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Abstract

Machine learning, while transformative in various domains, faces challenges
when dealing with data in non-Euclidean spaces. Symmetric positive definite
(SPD) matrices, frequently encountered in fields like computer vision and med-
ical imaging, exemplify this challenge. These matrices, often representing reg-
ularized covariance matrices, are more naturally modeled using Riemannian
manifolds rather than vectors in Euclidean space. This thesis delves into three
Riemannian metrics for modeling SPD matrices: the affine-invariant Rieman-
nian metric, the Log-Euclidean metric, and the Bures-Wasserstein metric. We
explore their derivations, computational aspects, and invariances. While many
learning methodologies have adopted the Log-Euclidean framework due to its
vector space structure, this work places focus on the investigation of the Bures-
Wasserstein kernel in image classification and kernel ridge regression contexts.
Through a series of numerical experiments, we assess the properties and perfor-
mance of these geometries in machine learning tasks, offering insights into their
potential applications and limitations. Our findings are part of the broader
effort to integrate geometry with machine learning, ensuring that the intrinsic
geometry of the data is respected. Consequently, it became clear that the Bures-
Wasserstein approach is a suitable alternative for learning on SPD matrices.
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Chapter 1

Introduction

Machine learning is becoming ubiquitous as a paradigm for computing in science
and industry. It delivered stunning results in areas as diverse as image gener-
ation [Ramesh et al., 2022], protein folding prediction [Jumper et al., 2021], or
playing games as complex as Go [Silver et al., 2016].

However, machine learning still struggles with treating data lying in non-
Euclidean spaces. Only recently, with the advent of techniques such as such
statistics for random variables taking values on manifolds [Pennec, 2006] or
algorithms like Graph Neural Networks [Kipf and Welling, 2017] have learning
techniques begun to respect the geometric structure of data intrinsically. For
data with manifold-valued outputs, consistent frameworks are rare. They either
work ad hoc or rely on restrictive assumptions on the output manifold. One
reason is that for tasks such as regression or regularization in different norms
or metrics, typical assumptions such as statistical consistency of estimators or
even the existence of expectations do not necessarily hold and must be carefully
adapted.

Symmetric positive definite (SPD) matrices are an increasingly important
data type. In many cases, SPD matrices appear as regularized covariance ma-
trices describing the covariance of data points or the distribution of features
in a data instance. In covariance region descriptors [Tuzel et al., 2006] they
encode the covariance between features such as intensity, RGB color values, or
color gradient, whereas in Diffusion Tensor Imaging [Bihan et al., 2001] they
represent the local diffusivity of water molecules in tissue.

Treating SPD data as a vector in a Euclidean space is possible but ignores
any specific structure the SPD matrices have. Often, the most suitable distance
to compare or interpolate SPD matrices is given by a Riemannian metric on a
manifold of SPD matrices. In contrast, the Euclidean distance might lead to
artifacts such as the swelling effect in white matter tractography.

The field of geometric statistics [Pennec, 2006] arose in order to extend
statistical methodology to the case of Riemannian manifolds. Concurrently,
there has also been much development on software packages for algorithms that
inherently work in a non-Euclidean setting, both for computational statistics
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[Miolane et al., 2020a] and optimization [Boumal, 2023].
In recent years, the desire to model data more accurately for learning and op-

timization problems has driven research in abstract mathematics that combines
algebraic and geometric ideas. The affine-invariant Riemannian metric [Pen-
nec et al., 2004] was defined to provide a framework for geometric statistics on
symmetric positive definite matrices. By requiring invariance to the action of
the general linear group, the Frobenius scalar product on the tangent space of
SPD matrices becomes a Riemannian metric with strong regularity properties
capturing the canonical differential structure of SPD matrices. This allowed
the definition of inherent Riemannian algorithms that respect the geometry and
show strong results on tasks such as interpolation or regularization. However,
the high computational cost of this metric and the lack of closed form expres-
sions for objects such as the mean motivated the search for other geometric
structures. The Log-Euclidean metric [Arsigny et al., 2006] was found while
searching for a Lie group structure on the SPD matrices. Moreover, it defines
not only such a group but also a vector space, making it possible to transfer many
of the usual expressions and methods from Euclidean space to the logarithmic
domain. Over time, many different geometries have been defined, most recently
the Bures-Wasserstein metric [Bhatia et al., 2019], which is the Wasserstein-2
distance of multivariate normal distributions expressed as a Riemannian metric
on the manifold of their covariance matrices.

This thesis will provide a comprehensive overview of how the different geome-
tries of SPD matrices can be effectively utilized in machine learning tasks. We
will reflect on the different implications of using one particular metric over an-
other by looking at the invariances defined by the respective geodesic distances
and by considering the computational aspects of the different constructs.

Several works have extended both kernel methods [Jayasumana et al., 2015,
Feragen et al., 2015] and neural networks [Huang and Gool, 2017] to SPD matri-
ces. In most cases, learning methodologies adapt the Log-Euclidean framework
as its vector space structure provides a notion of linearity, making it feasible
to generalize machine learning to the manifold case. In contrast, the Bures-
Wasserstein geometry has been explored little for purposes of learning. To
the best of our knowledge, we will provide the first investigation of the Bures-
Wasserstein kernel in both image classification and kernel ridge regression. The
latter will also touch on the question of how the Log-Euclidean and Bures-
Wasserstein distances compare as approximations of the affine-invariant Rie-
mannian manifold.

The rest of this thesis is structured as follows, first in Chapter 2 we review
the basics of differential geometry and statistical learning. A special focus here
will be on the interplay between geometry and statistics, where we will see that
the change of the underlying space has profound implications for the central
concepts of probability.

Following that, we will introduce several different geometries on the SPD ma-
trices in Chapter 3. The affine-invariant Riemannian metric, the Log-Euclidean
metric, and the Bures-Wasserstein metric are three ways to define geodesic
distances on the SPD matrices. We will look at their invariance properties
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and corresponding costs to assess their suitability for learning and optimization
tasks.

In Chapter 4, we introduce the theory of reproducing kernel Hilbert spaces
and kernel methods using implicit embeddings. We will investigate the possibil-
ity of defining positive definite kernels on sets of SPD matrices using Gaussian
kernels with different geodesic distances. The theory of vector-valued reproduc-
ing kernel Hilbert spaces will lead to an exposition of the kernel sum-of-squares
model for functions taking values in the cone of positive semi-definite matrices.

Neural networks are treated in Chapter 5. After a brief review of the theory
of neural networks in the Euclidean case, we will see how the SPDnet architec-
ture enables us to learn about SPD data while inherently respecting its geometry.
At the end of this chapter we will give a short outlook on the still open question
of defining neural networks for functions taking values on the manifold.

The differences in the properties of the different geometries will then be
investigated by means of several numerical experiments in Chapter 6. We will
perform support vector-based classification on sets of covariance descriptors
to see how different kernels provide embeddings in feature spaces, visualize
the separation of classes, and compare their accuracy to each other and to
an instance of SPDnet. Subsequent kernel ridge regression of the geodesically
linear logdet map provides insight into the ability of the different metrics to
approximate the affine-invariant metric. Interpolation of the affine-invariant
geodesic with the kernel sum-of-squares model tests the ability of vector-valued
kernel methods to perform regression on the cone of SPD matrices.

We conclude with some final remarks and reflections in Chapter 7.
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Chapter 2

Statistical Learning

In this chapter, we will introduce the basic notions and the mathematical back-
ground of statistical learning and optimization theory, with special consideration
to the manifold case, that will be used throughout this thesis. We will begin by
setting up general notions of differential geometry and statistics for Riemannian
manifolds following [Guigui et al., 2023]. The second section will be devoted
to empirical risk minimization with a focus on supervised learning. For this
exposition, we will take guidance from the text of [Mohri et al., 2018].

2.1 Riemannian manifolds

A manifold is a topological space that is locally Euclidean but might possess
a global non-linear structure. Most numerical procedures will be local in na-
ture, with possible corrections for the non-Euclidean nature. In the case of
learning algorithms, most are some form of local weighted averaging. We re-
strict ourselves to manifolds that are embedded in a Euclidean space and have
a smooth transition map between local neighborhoods. Formally, we define a
differentiable manifold by

Definition 2.1.1 (Differentiable manifold). We call a nonempty set M ⊂ Rd

a m-dimensional, differentiable manifold if for every point p ∈ M there are two
open subsets V ⊂ Rm and U ⊂ Rd, such that there exists a smooth function
f : V → Rd with f(0) = p and f(V ) = U ∩M. Moreover, if f1 : V1 → U1 and
f2 : V2 → U2 are two such functions with f1(V1)∩f2(V2) ̸= ∅, then the transition
map f−1

2 ◦ f1 : f−1
1 (f1(V1) ∩ f2(V2)) → f−1

2 (f1(V1) ∩ f2(V2)) is also smooth.

