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1 Introduction
Computational material science has become an integral part of our modern
society and a notable consumer of modern supercomputing power. Its ap-
plications include the development of new and improved superconductors,
catalysts, and bioengineering[20]. In the words of Peter Galison [27]:

Without the computer based simulation, the material culture
of late-twentieth-century microphysics is not merely inconve-
nienced – it does not exist.

A variety of subfields of digital simulation have contributed towards creating
the components of our present-day life, including quantum physics, quantum
chemistry, condensed matter physics, computational statistical mechanics,
computational materials science, continuum modelling, circuit layout, and
more [2].

As computing analytical and exact solutions is not possible for many
interesting problems, computer simulations often employ some kind of dis-
cretization in order to compute approximate solutions. There are two main
approaches that can be used for this. One is to approximate some area of
interest by some discrete mesh. This is useful for problems that are well
described by continuum mechanics. Many problems are easier to describe
by considering a system of discrete particles instead. They can be analyzed
by methods for meshless discretization, such as particle methods. The latter
is the class of problems considered in this thesis; we give a short overview
over particle methods based on [29]. The fundamental mathematical model
for particle methods is Newton’s second law

F = ma, (1.1)

a system of ordinary differential equations of second order. This system
describes the relationship between the forces acting on a particle and their
resulting acceleration. The goal is to numerically approximate the solution of
this system in an efficient manner. Note that the particles that constitute the
system can range from very small to very big in both size and mass. Particle
methods can be employed both to simulate the development of a system
of atoms, where each particle represents a single nucleus, and galaxies, as
system of stars. Problems particles methods are applied to include:

• Biochemistry: The dynamics of macromolecules, especially proteins,
is one of the most prominent applications of particle methods.

• Astrophysics: Particle methods are used to test the soundness of the-
oretical models. Depending on the size of the simulated system, hun-
dreds or thousands of stars represented by mass points act as particles
in the simulation. The forces in the system result from the gravita-
tional potential.

2



• Solid state physics: This is the application most relevant to this
thesis1. Particle methods are used to analyze the properties of exist-
ing materials and for the development of new materials. Properties
that can be studied include the behavior of the material under change
of temperature or pressure, structural failure under shear stress, the
impact of defects, and elastic properties.

To approximate the Newtonian ODE in eq. (1.1), some discretization over
time is chosen. If we can compute the forces acting on each particle, we
can then predict the evolution of the system using classical mechanics2.
Computing the forces (as the derivative as the system’s energy) is thus the
core challenge in particle methods.

Particle methods for systems of atoms In principle, all matter is de-
scribed by quantum mechanics and the Schrödinger wave equation. However,
directly computing analytical solutions of this high-dimensional partial dif-
ferential equation is impossible for all but very simple ensembles of particles.
Thus, methods for approximating its solution must be applied, with particle
methods being a natural approach due to the discrete nature of the problem.
The two classical ways to compute the (approximate) forces acting on the
particles are quantum methods and empirical potentials.

Systems of small size, i.e. hundreds or thousands of atoms, can be stud-
ied from first principles by directly approximating the Schrödinger equation.
This can be achieved through the Born-Oppenheimer approximation, lead-
ing to computational quantum mechanical methods like Kohn-Sham density
functional theory (DFT) [39]. We will present a short overview over the
quantum mechanical aspects in Section 2. These ab initio methods can yield
results of high precision in all situations where they are computationally
feasible. However, the need for repeated evaluation of the potential energy
function for large systems and its derivatives for purposes like molecular
dynamics quickly exceeds the limits of today’s computational capabilities.
For example, DFT, which yields a good combination of accuracy and run-
time efficiency, scales with O

(
N3) in the number of atoms. Other ab initio

methods like the Møller-Plesset perturbation theory (MP) [47] (O
(
N4) to

O
(
N7) depending on the mode used) and coupled clusters with singles and

doubles (CCSD) [33] (O
(
N6)) exhibit even worse scaling behavior. Methods

with linear scaling exist, for example df-MP2 [62] or the density matrix min-
imization technique [43, 15]. However, implementations of such approaches
tend to include expensive constant costs. This limits the practical use of ab

1This is not to be understood as a restriction; the machine learning models we present
are also used to analyze organic compounds.

2It is worth considering why we can treat systems of atoms with classical mechanics,
rather than quantum mechanics. This is justified by the Born-Oppenheimer approxima-
tion; see Section 2.2.
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initio methods for molecular dynamics to small systems and relatively small
time-frames in the order of picoseconds.

For mesoscale problems of tens of thousands of particles and timescales
in the order of nanoseconds, which is the scale this thesis will focus on,
the predominant approach involves interaction potentials. Usually acting on
some relatively small local site, they approximate the system’s energy func-
tion through some explicit, physically-motivated function which is fitted to
the problem though choice of some set of—also empirical—parameters. Em-
pirical potentials have a very long history, going back to 1924 when Sir John
Edward Lennard-Jones proposed a function describing the interaction be-
tween a pair of neutral atoms or molecules [42]. Today, an enormous amount
of such potentials is available and in active use; important examples include
the very popular embedded atom method [21] and bond order potentials like
the Tersoff potential [59], the Brenner potential [14] or ReaxFF [60]. Software
packages like LAMMPS [51] or ATK-ForceField [55] provide large collections
of ready-to-use potentials. Two examples, the simple Lennard-Jones poten-
tial mentioned above and the relatively complex modified embedded atom
method, are presented in Section 3.2.1 in greater detail. Their core benefit
is the fact that their analytical definition allows for highly efficient imple-
mentations which scale at O(N) with a sufficiently small constant; they can
therefore be used to inspect the properties of systems of all relevant sizes and
in all relevant timescales. On the other hand, the accuracy and transferabil-
ity of such potentials is generally limited, both by the fact that the functions
they are composed from are approximations and the fact that there is no
definite way to find the best set of parameters.

In more recent times, parameterless non-empirical potentials based on
machine learning have been considered. These are often universal approxi-
mators like neural networks which are “trained on” or fitted to some data set
of systems with known properties, which can for example be created with
the ab-initio methods mentioned above. This removes the need to chose
physically motivated functions and parameters as for empirical potentials,
replacing them with an unbiased purely mathematical fitting procedure. Two
fundamental papers in this endeavor are using a Gaussian kernels and using
neural networks [4, 10]. We will investigate their methods in more detail
in Section 3.2.2. Machine learning potentials have been applied for exam-
ple by learning on-the-fly [44] or active learning [52]. Thanks to their gen-
eral nature, machine learning potentials can theoretically—i.e. given enough
training data—approximate the exact potential function to arbitrary preci-
sion. They are thus systematically improvable. In contrast, their very general
form usually requires training on fairly big data sets before yielding good
results, thus demanding a large, but reusable, computational effort upfront.
Furthermore, while they are orders of magnitudes faster than methods like
DFT and exhibit the desired linear scaling, they usually cannot compete
with classical potentials in terms of computational performance.
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Computational material science problems of even larger scales will not
be discussed in this thesis. Beyond the point of our mesoscale setting, one
quickly finds oneself in macroscopic territory where individual atoms are no
longer of interest and which is governed by macroscopic physical equations.
Such problems usually fall into the realm of continuum mechanics.

Outline In Section 2, we give an overview of the quantum mechanical
fundamentals that govern the evolution of systems of atoms, and present the
Born-Oppenheimer approximation, which allows us to separate the electrons
and the nuclei in our computations. We also investigate the tight-binding
model, a further approximation to the complex quantum model.

In Section 3, the basics of interatomic potentials is introduced. Usually
acting on some local neighborhood of a given atom, they form the basis for
empirical and machine learning potentials used for mesoscale systems. Two
examples of each will be discussed in detail.

Section 4 will exhibit a new approach to machine learning potentials in-
troduced in [56]. Polynomials will be used to describe atomic neighborhoods,
in a manner that guarantees that chemically equivalent environments will
receive the same description. How to construct such polynomials will be
explained in Section 4.1. In Sections 4.2 and 4.3, it will be proven that
these polynomials can indeed approximate the tight-binding model. Some
additional work is required to to make the evaluation of the polynomials
sufficiently efficient; this is covered in Section 4.4.

In Section 5, the polynomials are used to construct a complete machine
learning potential whose performance is examined with numerical experi-
ments. Lastly, Section 6 summarizes the results of this thesis.
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2 Many-body quantum mechanics
In this section, we give a short introduction to the quantum mechanics
needed to describe many-body systems of electrons and nuclei. We discuss
the Born-Oppenheimer approximation which allows us to handle the nu-
clei and the electrons separately and the tight-binding model, which forms
the foundation of interatomic potentials acting on atomic neighborhoods or
“sites”. Sections 2.1 and 2.2 closely follow the description in [34].

2.1 Basic principles

2.1.1 Notations and postulates

Quantum mechanics are built upon wave-functions acted on by linear Her-
mitian operators. The wave-functions are L2 functions of system parameters
and time, and describe the entire system. The Hermitian operators acting
on the wave-functions correspond to physical observables like position, mo-
mentum and energy.

In this thesis, the system parameters are the positions of the electrons
and nuclei which constitute the system. Using Latin indices for electronic
variables and Greek indices for nuclear variables, the system parameters are
written as {{ri}, {rα}} and the wave-function is denoted by ψ({ri}, {rα}, t).
Spin is ignored in this thesis as it is not relevant to our primary use case.

We use the bra-ket notation due to Dirac [23], with bras ⟨ψ| and kets |ψ⟩
representing state-vectors from some complex Hilbert space, and the corre-
sponding bra-ket inner product ⟨ψ|ϕ⟩. This notation respects that different
wave-functions ψ can represent the same state-vector |ψ⟩. In particular, two
non-zero state-vectors that differ only by multiplication with a constant de-
scribe the same state. We thus assume our state-vectors are normalized,
i.e.

⟨ψ|ψ⟩ = ∥ψ∥L2 = 1.

For some observable O, we write Ô for its corresponding operator. It acts
on a state vector |ψ⟩ to produce a different state vector |ϕ⟩ (which may not
be normalized):

Ô |ψ⟩ = |ϕ⟩

Each operator has some set of normalized eigenstates {|χn⟩}n∈N with corre-
sponding eigenvalues λn, i.e.

Ô |χn⟩ = λn |χn⟩ .

All eigenvalues of Hermitian operators are real.
For some system in state |ψ⟩, the postulates of quantum mechanics state

that
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• the outcome of a measurement of some observable is always an eigen-
value λn of its corresponding operator

• immediately following a measurement, the state-vector collapses to a
state from the span of the eigenstates corresponding to λn

• the probability of measuring λn is given by

P(λn) =
∑

| ⟨χi|ψ⟩ |2,

where the ⟨χi| form a normed basis of the eigenspace of λn.

2.1.2 Stationary states and the Schrödinger equation

Between measurements, the state-vector evolves in time according to the
time-dependent Schrödinger equation:

Ĥ |ψ⟩ = i
∂

∂t
|ψ⟩ . (2.1)

In the non-relativistic case, the Hamiltonian Ĥ for our systems of nuclei and
electrons is given by

Ĥ = −1
2
∑

i

∆i − 1
2
∑

α

1
mα

∆α −
∑

i

∑
α

Zα

|ri − rα|

+1
2
∑

i

∑
j ̸=i

1
|ri − rj |

+ 1
2
∑

α

∑
β ̸=α

ZαZβ

|rα − rβ|
, (2.2)

where mα is the mass of a nucleus and Zα is its atomic number. The first two
terms represent the kinetic energies of the electrons and nuclei, respectively;
the remaining three correspond to Coulomb interaction energies between the
particles. Relativistic effects are of no interest in our setting because they
are relevant only for very heavy atoms, which are not considered in this
work.

The eigenvalue equation for the Hamiltonian yields the time-independent
Schrödinger equation

Ĥ |ψ⟩ = E |ψ⟩ , (2.3)

where the eigenvalue E denotes the total energy of the system. Here, the
time-dependence of the state takes the simple form

ψ({ri}, {rα}, t) = ψ̃({ri}, {rα})Θ(t), (2.4)

which yields the following system:

Ĥψ̃({ri}, {rα} = Eψ̃({ri}, {rα}), (2.5)

i
d
dt

Θ(t) = EΘ(t). (2.6)
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Solving the ordinary differential equation (2.6) gives us the form of the
eigenfunctions of the Hamiltonian as

ψ({ri}, {rα}, t) = ψ̃({ri}, {rα}) exp(−iEt).

The eigenstates of the Hamiltonian are also known as stationary states, be-
cause the expectation values of time-independent operators for these states
are constant in time:

⟨ψ|Ô|ψ⟩ =
∫
ψ∗({ri}, {rα})Ôψ({ri}, {rα})

∏
j

drj

∏
β

drβ

=
∫
ψ̃∗({ri}, {rα})eiEtÔψ̃({ri}, {rα})e−iEt

∏
j

drj

∏
β

drβ

=
⟨
ψ̃
∣∣∣Ô∣∣∣ψ̃⟩

As the energy of the system is our core interest, we will only deal with
the time-independent state |ψ̃⟩ from here and ignore the exponential time
dependency.

