixed Logit
(large κ) Yes. No.

Yes (but deteriorating

for larger κ).

Mixed Poisson
(small κ, µ) Yes. Yes. Yes.

Mixed Poisson
(large µ) Yes.

Yes (but prolonged

pre-asymptotic).

Yes (but prolonged

pre-asymptotic).

Mixed Poisson
(large κ) Yes.

No (possibly

prolonged pre-asymptotic). Yes

LQMM Yes. No.

Yes, but only

rate O(N−1 log(N)d−1).

Probit Yes.
Yes

(for small to moderate d). No (only MC rate).

Table 2: Overview of whether quadrature rules achieve their optimal con-
vergence rates for given models and specifications.

it is possible to utilize polynomial or even exponential convergence rates of
higher-order rules if small variance is assumed. On the other hand, QMC
and Frolov quadrature achieved better results for high variance, undermin-
ing the importance of the the careful choice of quadrature for each newly
considered parameter.

4.3 Quadrature for DEM Integrals

Similar to the previous section, we now present some numerical results for
the integrals derived in Section 2.4, first for DDCM and then for NSGM.
For DDCM, we replace the non-differentiable integrand by a smoothed max-
imum function and investigate how quadrature is affected by this change.
For NSGM, we encounter the same dependence of the approximation per-
formance on the choice of parameters as for some GLMM integrals.

Researchers have used different functions to model the utility (2.17) in
DDCM. Rust [79] uses linear functions whereas Keane and Wolpin and Eis-
enhauer [16] use functions involving exponentiation. We can generalize both
settings to get

g(x) = max{c1x1, ..., cKxK , e
cK+1xK+1 , ..., ecdxd} (4.4)
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Figure 9: Dynamic Discrete Choice model for dimension 4 with real,
smoothed (α = 10), smoothed (α = 1), smoothed (α = 0.1) maximum.

and

g(x) = max{c1 + x1, ..., cK + xK , cK+1xK+1, ..., cdxd} (4.5)

respectively. The number 0 ≤ K ≤ d depends on the modeling choices made
by the researcher.

The maximum function introduces a kink into the integrand resulting in

g ∈ H
3/2
mix. Although the arguments of the maximum are smooth we can

therefore not expect the same exponential or polynomial convergence as
in the previous chapter. Instead of the true kinked maximum we use the
smoothed maximum function

S(u1, ..., ud|α) =

∑d
i=1 uie

αui∑d
i=1 e

αui
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Figure 10: Dynamic Discrete Choice model for dimension 8 with real,
smoothed (α = 10), smoothed (α = 1), smoothed (α = 0.1) maximum
(left to right, top to bottom).

where the smoothing gets stronger for smaller α > 0.
Figure 9 displays convergence plots for true and smoothed maxima with
α = 10, 1, 0.1 and d = 4. We used g from (4.4) with K = 2, ci = 1 for all
i = 1, .., d and covariance matrix Σ = Σ0.2 with similar results arising for g
from (4.5) and other choices of c and Σ.

For strong smoothing, SG and Frolov quadrature indeed outrun (Q)MC
rules which is also visible for higher dimension d = 8 (see figure 10). In
particular, SG and Frolov also perform better for the smoothed maximum
function than Sobol and Halton do for the true maximum function, therefore
offering a faster converging substitute for QMC rules.
However, for all integrands also the “true” results (i.e. best approximations)
are displayed. We observe that the results for strongly smoothed integrands
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Figure 11: Neo-classical stochastic growth model for dimensions 4, 8, 16, 32
(left to right, top to bottom).

highly diverge from the real maximum result. Hence, applying fast con-
verging SG or Frolov quadrature to a smoothed integrand is no practicable
alternative to approximating the true integral (2.17). Only if the use of
the smoothed maximum function can be justified econometrically, e.g. by
a trembling hand approach, higher-order formulas could be applied success-
fully.

Finally, we consider the integral (2.21) which arises from a prototypical
NSGM. As yet, the utility function u and the production function f remained
unspecified. We rely on the specifications in [49],

u(c) =

{
c1−γ−1

1−y for γ > 0, γ 6= 1

log(c) for γ = 1
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Figure 12: Neo-classical stochastic growth model for dimension 8 and base
case γ = 1, σ = .5, δ = 0.02 (upper left corner) and with modifications
γ = 0.1 (upper right corner), σ = 10 (lower left corner), δ = 1 (lower right
corner).

and

f(k) = kα for some α > 0 .

Furthermore, we let kt+1 = 0.95kt + 0.05k̄at be the iteration method for
capital and k̄ the steady-state capital and get an iterative process for ct
by rewriting the budget constraint (2.19). Together with the original para-
meters β, δ, ρ,Σ, we now have the vector θ = (α, β, γ, δ, ρ,Σ, k̄) which fully
parameterizes the model. As we do not want to estimate the complete model
we need to fix values for θ and provide start values for the iteration of kt.
We set α = 0.36, β = 0.99, ρ = 0.95, k̄ = 10, assume kt = k̄ and at = 1.2
and let Σ be of the form Σii = 2σ2, Σij = σ for i 6= j, i, j = 1, ..., J and
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σ > 0.
In figure 11, we further set σ = 0.5, γ = 1 and δ = 0.02 and varied the
number of countries which are modeled. We considered J = 4, 8, 16, 32 and
see that SG quadrature based on the Gauss-Hermite formula outperforms
(Q)MC rules even for high dimensions. In particular, we observe exponen-
tial convergence rates for J = 4 and J = 8 and less clearly for J = 16 and
J = 32. For low dimensions, the product rule is an alternative as it achieves
similar convergence rates but it becomes infeasible for higher dimensions
since the number of nodes per level increases exponentially in the dimen-
sion.
Additionally, the secondary log-rate is visible for both QMC and SG quad-
rature throughout all plots: The slopes decrease with rising dimensions so
that Halton and Sobol are entirely impractical for high dimension. Equival-
ently the dominance of SG over MC quadrature diminishes.
This behavior is strongly dependent on the chosen parameter vector θ. In
figure 12, we demonstrate how a slight perturbation of γ , δ and σ affects
the integrand and has major impact on the performance of SG quadrature.
As base case (in the upper left corner) we use the configuration from figure
11 for dimension 8. Then we separately set γ = 0.1 (upper right corner),
σ = 10 (lower, left corner) and δ = 1 (lower right corner) to get plots for
different parameter configuration.
While the change in γ only affected the result of the approximation (53.663
instead of 120.164) but left the convergence behavior for all rules untouched,
this is considerably different for σ and δ: Similar to Mixed Logit and Mixed
Poisson, SG quadrature performs notably worse for increased covariance
σ = 10 and does not leave the pre-asymptotic phase for small to moder-
ate N . The product rule does not exhibit this unfavorable pre-asymptotic
behavior and achieves a similar rate as the (Q)MC rules. However, it does
not surpass them due to the relatively high dimension of the integral and
the curse of dimensionality. Hence, for higher dimensions and if moderately
accurate approximations are sufficient, (Q)MC rules are again the superior
choice.
For δ = 1, approximation was unsuccessful for all applied quadrature meth-
ods. Since regularity of the integrand is not affected by the choice of δ we
assume that this is again caused by high constants in the O-notation. For
MC integration it means that the integrand exhibits a high variance for
δ = 1 while ||f || influences convergence for deterministic rules.

We again collect our findings for different models and specifications in
Table 3. While MC and QMC quadrature still perform reasonably for almost
all cases, the dependence of higher-order rules on the chosen parameters is
even more visible than in the previous section. For SG quadrature, we
assume that the slow or non-existing convergence only holds for small to
moderate N and the main rate kicks in for larger N . However, this is often
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Model

MC: O(N−1/2),
QMC:

O(N−1 log(N)d−1)

SG (Gauss-Hermite or CC):

O(N−r log(N)(d−1)(r+1)/2)
Frolov:

O(N−r log(N)(d−1)/2)

DDCM
(real maximum) Yes. No. No.

DDCM
(mild smoothing) Yes.

No (possibly

prolonged pre-asymptotic).

Yes, but only

rate O(N−1 log(N)d−1).

DDCM
(strong smoothing) Yes. Yes (for small d). Yes (for small d).

Model

MC: O(N−1/2),
QMC:

O(N−1 log(N)d−1)

SG (Gauss-Hermite or CC):

O(N−r log(N)(d−1)(r+1)/2) FG: O(N−r/d)

NSGM
(small σ, δ,

medium-sized γ) Yes. Yes. Yes.

NSGM
(small γ) Yes. Yes. Yes.

NSGM
(large σ) Yes.

No (possibly

prolonged pre-asymptotic).

(Yes, but too

few points to evaluate).

NSGM
(large δ) No.

No (possibly

prolonged pre-asymptotic). No.

Table 3: Overview of whether quadrature rules achieve their optimal con-
vergence rates for given models and specifications.

no option for econometricians as they require fast and rough approximations
rather than highly accurate results.
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Part II

Quadrature in Estimation
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5 Econometric Estimation

5.1 Objective

Given a theoretical economic model the next step is to evaluate this model
with respect to real world data. There are various ways to collect such data
depending on the object of investigation: Economists who study the be-
havior of individuals in microeconomic situations can design studies where
they observe the behavior of test persons in a controlled environment. Other
models might require data from real economic actions of and interactions
between individuals, companies or countries. Public agencies, research in-
stitutions, banks, insurance and software companies have collected large
amounts of data during the last decades which are suitable for this task.