Another very important notion is that of a tangent space. Intuitively a
tangent space is like a hyperplane in the ambient space that touches the manifold
on a single point. For local neighborhoods around that point a tangent space
is often a good approximation for the manifold. Most importantly a tangent
space is a Euclidean vector space providing us with a notion of linearity and a
scalar product that will prove very useful for numerical computation.

5
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Definition 2.1.2. Let M be a manifold in Rd of dimension m, and p ∈ M. A
vector v ∈ Rd is tangent to M at p if there exists an open interval I centered
around 0, and a curve γ : I → M such that γ(0) = p and γ̇(0) = v. We call the
set of tangent vectors TpM the tangent space at p.

Given a point p on a manifold M and the tangent space TpM, we define
a scalar product on TpM as a positive definite, symmetric, bilinear function
⟨·, ·⟩p : TpM × TpM : → R. A Riemannian metric is a collection of scalar
products that varies smoothly in p.

We will call a manifold Riemannian if it is equipped with such a metric.
As usual, the scalar product also induces a norm for tangent vectors ||x||p =√
⟨x, x⟩p. Using this we can define a distance measure on the manifold. Taking

a curve γ : [a, b] → M and the tangent vector at each point of the curve γ̇(t) we
define a variational functional

E(γ) =
1

2

∫ b

a

||γ̇(t)||2γ(t)dt. (2.1)

A geodesic is a curve that is a minimum of the functional 2.1. A geodesic has
zero acceleration that is

d

dt
||γ̇(t)||γ(t) = 0. (2.2)

With this property, geodesics can be seen as the generalization of straight lines
onto manifolds. To build up the framework of geometric statistics as defined
by [Pennec, 2006] we will, in the following assume all manifolds to be connected
and geodesically complete, which means that for any start point, we can follow
any geodesic indefinitely without hitting any boundaries or singularities. By
the Hopf-Rinow theorem, this also implies that a length-minimizing geodesic
between any two points on the manifold always exists.

For a geodesically complete manifold M we define the geodesic distance
dg : M × M → R as the length of the length-minimizing geodesic joining the
two points. Note that the geodesic between points need not be unique.

Many algorithms are defined by a computation on the tangent space of a
point TpM, which is a Hilbert space with an inner product defined by the
Riemannian metric. They are then mapped back to the manifold with the
use of the Riemannian exponential map. The Riemannian exponential map
Expp : U → M is defined by

Expp(y) = γy(1). (2.3)

That is, we map y ∈ TpM to the point q ∈ M, such that for a geodesic with
γ(0) = p and γ̇(0) = y we have γ(1) = q. For a point p ∈ M, we define the
local injectivity radius by

rinj(p) = sup
r>0

{Exp|Br(0)
is diffeomorpism} (2.4)

for a ball Br(0) ⊂ TpM. For a whole manifold, we define the injectivity radius
rinj(M) as the infimum over the injectivity radii of all points on the manifold.
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The inverse of the exponential map is the logarithm map which goes from the
manifold to a tangent space

Logp : Br(p) → U ⊂ TpM (2.5)

for r ≥ rinj(M).
In fact, there is a whole zoo of mathematical constructs that further spe-

cialize manifolds. Depending on our learning goal, it can be beneficial to use
multiple perspectives on the same data set. Incorporating algebraic aspects in
addition to differential geometry proves beneficial in the context of learning. Of
particular interest is the homogeneous space. To define it, we first recall the
definition of a group

Definition 2.1.3 (Group). A group is a set G together with a binary operation
· : G×G→ G that satisfies the following properties:

1. Closure: For all a, b ∈ G, the result of a · b is also in G, i.e., a · b ∈ G.

2. Associativity : For all a, b, c ∈ G, (a · b) · c = a · (b · c).

3. Identity element : There exists an element e ∈ G, called the identity ele-
ment, such that for all a ∈ G, a · e = e · a = a.

4. Inverse element : For each a ∈ G, there exists an element a−1 ∈ G, called
the inverse element of a, such that a · a−1 = a−1 · a = e.

Groups can be thought of as an abstract formulation of the idea of symmetry.
Symmetry, in particular, implies the redundancy of certain parts of the data,
and incorporating it will often prove essential to make processing more powerful
and efficient. Next, we define how a group interacts with a general set by the
notion of group action

Definition 2.1.4 (Group Action). Let G be a group, and let X be a set. A
group action of G on X is a function . : G×X → X such that for all g, h ∈ G
and x ∈ X, the following properties hold:

1. Identity Action: e.x = x, where e is the identity element of G.

2. Compatibility : (g.h).x = g.(h.x) for all g, h ∈ G and x ∈ X.

Using this, we can define a very regular kind of manifold incorporating ad-
ditional regularity

Definition 2.1.5 (Homogeneous space). We call a manifold M a homogeneous
space, if there exists a group G such that its action on M is transitive, that is

For all x, y ∈ M, there exists g ∈ G such that g.x = y. (2.6)

A homogeneous space is a very natural place for learning, because we can
detect local patterns which will look the same everywhere in the space. Fur-
thermore, the transitive group defines a canonical way to move inside our data.
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An important identity for understanding homogeneous spaces is the character-
ization as quotient space. If M is a homogeneous space with a group G acting
on it we have that

M ≃ G/H (2.7)

where H is a subgroup of G called the stabilizer. M can therewith be seen as
the set of orbits of H on G.

2.2 Empirical risk minimization on manifolds

In the setting of supervised learning we are given two sets X and Y and a
training set of tuples S = {(x1, y1), . . . , (xN , yN )}, which we assume to be drawn
independent and identically distributed from X × Y according to a measure µ.
It should be noted that we assume that there is possible noise on the labels.
The aim is to approximate a function f : X → Y such that

f(x) ≈ y (2.8)

The dissimilarity of the approximated output f(x) to the true label y will be
quantified by a loss function l : Y × Y → R, which in our case will be different
distance measures on a manifold or metric space. However other measures such
as divergences are also possible to express similarity. We refer to the regime in
which we require exact correspondence at the training points as interpolation,
while reserving the term approximation for the more general case.

A foundational task in machine learning is classification, where we are given
some data drawn from X and want to put elements into certain predefined
categories, that is Y = {1, · · · , N}. Examples might be photos that should
be classified as either cats or dogs, or medical images where certain diseases
might be detected. The case where Y = {0, 1} is called binary classification as
opposed to multi class classification for more than two categories. Theory is
often reduced to the former case as every classification problem can be seen as
collection of binary problems where for each class we have to decide whether
the data point belongs to the class or not.

If the response variable in the output space is - in some sense - continuously
dependent on the input we speak of a regression problem. Typical examples are
weather forecasting or the analysis of historical trends.

Statistical learning is interested in the error for the whole distribution and
aims to find functions that do well on previously unseen data. We can then
formulate the overall goal of supervised learning as the minimization of a risk
function, often also called the generalization error

min
f∈YX

R(f) = Eµ[l(f(x), y)] =

∫
X×Y

l(f(x), y)dµ(x, y) (2.9)

If we take Y to be a Riemannian manifold with the squared geodesic distance
d2Y as loss function, we can follow the factorization argument in [Steinke et al.,
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2010] to see that the Bayes estimator, the function achieving the lowest possible
risk, is given pointwise by

f∗(x) = argmin
p∈Y

∫
Y
d2Y(p, y)dµx(y) (2.10)

Where dµx(y) is the conditional expectation of y given x. The global minimizer
of this integral is called the Karcher mean [Karcher, 1977]. It is the general-
ization of the Euclidean mean in the sense that it is the point minimizing the
overall variance. One thing to keep in mind is that in a manifold setting the
existence or uniqueness of this expectation cannot be guaranteed. Indeed, the
formulation of consistent stochastic frameworks in which common expressions
such as mean or variance can be reasoned about is one of the main motivations
for the geometries later presented in Chapter 3. Furthermore, we will not know
the measure µ. In fact, statistical learning theory in the general case goes so
far as to make no assumptions at all about this generative measure.

Searching for such a function in the class of all measurable functions YX is
generally infeasible. Therefore, we will restrict the class of functions we consider
as solutions to some F ⊂ YX , which we call the hypothesis space or model class.
The appropriate choice of space for a type of problem is one of the core issues
of learning. The No Free Lunch theorem tells us for every possible hypothesis
class there exists a distribution that will give arbitrarily slow convergence to
the minimal possible loss [Devroye et al., 1996]. So there is no class that will
perform universally well on all problems, therefore, we will always have to be
very careful how we constrain the overall function space.

Models can be parametric or non-parametric. A parametric function class
is fully described by a set of values Θ ⊂ R, independent of sample size. An
example of a parametric model class might be the affine functions for X = Rd

and Y = R:
FAff =

{
f : Rd → R

∣∣ fθ(x) = b+ ⟨w, x⟩
}

(2.11)

Here θ = (w, b) are our parameters. w is typically referred to as weights and b as
the bias. An example for an unparametric function class are functions described
by positive definite kernels, see Chapter 4.