2.2 Born-Oppenheimer approximation

The Born-Oppenheimer approximation [12] is a strategy to separate the mo-
tion of the electrons and the nuclei in the Schrödinger equation. As electrons
and protons carry the same charge (with different signs), the forces acting
on them and thus the changes in their momentum are of the same order of
magnitude. It thus makes sense to assume that their actual momenta are
of the same order of magnitude, too. Due to the huge difference in mass
between nuclei and electrons, we can conclude that the nuclei have much
smaller velocity than the electrons. As we are interested in the movement
of nuclei in this work, the electrons can be assumed to instantaneously re-
lax to their ground state when looking at the time-scale relevant for nuclei
movement. This lets us consider the nuclei to be stationary when solving
the time-independent Schrödinger equation (2.3) resulting from the Hamil-
tonian given in eq. (2.2) for the ground state, which can then be used to
obtain the forces on the nuclei and thus update their positions using e.g. a
Verlet time step for the Newton laws of motion applied to the nuclei [28].

To this end, we decompose the eigenstate of the Hamiltonian into an
electronic part and a nuclear part as

ψ̃({ri}, {rα}) = ψ{rα}({ri})ϕ({rα}),

where ψ{rα}({ri}) is a wave function in {ri} satisfying the time-independent
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Schrödinger equation for electrons in a static array of nuclei:−1
2
∑

i

∆i −
∑

i

∑
α

Zα

|ri − rα|
+ 1

2
∑

i

∑
j ̸=i

1
|ri − rj |


︸ ︷︷ ︸

=:Ĥ(e)

ψ{rα}({ri})

= E(e)
{rα}ψ{rα}({ri})

Applying the whole Hamiltonian to ψ̃({ri}, {rα}):

Ĥψ̃({ri}, {rα})

=

−1
2
∑

β

1
mβ

∆β + Ĥ(e) + 1
2
∑

β

∑
γ ̸=β

ZβZγ

|rβ − rγ |

 ψ̃({ri}, {rα})

= ψ{rα}({ri})

−1
2
∑

β

1
mβ

∆β + E(e)
{rα} + 1

2
∑

β

∑
γ ̸=β

ZβZγ

|rβ − rγ |

ϕ({rα})

−1
2
∑

β

1
mβ

[
2∇βϕ({rα}) · ∇βψ{rα}({ri}) + ϕ({rα})∆βψ{rα}({ri})

]
(2.7)

In the equation above, E(e)
{rα} is called the adiabatic contribution of the elec-

trons to the energy. The contributions from the last line in eq. (2.7) are small,
as can be demonstrated with pertubation theory: the first order correction
from the non-adiabatic contribution has the form:

−
∫

Ψ∗
{rα}({ri})ϕ∗({rα})∑

γ

1
mγ

[
∇γϕ({rα}) · ∇γψ{rα}({ri})

]∏
j

drj

∏
β

drβ

= −
∑

γ

∫
ϕ∗({rα})∇γϕ({rα})

·

∫ ψ∗
{rα}({ri})∇γψ{rα}({ri})

∏
j

drj


︸ ︷︷ ︸

=:I

∏
β

drβ ,

and the integral I evaluates to

I = 1
2

∇γ

∫
|ψ{rα}({ri})|2

∏
j

drj = 1
2

∇γ(1) = 0

because the normalization of the electronic wave-function is constant under
the movement of nuclei. Thus the first order contribution vanishes. The sec-
ond term in the last line of eq. (2.7) will be maximal when the electrons are
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tightly bound to their nuclei (see Section 2.3), i.e. ψ{rα}({ri}) = ψ({u(i,α)})
with u(i,α) = ri − rα. With that, we get for the first order correction:

−
∫
ψ∗({u(i,α)})ϕ∗({rα})

∑
γ

1
2mγ

[
ϕ({rα})∆γψ({u(i,α)})

]∏
j

drj

∏
β

drβ

= −
∑

γ

1
2mγ

∫ |ϕ({rα})|2
∏
β

drβ


∫ ψ∗({u(i,α)})∆γψ({u(i,α)})

∏
(j,β)

du(j,β)


= −

∑
(k,γ)

1
mγ

∫
ψ({u(i,α)})1

2
∆(k,γ)ψ({u(i,α)})

∏
(j,1b)

du(j,β)

This is of the same order of magnitude as the kinetic energy multiplied by
the ratio between atom and electron masses. As this factor is also small (in
the order of 10−4 or 10−5), we can also neglect the contributions from this
term.

With that, eq. (2.7) gives us a Schrödinger equation of the form−1
2
∑

β

1
mβ

∆β + E(e)
{rα} + 1

2
∑

β

∑
γ ̸=β

ZβZγ

|rβ − rγ |

ϕ({rα}) = Eϕ({rα})

for the nuclei function ϕ({rα}). We have thus successfully separated the
movement of the electrons from that of the nuclei; this allows us simulate
the movement of nuclei with Newtonian mechanics as described earlier in this
subsection. With that, we can perform simulations for molecule dynamics or
search for local minima on the potential surface generated by the position
of the nuclei.

2.3 Tight-binding model

There are several variants of what is referred to as the tight-binding model
or method. Generally, those methods are based on the use of a minimal local
basis {ϕα,l(r − rα)} of local orbitals, where l enumerates a small number of
orbitals of the atom α [26, 16]. To this end, one considers a Hamiltonian
matrix (

H({rα}
)lk

β,γ
=
∫
ϕβl(r − rβ)Ĥϕγk(r − rγ) dr

with entries
hlk

β,γ({rα}) :=
(
H({rα}

)lk

β,γ
.

In this thesis, we will present an empirical tight-binding model as originally
described in [16, 17]. We will later see convergence of the moment tensor
potential to this model in Section 4.3 as shown in [56].
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From now on, we restrict our interest to systems of finitely many atoms,
i.e.

{rα} = {r1, . . . , rN };

however the following can also be applied to periodic systems using Bloch
waves [26]. The concrete tight-binding model we will use is a two-center
tight-binding model, in which the matrix elements have the form

hβ,γ({rα}) =
{
φ(rγ − rβ) β ̸= γ

0 β = γ,

with φ(r) a hopping term (see hopping integral in [26]) chosen empirically
such that φ(r) = 0 if ∥r∥ > Rc for some Rc > 0. Here, we have dropped
the indices for the orbitals following [17] and set the on-site terms, i.e. the
diagonal elements of H, to 0, following [56].

The total energy of the system is now written as the sum of the band
energy Eband and some repulsive energy Erep. The repulsive energy can be
handled using simple pair potentials. It is only mentioned here for com-
pleteness’ sake and is of no further interest in this work. The band energy,
henceforth referred to simply as E, is defined as follows: let εi the eigenvalues
of H and ψi the corresponding normalized eigenvectors. Then

E({rα}) =
N∑

i=1
εif(εi) =

N∑
i=1

f(εi),

where
f(ε) =

(
1 + exp

(
ε− µ

kBT

))−1

is the Fermi-Dirac function and

f(ε) := εf(ε)

for ease of notation. The chemical potential µ is taken to be 0 in our case, still
following [56]. The physical constants kB and T are the Boltzmann constant
and the electronic temperature respectively. We can then apply a common
idea (e.g. [26]) and write the energy as sum of the local contributions of each
site:

E({rα}) =
N∑

i=1
f(εi) =

N∑
i=1

f(εi)
N∑

j=1
(ψi)2

j =
N∑

i=1

N∑
j=1

f(εi)(ψi)2
j ,

i.e. the band energy is decomposed as

E({rα}) =
N∑

i=1
Vi({rα}),
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with

Vi({rα}) =
N∑

j=1
f(εj)(ψj)2

i .

We call Vi({rα}) the site energy at atom (site) i. In [56] and in the rest of
this thesis, the alternate representation

V ({rα}) := (f(H))1,1

of the site energy is used. The evaluation of the Fermi-Dirac function of a
matrix is to be understood as defined in [35].
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3 Interatomic potentials

3.1 Notation and basic properties

We now move from the quantum world to concrete methods for our mesoscale
setting. Since the position of electrons is no longer relevant, we can elide
them from the notation for clarity. With that, an atomic configuration is
given by

X :=
{
x

(Z1)
1 , . . . , x

(ZN )
N

}
, (3.1)

where xi ∈ R3 denotes the atom’s Cartesian coordinates and (Zi) its atomic
number. For ease of notation, we will usually omit the latter.

Hence, we will assume the tight-binding approximation can be applied
and write the total potential energy of the system given by X as

E(X) =
N∑

i=1
Vi(Dxi), (3.2)

with the local neighborhood of some atom i given by

Dxi := {xj − xi | ∥xj − xi∥ < Rcut, i ̸= j}. (3.3)

The finite cut-off radius assumes that the interaction between particles that
are “far apart” is negligible. This is assumed to be true in our setting and
enables efficient implementations, for example using linked-cell techniques.
Note that long-range interactions between particles can exist, for example
in charged systems. Algorithms and solvers for the treatment of such inter-
actions exist, but are beyond the scope of this work.

For the frequently-needed distance vector from atom i to atom j, we
write uij := xj − xi and rij := ∥uij∥ for its length, dropping the first index
when the central atom is fixed.

We note some intuitive but important properties of the site energy func-
tions Vi:

• Invariance under permutation of chemically equivalent atoms, i.e. for
any pair of atoms xZi

i , xZj

j with Zi = Zj and i < j, we have

V (x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj+1, . . . , xN )
= V (x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xN )

• Invariance under Euclidean transformation of the atoms’ positions: for
any such transformation T , it holds

V (u1, . . . , un) = V (T (u1), . . . , T (un)).

• Smoothness with respect to atoms entering or leaving the neighbor-
hood at Rcut.
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As an additional property for an approximation Ṽi of Vi, Ṽi ∈ C2 when all rij

are strictly positive is desired in order to guarantee conservation of energy
in the model.

3.2 Existing approaches

We now go on to describe some empirical and non-empirical approaches to
approximating the energy function E(X).

3.2.1 Empirical potentials

The classical way of approximating the general energy term is using empir-
ical potentials. Those potentials are usually written as sums of site energies
V (Dxi) as defined in eq. (3.2). Normally, the site energies are represented
as sums of pair-term, although sometimes as triple- or quadruple-term con-
tributions. This also holds true for the two examples below. Note that al-
though the use of pair- or even triple-terms suggest a complexity of O

(
N2)

or O
(
N3) in the number of particles, the overall complexity of the evaluation

is O(N) because we assume that the number of atoms in each neighborhood
is bounded. For demonstration purposes, we will present a simple and a
more complex example of such potentials:

Lennard-Jones Potential First introduced in [42], it is one of the sim-
plest empirical models. It has the form

E(X) =
∑
i<j

4εij

(σij

rij

)12

−
(
σij

rij

)6
,

where i and j run over all particles in the configuration. The Lennard-Jones
potential is a classical pair potential using two adjustable parameters ε and
σ per pair of particle types involved in the simulation. They influence the
depth of the potential well and its position, respectively. This is clearly
invariant under Euclidean transformations and under permutation of chem-
ically equivalent atoms. In order to achieve smoothness at some finite Rcut,
the potential can be multiplied with some taper function that smoothly
goes from 1 to 0 on some interval [Rtaper, Rcut]. Due to its simplicity, it can
be evaluated extremely efficiently. However, the fact that it only allows for
two adjustable parameters is rather restrictive; while the Lennard-Jones po-
tential describes noble gases fairly well, many systems cannot be described
sufficiently accurate with this model.

Modified Embedded Atom Method A more complex approach that
is applicable to a large number of elements is the Modified Embedded Atom
Method (MEAM), first described in [8]. It has been further extended, for
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example to include second-nearest neighbor interaction in [41]. Here, we
will present the formalism as described in [25]. The description is rather
lengthy compared to the Lennard-Jones potential and its details are not
needed in the rest of this thesis. However, it is reproduced here at length
to demonstrate the big variety of empirical potentials at our disposal. In
particular, it serves as a good example for a potential with a relatively large
set of adjustable parameters. The MEAM energy for a system has the form

E(X) =
∑

i

Fi(ρ̄i) + 1
2
∑
i ̸=j

Φij(rij)

.
The function Fi(ρ̄i) is some embedding energy term, while Φij(rij) is a nor-
mal pair potential. Following the notation in [25], we will use Latin subscripts
i, j and k to denote particles and Greek subscripts α, β and γ for entries of
vectors and matrices. The embedding function has the form

Fi(ρ̄i) = AiE
0
i ρ̄i log ρ̄i,

with the element-dependent sublimation energy E0
i and some adjustable

parameter A. ρ̄i is background electron density and is given by

ρ̄i = ρ̄
(0)
i

ρ0
i

Gi(Γi),

with

Γi =
3∑

k=1
t
(k)
i

(
ρ̄

(k)
i

ρ̄
(0)
i

)
.