In this chapter we examine methods for the evaluation of a parametric
model, i.e. the structural form of the model is fixed but flexible in terms of
a set of parameters. Finding the best parameter of a model based on the
available data is called estimating a model. The optimal parameter for a
given N -point data set ZN = {z1, ..., zN} in the parameter set Θ is called
the estimator θN . The true or population parameter of the model is denoted
by θ0.
If the model under consideration is parameterized by q parameters, then
Θ ⊂ Rq and all parameters θ are in fact parameter vectors. All following
statements regarding θ can be extended to this case with the necessary
alterations for each statement (i.e. vectors or matrices instead of scalars
whenever necessary).
One data point zn incorporates all observable variables, including exogenous
factors and outcomes (i.e. xn and yn in the setting of Chapter 2), so it
might be a vector or a matrix. W.l.o.g. we let z ∈ Z ⊂ Rr and combine,
where needed, exogenous variable x and outcome variable y into the tuple
z = (x, y). Furthermore, we omit the index n if we do not talk about
a specific data point. We assume that the zn are independent identically
distributed (i.i.d.) samples from a known or unknown distribution. If the
data is structured as panel data or correlated for other reasons, we can build
independent sets of data points and denote them as z1, ..., zN . E.g. panel
data contains N · T data points where N is the number of individuals and
T the number of time periods, so we can typically merge T data points for
one individual into one variable z. This way we again get independent data
points z1, ..., zN .

In this chapter we describe desirable properties of estimators and intro-
duce the concept of extremum estimators which provide a general class for
many popular estimation methods. Following the presentation by Hayashi
[45] we investigate two major sub-classes, namely M-estimators and Gener-
alized Method of Moments estimators, both of which also include Maximum
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Likelihood estimation. Newey and McFadden [69] and the introductory pa-
per by Hansen [43] describe under which conditions they are good estimators
in terms of the beneficial properties in Definition 5.1.
Subsequently, we observe that in many use cases the computation of an es-
timator requires the numerical integration of an integral (see e.g. [27]). In
fact, M- and GMM-estimators are by definition simulators of an expected
value. Motivated by similar investigations for Maximum Likelihood estima-
tion [34] we develop a framework for approximated M- and GMM-estimators
and show under which conditions they retain the following properties.

Definition 5.1. (Desirable properties for estimators)
An estimator θN is called

(I) consistent if lim
N→∞

P (|θN − θ0| > ε) = 0 for all ε > 0, i.e. θN
P−→ θ0

converges in probability for N→∞,

(II) asymptotically normal if:
√
N(θN − θ0)

D−→ N (0, V )
for some scalar- or matrix-valued variance V ,

(III) efficient if: MSE[θN ] ≤ minθ∈ΘN MSE[θN ],
where MSE[θ] = E[|θ− θ0|2] is the mean squared error and ΘN is the
set of admissible estimators given the data ZN . If the estimator is
unbiased, then the mean squared error equals the variance. If it is
additionally vector-valued, MSE is replaced by the covariance matrix
of θN and for two matrices A,B, “A ≤ B” means B − A is positive
semi-definite.

Consistency can be regarded as the most basic property as it just de-
mands that θN converges in probability to the population parameter for
large N . In particular, a consistent estimator is also unbiased as we have
E (θN ) = θ0.
Asymptotic Normality (stemming from the Central Limit Theorem) implies
that we can approximate the distribution of the estimator asymptotically by
a (multivariate) Gaussian distribution. An asymptotically normal estimator
is also consistent.
An efficient estimator outperforms other estimators in a certain class of es-
timators (e.g. all consistent or asymptotically normal estimators) based on
a loss function which measures the error w.r.t. the population parameter
θ0. The most common loss function is the mean squared error MSE which is
equal to Var(θ) for unbiased θ. Efficiency is often achieved asymptotically,
e.g. for the Maximum Likelihood estimator. The Cramér-Rao inequality
defines a lower bound for the variance for unbiased estimators, provided the
distribution fulfills two weak regularity conditions.
Many estimators only perform well for certain model assumptions, like spe-
cific distributions for the unobservable variables. For example, an estimator
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might be efficient if the data is normally or almost normally distributed but
may fail for heavy-tailed distributions. This is also the case if low-tails are
assumed but the data contains many or extreme outliers. We call θN robust
if it is un- or only lightly affected by such issues.

In the following we investigate estimators from the class of extremum
estimators. Hayashi [45] defines them as

θN = argmax
θ∈Θ

QN (θ) ,

where we assume that QN is continuous in the data z1, ..., zN . Gouriéroux
and Monfort [28] show that the estimator θN exists and is measurable in
the data z1, ..., zN if Θ ⊂ Rq is compact and QN is measurable in z1, ..., zN
and continuous in θ. Although these assumptions are not always fulfilled in
econometrics we do not further discuss them here, since we focus on comput-
ing the objective function QN rather than investigating the maximization
process.
Newey and McFadden state two theorems regarding consistency (Theorem
2.1) and asymptotic normality (Theorem 7.1) of extremum estimators. We
revisit them in order to provide a basis for further considerations.

Lemma 5.2. (Consistency of the extremum estimator)
Let Q0(θ) be a function s.t.

(i) Q0(θ) is uniquely maximized at θ0,

(ii) Θ is compact,

(iii) Q0(θ) is continuous for all θ, and

(iv) QN (θ) converges uniformly in probability to Q0(θ), i.e.

sup
θ∈Θ
|QN (θ)−Q0(θ)| P−→ 0

as N→∞.

Then θN
P−→ θ0 for N→∞.

Newey and McFadden provide two theorems concerning the asymptotic
normality of extremum estimators. The first demands that QN is twice
continuously differentiable in a neighborhood of the population parameter
θ0. This condition is too strong for our purposes since we investigate the
estimation of approximated objective functions. Approximation does not
necessarily preserve differentiability as was also noticed by Newey and Mc-
Fadden (e.g. for simulated Probit choice probabilities). Therefore, they
specify a second, more general theorem which is tailored to this issue and
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only requires differentiability of Q0 at θ0.
Let DN be the derivative or approximate derivative of QN at θ0 and define
the error term w.r.t. DN as

AN (θ) =
√
N
QN (θ)−QN (θ0)−DN (θ − θ0)− (Q0(θ)−Q0(θ0)

||θ − θ0||
.

Here and later on, if not stated otherwise, ||·|| denotes the Euclidean norm for
vectors and the operator norm for matrices, functions and other operators.
Then we have the following theorem:

Lemma 5.3. (Asymptotic Normality of the extremum estimator)
Assume that

(i) QN (θN ) ≥ supθ∈ΘQN (θ) − op(N−1), i.e. QN is almost maximized at
θN ,

(ii) θN
P−→ θ0 as N→∞, i.e. θN is consistent,

(iii) θ0 ∈ Θ̊, i.e. θ0 is an interior point of Θ,

(iv) Q0 is twice differentiable at θ0 with invertible second derivative H =
∇θθQ0(θ0),

(v)
√
NDN

d−→ N (0,Ψ), and

(vi) for any sequence δN→ 0, we have

sup
||θ−θ0||≤δN

|AN (θ)|
1 +
√
N ||θ − θ0||

|AN (θ)| P−→ 0

Then
√
N(θN − θ0)

d−→ N (0, H−1ΨH−1).

Here, XN = op(cN ) denotes the Landau-notation in probability for a
series of random variables XN and a set of constants cN . It implies that
XN/cN converges to 0 in probability.
Lemmas 5.2 and 5.3 now provide a framework in which more specific condi-
tions for exact and approximated M- and GMM-estimators can be defined.

5.2 M-Estimators

The M-estimator is defined for the objective function

QN (θ) :=
1

N

N∑
i=1

m(θ|zi)

where m : Θ × Z → R. The function m is usually also denoted by ρ
and yields a consistent estimator if it is continuously differentiable and an
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asymptotically normal estimator if it is twice continuously differentiable.
As we will focus on the prevalent Maximum Likelihood estimator, we refer
to Amemiya [2] and Gouriéroux and Monfort ([28], chapter 8) for further
discussions on properties of M-estimators and more examples.
The objective function QN (θ) can be seen as the sample mean of the random
variable m(θ|Z). If the observations z1, ..., zN are drawn independently, QN
is equivalent to the Monte Carlo simulation (cf. Section 3.4) of the integral

E(m(θ|z)) =

∫
Z
m(θ|z)dF (z) =: Q0(θ) . (5.1)

We call Q0 the integrated M-estimator.
The most commonly used M-estimator is the Maximum Likelihood estim-
ator. In Discrete Choice models (cf. Section 2.3) we characterize a choice
probability P (yn = j|xn, θ) for each individual n = 1, ..., N and alternative
j = 1, ..., J (recall the notation z = (x, y)). In other contexts and models,
yn might reprise an outcome with continuous support. Then, P (yn|xn, θ)
denotes the value of the p.d.f. of the assumed distribution for the outcome
at the argument yn. In this case, P is usually replaced by f but for the sake
of consistency we keep the present notation with P .
The goal of Maximum Likelihood estimation (MLE) is to find the para-
meter that maximizes the joint probability of the independent data points
x1, ..., xN ,

L(θ|z1, ..., zN ) :=
N∏
n=1

P (yn|xn, θ) .

Then L(θ|z1, ..., zN ) denotes the likelihood of any parameter θ for given data
ZN .
The maximization can be approached in two ways: We can either maximize
the objective function directly or differentiate and equate with 0. The lat-
ter leads again to a minimization problem (which is numerically the same
as maximization) if the resulting equation or system of equations is not
analytically solvable. Train [83] describes multiple common maximization
algorithms including Newton-Raphson, BHHH-maximization and Steepest
ascent, which can also be applied to the analogous problem in Generalized
Method of Moments estimation.
Maximization algorithms are more likely to converge to the true solution if
the objective function is concave w.r.t. the maximization variable θ since
concavity yields a unique maximum. Since many common probability dis-
tributions are only logarithmically concave we apply the logarithm to L and
get the more convenient Loglikelihood function

`(θ|ZN ) := log (L(θ|ZN )) =

N∑
n=1

log(P (zn|θ)).
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This obviously fits in the M-estimator scheme with

m(θ|z) = log(P (z|θ)) .