For the case where Y is a manifold defining function classes is more intricate.
For functions going into vector spaces we define a respective function vector
space by pointwise addition and scalar multiplication of the outputs, which is not
possible in the manifold case. Indeed the set of manifold valued functions is often
itself an infinite dimensional manifold complicating approximation. The recipe
of finding a finite basis set from which to construct predictors breaks down.
Frameworks that treat the general learning case here are rare, and are often
based on restrictive assumptions such as quasi-uniformity of the data [Grohs,
2012], equivalence of the loss to a billinear product in a Hilbert space [Rudi et al.,
2018] or restricted to the optimization over perfectly smooth functions [Steinke
et al., 2010].

Another avenue is to only consider a local approximation, doing away with
the global nonlinear structure or bound it by a correction term. By taking a
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compact subset it is possible to find an isometric embedding into the Euclidean
vector space and use the dual structure there.

Moving on, another complication is that we will have to use our training data
to make an empirical estimate of the true risk. The central limit theorem tells
us that under mild conditions the distribution of the mean of repeated measure-
ments of random variables tends towards a Gaussian distribution, motivating an
assumption of centered normally distributed noise. Given now, that the squared
Euclidean differences as a loss is equivalent to a maximum likelihood estimator
of such a distribution, we get a very standardized form of empirical risk in the
Euclidean case

min
f∈F

R̂(f) =
1

N

N∑
i=1

||yi − f(xi)||22. (2.12)

This is not as straightforward in the manifold case. First of all there is no un-
ambiguous generalization of the Gaussian distribution. In a statistical learning
setting, one can follow [Fletcher, 2020] and define the normal distribution on a
manifold by the probability density function (pdf)

ρ(y; p, τ) =
1

C(p, τ)
Exp

(
−τ
2
d2Y(p, y)

)
(2.13)

with a normalization constant

C(p, τ) =

∫
Y
Exp

(
−τ
2
d2Y(p, y)

)
dµ(y). (2.14)

Assuming such Riemannian normal noise, using the empirical Karcher mean

f̂∗(x) = argmin
p∈Y

τ

2

N∑
i=1

αi(x)d
2
Y(p, yi) (2.15)

we define a consistent estimator of the Bayes predictor under the condition that
Y is a homogeneous space and suitable weight functions αi. The homogeneity
condition guarantees that the normalization constant does not depend on the
location on manifold.

The minimal realizable risk is called the Bayes risk

R∗ = inf
f∈YX

R(f). (2.16)

It if often assumed to be strictly larger than zero reflecting fundamental noise
that cannot be dissolved meaningfully. For f̂ ∈ argminf∈F R̂(f) the minimum
discrepancy risk can now be decomposed

R(f̂)−R∗ =

(
R(f̂)−min

f∈F
R(f)

)
︸ ︷︷ ︸

estimation error

+

(
min
f∈F

R(f)−R∗
)

︸ ︷︷ ︸
approximation error

. (2.17)

Here the approximation error is independent of the size of the training data and
will generally decrease with increasing complexity of the hypothesis space. On
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the other hand, the estimation error decreases as the sample size grows, but
worsens as the complexity of the search space rises. This conundrum is called
the bias-variance trade-off. In practice the dominant paradigm to approach this
is regularization. Here a large hypothesis class is chosen, while an additional
penalty is added to the risk functional

J(f) = R(f) + λΩ(f). (2.18)

λ is a hyperparameter selected apriori and controls the strength of regular-
ization. In many cases we will try to stir our solution in direction of a low-
complexity solution, such as one of small norm. Defining Ω norm dependent
has the additional benefit of convexifying our problem and possibly guarantee-
ing uniqueness of the solution. Defining a notion of smoothness for manifold
valued functions is nontrivial and there are many possible approaches depending
on the use case. In particular, the lack of vector space structure of our model
class makes the definition of Sobolev spaces difficult.

By restricting our model class to smooth functions, as was done in [Steinke
et al., 2010], we can use the norm of covariant derivatives of differentials to
define a regularization functional. It is well known however that approximating
with smooth functions can lead to non-smooth limits due to missing closure.

Nevertheless the most popular ansatz in practice is to combine the sum of
geodesic square loss with the norm of Riemannian derivatives, in the simplest
case the Riemannian gradient, to get the empirical objective functional

J(f) =
1

N

N∑
i=1

d2Y(f(xi), yi) + ||∇αf ||2. (2.19)

for some multi-index α. In practice this is most often the Dirichlet energy or a
harmonic or Hessian regularization.

2.3 Conclusion

In many applications, modeling data as being on a manifold has proven advan-
tageous, giving rise to a rich field of research ever aiming to both provide a
rigorous mathematical framework as well as practical methods. The interplay
between abstract differential geometric and algebraic formalism with statistical
learning pushes us to reexamine many assumptions we took for granted. Ideas
central to statistics, such as the central limit theorem, no longer hold in full
generality. Much as the introduction of non-Euclidean geometry provided the
tools for new ways of thinking in physics, we believe that expanding the uni-
verse of function approximation can help us understand how learning works at
a fundamental level.

Nevertheless, the way still seems long. As of now, we lack a consistent the-
ory for statistical learning in even very regular and smooth structures. Further,
there seem to be fundamental issues looming, as losing the notion of linear-
ity might be deemed fatal for understanding the whole phenomenon. On the
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other hand, locality might suffice for most practical needs, and perhaps shifting
paradigms to include entirely local structures will enrich our perspectives. There
are also challenges on the numerical side, as algorithms in geometric statistics
often scale only to smaller data sets and can suffer from numerical instability.
Even a simple task like fitting a geodesic curve can be fraught with gradients
that explode as noise that is small in tangent space becomes exponential when
projected onto the manifold.

In the following chapters, we will explore this evolving domain of geometric
learning on a specific example, the symmetric positive definite matrices. We
will see how the choice of different geometric frameworks affects not only the
computation, but also our understanding of the underlying data.



Chapter 3

Symmetric Positive Definite
Matrices

In this chapter we will study different metrics on symmetric positive definite
matrices, their geometric properties, and how to use them for learning and
optimization. We will introduce three different Riemannian metrics. One is
the affine-invariant Riemannian metric under which the SPD matrices become
a Cartan-Hadamard manifold, a second is the Log-Euclidean metric which gives
the SPD matrices a unique vector space structure. Both induce geodesically
complete manifolds. Finally, we will also look at the Bures-Wasserstein metric
under which the SPD matrices become a manifold with boundary.

A distance can be thought of as a similarity measure, and the geometry it
induces as a constraint. We will therefore focus on the invariances inherent
to the different manifolds. As we will see, imposing different symmetries on
the distances between SPD matrices has strong computational implications. In
particular, an invariance for a smaller group can facilitate optimization in the
geometry characterized by that group action. It should be noted, however, that
the geometries are more than just a means to an end; which geometry we choose
will be determined by which criteria we consider SPD matrices to be similar.
Thus, we will also dive into some connections and interpretations of the different
metrics to understand what it is they encode.

A square matrix A ∈ Rd×d is called symmetric positive definite (SPD) if it
satisfies the following two conditions:

1. A is symmetric: A = AT

2. A is positive definite: for all non-zero vectors x ∈ Rd, xTAx > 0

We will call the set of d × d SPD matrices Sym++(Rd). At times we will
suppress the space for better readability. Note that the SPD matrices form an
open, convex subset of the vector space of symmetric matrices

Sym(Rd) = {M ∈ Rd×d |M =MT }. (3.1)

13
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Symmetric positive definite matrices are ubiquitous mathematical objects. They
appear inducing bilinear forms or as optimality conditions and constraints in
numerical problems. SPD matrices always have positive real eigenvalues, and a
natural way to represent them is via their singular value decomposition (SVD).
Let A ∈ Sym++(Rd), we can then present A via

A =WTDW (3.2)

where W is the matrix of eigenvectors of A and a member of the orthogonal
group

O(Rd) = {M ∈ Rd×d |MTM = I} (3.3)

consisting of rotations and reflections. D is a diagonal matrix consisting of the
eigenvalues of A. It is a common convention to order the eigenvalues by their
size, with D11 being the largest and Ddd being the smallest eigenvalue.

Since we can write powers of matrices as Ak = WTDkW , we reduce the
matrix exponential to the exponential function of the real numbers applied
pointwise to each eigenvalue

exp(A) =

∞∑
k=0

Ak

k!
=WTdiag(exp(Dii))W. (3.4)

As the eigenvalues of SPD matrices are always positive the inverse of this func-
tion, the matrix logarithm, is well-defined everywhere as

log(A) =WTdiag(log(Dii))W (3.5)

These functions form global diffeomorphisms between the space of symmetric
positive definite matrices and the space of symmetric matrices.

We will look at symmetric positive definite matrices as geometric objects
and find natural structures that facilitate learning. We will first investigate the
defects that appear when treating SPD matrices as Euclidean vectors.