The functionG(Γ) is chosen empirically; common choices areG(Γ) =
√

1 + Γ
and G(Γ) = exp(Γ/2). The densities ρ̄(k)

i for k = 0, . . . , 3 are given by

ρ̄
(0)
i =

∑
j ̸=i

ρ
a(0)
j (rij)Sij

(
ρ̄

(1)
i

)2
=

3∑
α=1

∑
j ̸=i

ρ
a(1)
j

uijα

rij
Sij

2

(
ρ̄

(2)
i

)2
=

3∑
α=1

3∑
β=1

∑
j ̸=i

ρ
a(2)
j

uijαuijβ

r2
ij

Sij

2

− 1
3

∑
j ̸=i

ρ
a(2)
j rijSij

2

(
ρ̄

(3)
i

)2
=

3∑
α=1

3∑
β=1

3∑
γ=1

∑
j ̸=i

ρ
a(3)
j

uijαuijβuijγ

r3
ij

Sij

2

− 3
5

3∑
α=1

∑
j ̸=i

ρ
a(3)
j

uijα

rij
Sij

2

,

where Sij is a screening function that is explained later in this section and
the composition-dependent electron density scaling ρ0

i is defined as

ρ0
i = ρi0Zi0Gi(Γref

i ).
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In this expression, ρi0 is an element-dependent density scaling, Zi0 is the
first-neighbor coordination of the reference system and Γref

i is given by

Γref
i =

3∑
k=1

t
(k)
i

s
(k)
i

Z2
i0
,

where s(k)
i are shape factors depending on the reference structure for atom

i. The atomic electron densities ρa(k)
i are defined as

ρ
a(k)
i (rij) = ρi0 exp

[
−β(k)

i

(
rij

r0
i

− 1
)]
,

and the average weighting factors as

t
(k)
i = 1

ρ̄
(0)
i

∑
j ̸=i

t
(k)
0,j ρ

a(0)
j Sij ,

with the nearest-neighbor distance in the reference structure r0
i and more

element-dependent parameters β(k)
i and t

(k)
0,j .

The term Φij(rij) is a simple pair potential (after the screening has been
computed) and is given by

Φij = Φ̄ij(rij)Sij

Φ̄ij(rij) = 1
Zij0

[2Eu
i (rij) − Fi(ρ̂i(rij)) − Fj(ρ̂j(rij))]

Eu
i (rij) = −E0

ij(1 + α∗
ij(rij)) exp

(
−α∗

ij(rij)
)

α∗
ij(rij) = αij

(
rij

r0
ij

− 1
)
.

The remaining undefined quantities above, namely E0
ij , r0

ij and αij , are again
element-dependent parameters. Last, we define the screening function as

Sij = S̄ijfc

(
Rcut − rij

∆r

)
S̄ij =

∏
k ̸=i,j

Sikj

Sikj = fc

(
Cikj − Cmin,ikj

Cmax,ikj − Cmin,ikj

)

Cikj = 1 + 2
r2

ijr
2
ik + r2

ijr
2
jk − r4

ij

r4
ij − (r2

ik − r2
jk)2

fc(x) =


1 x ≥ 1[
1 − (1 − x)4]2 0 < x < 1

0 x ≤ 0
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The cutoff radius Rcut and ∆r, which determines the length of the region
on which the radial cutoff is smoothed near r = Rcut, are type-independent
parameters, while the parameters Cmin,ikj and Cmax,ikj depend on the parti-
cle types of the involved atoms. Note how this screening function makes the
MEAM a three-body potential, in contrast to the two-body Lennard-Jones
potential presented above. Unsurprisingly, this more complex potential can-
not match simpler ones such as Lennard-Jones in speed of computation.
However the large amount of adjustable parameters (in the MEAM variant
presented here, i.e. 12 per element plus the parameters for the pair-term
Φ and the screening function S) allows the MEAM to be fitted for a large
variety of applications. While this makes the MEAM a very powerful tool,
actually fitting it for a new set of problems requires significant effort. Indeed,
finding new and improved parameter sets for the MEAM is still subject of
recent and ongoing research, i.e. [1, 38], despite the popular second-nearest
neighbor MEAM being published almost two decades ago at the time of
writing.

The key advantage of potentials of this form is the possibility to eval-
uate them with massively parallel, high-performance implementations, for
example using the linked-cell method [29] which can be used to simulate
systems of very big numbers of particles (from the view of our mesoscale
problems) [37]. On the other hand, those potentials are parametric (using
the terminology from [6]) by nature. This means that they rely on some
fixed set of parameters that have to be somehow determined “by hand”; in
the sense that there is not systematic way to improve an existing parameter
set or find an optimal one in general. While there exist software solutions as
presented for example in [24] that help in fitting an empirical potential to
some dataset, caveats like having to choose some starting point for the non-
convex problem of minimizing the error in forces and energy with respect
to the potential parameter still apply. Also, even an optimal parameter set
for some potential may not be able to produce results of sufficient accu-
racy. This core limitation leads to the need for non-parametric potentials as
presented in the following section.

3.2.2 Machine learning potentials

The limitations of empirical potentials as described in Section 3.2.1 lead
to the need of non-parametric alternatives. In current research, this prob-
lem has been approached using machine learning techniques such as kernel
learning or neural networks.

The first key ingredient for any machine learning potential are so-called
descriptors or fingerprints which map atomic positions to a tuple of real
numbers; i.e. a descriptor is a tuple of scalar functions. This make their
investigation an active area of recent research [3, 19]. On these tuples, some
regression model can be applied to obtain the final potential. As this is a core
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concept of machine learning potentials and the analysis of the relative merits
of different approaches is a broad field, an in-depth description of the topic
is beyond the scope of this thesis. For instance, in general different strategies
have to be applied for describing atomic environments in condensed matter
compared to fingerprinting molecules. Here, we will present a short overview
of the basic requirements for descriptors based on [6] before we move on to
some concrete examples in actual use.

There are two important conditions for useful descriptors. Firstly, they
should guarantee the invariants stated in Section 3.1. Of course, the require-
ment of being smooth with regard to particles leaving the neighbor at Rcut
only makes sense for descriptors that describe atomic environments, rather
than whole molecules. Second, the descriptors should be true to the ensemble
they are applied to, in the sense that they should map chemically different
inputs to different outputs. As such, we say a descriptor (q1, . . . , qM ) is com-
plete if it is a one-to-one mapping from the space of atomic environments
into Rn. We call a descriptor over-complete if a proper subset of (q1, . . . , qM )
is complete. In this case, all chemically different environments will still map
to different values, but the same may also happen to chemically equivalent
environments.

From here on, we will focus on descriptors for atomic environments as
those are needed to approximate the site energy V from eq. (3.2). For a fixed
central atom with n neighbors with relative positions u1, . . . , un, a simple
first idea for a descriptor is the symmetric matrix

Σ :=


u1 · u1 u1 · u2 · · · u1 · un

u2 · u1 u2 · u2 · · · u2 · un
...

... . . . ...
un · u1 un · u2 · · · un · un

,

which forms an over-complete array of invariants with respect to Euclidean
transformations due to results from [63]. Of course, it is by itself not a
suitable descriptor because it lacks invariance with respect to permutation.
For example, swapping the described order of the first and the second atom
also swaps the corresponding rows and columns:

u2 · u2 u2 · u1 u1 · u3 · · · u2 · un

u1 · u2 u1 · u1 u2 · u3 · · · u1 · un

u3 · u2 u3 · u1 u3 · u3 · · · u1 · un
...

...
... . . . ...

un · u2 un · u1 un · u3 · · · un · un

,

thus yielding a different description of a chemically equivalent environment.
However, permutation invariance can be recovered by using functions of this
matrix. Indeed, we will later see in Lemma 4.4 that our moment tensor basis
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can be written in terms of its elements. Another, simpler way to recover
permutation invariance while maintaining differentiability would be using
the sorted eigenvalues of Σ. However, this is not only hard to compute for
large n, it also loses completeness as the spectrum of Σ has dimension n,
compared to the 3n−3 degrees of freedom in the atomic environment modulo
rotations.

We now move on to two popular examples of machine learning potentials;
one based on Gaussian kernels and one based on neural networks.

Gaussian Approximation Potential The Gaussian approximation po-
tential (GAP) was introduced by Bartók et al. in [7]. We will give a short
overview based on this paper; a more thorough introduction including some
words about practical implementations and the treatment of data noise can
be found in [5].

The core idea of the GAP is to construct some permutation-invariant
local atomic density from a neighborhood, represent it with 4D spherical
harmonics and then apply Gaussian process regression [53]. For that, we fix
a central atom i and define a local atomic density from its neighbors by

ρi(r) = δ(r) +
∑

j

δ(r − rj)fcut(rj), (3.4)

where

fcut(r) :=


1
2

[
1 + cos

(
πr

rcut

)]
r < rcut

0 r ≥ rcut

is a somewhat arbitrary cutoff function; any smooth function with compact
support could be used here. The density is already invariant under per-
mutation and translation. Invariance under rotation is achieved using the
bispectrum [22] which can provide an almost one-to-one representation of
the atomic neighborhood.

The atomic density is projected onto the surface of the four-dimensional
unit sphere using the transformation

r ≡

xy
z

 →
ϕ = arctan(y/x)
θ = arccos(z/∥r∥)
θ0 = ∥r∥/r0

(3.5)

for some r0 > rcut/π . This has the advantage that the 4D surface contains
all the information from the 3D spherical region inside the cutoff, includ-
ing the radial dimension. Thus 4D spherical harmonics constitute a natural
complete basis for the interior of the 3D sphere without the need for ra-
dial basis functions. Using Wigner matrices U j

m′m [61], the projection of the
atomic density onto the 4D sphere can therefore be expanded in 4D spherical
harmonics using coefficients

cj
m′m =

⟨
U j

m′m

∣∣∣ρ⟩ ,
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dropping the atomic index i for clarity. The bispectrum built from these
coefficients is given by

Bj1j2j =
j1∑

m′
1,m1=−j1

j2∑
m′

2,m2=−j2

j∑
m′,m=−j

(
cj

m′m

)∗

Cjm
j1m1j2m2

Cjm′

jim′
1j2m′

2
cj1

m′
1m1

cj2
m′

2m2
,

where Cjm
j1m1j2m2

are the ordinary Clebsch-Gordan coefficients. We write bi

for the three-index array Bj1j2j that belongs to atom i and note that all its
elements are invariant with respect to permutations of atoms and rotations
of 4D, and thus also 3D space. In practice, the bi are truncated by restricting
j, j1, j2 ≤ Jmax, which corresponds to a limit in the special resolution with
which the neighborhood is described. We can now use the bispectrums b
as descriptors and apply Gaussian process regression to interpolate the site
energy. For that, we define the kernel

G(bi,bj) := exp
[
−1

2
∑

l

(bi,l − bj,l

θl

)2
]

with some adjustable hyper-parameter {θl}, where l indexes the bispectrum
components. Then the site energy at atom i is given by

V (bi) =
∑

j

αjG(bi,bj). (3.6)

The kernel G is a universal kernel and can thus, loosely stated, be used to
approximate any continuous function with a sum of the form in eq. (3.6)[57].
Unlike simple linear regression, Gaussian approximation uses a covariance
matrix

Cnn′ = δ2G(bn,bn′) + σ21,

where 1 is the identity matrix and δ and σ are two more hyper-parameters.
With this, we obtain our coefficients α = (αn)n as

α = C−1y,

where y = (yn)n is the set of reference energies. This simple expression for
α has been derived in [45]. We have thus arrived at a closed form for the
site energy function with eq. (3.6).

The GAP is a popular candidate for a modern non-parametric potential,
as it solves the issues of empirical potentials not being systematically improv-
able. However, expanding the atomic densities in spherical harmonics can
be computationally expensive. Indeed, [4] notes that while GAP potentials
are order of magnitudes faster to compute than Density Functional Theory,
it is still about a hundred times more expensive than empirical potentials.
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Figure 1: A simple feed-forward NN

Neural Network Potentials Neural networks have a long history, with
the idea of using artificial neurons first proposed in 1943 by McCulloch and
Pitts [46]. This idea was generalized to more complex neural networks in the
following decades, eventually arriving at feed-forward neural networks (NN),
which can represent every Borel-measurable function with arbitrary accu-
racy [36]. In the more recent past, the drastic increase in available computing
power and further advances in the underlying theory made NN a powerful
tool for a wide area of problems. This makes them a natural candidate for
building a potential function, hence referred to as neural network potential.
We will now give a short overview based on [11].

Feed-forward neural networks consist of nodes yj
i called artificial neurons

which are arranged in layers as shown in Figure 1. The number of layers and
the number of neurons per layer define the analytic form of the NN. The goal
is to construct a function from the input vector G = {Gi}, which describes
the atomic configuration, to the corresponding energy E. The hidden layers
consisting of the nodes yj

i have no physical meaning, they merely define the
functional form of the NN. Their number and the number of nodes they
contain determine the network’s flexibility to approximate more complex
functions. The arrows connecting the nodes represent the flow of information
through the NN, and their weights αk,l

i,j or bj
i are the fitting parameters of

the model. With this, the values in layer i are given as function of the values
in layer i− 1 as

yj
i = f j

i

(
xj

i

)
:= f j

i

bj
i +

Nj−1∑
k=1

αj−1,j
k,i yj−1

k

, (3.7)
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where Nj is the number of neurons in layer j. Each node but the input nodes
is connected to a bias node with constant value 1. They contribute with a
bias weight bj

i , acting as an adjustable offset to shift the linear combination
if needed.

To the shifted linear combination, a so-called non-linear activation func-
tion f j

i is applied in order to introduce non-linearity to the model. This
is needed to allow the NN to approximate arbitrary measurable functions.
Often, f j

i is chosen to converge to small numbers for inputs of large mag-
nitude; common choices are f(x) = 1/(1 + exp(−x)) , f(x) = tanh(x) or,
most popular, the ReLU function f(x) = max(0, x). In the output layer, a
linear activation function is applied in order to not restrict the range of the
output energy E.