Under certain conditions [69] the ML-estimator is consistent and asymptot-
ically normal but there are more robust alternatives like Maximum Spacing
Estimation which also provides an M-estimator [75]. The ML-estimator is ef-
ficient among asymptotically normal GMM estimators (see next section) but
not among all asymptotically normal estimators. Therefore, given a reason-
ably difficult model and modest model assumptions, the use of Maximum
Likelihood is wide-spread throughout econometrics and other data-driven
disciplines like biology, medicine or psychology.

5.3 Generalized Method of Moments (GMM) Estimators

The computation of the likelihood (i.e. the choice probability in DCMs)
requires knowledge or well justified assumptions on the distribution of the
data ZN . If this requirement cannot be satisfied, the Generalized Method
of Moments (GMM) estimator provides a less restrictive alternative. It was
originally formalized by Hansen [43] and extensive discussions and lists of
applications in econometric research can be found in [40] and [45]. It roots
in solving the estimating equations

G0(θ) := Ez[m(θ|z)] = 0 (5.2)

where the expected value is taken over the complete data domain Z. The
moment function m : Θ × Z→Rq is defined such that (5.2) is uniquely
solved by the true parameter vector θ0, and such that G0(θ) 6= 0 for θ 6= θ0.
The moment function should be at least q-dimensional so that the parameter
can be identified. Furthermore, we assume that m(θ|z) is measurable in z
for each θ ∈ Θ and continuous in θ for every z ∈ Rr. Often m is chosen to
incorporate orthogonality conditions which are imposed by the model. We
point out that the ML-estimator arises from (5.2) if we set

m(θ|z) = ∇θ log (P (z|θ)) (5.3)

and compute the maximum by differentiating the Loglikelihood and setting
it to 0.
In the classical Method of Moments we have as moment functions

m(k)(θ|z) = θ · zk

for k = 1, ..., q which defines G
(k)
N as the k-th sample moment (with com-

ponentwise defined zk).
Naturally, G0 cannot be computed analytically, thus the expected value is
replaced by the sample average GN (θ) := 1

N

∑N
n=1m(θ|zn). Furthermore,
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the task of solving equation (5.2) is replaced by the minimization of the
objective function

QN (θ) := −||GN (θ)||2WN

where W ∈ Rq×q is a symmetric positive definite weight matrix. Asymptot-
ically, WN→W0 and the objective function becomes

Q0(θ) := −||G0(θ)||2W0
.

The choice of the weight matrix affects the asymptotic efficiency of the
estimator. The exact form of the optimal weight matrix is known to be

W0 = Ez
[
m(θ0|z)m(θ0|z)T

]−1
.

Obviously W0 needs also to be approximated, namely the expectation over
z and the parameter θ0. This can be done in parallel to the approximation
of Q0(θ0) by QN (θ).
In general, many moment conditions arise if the data generating process for
the outcome variable y is simulated by a model. For Discrete Choice models
we derive the following condition: Given the observed data xn, the choice
probability P (y = j|xn, θ) should exactly equal the expected value of the
observed choice yn:

G
(j)
0 (θ0) = E [yn − P (y = j|x, θ0)] = 0 (5.4)

for j = 1, ..., J . This is also the original example considered by McFadden
[68] when he introduced the Method of Simulated Moments. Other mo-
ment functions are derived similarly by considering the expected value of
the difference between an observed outcome and the simulation of the data
generating process. If (5.4) is fulfilled, then for any h(x) the function

m(θ|zn) = (yn − P (y = j|xn))⊗ h(xn)

gives a valid orthogonality condition and thereby defines a suitable moment
condition. In particular, the GMM-estimator is efficient for the choice

h(xn) = ∇θ log (P (zn|θ)) · ∇θ log (P (zn|θ))T , (5.5)

since this rebuilds the ML-estimator in the same fashion as in (5.3).
In [69], we find conditions for the GMM-estimator to be consistent (Theorem
2.6) and asymptotically normal (Theorem 7.2).

Lemma 5.4. (Consistency of the GMM-estimator)
Assume that

(i) z1, ..., zN are i.i.d.,
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(ii) the weight matrix converges to the optimal weight matrix: WN
P−→ W0

as N→∞,

(iii) W0 is positive semi-definite and W0Ez[m(θ|z)] = 0 only if θ = θ0,

(iv) θ0 ∈ Θ and Θ is compact,

(v) m(θ|z) is continuous for all θ ∈ Θ with probability 1, and

(vi) Ez[supθ∈Θ ||m(θ|z)||] <∞.

Then θN
P−→ θ0.

As for extremum estimators there are two theorems on asymptotic nor-
mality of the GMM-estimator possible, one requiring differentiability of G0

in a neighborhood of θ0, the other one only at θ0. Based on Lemma 5.3 and
the choice

DN = (∇θQ0(θ0))TWGN (θ0)

for the approximate derivative of GN at θ0 we get:

Lemma 5.5. (Asymptotic Normality of the GMM-estimator)

Assume that ||GN (θN )||W ≤ infθ∈Θ ||GN (θ)||W + op(N
−1), θN

P−→ θ0 and
WN→W0, where W0 is positive semi-definite and G0(θ) satisfies the follow-
ing conditions

(i) G0(θ0) = 0,

(ii) θ0 ∈ Θ̊, i.e. θ0 is an interior point of Θ,

(iii) G0 is differentiable in θ0 with derivative D = ∇θG(θ0) s.t. DTW0D is
invertible,

(iv)
√
NGN (θ0)

d−→ N (0,Σ), and

(v) for any sequence δN→ 0, we have

sup
||θ−θ0||≤δN

√
N

1 +
√
N ||θ − θ0||

|GN (θ)−GN (θ0)−G0(θ)| P−→ 0 .

Then
√
N(θN − θ0)

d−→ N (0, (DTW0D)−1DTW0ΣW0D(DTW0D)−1).
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5.4 Approximated Estimators

Both, M-estimators and GMM estimators, rely on functions m which either
represent outcome probabilities or moments of the exogenous variables.
They are defined to include all available knowledge and assumptions from
the data and the model. In sections 2.3 and 2.4 we saw that the computation
of the choice probability is not always analytically possible and requires nu-
merical approximation. As the desired properties (consistency, asymptotic
normality, efficiency) where defined and proven for exact functions this raises
the question how approximation changes the behavior of the estimators.
An early example in this subject is the application of Gauss-Hermite quad-
rature to a Probit model by Butler and Moffitt [10]. However, most eco-
nometricians in the past have used simulation methods, i.e. Monte Carlo
integration, for their models. Starting with Maximum Simulated Likelihood,
numerous papers ([27], [39], [36]) examined whether the simulated ML-
estimator remains consistent and asymptotically normal. McFadden [68]
and Pakes and Pollard [73] introduced the Method of Simulated Moments in
order to evaluate Multinomial Probit models. Schennach [81] provided an
updated version of this approach where the specification of a distribution
for the unobservables is avoided. Hajivassiliou [37] added the Method of
Simulated Scores and compared all three simulated estimators [39]. Train
[83] gave an overview of the application of simulated estimators to Discrete
Choice models.
A later development was the introduction of Quasi Monte Carlo Methods
to econometrics e.g. by Bhat [6] which make the expensive computation of
samples obsolete and replace it with the utilization of a deterministic series
of nodes.
Kristensen and Salanié [59] discussed approximated estimators in a more
general context covering M-estimators as well as GMM. They consider stochastic
and deterministic approximation of the objective function alike and study
how bias and variance are affected and how this effect can be mitigated in
the maximization step.
Finally, Griebel et al. [34] investigate the usage of more advanced quadrat-
ure methods for the approximation of the objective functions for extremum
estimators. They determine ratios between sample number N and approx-
imation accuracy R(N) such that consistency and asymptotic normality of
the Maximum Approximated Likelihood estimator are preserved.
We keep the notation general in this chapter in order to cover various ap-
proximation techniques. Later, in Chapter 6, we focus on multidimensional
integrals as they appeared in the previous chapters and for moment func-
tions in GMM-estimation. Other approximation algorithms are used if the
moment function requires the solution of a dynamic programming problem
(originally in [14] or later e.g. in [49] or [61]).
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We assume that for both, M- and GMM-estimators, m cannot be evalu-
ated analytically, i.e. it includes the computation of an intractable integral,
differential equation or solution to a dynamic programming problem. We
approximate m by mR which applies an R-point quadrature formula or dis-
cretization of the intractable part of m.
Let Q̂N denote the approximated objective function,

Q̂N (θ) = QNR :=

−
∣∣∣∣∣∣ 1
N

∑N
n=1mR(θ|zn)

∣∣∣∣∣∣2
ŴN

, for GMM estimation,

1
N

∑N
n=1mR(θ|zn), for M-estimation.

In general, we assume that R = R(N) is monotonically increasing such that
QNR→QN for N→∞ and hence QNR→Q0. We omit the dependence
from R and only write Q̂N . Similarly, θ̂N denotes the maximizer of Q̂N . For
GMM-estimation, we further have

ĜN = GNR :=
1

N

N∑
n=1

mR(θ|zn) (5.6)

for the approximated moment function and ŴN for the approximated weight
matrix, in case it also depends on m.
This raises the question under which conditions consistency and asymptotic
normality can be assured for θ̂N . This issue is investigated in [34] for the
case of Maximum Approximated Likelihood and we adapt this approach for
the Generalized Method of Approximated Moments (GMAM).
McFadden [68] and Pakes and Pollard [73] showed consistency and asymp-
totic normality for simulated moments already in 1989. Theorems 5.6 and
5.7 formalize those results for any approximated moment function by prov-
ing that the assumptions in Lemmas 5.2 and 5.5 are fulfilled by θ̂N and Q̂N
respectively.
With Lemma 5.4 we obtained a statement about the consistency of the
GMM-estimator θN . The following theorem extends this property to the
GMAM-estimator under two additional conditions on the convergence of
Q̂N to QN .