3.1 Euclidean metric

As mentioned Sym++(Rd) is a subset of the vector space of symmetric matrices
Sym(Rd), which in turn is a sub-vector space of the space of square matrices

Mat(d) ≃ Rd×d ≃ Rd2

. The vector space Sym(Rd) is of dimension d(d+1)
2 as

symmetric matrices can be completely represented by their upper-triangonal
entries. For A,B ∈ Sym(Rd) the Euclidean inner product for this vector space
is usually taken in form of the Frobenius inner product

⟨A,B⟩F = Tr(ATB) =

d∑
i,j=1

AijBij . (3.6)
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Figure 3.1: Visualization of the cone of 2x2 symmetric positive definite matrices.
For this visualization we characterize the SPD matrices by the positivity of the
principal minors. Thus for a flattened matrix with entries (x, y, y, z)T , we plot
the surface defined by x > 0 and y2 = xz.

This inner product induces the Frobenius norm

||A||F =
√
Tr(ATA) =

√√√√ d∑
i,j=1

A2
ij . (3.7)

The geodesics in the Euclidean case are simply given by the straight lines be-
tween two points

γX(tV ) = X + tV (3.8)

for a starting point and initial velocity X,V ∈ Sym(Rd) and time t ∈ R.
As the SPD matrices form a convex set, the Euclidean geodesic between two

SPD matrices will always be contained in Sym++. However the SPD matrices
lack a vector space structure. Neither is the addition of two SPD matrices
necessarily SPD nor is the multiplication with a non-positive scalar. However,
they do form an open cone, since multiplication with a positive scalar conserves
the positive definiteness. Note that the boundary of said cone are exactly the
positive semi-definite (PSD) matrices

Sym+ = {A ∈ Sym(Rd) | xTAx ≥ 0, x ∈ Rd, x ̸= 0} (3.9)

with at least one null eigenvalue.
Although convex operations like taking the mean are closed inside this cone,

the set is incomplete under the Frobenius norm. This poses a problem for
numerical algorithms as the convergence inside the SPD matrices can not be
guaranteed, and matrices with null eigenvalues are always at a finite distance.
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During computations, matrices with negative eigenvalues can quickly appear.
This has proven a great difficulty for example in the regularization of Diffusion
Tensor Images, where the dispersion of water molecules inside human tissue is
modelled by a tensor grid of SPD matrices [Pennec et al., 2004]. By physical
laws the uncertainty of the position of a water molecule must always be strictly
positive and thus the covariance matrix describing their distribution always
positive definite. An aspect closely connected to this considers interpolating
between two SPD matrices along the geodesics. In their Euclidean representa-
tion, this corresponds to linearly interpolating their coefficients. In this case,
the determinant of the interpolant matrices become strictly larger than at the
endpoints being again physically unrealistic.

A more intricate perspective comes by looking at invariance properties of the
Euclidean distance. The Frobenius inner product is invariant to the congruence
action of the orthogonal group

A.O = OAOT (3.10)

for A ∈ Sym++(Rd) and O ∈ O(Rd). That is,

⟨OAOT , OBOT ⟩F = ⟨A,B⟩F . (3.11)

By that the induced geodesic distance, the usual Euclidean distance, is also
invariant

dE(OAO
T , OBOT ) = ||OAOT −OBOT ||F = ||A−B||F = dE(A,B). (3.12)

Meaning that measured in the Euclidean distance, the degree of similarity be-
tween SPD matrices will not change under orthogonal transformations and pat-
terns detected by our learning algorithms will be recognized in the same manner
if we were to transform the whole set.

Figure 3.2: Example of an orthogonal transformation. Taking the covariance
matrices of image features after such a transformation would result in the same
patterns being detected under the Euclidean distance. (Untransformed image
from [Leonardo da Vinci, 1503].)
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Our goal is to find a geometric characterization of the SPD matrices that
captures the information we would like to incorporate into our learning models.
To motivate such a structure, we remind ourselves that in the majority of appli-
cation cases, SPD matrices appear as covariances of some form. Furthermore,
it can be shown that covariance matrices are precisely equivalent to positive
semi-definite matrices.

Lemma 3.1.1. A matrix is a covariance matrix if and only if it is positive
semi-definite.

Proof. By definition Aij = cov(xi, xj) = E[(xi − E[xi])((xj − E[xj ])]. So A is
symmetric. Further for w ∈ Rd\{0}

wTE[(X − E[X])(X − E[X])]w

= E[wT (X − E[X])(X − E[X])w]

= E[(wT (X − E[X]))2] ≥ 0

If A is positive semi-definite, the square root A
1
2 exists and is nonnegative and

symmetric. If X is a random vector with identity covariance matrix then A is
the covariance matrix of A

1
2X.

Symmetric positive definite matrices can be seen as regularized covariance
matrices without null eigenvalues. Note that positive definiteness of a covariance
matrix further ensures that no feature can be represented as a linear combination
of other features. Because this is assumed to be the case for well-modeled data,
covariance matrices are often taken to be non-singular, and thus SPD, leading
to a conflation of these notions.

In particular, consider two Gaussian distributions N (0,Σ1), N (0,Σ2) com-
pletely described by their covariances matrices, which we now assume to be
SPD. The swelling effect appears again in the form that the mean of a set of
covariance matrices has a larger determinant than the matrices in the set. As
the determinants however correspond to the uncertainties of measurements rep-
resented by the different Gaussian distributions we find this undesirable. In the
same vain, note that the Gaussian distributions are equally specified by their
precision matrices Σ−1

1 , Σ−1
2 . However, the Euclidean distance is generally not

invariant under inversion of matrices, just think of strictly positive diagonal
matrices for an example. Therefore, we desire a different measure of similarity
between SPD matrices, in particular one which balances geometric, invariance
and computational aspects.

3.2 Affine-Invariant Riemannian Metric

Now consider a random variableX that is affected by some affine transformation
to give a new variable Y

Y = AX + b. (3.13)



CHAPTER 3. SYMMETRIC POSITIVE DEFINITE MATRICES 18

In a real-world application, this might correspond to rigid body motion, for
example, changing the constellation of a robot arm [Calinon, 2020]. The mean
of the random variables transform in the same way

µY = AµX + b (3.14)

Looking at the covariance matrix ΣX we see that

ΣY = E[(Y − µY )(Y − µY )] = AΣXA
T . (3.15)

This means that, if we want a specific function learned on the covariance ma-
trices to be invariant under affine transformations of the underlying signal, we
have to demand our geometry to be invariant to the congruence action of the
general linear group

GL(Rd) = {M ∈ Rd×d | det(M) ̸= 0} (3.16)

given by

A.M =MAMT for all M ∈ GL(Rd) and A ∈ Sym++(Rd). (3.17)

Figure 3.3: Example of an affine transformation. Shearings are an affine trans-
formation that is not part of the orthogonal group. (Untransformed image
from [Leonardo da Vinci, 1503].)

At each point P ∈ Sym++(Rd) the tangent space is given by the symmet-
ric matrices Sym(Rd). Requiring affine-invariance gives a Riemannian metric
defined via the Frobenius scalar product
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Definition 3.2.1 (Affine-invariant Riemannian metric (AIRM) [Pennec et al.,
2004]). Let A,B ∈ Sym(Rd) and P ∈ Sym++(Rd). We define the affine-
invariant Riemannian metric by

⟨A,B⟩P = ⟨P− 1
2AP− 1

2 , P− 1
2BP− 1

2 ⟩F . (3.18)

Moreover the AIRM is also invariant to matrix inversion.
Starting from a point P ∈ Sym++ the affine-invariant geodesic going a dis-

tance t ∈ R into direction W ∈ Sym is

ExpP (tW ) = P
1
2 exp

(
tP− 1

2WP− 1
2

)
P

1
2 . (3.19)

Under the AIRM Sym++ becomes a Cartan-Hadamard manifold, that is a
geodesically complete simply connected Riemannian manifold with nonpositive
sectional curvature [Minh and Murino, 2017]. Most importantly we find a unique
geodesic connecting any two points. The geodesic distance derived from this is

d2ai(A,B) = || log(A− 1
2BA− 1

2 )||2F . (3.20)

We additionally also get an algebraic structure on the SPD matrices. As the
action of the general linear group on the SPD matrices is transitive they can be
understood as a homogeneous space of the form

Sym++(Rd) = GL(Rd)/O(Rd). (3.21)

See the direct relation to the polar decomposition of invertible matrices. Every
invertible matrix can be written as a composition of a positive scaling along some
axis and a subsequent orthogonal transformation of the coordinate system.

As the Hopf-Rinow theorem gives the equivalence of geodesic completeness
of a Riemannian manifold with its completeness as a metric space, we get the
existence of the AIRM Frechet mean of any finite number of SPD matrices
[Fletcher, 2020]. Uniqueness of the mean, however, will only be guaranteed for
a geodesic ball of sufficiently small radius.