The NN is evaluated layer by layer, starting by evaluating the first hidden
layer from the input layer G using eq. (3.7). This is repeated until the output
layer is reached, giving us, for example, the full functional form of the NN
in Figure 1 as

E = f3
i

b3
i +

4∑
k=1

α2,3
k,1f

2
k

b2
k +

3∑
j=1

α1,2
j,kf

1
j

[
b1

j +
2∑

i=1
α0,1

i,j Gi

].
The choice of the NN’s structure is very important: a NN with too many
nodes and thus too much flexibility can cause spurious features to appear in
the approximated potential energy surface, while too few neurons leave the
network too restricted to properly represent it.

It now remains to apply this general technique to our atomistic prob-
lem setting. Directly feeding the Cartesian coordinates of the nuclei into a
NN fails for two reasons. Firstly, the number of input nodes of some given
NN is fixed, while adding or removing an atom would add or remove three
input variables. As training a new NN for every interesting system size is
neither practical nor useful, we need some way to transform systems of dif-
ferent size into a fixed size input vector G. Furthermore, we cannot expect
the NN to learn the aforementioned invariants with respect to Euclidean
transformations and permutation of chemically equivalent atoms, so those
invariants must already be encoded in G. Additionally, handling the entire
configuration in a single pass through a NN demands an unwieldy number of
input nodes and, to provide the necessary flexibility, hidden nodes, making
both the “training” (i.e. finding an optimal or at least good set of weight
parameters αk,l

i,j and bj
i ) as well as the evaluation of the trained network too

expensive. To combat this last issue, we again move to site energy terms like
in eq. (3.2) and apply machine learning with NN to the site energy function
V (Dxi). We can then feed descriptors for each local environment into the
neural net separately and recover the total energy as the sum of the site
energies as presented in Figure 2 for four environments. As the site energy
of an atom is not observable and thus cannot be extracted from quantum
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Figure 2: A neural network potential, in this example with four atomic sites

mechanical calculations directly, it is important to note that the local NNs
can still be trained using the total energy as target quantity. If a neural
network potential (NNP) is applied to systems containing chemically non-
equivalent particles (i.e. atoms of different elements), one NN is trained for
each species involved.

As for other machine learning potentials, finding a suitable descriptor
for the atomic sites is the key challenge. In addition to the requirements for
descriptors stated at the beginning of this section, descriptors for use in an
NNP must also produce a fixed number of values independent of the number
of atoms in the environment they describe, as the number of input nodes in
the NNs is also fixed. This is here achieved by picking some fixed-size set
of single-valued descriptor functions and using the vectors containing their
values as the descriptors Gi. Typically, they consist of 50 to 100 values.

To construct the descriptor functions, in this context called symmetry
functions, we again start by picking a cutoff function fcut. As for GAP above,
different cutoff functions can be used, but

fcut(r) :=


1
2

[
1 + cos

(
πr

rcut

)]
r < rcut

0 r ≥ rcut

as used in GAP can also be employed here.
With this, we can define atom-centered symmetry functions as a set of

descriptor functions. They explicitly take the angle

Θijk = uij · uik

rijrik

into account to distinguish between different environments that are equal by
absolute distances alone. Two types of such are angular functions are used,

23



namely3

G1
i = 21−ζ

∑
j ̸=i

∑
k ̸=i,j

[
(1 + λ cos Θijk)ζ

exp
(
−η(r2

ij + r2
ik + r2

jk)
)
fcut(rij)fcut(rik)fcut(rjk)

]

and

G2
i = 21−ζ

∑
j ̸=i

∑
k ̸=i,j

[
(1 + λ cos Θijk)ζ exp

(
−η(r2

ij + r2
jk)
)
fcut(rij)fcut(rik)

]
.

The parameter λ ∈ {−1, 1} determines the location of the maximum of the
cosine term, ζ controls the angular resolution, and η allows for scanning the
angular distribution at various distances. The main difference between the
two is that G2 does not take rjk into account, while G1 only considers angles
if all three pairwise distances are small enough. A more detailed description
of these functions can be found in [11]. As distances and angles are invariant
under Euclidean transformations and the sum guarantees invariance under
permutation of equivalent atoms, functions of this type fulfill the require-
ments to be used as descriptors. Instead of using atom-centered symmetry
functions, pair-centered symmetry functions or even bigger tuple-centered
functions can also be used, but this is outside the scope of this thesis.

All that remains is to pick some set of parameters λ, ζ and η to produce
the required set of scalar descriptor functions. Choosing the parameter set
is currently an empirical process; it should yield functions that are not too
similar, in order to avoid redundant information, and should be able to
differentiate between chemically different environments. As noted about, a
set of 50 to 100 such descriptor functions seems to produce a good fingerprint
of the environment while keeping the required NNs sufficiently small.

It has been observed that NNPs do indeed yield results of good accuracy
and extensibility if constructed from a training set containing a sufficiently
large variety of atomic configurations. It also shows linear scaling in the size
of the atomic configuration, as desired. However, it is about two orders of
magnitude slower than classical empirical potentials.

3The numbering has been adjusted in this summary; in the original paper [11], these
are referred to as G4

i and G5
i .
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4 Moment tensor potentials

4.1 Invariant polynomials

The following approach was first presented in [56], which we follow through-
out this entire section. It is based on invariant polynomials and the fact
that any sufficiently smooth potential V ∗(u) can be approximated by some
polynomial p(u) ≈ V (u). Such polynomials can always be found. Indeed,
given any polynomial p(u), we can set

psym(u1, . . . , un) := 1
n!

∑
σ∈Sn

p(uσ1 , . . . , uσn) (4.1)

to achieve invariance under permutation. The other invariances can be re-
covered similarly. With that, one can theoretically construct invariant poly-
nomials bν(u) and set

V ∗(u) ≈ V (u) :=
∑

ν

cνbν(u).

This approach has been implemented for small system of up to ten atoms
[13], but is computationally infeasible for larger systems, due to the fact that
the number of permutations grows as n!, making the evaluation of eq. (4.1)
impossible.

We will now present a way to construct polynomials invariant under
permutation, translation, and rotation in O(n). They will be used later in
Section 5 to construct a basis also satisfying smoothness at Rcut, thus yield-
ing a promising candidate for efficient non-parametric interaction potentials.

The moment tensors Mµ,ν We start by constructing a set of polynomials
that guarantee the first two of the aforementioned invariants and spans
the set Pperm ∩ Prot. With some set of relative positions of neighbors u =
{ui, . . . , un}, we define the moment tensors M(u) as

Mµ,ν(u) :=
n∑

i=1
∥ui∥2µu⊗ν

i (4.2)

for some integers µ, ν ≥ 0. Here,

w⊗ν := w ⊗ . . .⊗ w︸ ︷︷ ︸
ν times

is the ν-fold Kronecker product of a vector with itself. Thus, Mµ,ν has dimen-
sion ν, i.e. we can index its elements with indices i1, . . . , iν with 0 ≤ ik ≤ 3.
Each of the tensors has 3ν entries, of which

(ν+2
ν

)
are unique. If we bound

ν by some relatively small number, the moment tensors can be evaluated
efficiently in O(n).
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The moment tensors can be interpreted physically as follows: the zero-
dimensional tensor M0,0 just counts the number of atoms in the neighbor-
hood, the one-dimensional M0,1 gives the center of mass of those atoms
(scaled by the mass), M0,2 the tensor of second moments of inertia, and so
on. For µ > 0, Mµ,ν can be interpreted as moments of inertia where the i-th
atom has weight ∥ui∥2µ.

The basis polynomials Bα̂,α From the entries of these tensors, we now
construct our basis polynomials Bα as characterized by a symmetric matrix
α ∈ Nn×n with zeros on the diagonal and a vector α̂ ∈ Nn as follows: let
α′

i the sum of the entries of the i-th row. With that, we define a tensor
contraction between the n tensors Mα̂i,α′

i
by an Einstein summation

Bα̂,α := (Mα̂1,α′
1
)i1,...,iα′

1
. . . (Mα̂n,α′

n
)i1,...,iα′

n
, (4.3)

where the i-th and the j-th tensor share αij indices. As the moment tensors
are symmetric in every dimension, the choice of the indices being shared is
irrelevant. Note that the Bα̂,α are invariant under simultaneous permutation
of the rows and columns of the pairs (α̂, α), i.e. if for (α̂, α), (β̂, β) there exists
some σ ∈ Sn such that for all i, j = 1, . . . , n:

α̂i = β̂σ(i) (4.4)

and
αij = βσ(i)σ(j), (4.5)

then Bα̂,α = Bβ̂,β.
For a more rigorous definition, we introduce some notation: we write

M (i) := Mα̂i,α′
i

for the moment tensor corresponding to the i-th line (or
column) of α. For multi-indices β1 ∈ Nl and β2 ∈ Nm let β1 ⊕ β2 ∈ Nl+m

denote their concatenation. Let

B :=
k∏

i=1

k∏
j=i

{1, 2, 3}αi,j (4.6)

be a set4 of tuples (each indexed by (i, j) such that i ≤ j) of multi-indices.
Then for β ∈ B,

β(i) :=
i⊕

j=1
βj,i ⊕

k⊕
j=i+1

βi,j (4.7)

is a multi-index that fits the dimensions of M (i). Note that for now, αii = 0
for all i = 1, . . . , k and thus βi,i is always an empty tuple. This restriction
will later be lifted in Section 4.4 for intermediate results needed for an

4The product is to be understood as Cartesian product of sets.
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computationally efficient evaluation of the Bα, but this is not relevant for
the theoretical analysis in Sections 4.2 and 4.3. We can now write our basis
polynomials as

Bα(u) =
k

α∏
i=1

M (i)(u) :=
∑
β∈B

k∏
i=1

M
(i)
β(i)(u). (4.8)

From eqs. (4.6) and (4.7) it is clear, as mentioned earlier, that the matrix
entry αij for i ̸= j corresponds to the number of dimensions contracted
between tensors M (i) and M (j) in the Einstein sum in eq. (4.3).

Examples We will start with two examples involving only two moment
tensors, thus k = 2. Let

α :=
(

0 1
1 0

)

and

α̂ :=
(
µ1
µ2

)
.

Both row sums are 1, thus the two tensors both have only one dimension.
As α1,2 = 1, one dimension is contracted between the first and the second
tensor, and thus we have

Bα̂,α =
3∑

i=1
(Mµ1,1)i(Mµ2,1)i.

Similarly, with

α :=
(

0 2
2 0

)

and

α̂ :=
(
µ1
µ2

)
,

we get two-dimensional tensors (i.e. matrices) and contract two dimensions
between them, hence

Bα̂,α =
3∑

i=1

3∑
j=1

(Mµ1,2)i,j(Mµ2,2)i,j .
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Last, an example with three tensors, given by

α :=

0 1 2
1 0 1
2 1 0


and

α̂ :=

µ1
µ2
µ3

.
The sums of the rows and thus the dimensions of the corresponding tensors
are 3, 2, and 3 respectively. We contract two dimensions between the first
and the third tensor, because α1,3 = 2 and one dimension of the second with
each the first and the third tensor, as α1,2 = α2,3 = 1. This provides

Bα̂,α =
3∑

i=1

3∑
j=1

3∑
k=1

3∑
l=1

(Mµ1,3)i,j,k(Mµ2,2)i,l(Mµ3,3)j,k,l.

4.2 Representability

The key statement is that the set of the Bα spans the space of polynomials
with our desired invariants:

Theorem 4.1 (Shapeev [56]). The polynomials Bα form a spanning set of
the linear space Prot ∩ Pperm ⊂ P, in the sense that any p ∈ Prot ∩ Pperm can
be represented by a (finite) linear combination of Bα (but the combination
is, in general, not unique).

The proof of this theorem closely follows [56]. It uses several lemmas,
which we also cite (including the proofs) from the aforementioned publi-
cation. First, we state the First Fundamental Theorem for the orthogonal
group O(d) (where d = 3 in our case) [63]:

Theorem 4.2. p ∈ P is rotation invariant if and only if it can be represented
as a polynomial of n(n+ 1)/2 scalar variables of the form rij := ui·uj, where
1 ≤ i ≤ j ≤ n.

We introduce Q as the set of polynomials of n(n+1) scalar variables r =
(rij)1≤i,j≤n. The restriction i ≤ j is dropped for ease of notation. With this,
we can hence identify each polynomial p = p(u) ∈ Prot with the respective
polynomial q = q(r) ∈ Q. We write

N := {1, . . . , n}

28



and define a notation of composition of tuples by

ab := (ab1 , . . . , abm) for b ∈ N m and a = (a1, . . . , an). (4.9)

The permutation invariant subset of Q is given by

Qperm := {q ∈ Q | ∀σ ∈ Sn : q(r) ≡ q(rσσ)}

with rσσ := (rσiσj )1≤i,j≤n, which corresponds to Pperm. The following lemma
essentially states that Qperm can be spanned by symmetrizing all monomials
of r:

Lemma 4.3.

Qperm = span

∑
σ∈S

m∏
i=1

m∏
j=1

(rσiσj )αij | m ∈ N,m ≤ n, α ∈ Nm×m

.
Proof. If q ∈ Qperm, then

1
n!

∑
σ∈Sn

q(rσσ) = 1
n!
q(r) = q(r).

Applying this identity to all monomials

q(r) =
m∏

i=1

m∏
j=1

r
αij

ij

yields the result.