Theorem 5.6. (Consistency of the GMAM-estimator)
Assume that

(i) Conditions (i)-(vi) from Lemma 5.4 hold,

(ii) limR→∞ supz∈Z,θ∈Θ |(mR(θ|z)−m(θ|z))||m(θ|z)| = 0,

(iii) limR→∞ ||ŴN −WN ||→ 0 and supz∈Z,θ∈Θ ||m(θ|z)||2 < ∞ or ŴN =
WN , and

(iv) R(N)→∞ as N→∞.
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Then θ̂N is a consistent estimator of θ0, i.e.

θ̂N
P−→ θ0 as N→∞ .

Proof. In Lemma 5.2, conditions are given under which θ̂N is consistent.
Conditions 5.2(i)-(iii) for θ̂N and Q̂N are assured by assumption 5.6(i).
Hence, it only remains to prove 5.2(iv) for Q̂N instead of QN ,

sup
θ∈Θ
|Q̂N (θ)−Q0(θ)| P−→ 0 . (5.7)

Using the triangle-inequality and that 5.2(iv) is fulfilled for QN by Lemma

5.4 it suffices to show supθ∈Θ |Q̂N (θ)−QN (θ)| P−→ 0:

sup
θ∈Θ
|Q̂N (θ)−QN (θ)| = sup

θ∈Θ

∣∣∣∣∣∣∣∣∣∣ĜN (θ)
∣∣∣∣∣∣2
ŴN

− ||GN (θ)||2WN

∣∣∣∣
≤ sup

θ∈Θ

∣∣∣∣∣∣
〈

1

N

N∑
n=1

mR(θ|zn)−m(θ|zn),
1

N

N∑
n=1

mR(θ|zn)+m(θ|zn)

〉
ŴN

∣∣∣∣∣∣
+
∣∣∣GN (θ)(ŴN −WN )GN (θ)

∣∣∣
≤ sup

θ∈Θ,z∈Z
||ŴN || |mR(θ|z)−m(θ|z)| |mR(θ|z)+m(θ|z)|

+ sup
θ∈Θ,z∈Z

|m(θ|z)|2||ŴN −WN || .

Assumption (iv) leads to mR(θ|z)→m(θ|z) for any z ∈ Z and N→∞ (and
implicitly R→∞). Hence, |mR(θ|z)+m(θ|z)| is asymptotically bounded by
C |m(θ|z)| and assumption (ii) for the first and (iii) for the second term
finish the proof of (5.7) for N→∞.

Next, we show asymptotic normality of θ̂N by showing that the condi-
tions of Lemma 5.5 hold for the approximated moment function ĜN .

Theorem 5.7. (Asymptotic Normality of the GMAM-estimator)
Assume that

(i) the assumptions of Lemma 5.5 hold for the infeasible estimator θN ,

(ii) the assumptions of Theorem 5.6 hold,

(iii) ||ĜN (θ̂N )||
ŴN
≤ infθ∈Θ ||ĜN (θ)||W + op(N

−1),

(iv) supz∈Z
√
N |mR(θ0|z)−m(θ0|z)|→ 0,

(v) for any sequence δN→ 0, we have

sup
z∈Z,||θ−θ0||≤δN

√
N

1 +
√
N ||θ − θ0||

|mR(θ|z)−m(θ|z)|→ 0.
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Then
√
N(θ̂N − θ0)

d−→ N (0, (DTW0D)−1DTW0ΣW0D(DTW0D)−1).

Proof. By assumptions (i) and (ii) the conditions 5.5(i)-(iii) as well as con-

sistency of θ̂N and ŴN→W0 are fulfilled. Similarly, (iii) states that θ̂N
maximizes Q̂N approximately. Thus, it remains to show 5.5(iv) and (v).
Firstly, we have

√
NĜN (θ0) =

√
NGN (θ0) +

√
N(ĜN (θ0)−GN (θ0))

≤
√
NGN (θ0) + sup

z∈Z

√
N |mR(θ0|z)−m(θ0|z)|

d−→ N (0,Σ)

by (i) (the same statement for GN ) and (iv).
Again by the triangle inequality, we get for any sequence δN→ 0 and CN =√

N
1+
√
N ||θ−θ0||

:

sup
||θ−θ0||≤δN

CN ||ĜN (θ)− ĜN (θ0)−G0(θ)||

≤ sup
||θ−θ0||≤δN

CN ||GN (θ)−GN (θ0)−G0(θ)||

+ CN ||ĜN (θ)−GN (θ)||+ CN ||ĜN (θ0)−GN (θ0)||
≤ sup
||θ−θ0||≤δN

CN ||GN (θ)−GN (θ0)−G0(θ)||

+ 2 sup
z∈Z,||θ−θ0||≤δN

CN |mR(θ|z)−m(θ|z)| .

Then, the first term converges in probability to 0 due to (i) and so does the
second due to (v).

With consistency and asymptotic normality proven for θ̂N we can safely
estimate approximated choice probabilities and moment functions. In par-
ticular, we can apply deterministic quadrature as analyzed in part I.
Now, the notion of integrated M- and GMM-estimators raises the question
whether advanced quadrature can be used for the objective function itself.
Since the integration domain would be the real world data in this case, de-
terministic quadrature nodes cannot be chosen and we have to settle for
MC (or possibly optimal weights) quadrature. However, understanding the
objective function as an integral and having an additional approximated
integral as moment function allows us to utilize an SG approach for approx-
imated estimators.
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6 Multilevel Estimation

6.1 Objective

In Chapter 4, we extended the range of applicable quadrature rules in eco-
nometrics for Generalized Linear Mixed and Dynamic Economic models. In
both cases, choice probabilities were an essential part of the model and were
defined as multidimensional integrals.
In the previous chapter, we observed that common objective functions of ex-
tremum estimators theoretically denote multidimensional integrals which are
approximated with real-world or population samples as quadrature nodes.
Furthermore, we found that approximation of choice probabilities and mo-
ment functions does not impair desirable properties of extremum estimators
like consistency and asymptotic normality.
Combining simulation of the objective function and integration of a choice
probability we obtain an approximation problem on a product domain Ω1 × Ω2

where Ω1 is the population space and Ω2 is the integration domain for the
choice probability. Harbrecht and Griebel [30] investigated interpolation in
such tensor product spaces and constructed a sparse tensor product space
based on the sparse grid method. Sparse tensor product spaces are used
e.g. in [31] where elliptic PDEs are solved with quadrature on Ω1 and in-
terpolation on Ω2. Heinrich [46] and Giles [26] proposed a similar approach
called Multilevel Monte Carlo method solely for Monte Carlo simulations of
stochastic and deterministic PDEs and intractable integrals.
Applied to the estimation of an econometric model, we consider numerical
quadrature on both Ω1 and Ω2. However, most objective functions have an
intermediate function “between” the two integration steps, e.g. for integ-
rated Loglikelihood

Q0(θ) =

∫
Z

log(P (z|θ))dν(z) (6.1)

and P (z|θ) is given by another integral. We show that the theorems on con-
vergence rates from [30] hold similarly for quadrature and provide conditions
on coupling functions F such that these rates are preserved.

6.2 General Setup

The asymptotic GMM-estimator is given by Q0(θ) = ||G0(θ)||2W0
and similar

to (6.1) we assume that G0 has the general form

G0(θ) =

∫
Z
F

(
z, θ,

∫
U
ϕ(u, z|θ)dµ(u)

)
dν(z) . (6.2)

The function F : Z×Θ×R→R is defined by the chosen moments m and the
variable u often represents unobservable variables or errors in measurement.
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Since GMM-estimators are fairly general and also include Maximum Likeli-
hood estimation, our subject of interest is the objective function described
in (6.2). Results for (6.1) can simply be derived with F (z, θ, t) = log(t).
In the following, we assume that

(I) ϕ is µ-integrable in u for all θ ∈ Θ and ν-almost all z and

(II) F is ν-integrable in z for all θ ∈ Θ.

We omit the dependence on θ as the integral is computed separately for each
θ and write (6.2) more generally as

I1(Fϕ) :=

∫
Ω1

Fϕ(z)dν(z) (6.3)

I2(ϕ(z)) :=

∫
Ω2

ϕ(z)(u)dµ(u) (6.4)

for functions Fϕ ∈ H1(Ω1; ν) and ϕ ∈ H1 (Ω1,H2(Ω2;µ); ν) and domains
Ωi ⊂ Rdi . We write Fϕ to indicate that we consider functions F which
always include the computation of the integral I2 but might also depend on
z in a direct way. We express this dependence via

Fϕ(z) = F (z, I2(ϕ(z)))

for a function F ∈ H1(Ω1×R, ν).
The spaces H1 and H2 are Banach spaces of functions. In order to apply
quadrature rules like SG or QMC which require some regularity of the integ-
rand we assume them to be Sobolev spaces of mixed regularity Hi = Hri

mix.
Here, H1 constitutes Bochner space as its target space is another Banach
space. As integration and quadrature are executed separately due to the
intermediate function F and ϕ is assumed to have sufficient regularity in
both arguments, this notion is unproblematic for the following results.
We can view (6.3) and (6.4) for fixed F as single integration problem of an
integrand in

HF :=

{
ϕ ∈ H1 (Ω1,H2(Ω2;µ); ν) s.t. F

(
z,

∫
Ω2

ϕ(z)(u)dµ(u)

)
∈ H1(Ω1, ν)

}
.

For Fϕ(z) = F (| I2 |) this definition resembles the so called Orlicz-Bochner
space LF (Ω, X). We want to shortly mention its definition [76] in order to
compare properties:

Definition 6.1. (Orlicz-Bochner space)
Let (Ω,Σ, ν) be a measure space, (X, || · ||) a Banach space and F a Young
function, i.e. F : R→[0,∞] is convex and lower semi-continuous and

lim
s→∞

F (s)

s
=∞ ,

lim
s→ 0

F (s)

s
= 0 .
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Then the Orlicz-Bochner space is defined as

LF (Ω, X) :=

{
ϕ : Ω→X measurable and ∃α > 0 :

∫
Ω
F
(
α||u(z)||X

)
dµ(z) <∞

}
.