We formulate our supervised learning framework for SPD-valued functions
going into the affine-invariant Riemannian manifold. Imagine again we have
function f : X → Sym++(Rd), we assume to data sampled i.i.d. from X ×
Sym++(Rd) according to some measure µ. In most practical applications, X
will be Euclidean, and we are trying to approximate a tensor field. Assume
additionally our noise to be sampled from a Riemannian normal distribution for
which a central limit theorem holds. As we have seen, the natural loss function
in this scenario is squared geodesic loss d2ai. With that

min
f∈F

∫
X×Sym++(Rd)

d2ai(f(x), A)dµ. (3.22)

An obstacle is that the expectation of a random variable on the AIRM is only
guaranteed to exist if the measure µ has compact support. However, geodesic
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completeness guarantees the existence and negative curvature the uniqueness of
the mean for the compact case. The mean is not available in closed form and
can only be approximated iteratively by geodesic descent.

µ̂t+1 = expµ̂t

(
1

N

N∑
i=1

logµ̂t
(Ai)

)
(3.23)

for {A1, . . . , AN} ⊂ Sym++. Overall the objective function of the empirical risk
minimization problem

J(f) = R̂(f, f0) + λΩ(f) (3.24)

transforms into

ft+1 = expft(−ϵ(∇R̂(ft, f0) + λ∇Ω(ft))). (3.25)

The affine invariant metric possesses a very regular structure and powerful in-
variance properties. However, function learning becomes an iterative approxi-
mation of tensor fields using gradient flows. Particularly learning on sparsely
distributed training data that is not easily confined to a grid structure proves
difficult [Pennec et al., 2004].

Another challenge is that due to the coupled matrix inversions in the com-
putation of the affine invariant distance, the calculation quickly becomes very
expensive, as the pairwise computation of the distances of N SPD matrices of
size d× d grows with O(N2d3) [Minh and Murino, 2017].

3.3 Log-Euclidean Metric

We mentioned earlier that the exponential and logarithmic maps are diffeo-
morphisms between the cone of SPD matrices and its tangent space, the vector
space of symmetric matrices. Remarkably these maps are actually global, mean-
ing that it is possible to pull Euclidean vector space operations onto the SPD
matrices.

The Log-Euclidean metric was first defined by [Arsigny et al., 2006] by
putting on a vector space structure on the SPD matrices. We get a vector
space addition

⃝• : Sym++(Rd)× Sym++(Rd) → Sym++(Rd) (3.26)

A ⃝• B : exp(log(A) + log(B)) (3.27)

and even a scalar multiplication Sym++(Rd) by:

⃝⋆ : R× Sym++(Rd) → Sym++(Rd) (3.28)

λ ⃝⋆ A : exp(λ log(A)) = Aλ (3.29)

Overall, the SPD matrices Sym++(Rd) become a vector space isometrically

isomorph as a metric space to the Euclidean space R
d(d+1)

2 . There is even an
inner product

⟨A,B⟩LE = ⟨log(A), log(B)⟩F . (3.30)
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The space is geodesically complete and we can write the Log-Euclidean geodesic
joining two points A,B ∈ Sym++ by

γ(t) = exp(log(A) + t(log(B)− log(A))). (3.31)

As a vector space, the manifold induced by the Log-Euclidean metric is flat.
However, the Log-Euclidean vector space is not fully invariant to affine trans-
formations anymore. Instead, we get invariance to the similarity group: rota-
tions and scalings. In addition, the Log-Euclidean metric is also invariant to
inversions.

Figure 3.4: Example of a similarity transformation. The scaling in this case
corresponds to a change in illumination. (Untransformed image from [Leonardo
da Vinci, 1503].)

In the Log-Euclidean domain we get a simple closed-form expression for the
empirical mean of a set X = {x1, . . . , xN}

Ê[X] = exp

(
1

N
log(xi)

)
. (3.32)

Euclidean-based statistics can be easily generalized to the Log-Euclidean case
with most expressions having a direct equivalent in the logarithmic domain,
see [Arsigny et al., 2006] for an exposition.

Using the formula for the affine-invariant geodesic given in 3.19 with the
identity as a starting point, we see that the geodesics for the Log-Euclidean
and AIRM coincide. The Log-Euclidean metric can thus be seen as a first-order
approximation of the affine-invariant metric with respect to curvature. In prac-
tice, this view is confirmed, especially for small data scatter, the approximation
is good.

The computational complexity of computing the Log-Euclidean distance is
much lower than that of the AIRM. This time we can calculate the pairwise
distances of a set of N d × d SPD matrices in O(Nd3), see further that the
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decoupling of the matrices in the distances leads to favorable properties in terms
of parallelization [Minh and Murino, 2017].

Note that, due to the logarithm forming a global diffeomorphism between
the SPD matrices and the symmetric matrices, we can rewrite a problem of
Log-Euclidean function approximation as a problem in the Euclidean space of
symmetric matrices ∫

R
d(d+1)

2

|| exp(y)− f̃(x)||2F dλ(x, y) (3.33)

where f̃(x) = f(exp(x)). This is often done in the practical implementation of
optimization procedures as the computation of the Riemannian metric involves
the directional derivative of the matrix logarithm, and the Riemannian Hessian
is generally only available as a finite difference approximation [Han et al., 2021].
As both AIRM and the Log-Euclidean metric can lead to optimization problems
that are difficult to solve, there was interest in finding a geometry with favorable
optimization properties.

3.4 Bures-Wasserstein

There is yet another geometry we can impose on the SPD matrices. For that,
consider again the SPD matrices as a quotient space GL/O. We now view
GL(Rd) endowed with the restriction of the Frobenius metric. If we consider
the map

π : GL(Rd) → Sym++(Rd), A 7→ AAT (3.34)

we find that it defines a surjective map onto the SPDmatrices. Further, this map
defines a Riemannian submersion, which is a map that preserves the metric from
one manifold to another. The metric arising from this submersion gives rise to
a different Riemannian manifold on the SPD matrices. Note that, however, this
time, the manifold is a manifold with a boundary. For the purpose of learning,
we will focus on the distance measure of the Bures-Wasserstein geometry.

Take a geodesic in GL(Rd) going from a point P in direction V , under the
Euclidean metric this just a straight line

ExpP (tV ) = P + tV. (3.35)

Using the exposition in [Guigui et al., 2023], we can relate the geodesics in the
general linear manifold to those in the SPD matrices

ExpAAT (tV ) = π(A+ tSAAT (V )A) (3.36)

= (A+ tSAAT (V )A)(A+ tSAAT (V )A) (3.37)

= AAT + t(SAAT (V )AAT +AATSAAT (V )) (3.38)

+ t2SAAT (V )AAtSAAT (V ) (3.39)

= AAT + tV +
t2

2
SAAT (V )AATSAAT (V ) (3.40)
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where SAAT is the solution of the Sylvester equation

(AAT )S + S(AAT ) = V. (3.41)

The geodesic distance given by this expression can written in closed form as
shown by [Thanwerdas and Pennec, 2023] by

dBW (A,B)2 = Tr(A) + Tr(B)− 2Tr((AB)
1
2 ) (3.42)

which is exactly the Bures-Wasserstein distance first defined as it applies to
SPD matrices in [Bhatia et al., 2019]. Geodesics can, in finite time, hit the
boundary. Which in the context of SPD matrices, means that it is possible
for matrices to become singular. Looking at the invariance properties of this
distance, we find that it is invariant to orthogonal transformations

dBW(A,B) = dBW(OTAO,OTBO) (3.43)

for any O ∈ O(Rd). The Bures-Wasserstein distance has an interesting con-
nection to the orthogonal Procrustes problem. Given two SPD matrices A, B,
the goal is to find an orthogonal matrix O that minimizes the Frobenius dis-
tance between the two matrices. It was shown in [Bhatia et al., 2019], that the
minimal distance is equal to the Bures-Wasserstein distance

d(A,B)BW = min
O∈O(Rd)

∥A 1
2 −B

1
2O∥2. (3.44)

It also helps us gain further intuition about the nature of this geometry. It
codifies the similarity of full-rank matrices up to rotation.

There is also an interpretation of the Bures-Wasserstein metric as an infor-
mation geometry expression. Let η = N (0,Ση) and ν = N (0,Σν) be multi-
variate Gaussian distributions with mean 0. If we take Γ(η, ν) to be the set
of all joint probability distributions with marginals η, ν, we can define the
Wasserstein-2 distance

W2(η, ν) =

(
inf

γ∈Γ(η,ν)

∫
Rd×Rd

||x− y||22 dγ(x, y)
) 1

2

. (3.45)

The Wasserstein-2 distance of multivariate Gaussians, however, also has a well
known description in terms of their mean and covariance

W2
2 (η, ν) (3.46)

= ∥µη − µν∥22 +Tr(Ση +Σν − 2(Σ1/2
η ΣνΣ

1/2
η )1/2) (3.47)

=d2BW (Σν ,Ση). (3.48)

An important aspect is that the manifold defined by the Bures-Wasserstein
metric possesses positive curvature, this together with the incompleteness has
several major implications. First of all, the Karcher mean of a set of SPD
matrices generally only exists in a geodesic ball of small enough radius. Moreover
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geodesics are no longer unique. Optimization, however, can indeed be easier
as a number of cost functions possess favorable convexity properties in this
geometry [Han et al., 2021].