Lemma 4.4. For m ∈ N, m ≤ n and α ∈ Nm×m,

Bα(u) =
∑

γ∈N m

m∏
i=1

m∏
j=1

(uγi · uγj )αij .

Proof. In this proof, we will use the distributive law of addition and multi-
plication in the following form:

m∏
j=1

∑
i∈I

f(i, j) =
∑

γ∈Im

m∏
j=1

f(γj , j).

For some β ∈ B we write βi,j for its element indexed by i and j and βi,j
l for

the l-th entry of said element. Then

M
(i)
β(i)(u) =

∑
γ∈N

|uγ |2α̂i

i−1∏
j=1

(
u

⊗αji
γ

)
βj,i

 m∏
j=i+1

(
u

⊗αij
γ

)
βi,j


=
∑
γ∈N

|uγ |2α̂i

i−1∏
j=1

αji∏
l=1

u
γ,βj,i

l

 m∏
j=i+1

αij∏
l=1

u
γ,βi,j

l

.
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With the notation B from eq. (4.6), we finally get
m

α∏
i=1

M (i)(u) =
∑
β∈B

m∏
i=1

M
(i)
β(i)

=
∑
β∈B

m∏
i=1

∑
γ∈N

|uγ |2α̂i

i−1∏
j=1

αij∏
l=1

u
γ,βj,i

l

 m∏
j=i+1

αij∏
l=1

u
γ,βi,j

l


=
∑
β∈B

∑
γ∈N m

m∏
i=1

|uγi |2α̂i

i−1∏
j=1

αji∏
l=1

u
γi,β

j,i
l

 m∏
j=i+1

αij∏
l=1

u
γi,β

i,j
l


=
∑
β∈B

∑
γ∈N m

m∏
i=1

|uγi |2α̂i

m∏
j=i+1

αij∏
l=1

(
u

γi,β
i,j
l

)(
u

γj ,βi,j
l

)

=
∑

γ∈N m

m∏
i=1

|uγi |2α̂i

m∏
j=i+1

∑
β∈{1,2,3}αij

αij∏
l=1

(uγi,βl
)(uγj ,βl

)

=
∑

γ∈N m

m∏
i=1

|uγi |2α̂i

m∏
j=i+1

αij∏
l=1

3∑
β=1

(uγi,β)(uγj ,β)

=
∑

γ∈N m

m∏
i=1

|uγi |2α̂i

m∏
j=i+1

αij∏
l=1

uγi · uγj

=
∑

γ∈N m

m∏
i=1

|uγi |2α̂i

m∏
j=i+1

(
uγi · uγj

)αij

=
∑

γ∈N m

m∏
i=1

m∏
j=1

(
uγi · uγj

)αij
.

With the above lemma, it is clear that Theorem 4.1 holds for

Q̃perm = span

 ∑
γ∈N m

m∏
i=1

m∏
j=1

(
rγiγj

)αij | m ∈ N, α ∈ Nm×m

.
All that remains is to show that Q̃perm = Qperm. This follows directly from
the following lemma:

Lemma 4.5. For m ∈ N, m ≤ n, denote

Q(m)
perm := span

∑
σ∈Sn

m∏
i=1

m∏
j=1

(rσiσj )αij | α ∈ Nm×m

 and

Q̃(m)
perm := span

 ∑
γ∈N m

m∏
i=1

m∏
j=1

(rγiγj )αij | α ∈ Nm×m

.
Then Q̃(m)

perm = Q(m)
perm.
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The proof of Lemma 4.5 requires two more auxiliary results:

Lemma 4.6. We equip N m with the lexicographical order and, with the tuple
composition defined in eq. (4.9), and denote by Γ := {γ ∈ N m | γ = min{σγ |
σ ∈ Sn}} the set of representatives of the equivalence classes {σγ |σ ∈ Sn},
and Cγ := #{σγ |σ ∈ Sn}. Then

∑
γ∈N m

m∏
i=1

m∏
j=1

(
rγiγj

)αij =
∑
γ∈Γ

Cγ

n!
∑

σ∈Sn

m∏
i=1

m∏
j=1

(
rσγi σγj

)αij
.

Proof. Any σ ∈ Sn induces a bijection γ 7→ σγ on N m. Thus for all σ ∈ Sn

∑
γ∈N m

m∏
i=1

m∏
j=1

(
rγiγj

)αij =
∑

γ∈N m

m∏
i=1

m∏
j=1

(
rσγi σγj

)αij

and therefore∑
γ∈N m

m∏
i=1

m∏
j=1

(
rγiγj

)αij =
∑

γ∈N m

1
n!

∑
σ∈Sn

m∏
i=1

m∏
j=1

(
rσγi σγj

)αij
.

Grouping together identical terms yields the result.

The other auxiliary result expresses the elementary combinatorial idea
that elements of Γ rather than (1, . . . ,m) ∈ Γ have repeated values.

Proposition 4.7. Let m ≥ 1. Then Γ = {(1, . . . ,m)}∪Γ′, where Γ′ := {γ ∈
Γ | maxi γi ≤ m− 1}.

Proof of Lemma 4.5. The proof uses induction over m. The base case m = 0
is trivially true as Q(0)

perm = Q̃(0)
perm = span{1}. For the induction step, let

m ∈ N, m ≤ n and α ∈ Nm×m arbitrary. The functions

q(r) :=
∑

σ∈Sn

m∏
j,k=1

(rσjσk
)αjk ∈ Qperm, and

q̃(r) := n!
C{1,...,m}

∑
γ∈N m

m∏
j,k

(rγjγk
)αjk ∈ Q̃perm

span Q(m)
perm and Q̃(m)

perm, respectively. We will now show that q(r) − q̃(r) ∈
Q(m−1)

perm = Q̃(m−1)
perm . The result will follow from this because Q(m−1)

perm ⊂ Q(m)
perm

and Q̃(m−1)
perm ⊂ Q̃(m)

perm by definition. Using the previous two results, we write

q̃(r) − q(r) = n!
C{1,...,m}

∑
γ∈Γ

Cγ

n!
∑

σ∈Sn

m∏
i=1

m∏
j=i

(rσγi σγj
)αij −

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσiσj )αij

=
∑
γ∈Γ′

Cγ

C{1,...,m}

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσγi σγj
)αij .
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Next, we denote
α

(γ)
kl :=

∑
1≤i≤j≤m
γi=k, γj=l

αij

and with that write

q̃(r) − q(r) =
∑
γ∈Γ′

Cγ

C{1,...,m}

∑
σ∈Sn

m−1∏
k=1

m−1∏
l=k

(rσkσl
)α

(γ)
kl .

Using the definition of Γ′, we now have m − 1 as the upper bound of the
products. Also note that we used the fact that α(γ)

kl = 0 whenever k > l.
Since by definition

∑
σ∈Sn

m−1∏
k=1

m−1∏
l=k

(rσkσl
)α

(γ)
kl ∈ Q(m−1)

perm

for every γ, we finally have

q̃(r) − q(r) ∈ Q(m−1)
perm = Q̃(m−1)

perm ,

which completes the proof of the induction step.

Proof of Theorem 4.1. With the above lemmas, all the work is done, so we
summarize: with Lemma 4.4 we see that the Bα span Q̃perm and Lemma 4.5
shows, using lemma 4.3, that Qperm = Q̃perm. Thus, the Bα span Qperm.

4.3 Approximation error estimate

In this section, we present the core convergence result, showing that invariant
polynomials, and thus the moment tensor potential, can approximate the
tight-binding quantum model as introduced in Section 2.3. Note that in the
following analysis, we take the number of neighbors n to be fixed. This is
essentially equivalent to assuming a finite Rcut and that the atoms do not
get “too close” to each other. These assumptions fit the real-world scenario
we want to model, so they are not problematic for our actual application.
However, as Shapeev mentions in [56], performing the analysis for variable
n is not trivial.

To this end, we assume that the hopping term φ(u) is analytically ex-
tended to some box

Vδ :=
{
ζ ∈ C | Re(ζ) ∈ [−R− δ,R+ δ]d ∧ Im(ζ) ∈ [−δ, δ]d

}
.

For models in which φ has a singularity in ζ = 0, like φ(ζ) = β0 exp(−q|ζ|) or
φ(ζ) = β0R

−n [26, eq. (7.24),(7.25)], we assume φ can be approximated by
some analytical function, for example using Hermite polynomials [56]. The
proof of the convergence theorem requires some results from approximation
theory. First, an error estimate for interpolation polynomials from [58] as
presented in [32]:
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Definition 4.8 (Bernstein’s regularity ellipse). A function f ∈ C∞([−1, 1])
has Bernstein’s regularity ellipse Eρ if it admits an analytic extension to the
closed ellipse

Eρ :=
{
ζ ∈ C | |z − 1| + |z + 1| ≤ ρ+ ρ−1

}
for some ρ > 1. For f ∈ C∞([−1, 1]n), we define

E(j)
ρ := [−1, 1]j−1 × Eρ × [−1, 1]n−j−1

equivalently.

Proposition 4.9. For some function f ∈ C∞([−1, 1]) with regularity ellipse
Eρ0, let pN ∈ PN ([−1, 1]) be the interpolation polynomial of f with respect
to the Chebyshev-Gauss-Lobatto nodes

ξj = cos πj
N
, j = 1, . . . , N.

Then the following approximation error estimate holds:

∥f − pN ∥L∞ ≤ cN
ρN

ρ− 1
max
ζ∈Eρ

|f(ζ)| (4.10)

for all ρ ∈ (0, ρ0).

This is extended to functions in several variables in [32] as follows: for
multi-dimensional f ∈ C∞([−1, 1]n) we get the Chebyshev-Gauss-Lobatto
nodes in n dimensions as the n-fold Cartesian product of the one-dimensional
nodes.

Proposition 4.10. Let f ∈ C∞([−1, 1]n) such that f extends to E(j)
ρ0 for

some ρ0 > 1 and all j = 1, . . . , n. Let pN be the interpolating polynomial
with respect to the Chebyshev-Gauss-Lobatto nodes in n dimensions. Let

Mρ(f) := max
1≤j≤n

max
ζ∈E(j)

ρ

|f(ζ)|.

Then for ρ ∈ (0, ρ0) it holds

∥f − pN ∥L∞ ≤ cN logn−1N
ρ−N

ρ− 1
Mρ(f). (4.11)

Proof. Let Ii
Nf be the polynomial interpolating f with respect to ζi and

INf the interpolation polynomial pN . Furthermore, let

X−i := {ζ1, . . . , ζi−1, ζi+1, . . . , ζn}
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for i = 1, . . . , n. Then the triangle inequality and eq. (4.10) yield

∥f − INf∥L∞ ≤ ∥f − I1
Nf∥L∞ + ∥I1

N (f − I2
N . . . In

Nf)∥L∞

≤ ∥f − I1
Nf∥L∞

+∥I1
N (f − I2

Nf)∥L∞ + ∥I1
NI

2
N (f − I3

Nf)∥L∞

+ . . .+ ∥I1
N . . . In−1

N (f − In
Nf)∥L∞

eq. (4.10)
≤ c

[
max
X−1

max
ζ1∈E(1)

ρ

|f(ζ)| + logN max
X−2

max
ζ2∈E(2)

ρ

|f(ζ)|

+ . . .+ logn−1N max
X−n

max
ζn∈E(n)

ρ

|f(ζ)|
]
N
ρ−N

ρ− 1
,

where we use an upper bound on the single-variable interpolant similar to
[40]:

∥Ii
Nf∥L∞ ≤ c logN∥f∥L∞

This completes the proof of eq. (4.11).

We can now formulate and prove the main convergence result from [56]:

Theorem 4.11. Define

Mδ0 := max
ζ∈Vδ0

φ(ζ).

Then there exists C > 0 and ρ > 1, both depending only on n, δ0, Mδ0 and
T , such that for any m ∈ N there exists some pm ∈ Pperm ∩ Prot such that

max
u:maxi |ui|≤R

|V q(u) − pm(u)| < Cρ−m. (4.12)

Proof. In this proof, we will first obtain bounds on φ(u), on H(u), and finally
on the interpolating polynomial. Then we symmetrize this polynomial as a
final step.

For δ ≤ δ0/2 , the Cauchy integral formula bounds

|φ′(z)| ≤
∣∣∣∣∫

∂V2δ

φ(ζ)
(ζ − z)2 dζ

∣∣∣∣ ≤ (2R+ 8δ)M2δ

δ2 =: M ′
δ ∀z : |z| ≤ δ.

So for δ ∈ (0, δ0/2] and z ∈ Vδ, the intermediate value theorem gives us

| Im(φ(z))| ≤ Im(φ(Re(z))) +M ′
δ0 Im(z) ≤ M ′

δ0δ.