Furthermore, the set

MF (Ω, X) :=

{
ϕ : Ω→X measurable and ∀α > 0 :

∫
Ω
F
(
α||u(z)||X

)
dµ(z) <∞

}
is a closed subspace of LF and sometimes called small Orlicz-Bochner space.

This notion can be further extended to include weakly differentiable
functions ϕ [44]. Setting Ω = Ω1 and X = H2(Ω2, µ) we get HF ⊂ LF .
However, the assumption that F is a Young function and hence convex is too
strong for the general form (6.2). For example, the case F (z, t) = log(z) does
not satisfy these conditions rendering any further investigation of Orlicz-
Bochner spaces inadequate as Maximum Likelihood estimation is the most
relevant application of our theoretical results. We therefore proceed by
examining Fϕ and ϕ in separate spaces.

6.3 Sparse Tensor Product Quadrature

The goal of this section is to approximate the integrals I1 and I2 from (6.3)
and (6.4) and make use of the nested structure of the integration problem.
Harbrecht and Griebel consider the case F (z, t) = t, i.e. ϕ ∈ H(Ω1 × Ω2)
without any intermediate function F , and prove results on the convergence
of interpolation methods on the tensor product space Ω1 × Ω2.
There, as well as in our problem, approximation is initially considered on
each domain Ωi , i = 1, 2, separately. In particular, different regularity as-
sumptions might hold on each Ωi so that the quadrature formulas Qi have
different rates of convergence. Then, the classical approach is to balance Q1

and Q2 such that equal convergence on both domains is achieved. If one
converged asymptotically faster than the other, the smaller error would be
outweighed by the other asymptotically, so additional cost for the quicker
convergence would be wasted. A product rule similar to the one in Sec-
tion 3.2 balances both quadratures and leads to a cost-efficient and optimal
convergence, as both quadrature formulas contribute an error of the same
order.
Likewise, the SG method can also be transferred to the product domain
Ω1 × Ω2: Instead of using the full node set of Q2 for each node of Q1, we
build a sparse grid of nodes on Ω1 × Ω2 in the same fashion as we did for
nodes on Rd = R× · · · ×R, the d-fold tensor product of R. Harbrecht et al.
([30], [31]) call this construction the sparse tensor product (STP) in contrast
to the (full) tensor product (FTP). Alternatively, they speak of Multilevel
quadrature which underscores the use of different levels of accuracy for the
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quadrature nodes in the outer loop.
They prove that STP/Multilevel quadrature preserves the rates from Q1

and Q2 except for a log-factor in a similar fashion as the original sparse grid
method does. Unfortunately, we cannot directly utilize their results due to
the intermediate function F but generalize them by imposing an additional
condition on F .

In the following, we assume that the Qi , i = 1, 2, have error bounds of
the form

e(Qi, Hri
mix) = O

(
N−si log(N)ti

)
(6.5)

for some 0 ≤ si ≤ ri. The log-exponent takes the general form ti = ti(si, di)
so to include (Q)MC, SG, Frolov and product rule quadrature. We assume
that Qil is a rule with

Nil = O(2l)

nodes if it is an MC or QMC rule or with

Nil = O(2ll(d−1)(r+1)/2)

nodes if it is an SG rule. Thus, Nil behaves asymptotically like O(2l(1+ε))
where ε = 0 for MC and QMC rules and ε > 0 is arbitrarily small for SG
rules. We will usually just write Nl whenever the number of nodes of Q1 or
Q2 is meant.
Now difference quadrature formulas are defined similar to (3.4) as

∆1
l (Fϕ) :=

{
Q1
l (Fϕ)−Q1

l−1(Fϕ) , for l ≥ 2 ,

Q1
1(Fϕ) , for l = 1 .

∆2
l (z, ϕ(z)) :=

{
F (z,Q2

l ϕ(z))− F (z,Q2
l−1 ϕ(z)) , for l ≥ 2 ,

F (z,Q2
1 ϕ(z)) , for l = 1 .

This allows for telescopic expansions of Q1 and F (z,Q2(z)) for any z ∈ Z.
In particular, we can sum up ∆i over l ∈ N and get representations of I1

and Fϕ(z) resulting in

I1(Fϕ) =

∞∑
j1=1

∆1
j1(Fϕ) =

∞∑
j1=1

∆1
j1

 ∞∑
j2=1

∆2
j2(·, ϕ(·))


=

∑
(j1,j2)∈N2

∆1
j1 ⊗∆2

j2(·, ϕ(·)) . (6.6)

For a general level set A ⊂ N2, we obtain the general sparse grid quadrature
rule on Ω1 × Ω2 by truncating the above sum

QA(Fϕ) :=
∑

(j1,j2)∈A

∆1
j1 ⊗∆2

j2(·, ϕ(·)) .
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For our considerations, we use the basic anisotropic SG index set Aσ1 (J) :=
{(j1, j2) : σj1 + j2

σ ≤ J} and compare it to the full grid set Aσ∞(J) :=

{(j1, j2) : max{σj1, j2σ } ≤ J}. The parameter σ > 0 accounts for different
convergence rates of inner and outer quadrature and “balances” them.
We write Qσ∞J for the level-J-FTP rule and Qσ1J for the level-J-STP rule
and define the corresponding errors as

Eσ∞J(F,ϕ) := | I1(Fϕ)−Qσ∞J(Fϕ)| , (6.7)

Eσ1J(F,ϕ) := | I1(Fϕ)−Qσ1J(Fϕ)| . (6.8)

Then, eσ∞J and eσ1J are the corresponding worst case errors and we omit σ
in most cases later on.
First, we count the number of nodes in Q∞J and Q1J . Since F does not
affect the number of nodes N∞J and N1J we can adapt Theorem 4.1 from
[30] and adjust it for the additional case where Q1 might be an SG rule.

Theorem 6.2. (Size of full and sparse tensor product quadrature)
For quadrature formulas Qi, i = 1, 2, as above the full tensor product rule
has N∞J nodes and

N∞J = O
(

2J(σ+1/σ)(1+ε)
)
.

The sparse tensor product rule has N1J nodes and

N1J =

{
O
(
2J max{1/σ,σ}(1+ε)

)
for σ 6= 1 ,

O
(
J2J(1+ε)

)
for σ = 1 .

Here, ε = 0 if neither Q1 nor Q2 are SG rules and ε > 0 arbitrarily small
otherwise.

Proof. The estimate for N∞J follows directly from expanding Q∞J :

Q∞J(Fϕ) =
∑

σj1,
j2
σ
≤J

∆1
j1 ⊗∆2

j2 (·, ϕ(·)) = Q1
J/σ ⊗ F

(
·, Q2

σJ(ϕ(·))
)
. (6.9)

Then we apply Nil = O(2l(1+ε)) for each Qi and get

N∞J = O
(

2
J
σ

(1+ε)2σJ(1+ε)
)

= O
(

2J(σ+ 1
σ

)(1+ε)
)
.

For Q1J , we consider each term ∆1
j1
⊗∆2

j2
and see that it has 2(j1+j2)(1+ε)

nodes. We sum over the index set Aσ1

N1J =
∑

σj1+
j2
σ
≤J

O
(

2(j1+j2)(1+ε)
)

=

J/σ∑
j1=0

M∑
j2=0

O
(

2(j1+j2)(1+ε)
)

= O

2σJ(1+ε)

J/σ∑
j1=0

2j1(1−σ2)(1+ε)


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where M = Jσ − j1σ2. For σ > 1, this implies N1J = O(2σJ(1+ε)) and for
σ < 1 we get N1J = O(2(1+ε)J/σ). Only for σ = 1 we have O(J2J(1+ε)).

In the case σ = 1 this is exactly the size of the basic SG quadrature
formula in two dimensions and we can substitute the log-term J by an
additional factor (1 + ε) in the exponent. We observe that the reduction
from FTP to STP is most substantial if σ is close to 1, since the factor
σ + 1/σ is reduced to max{σ, 1/σ}.
To prove bounds for e∞J and e1J similar to those in [30] but generalized
w.r.t. the intermediate function F we need the notion of Hölder continuity.

Definition 6.3. (Hölder continuity)
A function f : Ω ⊂ Rd→R is called Hölder continuous if there exist α,C > 0
s.t.

|f(x)− f(y)| ≤ C||x− y||α

for all x, y ∈ Ω.

Theorem 6.4. (Error bound for full tensor product quadrature)
Let 0 < si ≤ ri for i = 1, 2 and Qi be quadrature formulas on Ωi with
error bounds as in (6.5). Suppose F ∈ Hr1

mix(Ω×R; ν) and F (z, ·) is Hölder
continuous with exponent α for any z ∈ Z and ϕ ∈ Hr1

mix(Ω1, H
r2
mix(Ω2;µ); ν).

Then the error of the tensor product quadrature rule is given by

e∞J = O

(
(Jσ)αt2

(
J

σ

)t1
2−J min(s1/σ,σαs2)(1+ε)

)
.

Proof. We reuse the expansion (6.9) and omit for simplicity the dependence
on z in the following. With the triangle inequality we get

e∞J(Fϕ) = |I1(Fϕ)−Q∞J(Fϕ)|

=
∣∣∣I1⊗F (I2(ϕ))−Q1

J/σ ⊗ F
(
Q2
σJ(ϕ)

)∣∣∣
≤
∣∣∣(I1−Q1

J/σ

)
⊗ F (I2(ϕ))

∣∣∣+
∣∣∣Q1

J/σ ⊗
(
F (I2(ϕ))− F

(
Q2
σJ(ϕ)

))∣∣∣
≤ O(N−s1J/σ log(NJ/σ)t1) + ||Q1

J/σ||
∣∣F (I2(ϕ))− F

(
Q2
σJ(ϕ)

)∣∣
≤ O(N−s1J/σ log(NJ/σ)t1) + C

∣∣I2(ϕ)−Q2
σJ(ϕ)

∣∣α
= O(N−s1J/σ log(NJ/σ)t1) +O(N−αs2σJ log(NσJ)αt2)

= O

(
(Jσ)αt2

(
J

σ

)t1
2−J min(s1/σ,αs2σ)(1+ε)

)
.