The cost of computing the Bures-Wasserstein distances of a set of N SPD
matrices are comparable to that of the AIRM scaling with O(N2d3).

3.5 Conclusion

In this chapter, we looked at symmetric positive matrices and the various ge-
ometries we might impose on them. The selection of a suitable geometry for
a given application is rather intricate and not self-evident. In some cases, the
Euclidean metric will provide excellent and computationally efficient results.
Thus, a Riemannian structure on the SPD matrices should not be forced in any
case. In other scenarios, we have a phenomenon we want to model precisely. In
particular, the AIRM is the natural way to model when working with signals
encoded via their Gaussian covariance. The theme of connecting the stochastic
world with the geometric one is not confined to the methodology but inherent to
the nature of SPD matrices. There is a deep connection between the AIRM and
the Fisher information metric, see [Minh and Murino, 2017], which describes the
change of information when varying the parameter of a statistical model. In this
way, the AIRM provides a unique opportunity to use powerful geometric tools
for stochastic reasoning, opening up what is known as information geometry.

The combination of non-compactness and curvature proves to be a significant
hurdle, this leads to the development of new geometries which either have a
simpler global structure or ease optimization processes. There is yet another
host of possible geometries, such as the complete metric space induced by the
Stein divergence [Sra, 2016], describing the relations between SPD matrices.
Listing and exploring them all would have been beyond the scope of this thesis.
However, it is our belief that utilizing ever-newer geometrical structures will also
push our understanding of both Gaussian distributions as well as the theory of
statistical learning.

We summarize the properties of different metrics in the table below:

Metric Structure Complete Isometry Curvature Scale

Invariant

Euclidean Vector
space

No Orthogonal Flat No

Affine-
invariant

Manifold Yes Affine Non-
positive

Yes

Log-
Euclidean

Manifold Yes Similarity Flat Yes

Bures-
Wasserstein

Manifold
with
boundary

No Orthogonal Non-
negative

No

Table 3.1: Summary of symmetric positive definite (SPD) metrics and their key
properties



Chapter 4

Kernel Methods

The theory of positive definite kernels dates back to the 1950s with the work
of [Aronszajn, 1950], while kernel methods in the field of machine learning were
originally formulated by [Boser et al., 1992]. Kernel methods were the state-
of-the-art in machine learning until recently, when neural networks surpassed
them in many areas. Still, kernel theory remains tremendously valuable for
learning as it provides a mathematically rigorous background compared to the
still lacking analysis of neural networks.

A central feature of kernel methods is the separation of the mathematical
object of a positive definite kernel from the algorithm based on matrices of
evaluations. This makes the theory of positive definite kernels self-contained;
once such a kernel is given, it can be used in any algorithm regardless of the
underlying data.

We begin with a brief review of the theory of reproducing kernel Hilbert
spaces (RKHS) and scalar kernel methods. We then examine kernels with a
SPD domain, before generalizing these to the case of vector-valued RKHS and
then attempting to extend the case to SPD-valued functions.

We refer interested readers to [Schölkopf and Smola, 2002] for an in-depth
overview of kernel theory and [Álvarez et al., 2012] for a survey on vector-valued
RKHS.

4.1 Positive definite kernels

Linear models are well suited for regression and classification tasks, this is due
to their flexibility and good optimization properties. However, if the actual
function is highly non-linear, our approximation error will be significant. One
possible solution is to use a feature map ϕ : X → H to embed our data into a
higher dimensional Hilbert space H, often called the feature space, and search
for a linear function in this space. Our hypothesis space becomes

FH =
{
fθ : X → R

∣∣ f(x) = ⟨θ, ϕ(x)⟩H
}
. (4.1)

25
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Due to the high, possibly infinite dimension of our feature space H direct
computation is often infeasible. Fortunately, because our functions only access
the features through an inner product we can define a kernel function allowing
us to perform all computations in our original domain X .

Definition 4.1.1 (Positive definite kernel). Let X be a nonempty set. A positive
definite kernel is a symmetric function k : X × X → R such that

N∑
i,j=1

cicjk(xi, xj) ≥ 0

for all N ∈ N, {x1, . . . xN} ⊂ X and {c1, . . . , cN} ⊂ R.

An equivalent condition is that for any set of pointsX ⊂ X the Gram matrix,
also called kernel matrix, K[X] defined by (K[X])ij = k(xi, xj) is positive semi-
definite. For any feature map ϕ, we can define a kernel via

k(x′, x) = ⟨ϕ(x′), ϕ(x)⟩H = ϕ(x′)∗ϕ(x). (4.2)

Here ϕ∗ denoted the adjoint of the feature map ϕ. A one-to-one correspondence
exists between positive definite kernels and reproducing kernel Hilbert spaces
(RKHS), in which the point evaluation functional is bounded [Aronszajn, 1950].
In that respect, two properties make RKHS especially interesting:

1. For all x ∈ X , k(x, ·) ∈ Hk

2. If f ∈ Hk and x ∈ X , then f(x) = ⟨f, k(x, ·)⟩Hk
.

The latter property gives the reproducing kernel Hilbert space its name. The
feature map defined by ϕ(x) = k(x, ·) = kx is called the canonical feature map.

We then formulate the empirical risk minimization problem for a function
defined on the feature space

min
f∈Hk

R̂(f(x1), . . . , f(xN )) + Ω(||f ||Hk
) (4.3)

where Ω: R+ → R is a strictly increasing function. The true power of kernel
methods now comes from the representer theorem, which allows us to reduce the
infinite-dimensional optimization problem to a finite-dimensional one, making
it numerically tractable.

Theorem 4.1.1 (Representer theorem [Schölkopf et al., 2001]). Let X be a
nonempty set, {x1, . . . , xN} ⊂ X and Hk be a RKHS of functions from X into
the real numbers and k its corresponding kernel. Then the problem 4.3 admits
a solution of the form

f̂(x) =

N∑
i=1

αik(x, xi)

where {α1, . . . , αN} ⊂ R.
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Proof. We can decompose any f ∈ Hk in a part that lies in span(k(·, xi)) and
the orthogonal complement of that span. That is

f =

N∑
i=1

αik(·, xi) + v

such that ⟨k(·, xi), v⟩Hk
= 0 for all i. Using the reproducing property of the

kernel we have for any training point xj

f(xj) =

〈
N∑
i=1

αik(·, xi) + v, k(·, xj)

〉
HK

=

〈
N∑
i=1

αik(·, xi), k(·, xj)

〉
Hk

+ ⟨v, k(·, xj)⟩Hk

=

N∑
i=1

αik(xj , xi)

Which means that the loss function in the objective functional is independent
of v. For the second part notice that

Ω(||f ||Hk
) = Ω


√√√√||

N∑
i=1

αik(·, xi)||2Hk
+ ||v||2Hk


≥ Ω

(
||

N∑
i=1

αik(·, xi)||Hk

)

where we use the equation for the first part and the fact that Ω is strictly in-
creasing in the norm for the inequality. With that, it is clear that any minimum
of the regularization will be attained in the span of the canonical feature maps.
Overall we get the desired result.

Example: Gaussian kernel

The most widely used kernel in practice is the Gaussian kernel, also known as
the radial basis function (rbf) kernel.

Definition 4.1.2 (Gaussian kernel).

k(x, y) = exp
(
−||x− y||22 / 2σ2

)
, (4.4)

where σ > 0 is a hyperparameter often referred to as the bandwidth. The
central feature of this kernel is that it is only dependent on the distance. The
associated feature maps embed the data in an infinite dimensional space. An
important property of the Gaussian kernel is that it is universal.
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Definition 4.1.3 (Universal kernel [Micchelli et al., 2006]). Let X be a domain
and Hk a RKHS of functions on X with associated kernel k. For a compact
subset Z ⊂ X we form the kernel sections spanned by the canonical feature map

k(Z) = span{kx : x ∈ Z}

We call k universal if for any Z, any function g ∈ C(Z) and any ϵ > 0, we have
that there exists a f ∈ k(Z) such that

||g − f ||∞ < ϵ

Note that the above definition is about the approximation in the uniform norm,
not the RKHS norm.

4.2 Kernel with SPD domain

One of the strengths of kernel methods is that they are flexible with respect
to the domain. In this section, we will look at kernel methods defined on
Sym++(Rd). The hope is that by defining a positive definite kernel, we can re-
cover many of the powerful machine learning algorithms available in Euclidean
space. Essentially any method only relying on a scalar product would be ex-
tendable to our manifold case.

When looking for such a kernel, the first question is what kind of functional
form we should presume. Since, in many general spaces, only the computation
of pairwise distances is possible, the approach of a radial kernel is very natural.