Let
Uδ :=

n∪
i=1

[−R,R]i−1 × Vδ × [−R,R]n−i−1.
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H(u) is symmetric for u ∈ Uδ with at most 2n elements being non-real. We
can thus estimate for the Frobenius norm:

∥ Im(H(u))∥ ≤
√

2nM ′
δδ ∀u ∈ Uδ

By the Bauer-Fike theorem [9], we can bound the imaginary part of every
element σ ∈ Sp(H(u)) of the spectrum of H:

| Im(σ)| ≤
√

2nM ′
δδ ∀u ∈ Uδ

The real part of the spectrum elements is bounded directly by the norm:

| Re(σ)| ≤ ∥H(u)∥ ≤ nMδ0 ∀u ∈ Uδ, σ ∈ Sp(H(u))

We now fix δ such that √
2nM ′

δδ <
π

3
kBT

and use the representation for the matrix function from [35, Definition 1.11]:

V (u) = − 1
2πi

∫
∂Ω

f(z)
(
(H(u) − zI)−1

)
1,1

dz

where

Ω :=
{
z ∈ C

∣∣∣ | Re(z)| ≤ nMδ0 + π

3
kBT, | Im(z)| ≤ 2π

3
kBT

}
.

Note that Ω is chosen such that it contains the spectrum of H(u) for all
u ∈ Uδ and that ∂Ω is separated from every eigenvalue λ of H(u) by the
distance

|z − λ| ≥ π

3
kBT.

Also, f is regular on Ω. Hence we can estimate

∥(H(u) − zI)−1∥ ≤
(
π

3
kBT

)−1
,

and thus

max
u∈Uδ

|V (u)| ≤ max
z∈Ω

|f(z)| meas(∂Ω)
(
π

3
kBT

)−1
≤ C

where C depends only on n, δ0, Mδ0 and T as desired. It remains to notice
that we can pick some ρ > 1 such that

{z ∈ C | | z/R − 1| + | z/R + 1| ≤ ρ+ ρ−1} ⊂ Vδ.

Thus, we can apply Proposition 4.10 to the function f(z) := V (Rz) to obtain
an interpolating polynomial p̃m(u) such that

max
u:maxi |ui|≤R

|V (u) − p̃m(u)| ≤ Cρ−m.
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All that remains is to recover the desired symmetries. First, we note that
p̃m ∈ Pperm by construction; indeed, the function f(z) = V (Rz) is sym-
metric with respect to permutation of variables, and so are the Chebyshev-
Gauss-Lobatto nodes on [−1, 1]n. Thus uniqueness of interpolation yields
the permutation symmetry of p̃m. Finally, we set

pm(u) :=
∫

Q∈O(3) p̃m(Qu) dQ∫
Q∈O(3)dQ

∈ Pperm ∩ Prot,

(where dQ denotes the Haar measure) and with the rotation invariance of
V , we get eq. (4.12).

It is worth noting that integration with respect to rotation is only needed
in the proof as a technical device. In reality, we construct our approximation
of V as a linear combination of the Bα polynomials. It is thus directly
rotation invariant by construction, without using Chebyshev-Gauss-Lobatto
interpolation as an intermediate step.

4.4 Efficient evaluation

Evaluating the basis polynomials naively as defined in eq. (4.3) requires the
addition of 3

∑
α′

i/2 summands. This quickly becomes prohibitively expen-
sive, but can be avoided by using the symmetry of the moment tensors and
the fact that many of the sub-products of each summand will be used repeat-
edly across our collection of basis functions. This will allow us to separate
the evaluation into some off-line precomputation step and a computationally
efficient on-line evaluation step. During the precomputation step, we build
a recursive representation of the entire basis set, carefully grouping together
terms we know to be equal due to symmetry and short-circuiting the re-
cursive decomposition of each basis function whenever values from another
function’s decomposition can be reused. With that, the actual evaluation of
all functions in our basis set can be written as a simple loop which resembles
the element-wise product of arrays. In this section, we will describe how to
obtain this decomposition and present the on-line evaluation step.

For that, we first note that the symmetric moment tensors Mµ,ν have(ν+2
ν

)
unique entries. This allows us to simplify the contraction between n

indices of two moment tensors M1, M2 as∑
β∈B

cβ(M1)β(M2)β, (4.13)

with
B := {(β1, . . . , βn) ⊂ {1, 2, 3}n | β1 ≤ . . . ≤ βn} (4.14)

being the set of sorted multi-indices of length n and cβ the multiplicity of
the index β. That is, cβ is the number of permutations σ ∈ Sn such that

(β1, . . . , βn) ̸= (βσ(1), . . . , βσ(n)).
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In this manner, we reduce the number of summands in this basic contraction
from the exponential 3n to the quadratic

(n+2
n

)
.

Next, we decompose the long contraction between all moment tensors
needed for some Bα recursively into contractions between two intermediate
tensors. This serves two purposes:

a) Many intermediate pairs can be reused for several different Bα, thus
further reducing computation time.

b) It is relatively easy to compute the derivative of these two-term con-
tractions, which is needed to compute the forces acting on individual
particles.

To this end, we use contractions between two tensors as defined in eq. (4.8),
yielding first our intermediate tensors and finally our scalar basis functions
(which, in the following notation, will appear as zero-dimensional tensors).

To characterize the intermediate tensors, we use notation as in Sec-
tion 4.1, but allow non-zero entries for α to correspond with their non-zero
dimensions. This yields tensors Bα̂,α with dimension

∑
αii, where the Bα̂,α

with dimension zero are our final basis functions.
In order to decompose some given Bα̂,α, we split α̂ in two vectors γ̂ =

(α1, . . . , αk) and η̂ = (αk+1, . . . , αn) for some 1 < k < n and α into

γ =


α11 +

∑n
i=k+1 αi1 α12 · · · α1k

α12 α22 +
∑n

i=k+1 αi2 · · · α2k
...

... . . . ...
α1k α2k · · · αkk +

∑n
i=k+1 αik

 and

η =
αk+1,k+1 +

∑k
i=1 αi,k+1 αk+1,k+2 · · · αk+1,n

αk+1,k+2 αk+2,k+2 +
∑k

i=1 αi,k+2 · · · αk+2,n
...

... . . . ...
αk+1,n αk+2,n · · · αnn +

∑k
i=1 αi,n


To find an optimal decomposition for some Bα̂,α, we choose some permu-
tation of (α̂, α) as defined in Section 4.1 and some k such that Bγ̂,γ and
Bη̂,η have minimal dimension. Now, Bα̂,α can be represented as contraction
between Bγ̂,γ and Bη̂,η over the indices from the block matrixα1,k+1 · · · α1,n

... . . . ...
αk,k+1 · · · αk,n

 .
The entries of the

∑
i αii-dimensional tensors are then given by

(Bα̂,α(u))β̃ =

 k
α∏

i=1
M (i)(u)


β̃

:=
∑
β∈B

k∏
i=1

M
(i)
β(i)(u) (4.15)
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with the definitions from Section 4.1 and

β̃ :=
k⊕

i=1
βi,i

fixed for every entry (that is, while computing some given entry of Bα̂,α, ev-
ery βi,i in the right hand side of eq. (4.15) is also fixed). Note that, unlike the
moment tensors, the tensors Bα̂,α need not be symmetric in every dimension.
However, the dimensions corresponding to the same diagonal entry of α are
still equivalent, so we can exploit multiplicity of indices among equivalent
dimensions again for computational performance. Another potential source
of speedup is the fact that some decomposition components such as Bγ̂,γ

can be used in the computation of several different Bα̂,α. We now formalize
the above considerations:

Precomputation The Bα̂,α are decomposed as functions, i.e. the values u
are not used in this step. The precomputation step consists of the following
substeps:

1. Starting with the initial set of (α̂, α) ∈ A, decompose them into (γ̂, γ)
and (η̂, η). Continue this recursively until only α ∈ N1×1 remain. At
every decomposition step, choose a permutation of (α̂, α) as defined in
eq. (4.4) and (4.5), and k such that the resulting intermediate tensors
have minimal dimensions. Recall that we can choose the permutation
of (α̂, α) freely as it does not affect the corresponding function. Also,
make sure not to produce separate equivalent (α̂, α), but reuse existing
once where possible. This allows for intermediate results to be used for
several different basis functions in the end.

2. Next, we enumerate all unique entries of the resulting Bα̂,α as bi, taking
into account the symmetries in the different dimensions where possible.

3. The tensors corresponding to each of the basic (α̂, α) with α ∈ N1×1

are equal to the moment tensors Mα̂1,α11 ; by definition their entries bi

are determined by µi = α̂1 and multi-indices βi ∈ N3 with |βi| = α11
(during the evaluation acting on the uj ∈ R3 as exponents uβi

j ). For
those entries, we write mµi,βi

:= bi.

4. The entries of the other tensors are contractions between elements of
tensors they are decomposed into. We can thus write them as

bi =
Ji∑

j=1
cjbljbkj

, (4.16)

where cj reflects the multiplicity of the summand respecting symme-
tries and the vectors l and k hold the indices of the entries of the
decomposing tensors.
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5. Finally, output the resulting

• indices of the bi corresponding to the scalar-valued basis functions
from A,

• indices of the moment tensor entries and the corresponding µi

and βi,
• tuples (i, c, l, k) defining the sums in eq. (4.16).

Evaluation In the evaluation step, the basis functions are evaluated for
some input u using the decomposition obtained through the precomputation
step.

1. Calculate all the basic moment tensor entries mµi,βi
(u).

2. Calculate the other bi(u) from the tuples (i, c, l, k). This can be imple-
mented as a simple loop over contiguous arrays, which is favorable for
performance.

3. Pick the final bi(u) corresponding to the desired basis set.

The final site energy can then be evaluated as

V (u) =
∑

(α̂,α)∈A

cαBα̂,α(u)

with some coefficient vector cα obtained from training the model on some
dataset.
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5 Numerical results

5.1 Training

From here on, we will omit the α̂ in the notation and simply write Bα for
Bα̂,α for simplicity of notation unless we need to refer to α̂ explicitly.

Up until now, our basis functions Bα have been polynomials in the entries
of the distance vectors. As such, they do not satisfy the smoothness condition
at Rcut. We thus replace the ∥u∥2µ term in eq. (4.2) by some cutoff function
fµ,ν(r) that guarantees Bα(u) = 0 for ∥u∥ > Rcut in a smooth manner. For
that, we define

f̂µ,ν(r) :=
{
r−ν−2+µ(Rcut − r)2 r < rcut

0 r ≥ Rcut
(5.1)

The r−ν compensates for the degree of the u⊗ν and r−2 favors closer atoms
over more distant ones. In [56], this function is then normalized on the
interval [Rmin, Rcut] with the weight r2ν(r−Rmin)(Rcut − r). Rmin is chosen
such that any two atoms never approach closer than Rmin. The concrete
values used in both [56] and this work are Rmin := 1.9Å and Rcut := 4.9Å.
The normalized functions fµ,ν are then used to compute the moment tensors
as

Mµ,ν(u) :=
n∑

i=1
fµ,ν(∥ui∥)u⊗ν

i . (5.2)

However, we found in our experiments that simply setting

fµ,ν(r) := Cµf̂µ,ν(r)

with Cµ being the µ-th Chebyshev polynomial yields a model of almost the
same quality as the normalizing approach; in the experiments we conducted
it even performed very slightly better. Thus, the Chebyshev variant was used
to produce the plots below. We saw that the choice of the cutoff function
can have a major influence on the quality of the results. Using the function
f̂ without further modification increased the error by about a factor of two
in the tungsten experiments in Section 5.3.1. Further optimizing the cutoff
function might thus be an interesting task for future work.

For some fixed set A of α, we train our model using regularized lin-
ear regression as follows: for some database of atomic configurations X =
{x(k) | k = 1, . . . ,K}, where x(k) consists of N (k) atoms, and their energies
E(x(k)) = E(k) and forces −∇E(x(k)) = f (k), we form an overdetermined
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system of linear equations by

N(k)∑
i=1

∑
α∈A

cαB(Dx(k)
i ) = E(k)

∂

∂x
(k)
j

N(k)∑
i=1

∑
α∈A

cαB(Dx(k)
i ) = −f (k)

j ,

(5.3)

which can be written in matrix form as

Mc = g. (5.4)

A short analysis regarding the accuracy of least squares approximation will
be given in the next subsection.

Cross-validation As the system in eq. (5.4) may be ill-conditioned, and
to avoid overfitting, some regularization scheme must be employed. For the
results in this work, l2-regularization was used, giving the problem

min
c

∥Mc− g∥l2 + γ∥c∥l2 .

The parameter γ was determined by 16-fold cross-validation, following the
work of Shapeev. For this, the training dataset X is divided into 16 random
and equally large subsets X̃ := {X1, . . . , X16}. Then, for each i = 1, . . . , 16,
a model is trained on X̃ \Xi using different values for γ and then evaluated
on Xi. The value for γ which produces the lowest error is selected to train
the model on the entire set X. In our experiments with tungsten, a good
value for γ typically ended up being in the order of 10−10 to 10−9. The
cross-validation and the least squares computation was performed using the
implementation in the scikit-learn package [50].

5.2 Least squares approximations

We will now summarize some basis results regarding the stability and accu-
racy of least square approximations based on [18].

Let ρΩ be a probability measure on some domain Ω ⊂ Rd. The goal is to
estimate an unknown function f : Ω → R from a set of samples (yi)i=1,...,n.
These are are observations of f at the points (xi)i=1,...,n which are i.i.d.
with respect to ρΩ. The error between f and its estimator f̃ is given in the
L2(Ω, ρΩ) norm

∥v∥ρ :=
(∫

Ω
|v(x)|2 dρΩ (x)

)1/2
.