The first term measures the approximation accuracy of Q1. Since F,ϕ ∈
Hr1

mix and s2 ≤ r2 it obtains the rate (6.5). For the second term, we use
Hölder continuity, boundedness of the linear operator Q1

J/σ and that ϕ(z) ∈
Hr2

mix for all z, so Q2 also obtains its rate (6.5).
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The following extension of Theorem 4.3 in [30] shows that STP quadrat-
ure gives a similar result.

Theorem 6.5. (Error bound for sparse tensor product quadrature)
Let 0 < si ≤ ri, Q

i for i = 1, 2, F and ϕ be as in Theorem 6.4. Then the
error of the sparse tensor product quadrature is given by

e1J =


O
(

(Jσ)αt2
(
J
σ

)t1
2−J min{s1/σ,αs2σ}(1+ε)

)
for s1

σ 6= αs2σ ,

O
(

(Jσ)αt2
(
J
σ

)t1+1
2−Jαs2σ(1+ε)

)
for s1

σ = αs2σ .

Proof. Using the triangle inequality we get a bound for ∆1 for functions
f ∈ Hr1

mix,

||∆1
l || = max

f∈Hr1
mix ,||f ||≤1

∣∣∣∣∆1
l (f)

∣∣∣∣
≤ max

f∈Hr1
mix ,||f ||≤1

∣∣∣∣Q1
l (f)− I1(f)

∣∣∣∣+
∣∣∣∣I1(f)−Q1

l−1(f)
∣∣∣∣

= O(N−s1l log(Nl)
t1) .

Expanding I1(Fϕ) according to (6.6) we get

e1J(Fϕ) =

∣∣∣∣∣∣∣I1(Fϕ)−
∑

σj1+
j2
σ
≤J

∆1
j1 ⊗∆2

j2(ϕ)

∣∣∣∣∣∣∣
≤

∑
σj1+

j2
σ
>J

∣∣∆1
j1 ⊗∆2

j2(ϕ)
∣∣

≤
∑

σj1+
j2
σ
>J

∣∣∣∣∆1
j1

∣∣∣∣ ∣∣∣∣∆2
j2(ϕ)

∣∣∣∣

≤ O

 ∑
σj1+

j2
σ
>J

2−(s1j1+αs2j2)(1+ε)jt11 j
αt2
2

 .

We split the index set
{

(j1, j2) : σj1 + j2
σ > J

}
into two disjoint sets

I1 :=

{
(j1, j2) : 0 ≤ j1 ≤

J

σ
,M < j2

}
,

I2 :=

{
(j1, j2) :

J

σ
< j1, 0 ≤ j2

}
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where again M = Jσ − j1σ2 and sum over each index set separately:∑
(j1,j2)∈I1

2−(s1j1+αs2j2)(1+ε)jt11 j
αt2
2

=

J/σ∑
j1=0

jt11 2−s1j1(1+ε)
∞∑

j2=M+1

jαt22 2−αs2j2(1+ε)

≤
J/σ∑
j1=0

jt11 (M + 1)αt22−(s1j1+αs2M)(1+ε)
∞∑
j2=1

jαt22 2−αs2j2(1+ε)

≤ (Jσ)αt2
(
J

σ

)t1
Li−αt2(2−αs2(1+ε))

J/σ∑
j1=0

2−(s1j1+αs2M)(1+ε)

= C (Jσ)αt2
(
J

σ

)t1
2−αs2Jσ(1+ε)

J/σ∑
j1=0

2−j1σ(s1/σ−αs2σ)(1+ε)

where Li denotes the Polylogarithm. The constant C depends on s2 and d2

but this was already the case for the constants in the error estimates for Q1

and Q2. In the same fashion we get

∑
(j1,j2)∈I2

2−(s1j1+αs2j2)(1+ε) = C

(
J

σ

)t1
2−s1J(1+ε)/σ

= C

(
J

σ

)t1
2−αs2Jσ(1+ε) 2−J(s1/σ−αs2σ)(1+ε)

with C including two Polylogarithms (one for each summation over j1 or
j2). Joining both sums we distinguish three cases. For s1

σ < αs2σ,∑
σj1+

j2
σ
>J

2−(s1j1+αs2j2)(1+ε)jt11 j
αt2
2

= O

2−αs2Jσ(1+ε)

(
J

σ

)t1(Jσ)αt2
J/σ∑
j1=0

2−j1σ(s1/σ−αs2σ)(1+ε) + 2−J(s1/σ−αs2σ)(1+ε)


= O

(
2−αs2Jσ(1+ε)

(
J

σ

)t1 (
(Jσ)αt22−J(s1/σ−αs2σ)(1+ε) + 2−J(s1/σ−αs2σ)(1+ε)

))

= O

(
(Jσ)αt2

(
J

σ

)t1
2−

s1
σ
J(1+ε)

)
.
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For s1
σ > αs2σ we can bound the expression by

∑
σj1+

j2
σ
>J

2−(s1j1+αs2j2)(1+ε)jt11 j
αt2
2 = O

(
2−αs2Jσ(1+ε)

(
J

σ

)t1 (
(Jσ)αt2+ 1

))

= O

(
(Jσ)αt2

(
J

σ

)t1
2−αs2Jσ(1+ε)

)
.

Finally, for s1
σ = αs2σ,

∑
σj1+

j2
σ
>J

2−(s1j1+αs2j2)(1+ε)jt11 j
αt2(1+ε)
2 = O

2−αs2Jσ(1+ε)

(
J

σ

)t1(Jσ)αt2
J/σ∑
j1=0

1 + 1


= O

(
(Jσ)αt2

(
J

σ

)t1+1

2−Jαs2σ(1+ε)

)
.

This concludes the proof.

Theorems 6.4 and 6.5 can also be stated for probabilistic error rates of
the outer quadrature, e.g. from MC integration. Then, the mean squared
error is used instead of a norm and the proof proceeds similar to the deriv-
ation of the mean squared error of MC integration.
For both, Q∞J and Q1J , we can combine Theorems 6.2 and 6.4 or 6.5 re-
spectively to obtain an error bound in terms of the size of the corresponding
quadrature formula.

Corollary 6.6. Let 0 < si ≤ ri, Q
i for i = 1, 2, F and ϕ as in Theorem

6.4 and set

γ∞ :=
min{s1/σ, αs2σ}

σ + 1/σ
,

γ1 :=
min{s1/σ, αs2σ}

max{σ, 1/σ}
.

For N = N∞J the FTP error is

e∞J = O
(
log(N)t1+αt2N−γ∞

)
.

For STP quadrature we separate four cases for N = N1J according to The-
orem 6.2. If σ 6= 1 we have

e1J =


O
(
(logN)t1+αt2N−γ1

)
for s1

σ 6= αs2σ ,

O
(
(logN)t1+αt2+1N−γ1

)
for s1

σ = αs2σ ,
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and if σ = 1

e1J =


O
(
(logN)t1+αt2+γ1N−γ1

)
for s1

σ 6= αs2σ ,

O
(
(logN)t1+αt2+γ1+1N−γ1

)
for s1

σ = αs2σ .

Proof. All results can be obtained by plugging in the corresponding results
from Theorems 6.2, 6.4 and 6.5.

Finally, we identify the optimal σ to balance error bounds of Q1 and Q2

and get an optimal joint convergence rate.

Theorem 6.7. (Optimal σ for full and sparse tensor product quadrature)
Both, Q∞J and Q1J , achieve their best error bound for

σ∗ =

√
s1

αs2
.

If κ = s1
αs2
6= 1, then any σ with σ2 ∈ [1, κ] or σ2 ∈ [κ, 1] respectively is

optimal for Q1J . The optimal exponents are then

γ∗∞ =
αs1s2

s1 + αs2
, (6.10)

γ∗1 = min{s1, αs2} . (6.11)

Proof. In order to achieve optimal bounds, we have to maximize γ∞ and
γ1. The former is maximized if s1/σ = αs2σ and the same holds for γ1 if
s1 = αs2. If s1 6= αs2, we have

γ∗1 := max
σ>0

γ1 = max
σ>0

(
αs2 min{κ, σ2}min{1, 1

σ2
}
)
. (6.12)

For κ < 1, i.e. s1 < αs2, we distinguish the cases (I) σ2 < κ, (II) κ ≤ σ2 ≤ 1
and (III) σ2 > 1 and have γ∗1 = s1 for (II) and γ∗1 < s1 for (I) and (III).
Similar cases result from κ > 1 with γ∗1 maximal for 1 ≤ σ2 ≤ κ.

6.4 Numerical Results

This section is devoted to the validation of the previously obtained results on
the convergence order of FTP and STP quadrature. We present numerical
results for a synthetic test function and for two exemplary integrands from
Maximum Likelihood and GMM estimation. Then, the latter can be called
Multilevel estimators as the approximation of the inner integral is executed
with different levels of accuracy for each data sample. While the true value
of the integral is available for the test function we use the same estimate for
the error for the other two integrals as in Chapter 4.
The Tables 4 and 5 give an overview of the expected convergence rates for
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Q1 =

MC QMC SG/Frolov

MC:
O(N−1/2) O(N−1/4) O(N−1/3 log(N)d1) O(N−

r
2r+1 log(N)t1)

Q2 =

QMC:

O(N−1 log(N)d) O(N−1/3 log(N)d2) O(N−1/2 log(N)d1+d2) O(N−
r
r+1 log(N)d2+t1)

SG/Frolov:

O(N−r log(N)t(r,d)) O(N−
r

2r+1 log(N)t2) O(N−
r
r+1 log(N)d1+t2) O(N

− r1r2
r1+r2 log(N)t1+t2)

Table 4: Expected convergence rates for FTP quadrature with optimal σ∗

and α = 1.

various combinations of Q1 and Q2. In general, we see that the overall con-
vergence rate is always bounded by the lesser rate of Q1 and Q2. If one
of the formulas or convergence rates are fixed either by the availability of
quadrature nodes or regularity of the integrand, it can only be the goal to
approximate this rate as close as possible. Naturally, one can always try to
do this by using higher order rules for the other integral.
Table 5 shows that the optimal (main) rate can be achieved with any compli-
mentary rule of at least equal order via STP quadrature. This performance
is especially impressive if both formulas have the same order: For the same
number of nodes the main rate of STP is squared compared to FTP. This is
also exactly the behavior which can be observed for traditional sparse grid
quadrature, justifying the treatment of STP as a generalized version of SG
quadrature.