We begin by defining the notion of a conditionally negative (CND) function
that will connect the nature of the distance with the properties of an exponential
kernel.

Definition 4.2.1 (Conditonally negative definite function). We call a symmet-
ric function f : X × X → R conditionally negative definite if

N∑
i,j=1

cicjf(xi, xj) ≤ 0

for all N ∈ N, {x1, . . . xN} ⊂ X and {c1, . . . , cN} ⊂ R and
∑N

i=1 ci = 0.

With this definition we can state a result dating back to [Schoenberg, 1938]
giving us a positive definiteness condition for a general kernel of an exponential
form.

Theorem 4.2.1 ( [Schoenberg, 1938]). The exponential kernel

kexp(f)(x, y) = exp (−σf(x, y))

is positive definite for all σ > 0 if and only if f is negative definite.
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Our wish is to generalize kernel methods to the SPD matrices. In particular,
we want to relate the similarity measured in the feature space to the constraints
encoded in the geodesic distance. Thus the Gaussian kernel is the instrument
of choice. There is, however, a limitation given by the following theorem:

Theorem 4.2.2 ( [Jayasumana et al., 2015]). For a metric space (M,d) the
kernel k(x, y) = exp(−σd2(x, y)) is positive definite for all σ > 0 if and only
if there is a Hilbert space H and a function ψ : M → H such that d(x, y) =
||ψ(x)− ψ(y)||H.

If M is a complete Riemannian manifold with a geodesic distance d on M ,
then k is positive definite if and only if M is isometric to a Euclidean space Rm.

Note that the Hilbert space embedding ψ need not be the feature map. A
particular implication is that Gaussian kernels based on geodesic distances are
only positive definite if the underlying space is flat [Feragen et al., 2015].

Based on that, we see that the Gaussian kernel based on the AIRM (affine-
invariant Riemannian metric) is not positive definite for every σ > 0, because
it defines a nonpositively curved manifold. At the time of writing, there is no
known result whether it is positive definite for some σ. On the other hand, the
Gaussian based on the Log-Euclidean distance is positive definite. By choosing
ψ = log we define an isometry to a Euclidean space.

The Gaussian kernel not being positive-definite for all positive bandwidth
parameters σ is a substantial restriction as it prohibits the use of automatic
optimization of hyperparameters, which often relies on an assumption of con-
tinuous dependence. There is research in finding bands in which the σ reliably
gives positive definite kernels on manifolds [Feragen and Hauberg, 2016]. How-
ever, the line of research will result in the design of specialized methods for
each kind of distance, giving up much of the generality that characterizes kernel
approaches.

Fundamentally the positive definiteness conditions of kernel functions de-
fined on a geodesically complete Riemannian manifold reduces to the question
of whether an isometric embedding, in the sense of metric spaces, into a Hilbert
space is possible. From there, the question arises of how far a kernel approach
to learning on flat Riemannian manifolds is advantageous. Depending on the
specific algorithm at hand, the isometry of the distance might imply that the
optimization problem is identical to a Euclidean one. However, a nonlinear
metric will almost certainly be harder to optimize.

An alternative is given by viewing the SPD matrices as a manifold with
boundary and utilizing the Bures-Wasserstein distance. As was shown by [Han
et al., 2021], the Gaussian kernel with the squared Bures-Wasserstein distance
is indeed positive definite. Because this fact is less well-known, we restate the
proof for completeness.

Theorem 4.2.3 ( [Han et al., 2021]). The Gaussian kernel induced by the
squared Bures-Wasserstein distance k(x, y) = exp

(
−σd2bw(x, y)

)
is positive def-

inite on the SPD matrices.
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Proof. Let N ∈ N, {c1, . . . , cN} ⊂ R with the condition
∑N

i=1 ci = 0 and
{A1, . . . , AN} ⊂ Sym++(Rd).

N∑
i,j=1

cicjd
2
bw(Ai, Aj) =

N∑
j=1

cj

N∑
i=1

ciTr(Ai) +

N∑
i=1

ci

N∑
j=1

cjTr(Aj)

− 2

N∑
i,j=1

cicjTr
(
A

1/2
i AjA

1/2
i

)1/2
= −2

N∑
i,j=1

cicjTr
(
A

1/2
i AjA

1/2
i

)1/2
≤ 0.

The statement now follows from 4.2.1.

The reason we can define a positive definite kernel in this case is because
we gave up geodesic completeness - some geodesics might end at the boundary.
To the best of our knowledge, there has yet to be any exploration of the Bures-
Wasserstein kernel in the context of learning with SPD matrices. Through
our numerical experiments in Chapter 6, we will investigate its potential and
compare it to the Log-Euclidean kernel and the Euclidean kernel, which are far
more widespread in applications.

4.3 Kernel methods

In this section, we will look at different algorithms that utilize positive definite
kernels. As mentioned previously, numerical methods generally work directly on
the Gram matrix. This gives kernel methods enormous flexibility. The technique
being agnostic to the kernel that generates the matrix implies that we can use
the same numerical procedure for any set on which we can define a valid kernel.

4.3.1 Support vector classifier

We will now define one of the most popular kernel methods, the support vector
classifier (SVC). Assume a binary classification task on X × Y = Rd × {±1}.
Once more, we start from the affine model class. Imagine we want to learn a
function that codifies a hyperplane in the data space, which separates our two
target classes.

f(w,b)(x) = sgn(⟨w, x⟩+ b) (4.5)

such that f(xi) = yi.
The optimal separating hyperplane is defined as the hyperplane that sepa-

rates two classes and maximizes the margin between the nearest representatives.
The optimization problem can be formulated as

min
w,b

1

2
||w||22 s.t. yi(⟨w, x⟩+ b) ≥ 1, i = 1, . . . , N, (4.6)
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where N is the number of training examples.
Our data will not always be perfectly separable. To allow for some misclas-

sification, a soft margin can be introduced by adding slack variables ξi ≥ 0. The
optimization problem becomes

min
w,b,ξ

1

2
||w||22 + C

N∑
i=1

ξi (4.7)

s.t. yi(⟨w, x⟩+ b) ≥ 1− ξi, i = 1, . . . , N, (4.8)

where C is a regularization parameter that controls the trade-off between max-
imizing the margin and minimizing classification error.

Of course, this approach is not directly viable if our data points lie on a
manifold, since we have no notion of linearity. This is where the kernel trick
comes in. Using an SPD kernel, we can embed our data into a Hilbert space
and define the SVC using the scalar product of said space. To this end, we want
to reformulate our algorithm into a form where the input points only appear in
the form of a scalar product, which we can then replace with a kernel function.
This kind of kernelization is applicable to any algorithm that relies on a scalar
product. First, we define the Lagrangian of the above problem

L((w, b), ξ, β, r) =
1

2
∥w∥22+C

N∑
i=1

ξi−
N∑
i=1

βiyi(⟨w, xi⟩+b)−1+ξi−
N∑
i=1

riξi. (4.9)

Using this we can formulate the dual problem as a maximization problem of the
constraints. Note that the solution of the two problems is identical for convex
problems.

max
β∈RN

N∑
i=1

βi −
1

2

N∑
i,j=1

βiβjyiyj⟨xi, xj⟩ (4.10)

s.t. 0 ≤ βi ≤ C (4.11)

N∑
i=1

βiyi = 0 (4.12)

(4.13)

We take the optimal offset to be

b =
1

N

N∑
k=1

(
yk −

N∑
i=1

βiyi⟨xi, xk⟩

)
(4.14)

for k ∈ {i ∈ {1, . . . , N} | 0 < βi < C}. Using the fact that a positive definite
kernel k encodes a scalar product and the representer theorem, we can write the
optimal decision function in kernalized form as

f(x) =

N∑
i=1

βiyik(x, xi) + b. (4.15)
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We have seen how formulating a linear classification algorithm in a dual form
allows us to generalize it to a nonlinear method. In the next section, we will
look at the same idea in a regression context.

x
y

x
y

z

Feature map

Figure 4.1: Schematic illustration of the kernel trick for SVC. By projecting the
data from the plane into a three-dimensional space the two classes, represented
by red and blue dots, become linearly separable.

4.3.2 Kernel ridge regression

Kernel ridge regression uses the kernel trick to perform regularized linear regres-
sion, also called ridge regression, in the feature space. The estimator function
is:

f̂ = argmin
f∈H

(
N∑
i=1

(yi − f(ϕ(xi)))
2 + λ∥f∥2H

)
, (4.16)

where λ > 0 is a regularization parameter.
From the representer theorem, we know that the solution to the above prob-

lem can be found by expressing the hypothesis function in terms of the kernel
function as:

f̂(x) =

N∑
i=1

α̂ik(x, xi). (4.17)

From there, we can formulate an objective function for this representation:

J(α) = ∥y −Kα∥22 + λαTKα, (4.18)

where K is the Gram matrix with Kij = k(xi, xj). Differentiating with respect
to α, we get:

∂J(α)

∂α
= −2KT (y −Kα) + 2λKα = 0. (4.19)
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Rearranging, we obtain the linear system:

(K + λI)α = y. (4.20)

We solve the linear system to get the optimal the coefficients

α̂ = (K + λI)−1y. (4.21)

Now that we have defined both classification and regression in a feature space,
the next section turns to an unsupervised method where no targets are given.