We write ⟨·, ·⟩ρ for the associated inner product.
Let Vm be a subspace of L2(Ω, ρΩ) with dim(Vm) = m. We want to

find the best approximation of f in Vm, which is given by the orthogonal
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projection of f onto Vm. This can generally not be computed directly as we
cannot access ρΩ or f outside the set (xi)i=1,...,n. Therefore, we consider the
least squares problem

w = arg min
v∈Vm

n∑
i=1

|yi − v(xi)|2

instead. Assuming noise-free data, we have yi = f(xi) and can thus write

w = Pn
mf := arg min

v∈Vm

∥f − v∥n,

where

∥v∥n :=
(

1
n

n∑
i=1

|v(xi)|2
)1/2

is the L2 norm with respect to the empirical measure and ⟨·, ·⟩ the associated
inner product.

Stability Let (L1, . . . , Lm) be a basis of Vm, G := (⟨Lj , Lk⟩n)j,k=1,...,m and
f := (⟨f, Lk⟩n)k=1,...,m. Then the solution of the least squares problem can
be written as

w =
n∑

j=1
ujLj ,

where u = (uj)j=1,...,m is the solution of the m×m system

Gu = f .

For the purpose of this analysis, we will assume (L1, . . . , Lm) is an orthonor-
mal basis with respect to L2(Ω, ρΩ). This requirement is not needed for the
actual computation as the solution w is independent of the basis used to
compute it. Then, we have

E[G] = (⟨Lj , Lk⟩)j,k=1,...,m = 1

We want understand how the random matrix G deviates from 1 in proba-
bility as this allows us to compare the norms ∥ · ∥n and ∥ · ∥ρ by

∥G − 1∥2 ≤ δ ⇐⇒ |∥v∥2
n − ∥v∥2

ρ| ≤ δ∥v∥2
ρ for all δ ∈ [0, 1], v ∈ Vm,

where ∥ · ∥2 for matrices denotes the spectral norm. For this, we define

K(m) := sup
x∈Ω

n∑
j=1

|Lj(x)|2.
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Note that this is independent of the choice of basis and only depends on the
space Vm and ρΩ and that

K(m) ≥
n∑

j=1
∥Lj∥2 = m.

With this, we can formulate

Theorem 5.1. For 0 < δ < 1, the estimate holds that

P(∥G − 1∥2 > δ) ≤ 2m exp
(

− cδ

K(m)

)
,

where cδ := δ + (1 − δ) log(1 − δ) > 0.

From this, the stability condition

K(m) ≲ n

log(n)

can be derived. However, due the constants involved, the estimate needed to
satisfy the condition in Theorem 5.1 does generally not hold in our setting
for e.g. δ = 1/2 . We thus cannot assume our least squares system eq. (5.4) to
be well behaved and hence apply regularization as described in the previous
subsection.

Accuracy Let Pmf be the exact orthogonal projection of f onto Vm, in-
dependent of the samples (yi)i=1,n and let

em(f) := ∥f − Pmf∥ρ.

We assume that the function f is uniformly bounded by L. With the as-
sumption that our particles do not get too close to each other, implying a
lower bound on their relative distance and an upper bound for the number
of atoms in each neighborhood, this is reasonable in our setting. Then, from
[31, Thm. 11.3], we get an error estimate of the form

E
[
∥f − f̃∥2

]
≤ C

(
L2 (log(n) + 1)m

n
+ em(f)2

)
.

In our experiments, n was constant and we observed algebraic convergence
in m.

5.3 Numerical experiments

5.3.1 Systems of one element

In the original paper, the moment tensor potential was trained on the
database GAP6 from http://www.libatoms.org/, which contains the en-
ergy of 9,693 unique atomic configurations and the forces on a total of
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Figure 3: Convergence of fitting and prediction error for the tungsten dataset
GAP6.

158,526 atoms contained within. Most of our work, including the experi-
ment in Figure 3, was also performed on this data set. The data in GAP6
was generated using DFT; while we only proved convergence of our model to
tight-binding. However, we will demonstrate convergence numerically [56].

With the “level” of a Bα̂,α given by

lev(Bα̂,α) :=
k∑

i=1

k∑
j=1

αi,j + 2
k∑

i=1
α̂i,

we define our basis set as

AN := {Bα̂,α | lev(Bα̂,α) + 8k ≤ N}.

In the above, k is the length of the α̂ ∈ Nk. Note that this deviates from
[56], but as we were not able to produce basis sets of the size reported there
using their definition of AN , we chose the above as it does show proper
convergence behavior. The N is now our discretization variable in the sense
that—given enough training data—we can expect our potential to converge
as N → ∞.

For the experiment in Figure 3, we chose, matching [56], N = 62 and fur-
ther restricted k ≤ 4, µ ≤ 5 and ν ≤ 4. Due to the unclear differences in the
definition of AN , this left us with 23,058 basis functions, while Shapeev re-
ports #AN = 11,133 with the above choice of parameters. The performance
of the models is measured via the root mean square error of the forces. For
the prediction error, the models were trained on 60% of datasets and the
plot shows the prediction error for the forces of remaining 40%. The fitting
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Figure 4: Convergence of fitting and prediction error for systems consisting of
silver, copper, palladium and platinum using the atomic number to capture
the different elements as described in eq. (5.5).

error was calculated after training the model on the entire dataset and then
predicting all forces.

It can be seen that both the prediction error as well as the fitting er-
ror converge algebraically with a rate of about #A−0.26 after some pre-
asymptotic regime with faster convergence. The value −0.26 is not a uni-
versal constant, but depends on the training data. We can also observe the
predictive power to be quite close to the fitting error. In the original paper,
Shapeev reports a slower rate of convergence with #A−0.227, but reaches a
better root mean square error of 0.0427eV/Å compared to our 0.0733eV/Å
despite the overall smaller basis set.

5.3.2 Systems of several elements

The moment tensor potential can easily be modified to handle systems con-
sisting of chemically different atoms. One natural way to implement this is
by modifying the cutoff function to reflect the difference between elements
in the pair interaction, for example by setting

f (m)
µ,ν (rij ; i, j) := ZiZjfµ,ν(rij), (5.5)

where Zi is the atomic number of the atom i. Using the product of the
atomic numbers of the involved atoms to capture the difference in the pair
interactions is a common technique used in machine learning, for example
in Coulomb matrices [54, 48].
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We investigated the fitting and prediction error as for the tungsten case
for the dataset BFCC-13 from http://qmml.org [49], which consists of ap-
proximately four thousand systems of Ag-Pd, Cu-Pt and Ag-Pt alloys. The
results are shown in Figure 4. In this setting, the choice of cutoff func-
tion proved to be more important than in the pure tungsten case, with the
Chebyshev variant performing significantly better than the orthonormal-
ized one. Due to the smaller dataset, we picked parameters yielding fewer
basis functions: as before, we set k ≤ 4, µ ≤ 5 and ν ≤ 4, but now re-
stricted lev(Bα) ≤ 56, yielding 11,748 basis functions. The model is able to
reproduce the interactions between the chemically different atoms as in the
single-element case. The rate or convergence is slightly slower with #A−0.22,
but due to the longer pre-asymptotic regime with fast convergence, an er-
ror of similar magnitude as the tungsten error is reached, even with the
relatively smaller basis set.

Unfortunately, the prediction error is much worse than the fitting error
on this dataset. It appears the 60% of configurations the model was trained
on did not contain sufficient information about the remaining 40% to prop-
erly predict the forces in the test set. The fact that the prediction error
starts to grow again as the number of basis functions increases suggests
we are overfitting the model to our training set. This highlights one of the
caveats of machine learning potentials: the region of the potential energy
surface in which properties are to be predicted must be represented in the
available training data sufficiently well; thus a large computational effort to
generate that data might be needed.

An alternative way to encode the particles’ types is using the electroneg-
ativity χ instead of the atomic numbers, giving the cutoff function

f (m)
µ,ν (rij ; i, j) := χiχjfµ,ν(rij). (5.6)

The hope would be that this quantity is a better label for the chemical and
physical properties of the element than the atomic number; in the sense that
we can expect elements with a similar electronegativity to exhibit similar
behavior, something we cannot expect from atomic number. While elements
with a similar atomic numbers often have fundamentally different properties
(consider the direct neighbors fluorine and neon), the electronegativity is
related to the elements actual interaction with surrounding electrons.

The direct comparison of the fitting error in Figure 5 shows that the elec-
tronegativity represents the ensembles significantly better for small numbers
of basis functions. But as the number of basis functions grows, the repre-
sentation based on atomic numbers manages to adapt to the training data
similarly well.

More interesting is the comparison between the predictive power of the
two variants, which is depicted in Figure 6. As in the experiment using
atomic numbers, the accuracy of the predicted forces is considerably worse
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Figure 5: Comparison of the fitting error between capturing the particle’s
type by its atomic number (eq. (5.5)) and by its electronegativity (eq. (5.6)).
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Figure 6: Comparison of the prediction error between capturing the particle’s
type by its atomic number (eq. (5.5)) and by its electronegativity (eq. (5.6)).
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than the fitting precision. We can also again see the increase in the error as
the number of basis functions gets too large and overfitting occurs. However,
the predictions are consistently better than those based on the atomic num-
bers, a comparatively good accuracy is reached fairly early and the problems
with overfitting are less severe. This allows for two observations:

a) The electronegativity of atoms is not just theoretically a better descrip-
tor providing more relevant information, using it over atomic numbers
yields a direct and measurable improvement of the resulting machine
learning potentials. The increased predictive power is particularly no-
ticeable and worthy of mention.

b) The quality of the cutoff function in general and its dependence on the
particle types in a multi-element setting in particular play a crucial
role in the quality of the resulting accuracy. This leaves room for fur-
ther research, with the possibility of creating better models without a
(significant) increase in the computational cost.

Of course, improving the moment tensor potential by changes to the cutoff
function is an empirical process again. But as the model is systematically
improvable regardless of the exact choice for the cutoff function, it provides
a way to tweak the model’s performance while retaining the core advantage
of the non-parametric potential.
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6 Conclusion
In this work, we gave an overview about particle methods for computational
material design. We revised the quantum mechanical foundations such as the
Schrödinger equation, followed be an summary of important approximations
that make the simulation of quantum systems computationally feasible.

We then moved on to the specific problem setting this thesis focuses on:
mesoscale atomistic simulations. We reviewed some state-of-the-art models
for conducting such simulations and analyzed their advantages and disad-
vantages. The two main points of consideration were computationally effi-
ciency and systematically improvability, i.e. the possibility to fit a model to
quantum-mechanical or experimental data to arbitrary precision.

The latter has been approached using machine learning techniques in the
recent past. We found that so called “descriptors”, which map an atomic
environment to a tuple of numbers, are a key ingredient of modern machine
learning potentials. Two popular examples were described at length.

Section 4 provided an in-depth analysis of a new class of descriptors for
machine learning potentials based on moment tensors, due to Shapeev in
2016 [56]. We presented proofs for the fact that the moment tensor potentials
built from the moment tensors are theoretically capable of approximating
the quantum-mechanical tight-binding model to arbitrary precision.

The computationally efficient evaluation of basis polynomials used in
the moment tensor potentials required some additional work. As their di-
rect definition involves the summation of an exponentially growing number
of terms, Shapeev’s idea to separate the computation into an off-line and
an on-line step was used: first, a network-like representation of the entire
basis set is pre-computed, using the symmetry of the moment tensors and
the repeated occurrence of intermediate terms. Then, the basis functions
could be evaluated efficiently by feeding the atomic coordinates through the
network. An independent implementation of this strategy was developed for
numerical experiments.

With the above, we had all the tools in place to actually construct mo-
ment tensor potentials. Using a cutoff function, the invariant polynomials
were restricted to local atomic environments. This cutoff function proved to
be of further interest in our numerical experiments; more on that later.

Fitting the model to a training dataset was done using a least squares
approximation. We investigated the stability and accuracy of such approxi-
mations from a theoretical point of view. As instability concerns arose from
the theoretical considerations, which were confirmed numerically, a regular-
ization scheme was employed.

Lastly, numerical experiments were conducted on datasets of metallic
configurations. Those were created using density functional theory. While
convergence of the moment tensor potentials was only proven to tight-
binding models, convergence to density functional theory was demonstrated
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numerically. Fitting the model to a large dataset of tungsten configurations
showed the expected algebraic convergence of the error in the size of the ba-
sis set. It also allowed for the observation that, even with only one chemical
element involved, the choice of cutoff function can have a major influence
on the quality of the resulting model. We have not seen the importance of
this choice for the moment tensor potentials being stated elsewhere.

In addition to the fitting error, which was also measured by Shapeev,
we analyzed the potential’s predictive power. On the tungsten dataset, this
predictive power proved to be very promising, reaching accuracies close to
the fitting error. This shows that the moment tensor potentials can exhibit
good transferability to atomic configurations outside of their training data.

Further experiments were conducted on a dataset of metallic alloys. The
presence of different chemical elements in the configurations required to en-
code the particles’ types in the basis functions. This was done by introducing
a dependency on the types to the cutoff function. Two natural approaches,
using the atomic number and using the electronegativity of the involved
elements, were implemented and compared. To the best of our knowledge,
this was the first time such an analysis of the dependence of moment tensor
potentials on the encoding of chemical elements was performed. In addition
to the effect of the encoding of particle types, the choice of cutoff function
proved to be substantially more important than in the tungsten experiments.