We start with a synthetic test function in order to demonstrate the
general applicability of the suggested methods. Let

ϕtest(u, z|θ) := uz+θ−1e−u (6.13)

and Ω1 = [0,∞), Ω2 = [0, 1]. Then

Q0(θ) =

∫ 1

0
log

(∫ ∞
0

ϕtest(u, z|θ)dx
)
dz =

∫ 1

0
log (Γ(z + θ)) dz

= − log(Γ(θ))− θ + (θ − 1) log(θ) + log(Γ(θ + 1)) +
1

2
log(2π) ,

where Γ denotes the Gamma function.
Although the general setup is intended for multidimensional integration this
example with one-dimensional Ω1 and Ω2 already illustrates the improve-
ments resulting from the Multilevel approach. In particular, ϕ is smooth,
so ϕtest ∈ Hr

mix for any r > 0, implying that every presented quadrature
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Q1 =

MC QMC SG/Frolov

MC:
O(N−1/2) O(N−1/2 log(N)3/2) O(N−1/2 log(N)d1) O(N−1/2 log(N)t1)

Q2 =

QMC:

O(N−1 log(N)d) O(N−1/2 log(N)d2) O(N−1 log(N)d1+d2+2) O(N−1 log(N)d2+t1)

SG/Frolov:

O(N−r log(N)t(r,d)) O(N−1/2 log(N)t2) O(N−1 log(N)d1+t2) O(N−min{r1,r2} log(N)t1+t2)

Table 5: Expected convergence rates for STP quadrature with optimal σ∗

and α = 1.

method achieves its maximal order of convergence and allowing the direct
comparison of computed and observed rates.
The choice F (z, θ, t) = log(t) resembles the Maximum Likelihood setup
(6.1). Written in the general framework (6.2) the estimator based on the
Loglikelihood is constructed with some function ϕ of an unobservable vari-
able which integrates to the choice probability P (z|θ) =

∫
U ϕ(u, z|θ)du.

Theorems 6.4 and 6.5 required that F be Hölder continuous in t for all
z ∈ Z and θ ∈ Θ. The logarithm is in fact Lipschitz continuous, i.e. Hölder
continuous with constant α = 1 but only for P (z|θ) ≥ δ > 0 for some
small constant δ. In an econometric context, it makes sense to assume that
P (z|θ) > 0 but the additional bound from 0 is less easy to justify. As ML-
estimation also requires the integration over z we will assume, that such a
bound can be prescribed by the choice of the search region θ. Additionally,
the function log is smooth in (0,∞) hence log ∈ Hr

mix for any r > 0.
Figure 13 presents six combinations of quadrature formulas for Q1 and Q2:
All plots on the left hand side display the expected better rate of STP
versus FTP quadrature. The generally higher convergence of SG quadrat-
ure demonstrates the shift from r/2 to r best. A similar result is obtained
for the combination of optimal weight cubature with Sobol quadrature, since
both also achieve comparatively high rates on their own. In contrast, the
combinations of Monte Carlo integration with SG and Sobol rules support
the claim that the slow convergence of the MC rule can barely be amelior-
ated by the use of higher order formulas for the other integral.
We shortly want to explain the sometimes erratic behavior of the curves: MC
integration naturally exhibits some variance in the error due to the prob-
abilistic nature of the choice of the quadrature nodes. The structure of the
STP rule strengthens this behavior if Q1 and Q2 are not equally balanced,
i.e. σ 6= 1. Then J

σ and σJ are not necessarily integers, so the conditions
j1 ≤ J

σ and j2 ≤ σJ lead to an uneven increase of j1 and j2, where e.g. j2
is only increased every 1/σ2-th increase of j1.
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Figure 13: Full (FG) and sparse (SG) tensor product quadrature for
F (z, t) = log(t) and ϕtest with θ = 1.
”MC” = Monte Carlo quadrature, “Sobol” = Quasi Monte Carlo quadrature
with Sobol points, “C-C SG” = Sparse grid quadrature for the Clenshaw-
Curtis rule, “G-Leg SG” = Sparse grid quadrature for the Gauss-Legendre
rule, “Opt. w.” = Optimal weights quadrature.

The next two examples are based on Generalized Linear Mixed models from
Sections 2.3 and 4.2 and can both be estimated either with ML- or GMM-
estimation. We already encountered the Mixed Logit model (see Section 2.3
and [83]) where the choice probability is calculated by integrating the plain
Logit probability over a parameter distribution,

P (z|θ) =

∫
U

eu·zi∑J
j=1 e

u·zj
dµ(u) .
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Here, the observable variable z ∈ Rq×J contains q values for each of the J
choices and the parameter u ∈ Rq is distributed according to the measure µ
in its domain U = Rq. We consider a multivariate Gaussian distribution for
µ with mean (0, ..., 0) and covariance matrix Σ = σ0.1 as in Section 4.2.
For the Multinomial Probit model, the variables z, x and J have the same
shapes and we consider the choice probability (2.14) in its transformed
version (4.2) with covariance matrix Σ0.1. Instead of a fixed utility v =
(0.5, ..., 0.5) as in Section 4.2 we now compute the utility for each data point
zn, i.e. every quadrature node of the outer integral, and for one fixed choice
k = 1 by definition (4.3). In our notation, the random variable X in (4.3)
has the realizations zn and the parameter vector β is denoted by the estim-
ate θ. For our exemplary computations, we used θ = (1, ..., 1) ∈ Rq.
Since both models define a proper choice probability, Maximum Likelihood
would be the natural choice for estimation. However, the fact that we can-
not compute the choice probability exactly calls for the use of approximated
estimators, i.e. MAL- and GMAM-estimation. The already mentioned re-
search works [34], [39] and [68] showed that under certain circumstances
GMAM might be the better option.
For both estimators, the outer integral is defined over the full data space
from the real world. While it might be easy to quantify the range of the
data (Z ⊂ Rd) it is much harder to determine their distribution ν in Z. In
particular, we cannot choose the quadrature nodes deterministically. Hence,
the sampling of data points is inherently random and limits the choice of Q1

to quadrature methods which are based on random nodes. Therefore, we
only consider Monte Carlo and Optimal weights cubature for Q1 and com-
bine them with low- (MC), medium- (Sobol) and high-order (SG or Frolov)
rules for Q2.
In terms of the established notations in Section 6.3, the Mixed Logit model
with ML-estimation yields the integrand

ϕMixL(u, z|θ) =
eu·zi∑J
j=1 e

u·zj

and again the intermediate function F (z, θ, t) = log(t). We let Z = [0, 1]q×J

and ν be the uniform distribution and set J = 3 and q = 4, so I1 denotes a
12- and I2 denotes a 4-dimensional integral. Similar to the synthetic case,
ϕMixL is smooth, so theoretically any order of convergence could be obtained
asymptotically. The possibly problematic cases of P (z|θ) being very close
to 0 however remains.
Figure 14 now supports the claims made in Section 6.3: If MC integration
is used for Q1, then MC integration also gives the highest improvement of
the usage of STP compared with FTP. In particular, a sparse grid rule for
Q2 improves FTP and STP simultaneously. Similar results were obtained
for optimal weights cubature where the difference between STP and FTP
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Figure 14: Full (FG) and sparse (SG) tensor product quadrature for the
Mixed Logit model estimated with Maximum Likelihood. (Legend in figure
13)

quadrature can be observed clearly for all combinations.
Finally, figure 15 displays results for the Multinomial Probit model which is
estimated by a GMM estimator based on the seminal paper by McFadden
[68]. Then G0(θ) is exactly of the form (5.4) and we can use orthogonality
conditions defined by (5.5). We consider the approximation GN of G0 with
nodes zn and weights wn for n = 1, ..., N . In Section 2.3, we defined the

Multinomial Probit choice probability P (yn = j|xn, θ) = P
(n)
j (θ) for every

data point zn = (xn, yn) and let y
(n)
j = 1 if j is the observed choice of

individual n and 0 otherwise. Now, the GMM-estimator is the maximizer

87



Figure 15: Full (FG) and sparse (SG) tensor product quadrature for the
Multinomial Probit model estimated with GMM. (Legend in figure 13)

of the euclidean norm of

GN (θ) = ∇θ
(

logP (n)(θ)
)T N∑

n=1

wn

y
(n)
1 − P (n)

1 (θ)
...

y
(n)
J − P (n)

J (θ)


=

N∑
n=1

wn

J∑
j=1

∇θP
(n)
j (θ)

(
y

(n)
j

P
(n)
j (θ)

− 1

)
.

According to the definition (2.14) of P
(n)
j (θ), the choice probability is given

as the c.d.f. of a multivariate Gaussian distribution, so the derivative exists
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and is given by the corresponding p.d.f.. Furthermore P
(n)
j (θ) needs to be

computed only for the case y
(n)
j = 1 so the approximation problem for this

estimator boils down to the computation of one Multinomial Probit integral
for each node/data point zn.
As already discussed in Section 4.2, the Genz-transformed Probit integral
is better suited for numerical quadrature. In the setting of tensor product
integration, its definition (4.2) yields the inner integrand

ϕMNP(u, z|θ) =

J−1∏
i=1

v̂i(u1, ..., ui−1)

As intermediate function, we obtain F (z, t) = 1
t .

We let again Z = [0, 1]q×J and ν be the uniform distribution and set J = 5
and q = 3, so I1 denotes a 15- and I2 a 4-dimensional integral. Again,
ϕMNP is smooth, so any quadrature formula should achieve its best rate. F
is Lipschitz if t is bounded away from 0, so the conditions of Theorems 6.4
and 6.5 are met.
We see in figure 15 that STP clearly outperforms FTP for all combinations
of MC or Optimal weight cubature with low and high order formulas for Q2.
In particular, for Monte Carlo integration STP and FTP follow the expected
rates closely, similar to the above case of Mixed Logit/Maximum likelihood.
Only the combination of Optimal Weights with Frolov cubature fails due to
the original bad performance of the latter (see Section 4.2).

As final example, we recall the Mixed Probit model from Section 2.3:
There we noticed that although the multivariate Probit model already al-
lows for correlation between choices, a mixture distribution might be super-
ior in some cases. Yet, a Mixed Probit model is computationally even more
challenging since it involves not only the approximation of a multivariate
Gaussian distribution but also of the integral over the parameter mixture.
In particular, the multivariate Gaussian has to be calculated at every quad-
rature node for the mixture integral.
Hence, we have again two nested integrals for which we can compare FTP
and STP quadrature. The inner integrand remains ϕMNP with covariance
matrix Σ = Σ0.2 but in the computation of the utility v the roles of integ-
ration and fixed variable are interchanged: We now integrate over β and
fix a set of observed variables X, so in the established notation we have
“z” = “β ” and X is a value in the parameter vector θ. This also changes
the dimensionality of Ω1 from q ·J to q. We draw q ·J values randomly from
a uniform distribution to assemble X ∈ Rq×J and set q = 4 and J = 5.
Furthermore, the intermediate function F becomes

F (z, θ, t) = t · ϕ(z|µ,Ψ)
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Figure 16: Full (FG) and sparse (SG) tensor product quadrature for the
Mixed Multinomial Probit model. (Legend in figure 13)

for a mixing distribution ϕ(·|µ,Ψ) with mean µ and covariance matrix Ψ.
As in previous chapters, we let ϕ be a multivariate Gaussian distribution,
set µ = (0.2, ..., 0.2) and Ψ = Σ0.1 and have the complete parameter vector
θ = (X,µ,Ψ,Σ).
Lastly, we are not restricted to MC and Optimal Weights cubature for the
outer integral as the integration is completely model induced. Therefore,
we can test STP quadrature for higher-order rules and display the resulting
improvements in figure 16. Once more, it underscores the predictions we
made in tables 4 and 5 as STP clearly outperforms FTP quadrature. Fur-
thermore, we see how the benefits are more visible if same-order rules are
used for Q1 and Q2 and how the high order of SG quadrature is sustained.
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Summarizing this and the previous findings of this section we conclude that
econometric estimation and nested integrals arising from econometric mod-
els can significantly benefit from using sparse tensor product quadrature.
In estimation, it enables us to reach the best possible main rate N1/2 for
any rule Q2 and hence increases the accuracy of an ML- or GMM-estimator
for a fixed set of observations. For nested integrals as in the Mixed Probit
model, we preserve polynomial (and possibly even exponential) convergence
rates and make intractable models feasible.
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7 Conclusion

Overview
The objective of this thesis was to systematize the use of numerical quad-
rature in econometrics and investigate properties of recurring econometric
integrals in order to promote higher-order quadrature. Our second goal was
to understand how econometric estimators are affected by approximation.
In this context, Multilevel quadrature offers another approach to improve
the joint convergence behavior of approximated estimators.
Part I was devoted to defining and evaluating integrals from econometric
models. We began with the derivation of Generalized Linear Mixed models
which are generalizations of both, Generalized Linear models and Linear
Mixed models. GLMM provide a wide variety of possible specifications
which allow the evaluation of many different kinds of data. Two prominent
examples are categorical data arising from Discrete Choice modeling and
count data. However, econometricians usually rely on only a few heavily
used models and specifications, namely Mixed Logit, (Mixed) Multinomial
Probit (categorical data) and Mixed Poisson (count data) models.
For all three models and similarly for the fourth example, a Linear Quantile
Mixed model, the introduction of correlation between individuals or over
time added another unobservable random variable to the model. This vari-
able is integrated out to get a deterministic expression, leading to a mul-
tidimensional integral without analytical solution. Additionally, the plain
Multinomial Probit requires the computation of a multivariate Gaussian
c.d.f. which is also not analytically achievable.
Afterwards, we introduced integrals from two exemplary Dynamic Economic
models. For both DEM, the objective is to maximize a temporally aggreg-
ated utility function using Bellman’s principle of optimality. Hence, in every
step (and possibly for many states) the next-period unobservable variables
have to be integrated out.
Having defined a series of econometric integrals, the next chapter was ded-
icated to the presentation of numerical quadrature formulas. We described
one-dimensional Newton-Cotes, Clenshaw-Curtis and Gauss formulas and
how they are extended to multidimensional integrals by the product rule.
Next, we encountered Sparse Grid quadrature and portrayed its construction
and error bounds. SG quadrature circumvents the curse of dimensionality
exhibited by the product rule by strategically omitting nodes. It achieves
high convergence rates in mixed Sobolev spaces with further extensions, like
SG quadrature based on Generalized Gauss formulas, adapting it to func-
tions with boundary singularities.
We continued our discussion of quadrature formulas with Monte Carlo and
Quasi Monte Carlo methods: In addition to the classic MC integration and
Sobol and Halton sequences, Frolov cubature was presented as an example
for a quadrature rule which almost achieves the optimal bound on mixed
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Sobolev spaces. Finally, the relatively new Optimal Weights formula offered
a way to improve randomly drawn nodes by computing weights based on
the notion of the Reproducing Kernel Hilbert space.
In the last chapter of part I, we applied the established methods to the previ-
ously defined integrals. We found that most integrands are highly regular or
even smooth, so higher-order quadrature should lead to polynomial or even
exponential convergence rates. However, the pre-asymptotic performance of
these rules was often less promising: The exponential d-dependence of the
secondary rate prevented fast convergence for high-dimensional integrals.
Furthermore, all specifications of GLMM and DEM led to parameterized
sets of integrals. Depending on the chosen parameter we supposed that the
constant in the O-notation of the error bounds grows excessively and out-
weighs the high convergence rate for small and medium N . Yet, we found
reasonable parameter regions where higher-order quadrature clearly outper-
formed (Q)MC rules and is therefore a viable alternative.
In the second part of the thesis, we considered econometric estimators. After
defining extremum estimators and the popular subclasses of M- and GMM-
estimators, we stated conditions for them to be consistent and asymptot-
ically normal. As the respective objective functions often need to be ap-
proximated, these conditions have to be proven again for the approximated
estimators. We gave sufficient conditions for consistency and asymptotic
normality of the Generalized Methods of Approximated Moments (GMAM)
estimator.
The thesis concluded with the derivation of Multilevel quadrature and Mul-
tilevel estimation: Firstly, we discovered that M- and GMM-estimators can
be considered as Monte Carlo simulations of integrals over the domain of
the observable variables, i.e. the “real world data” space. Together with
the integrals posed by the respective models and objective functions they
comprise nested integrals separated by an intermediate function.
Next, we adapted the sparse tensor product space technique for integration
problems and proved the corresponding theorems on error bounds and the
optimal balancing factor. In particular, we proposed a Hölder continuity
condition for the intermediate function to preserve error bounds. It turned
out that the improvements of Multilevel quadrature compared with classic
quadrature are most significant if the rules used for inner and outer integral
achieve similar convergence rates. Then, the total rate is almost squared for
Multilevel quadrature and almost equals the rate of each separate formula.
We combined both notions to obtain significantly improved approxima-
tions of Maximum Approximated Likelihood- and GMAM-estimators. Here,
again Mixed Logit and Multinomial Probit served as examples for models
with intractable multidimensional integrals. Lastly, the Mixed Multinomial
Probit model directly includes a nested integral where Multilevel quadrature
was similarly effective.
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Outlook
With rising complexity of econometric models, advanced numerical approx-
imation methods remain a crucial instrument to ensure computability, and
even increase their importance for future research. Based on the presented
topics and results, three paths seem promising for further investigations:
Our survey of multidimensional econometric integrals only covered one lar-
ger class of models and only two examples of Dynamic Economic models.
It could be extended by including even more models and could be deepened
by making the parameter regions more precise for which SG or Frolov quad-
rature are more effective than (Q)MC rules.
The second possibility was mentioned for Dynamic Discrete Choice models:
Here, each choice probability, i.e. integral, has to be computed for each
state in the state space to determine the optimal utility for an individual.
Although first approaches were made to interpolate the values for each state
[57], a Multilevel/Sparse Grid method could possibly enhance these efforts.
Similarly, Sparse Grid interpolation for multidimensional PDEs in DEM has
already been tested [8] but has not yet been surveyed comprehensively.
The original Sparse Tensor Product and Multilevel methods where developed
for joint interpolation problems while we extended it for nested integrals. It
is also possible to use it on mixed interpolation-integration problems [31].
Besides multidimensional integrals and PDEs, econometric models and es-
timators also often require the numerical maximization of some objective
function over a multidimensional parameter space. Hence, it could be pos-
sible to reduce computational efforts with a Multilevel approach for different
approximated quantities for the estimation of an econometric model.

From the presented results, we conclude that advanced numerical meth-
ods offer the opportunity to further enhance current approximation schemes
in econometrics. As yet, most research into the application of Sparse Grid
methods to econometrics has focused on interpolation of high-dimensional
functions. This thesis has shown that higher-order quadrature is also a
valuable tool for econometrics as multidimensional integrals are a frequent
issue in complex econometric models. We believe that a further cooperation
between numerical mathematics and econometrics could identify and utilize
even more potential than the few suggestions above already illustrate.
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