Like in the single-element setting, the predictive power of the model was
assessed. For the multi-element configurations, the prediction error turned
out to be significantly larger than the fitting error and even failed to con-
verge. This highlighted one of the caveats of machine learning potentials:
if the region of the potential energy surface in which predictions are to be
made is not represented in the training data sufficiently well, the quality of
the predictions suffers considerably.

The problem of finding out how good a given configuration is represented
by an existing training set for the moment tensor potentials has been at-
tacked in recent publications [52, 30]. Using a D-optimality criterion, the
“novelty” of an atomic configuration with respect to the training data can
be estimated. With this, the moment tensor potentials can be used for active
learning methods and for learning on-the-fly, thus optimizing the number of
quantum machine calculations needed to achieve good results.

Outlook Several potential improvements to the methods presented here
come to mind. As our numerical experiments suggest, the choice of cutoff
function plays a non-negligible role in the performance of the model’s per-
formance. This leaves room for reducing the error without the additional
cost required by increasing the number of basis functions. Of course, the
process of picking a cutoff function is empirical by its nature; however, for
a fixed choice, the systematic improvability of the moment tensor potential
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is preserved.
One can also use a norm other than the l2 norm in the regularization of

the least squares system. Sparse solutions can be generated with an l0 regu-
larization [56]. Our knowledge about the smoothness of the target function
could also be exploited to improve the regularization: as we expect V ∈ C2

for the exact site energy function V (X), choosing a norm that punishes
large magnitudes in higher-order derivatives might help to reduce spurious
oscillations in the model.

Another angle of attack is the choice of machine learning method. In-
stead of using a least squares approximation, the basis functions Bα could
for example be used as descriptors for a neural network as they already
guarantee all relevant invariants.

In conclusion, the moment tensor potentials seem to be a promising
candidate for developing non-parametric, but computationally efficient in-
teratomic potentials. They can approximate both tight-binding and density
functional theory models with an algebraic rate of convergence. As we have
demonstrated, their transferability can be limited depending on the training
data. However, by applying active learning schemes, problematic configura-
tions can be identified and included in the training set using a quantum
model [52].

51



Acknowledgments
I would like to thank Prof. Dr. Michael Griebel and Prof. Dr. Marc Alexander
Schweitzer for advising this thesis and the Institute for Numerical Simulation
for allowing me to conduct my numerical experiments on their Atacama high
performance computing cluster.

Furthermore, a big thanks goes to the department for Virtual Material
Design of the Fraunhofer Institute for Algorithms and Scientific Comput-
ing (SCAI). They supported this thesis with hardware resources and access
to some helpful software. Two members of the department deserve special
mention: First of all Dr. Jan Hamaekers, with whom I had many very fruit-
ful discussions about the involved topics and who provided a huge amount
of useful advice and guidance. Also, James Barker, who kindly proof-read
an intermediate draft of this work. Any typographical mistake or language
error was most certainly introduced by me afterwards.

Last, but not least, I would like to thank my family for supporting me
throughout my years of studying.

52



References
[1] Ebrahim Asadi, Mohsen Asle Zaeem, Sasan Nouranian, and Michael I.

Baskes. Two-phase solidliquid coexistence of ni, cu, and al by molecular
dynamics simulations using the modified embedded-atom method. Acta
Materialia, 86:169 – 181, 2015.

[2] Alan Aspuru-Guzik, Roland Lindh, and Markus Reiher. The matter
simulation (r) evolution. ACS central science, 2018.

[3] James Barker, Johannes Bulin, Jan Hamaekers, and Sonja Mathias. LC-
GAP: Localized Coulomb Descriptors for the Gaussian Approximation
Potential, pages 25–42. Springer International Publishing, Cham, 2017.

[4] Albert Bartók. The Gaussian Approximation Potential: An Interatomic
Potential Derived from First Principles Quantum Mechanics. Springer
Science & Business Media, 2010.

[5] Albert P Bartók and Gábor Csányi. Gaussian approximation poten-
tials: A brief tutorial introduction. International Journal of Quantum
Chemistry, 115(16):1051–1057, 2015.

[6] Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing
chemical environments. Physical Review B, 87(18):184115, 2013.

[7] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaus-
sian approximation potentials: The accuracy of quantum mechanics,
without the electrons. Physical review letters, 104(13):136403, 2010.

[8] MI Baskes, JS Nelson, and AF Wright. Semiempirical modified
embedded-atom potentials for silicon and germanium. Physical Review
B, 40(9):6085, 1989.

[9] Friedrich L Bauer and Charles T Fike. Norms and exclusion theorems.
Numerische Mathematik, 2(1):137–141, 1960.

[10] Jörg Behler. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. The Journal of chemical physics,
134(7):074106, 2011.

[11] Jörg Behler. Representing potential energy surfaces by high-
dimensional neural network potentials. Journal of Physics: Condensed
Matter, 26(18):183001, 2014.

[12] Max Born and Robert Oppenheimer. Zur quantentheorie der molekeln.
Annalen der Physik, 389(20):457–484, 1927.

53



[13] Bastiaan J Braams and Joel M Bowman. Permutationally invariant
potential energy surfaces in high dimensionality. International Reviews
in Physical Chemistry, 28(4):577–606, 2009.

[14] Donald W. Brenner. Empirical potential for hydrocarbons for use in
simulating the chemical vapor deposition of diamond films. Phys. Rev.
B, 42:9458–9471, Nov 1990.

[15] Matt Challacombe. A simplified density matrix minimization for linear
scaling self-consistent field theory. The Journal of chemical physics,
110(5):2332–2342, 1999.

[16] Huajie Chen and Christoph Ortner. Qm/mm methods for crystalline
defects. part 1: Locality of the tight binding model. Multiscale Modeling
& Simulation, 14(1):232–264, 2016.

[17] Huajie Chen and Christoph Ortner. Qm/mm methods for crystalline
defects. part 2: Consistent energy and force-mixing. Multiscale Modeling
& Simulation, 15(1):184–214, 2017.

[18] Albert Cohen, Mark A Davenport, and Dany Leviatan. On the sta-
bility and accuracy of least squares approximations. Foundations of
computational mathematics, 13(5):819–834, 2013.

[19] Christopher R Collins, Geoffrey J Gordon, O Anatole von Lilienfeld,
and David J Yaron. Constant size descriptors for accurate machine
learning models of molecular properties. The Journal of Chemical
Physics, 148(24):241718, 2018.

[20] National Research Council et al. Getting up to speed: The future of
supercomputing. National Academies Press, 2005.

[21] Murray S. Daw and M. I. Baskes. Embedded-atom method: Derivation
and application to impurities, surfaces, and other defects in metals.
Phys. Rev. B, 29:6443–6453, Jun 1984.

[22] Soheil A Dianat and Raghuveer M Rao. Fast algorithms for phase
and magnitude reconstruction from bispectra. Optical Engineering,
29(5):504–513, 1990.

[23] Paul Adrien Maurice Dirac. The principles of quantum mechanics.
Number 27. Oxford university press, 1981.

[24] Andrew Ian Duff, MW Finnis, Philippe Maugis, Barend J Thijsse, and
Marcel HF Sluiter. Meamfit: A reference-free modified embedded atom
method (rf-meam) energy and force-fitting code. Computer Physics
Communications, 196:439–445, 2015.

54



[25] H Fang, Philip Michael Gullett, Alexander Slepoy, Mark F Horstemeyer,
Michael I Baskes, Gregory John Wagner, and Mo Li. Numerical tools for
atomistic simulations. Technical report, Sandia National Laboratories,
2004.

[26] Mike Finnis. Interatomic forces in condensed matter, volume 1. OUP
Oxford, 2003.

[27] Peter Galison. Image and logic: A material culture of microphysics.
University of Chicago Press, 1997.

[28] Michael Griebel, Jan Hamaekers, and Frederik Heber. Bossanova: A
bond order dissection approach for efficient electronic structure calcu-
lations. INS Preprint, 704, 2008.

[29] Michael Griebel, Stephan Knapek, and Gerhard Zumbusch. Numerical
Simulation in Molecular Dynamics. Numerics, Algorithms, Paralleliza-
tion, Applications, volume 5 of Texts in Computational Science and
Engineering. Springer Verlag, 2007.

[30] Konstantin Gubaev, Evgeny V. Podryabinkin, and Alexander V.
Shapeev. Machine learning of molecular properties: Locality and ac-
tive learning. The Journal of Chemical Physics, 148(24):241727, 2018.

[31] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A
distribution-free theory of nonparametric regression. Springer Science
& Business Media, 2006.

[32] Wolfgang Hackbusch and Boris N Khoromskij. Towards hmatrix ap-
proximation of linear complexity. In Problems and methods in mathe-
matical physics, pages 194–220. Springer, 2001.

[33] Gaute Hagen, Thomas Papenbrock, M Hjorth-Jensen, and David J
Dean. Coupled-cluster computations of atomic nuclei. Reports on
Progress in Physics, 77(9):096302, 2014.

[34] P Haynes. Linear-scaling methods in ab initio quantum-mechanical cal-
culations. PhD thesis, University of Cambridge, 1998.

[35] Nicholas J Higham. Functions of matrices: theory and computation,
volume 104. Siam, 2008.

[36] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural networks,
2(5):359–366, 1989.

[37] Chaofeng Hou, Ji Xu, Peng Wang, Wenlai Huang, Xiaowei Wang, Wei
Ge, Xianfeng He, Li Guo, and Jinghai Li. Petascale molecular dynamics

55



simulation of crystalline silicon on tianhe-1a. The International Journal
of High Performance Computing Applications, 27(3):307–317, 2013.

[38] Young-Kwang Kim, Hong-Kyu Kim, Woo-Sang Jung, and Byeong-Joo
Lee. Development and application of ni-ti and ni-al-ti 2nn-meam in-
teratomic potentials for ni-base superalloys. Computational Materials
Science, 139:225–233, 2017.

[39] Walter Kohn and Lu Jeu Sham. Self-consistent equations including
exchange and correlation effects. Physical review, 140(4A):A1133, 1965.

[40] Christian Lage and Christoph Schwab. Wavelet galerkin algorithms for
boundary integral equations. SIAM Journal on Scientific Computing,
20(6):2195–2222, 1999.

[41] Byeong-Joo Lee and MI Baskes. Second nearest-neighbor modified
embedded-atom-method potential. Physical Review B, 62(13):8564,
2000.

[42] John Edward Lennard-Jones. On the determination of molecular fields.
ii. from the equation of state of gas. Proc. Roy. Soc. A, 106:463–477,
1924.

[43] X-P Li, RW Nunes, and David Vanderbilt. Density-matrix electronic-
structure method with linear system-size scaling. Physical Review B,
47(16):10891, 1993.

[44] Zhenwei Li, James R Kermode, and Alessandro De Vita. Molecular dy-
namics with on-the-fly machine learning of quantum-mechanical forces.
Physical review letters, 114(9):096405, 2015.

[45] David JC MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

[46] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[47] Chr. Møller and M. S. Plesset. Note on an approximation treatment
for many-electron systems. Phys. Rev., 46:618–622, Oct 1934.

[48] Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp,
Franziska Biegler, Andreas Ziehe, Alexandre Tkatchenko, Anatole V
Lilienfeld, and Klaus-Robert Müller. Learning invariant representa-
tions of molecules for atomization energy prediction. In Advances in
Neural Information Processing Systems, pages 440–448, 2012.

56



[49] Lance J. Nelson, Vidvuds Ozolin, š, C. Shane Reese, Fei Zhou, and Gus
L. W. Hart. Cluster expansion made easy with bayesian compressive
sensing. Phys. Rev. B, 88:155105, Oct 2013.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[51] Steve Plimpton. Fast parallel algorithms for short-range molecular dy-
namics. Journal of computational physics, 117(1):1–19, 1995.

[52] Evgeny V Podryabinkin and Alexander V Shapeev. Active learning of
linearly parametrized interatomic potentials. Computational Materials
Science, 140:171–180, 2017.

[53] Carl Edward Rasmussen and Christopher KI Williams. Gaussian pro-
cess for machine learning. MIT press, 2006.

[54] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and
O Anatole Von Lilienfeld. Fast and accurate modeling of molecular
atomization energies with machine learning. Physical review letters,
108(5):058301, 2012.

[55] Julian Schneider, Jan Hamaekers, Samuel T Chill, Søren Smidstrup,
Johannes Bulin, Ralph Thesen, Anders Blom, and Kurt Stokbro.
Atk-forcefield: a new generation molecular dynamics software pack-
age. Modelling and Simulation in Materials Science and Engineering,
25(8):085007, 2017.

[56] Alexander V Shapeev. Moment tensor potentials: A class of systemat-
ically improvable interatomic potentials. Multiscale Modeling & Simu-
lation, 14(3):1153–1173, 2016.

[57] Ingo Steinwart. On the influence of the kernel on the consistency of sup-
port vector machines. Journal of machine learning research, 2(Nov):67–
93, 2001.

[58] Eitan Tadmor. The exponential accuracy of fourier and chebyshev dif-
ferencing methods. SIAM Journal on Numerical Analysis, 23(1):1–10,
1986.

[59] Jerry Tersoff. New empirical approach for the structure and energy of
covalent systems. Physical Review B, 37(12):6991, 1988.

[60] Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and
William A Goddard. Reaxff: a reactive force field for hydrocarbons.
The Journal of Physical Chemistry A, 105(41):9396–9409, 2001.

57
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