4.3.3 Kernel PCA

Principal component analysis (PCA) is perhaps the most widely used dimen-
sionality reduction technique. The goal of PCA is to project the data points
into a lower dimensional space while preserving as much information as possible.
More formally, our goal is to find a set of basis vectors - the principal components
- that span a subspace that accounts for the maximum amount of variance in
the original data. Given a set of centered data points X = {x1, . . . , xN} ⊂ Rd

with
∑N

i=1 xi = 0 we take the empirical covariance matrix

C =
1

N

N∑
i=1

xix
T
i (4.22)

and solve the eigenvalue problem

λv = Cv. (4.23)

The eigenvectors given by this problem are then the basis vectors we are looking
for. To reduce the data to a certain size n we take the n eigenvectors corre-
sponding to the n largest eigenvalues and project onto the space spanned by
them. If we want to kernalize this method we have to reformulate it in a dual
way where the input data only appears in a scalar product. Notice first that

Cv =
1

N

N∑
i=1

⟨xi, v⟩xi. (4.24)

If we now assume that the vector v corresponds to a non-zero eigenvalue it
follows directly that it lies in the span of the xi. We can thus reformulate the
PCA as the solution to

λ⟨xi, v⟩ = ⟨xi, Cv⟩. (4.25)

PCA is a linear method as it works by projection on a linear subspace. For non-
linear relationships, this may not provide good or close to optimal dimensionality
reduction. Kernel PCA is an extension of the underlying idea of PCA by ap-
plying a dimensionality reduction on features in a reproducing kernel Hilbert
space. In this case we take the covariance matrix of the feature embeddings

C =
1

N

N∑
i=1

ϕ(xi)ϕ(xi)
T (4.26)
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for an appropriate feature map ϕ : X → H. Inserting into 4.25 we get

λ⟨ϕ(xi), v⟩ = ⟨ϕ(xi), Cv⟩. (4.27)

such that coefficients αi exist for which

v =

N∑
i=1

αiϕ(xi). (4.28)

The projection onto the eigenvectors of the feature covariance matrix is finally
computed by

⟨ϕ(x), v⟩ =
N∑
i=1

αik(xi, x). (4.29)

The above shows that RKHS theory opens the possibility to generalize not only
supervised learning methods, but also a broader class of algorithms, including
dimensionality reduction.

4.4 Vector-valued kernels

Most statistical learning focuses on approximating functions taking scalar val-
ues, be it classes encoded with natural numbers or continuous variables in the
real numbers. A reason for that is that a vector problem can be seen as the
collection of scalar-valued problems, making it possible to focus theory on those
atomic tasks. Vector-valued function learning has its origins in multitask learn-
ing, where the idea is that learning multiple variables at once exploits the cor-
relations between them. It is straightforward to see how such a framework will
become relevant in the context of learning covariance matrices.

The theory of vector-valued RKHS, originally developed by [Micchelli and
Pontil, 2005], expands the above concept of kernels to matrix-valued kernels.
Using those, we can generalize many of the results of the scalar case. First,
we will expand the notion of positive definite kernels, to mappings over linear
operators. As we are going to restrict ourselves to the finite-dimensional case,
the outputs of our new kernels will become matrices. The symmetry condition
translates into a requirement on the transpose operator. While the positive
definiteness now manifests inside the scalar product of the target space of the
RKHS-functions, which is now a vector-valued space.

Definition 4.4.1 (Positive definite matrix-valued kernel). Let X be a nonempty
set. A positive definite matrix valued kernel is a function K : X × X → Rd×d

such that

1.
K(x, z) = K(z, x)T
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2.
n∑

i,j=1

⟨yi,K(xi, xj)yj⟩Rd ≥ 0

for all n ∈ N, {(x1, y1), . . . (xn, yn)} ⊂ X × Y.

For each such kernel K there now exists a unique function space HK ⊂ XRd

,
which is a Hilbert space and possesses properties similar to the scalar valued
case. In particular we have that

Kx ∈ L(Rd,HK), x ∈ X (4.30)

for Kx = K(·, x) and that the space is spanned by all feature maps

HK = span{Kxy | x ∈ X, y ∈ Rd}. (4.31)

The representer property for vector valued functions f ∈ HK takes the form

⟨f,K(·, x)y⟩HK
= ⟨f(x), y⟩Rd . (4.32)

A useful definition is that of separable kernels, for which the calculation of kernel
outputs reduces to the scalar case plus a matrix multiplication.

Definition 4.4.2 (Separable kernel). A matrix valued kernel K is called sepa-
rable if there exist a scalar valued kernel k and a positive semi-definite matrix
M such that K(x, x′) = k(x, x′)M .

The solution to the vector-valued empirical risk minimization problem in
such a reproducing kernel Hilbert space

min
f∈HK

R̂(f(x1), . . . , f(xN )) + Ω(||f ||HK
) (4.33)

is equivalently given by a finite dimensional form stated with kernel evaluations

f̂(x) =

N∑
i=1

K(xi, x)y (4.34)

where y is a vector in Rd.
The presentation above refers to the case where we learn unconstrained func-

tions taking values in a multi-dimensional, but Euclidean space. The construc-
tion of methods taking values in constrained sets is more intricate. A central
observation is that the kernel is decomposable into the feature maps

K(x, y) = K∗
xKy. (4.35)

Now, a question comes up: Can we restrict the operation in the vector-valued
RKHS by an additional operator in-between to impose structure on the output
of the kernel? The answer to that question is a qualified yes. As we will see in
the following, it is possible to derive structured outputs by imposing geometrical
constraints in the infinite-dimensional Hilbert space of functions.
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4.4.1 Operator theory preliminaries

To define structured matrix kernels, we begin by reviewing background mate-
rial from operator theory. We will later build upon that to define SPD-valued
kernels. In the following Y will denote a Hilbert space. Linear bounded op-
erators can, in many ways, be seen as the infinite-dimensional generalization
of matrices. The adjoint operator is the unique operator commuting in the
scalar product. As the adjoint corresponds to transposition, a self-adjoint op-
erator does to a symmetric matrix. Moreover, our familiar notion of positive
definiteness generalizes in just the same way.

Definition 4.4.3 (Adjoint, self-adjoint, and positive operators). Let A ∈ L(Y).
Then:

1. A∗, the adjoint operator of A, is the unique operator in L(Y) that satisfies

⟨Ay, z⟩Y = ⟨y,A∗z⟩Y , for all y ∈ Y, z ∈ Y.

2. A is self-adjoint if A = A∗.

3. A is (strictly) positive if it is self-adjoint and for all y ∈ Y,
⟨Ay, y⟩Y ≥ 0 (> 0). We will call the cone of positive operators Sym+(Y).

The trace is a measure of the total influence an operator has across all
dimensions of a Hilbert space. For matrices, the trace is simply the sum of the
diagonal elements. The condition for an operator to be trace-class ensures that
the trace is finite.

Definition 4.4.4 (Trace-class). We say A ∈ L(Y) is trace-class if for any
orthonormal basis {ek}∞k=1 of Y

||A||Tr =
∞∑
i=1

⟨ek, Aek⟩Y =

∞∑
i=1

⟨ek, (A∗A)
1
2 ek⟩Y <∞. (4.36)

For those we define the trace by

Definition 4.4.5 (Trace). If A is trace-class we define the trace by

Tr(A) =

∞∑
i=1

⟨ek, Aek⟩Y . (4.37)

The Hilbert-Schmidt norm is the generalization of the Euclidean matrix
norm to infinite dimension. In finite dimensions, linear operators, given by
matrices, always have finite Frobenius norm, this is not the case anymore for
general operators.

Definition 4.4.6 (Hilbert-Schmidt operators). We say A ∈ L(Y) is a Hilbert-
Schmidt operator if for any orthonormal basis {ek}∞k=1 of Y

||A||HS =
√
Tr(A∗A). (4.38)
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The space of Hilbert-Schmidt HS(Y) operators forms a Hilbert space under
the scalar product

⟨A,B⟩HS = Tr(A∗B) =

∞∑
i=1

⟨Aei, Bei⟩. (4.39)

For a compact operator K with countable spectrum {λi}∞i=1 with limi→∞ λi = 0
we have

||K||2HS =

∞∑
i=1

λ2i <∞. (4.40)

If we take the topological product Yd, we can define linear operators on that
space by building matrices of operators, called block operator matrix.

Definition 4.4.7 (Block operator matrix). Let d ∈ N. Then:

1. A ∈ L(Yd), given by

A =

A11 . . . A1d

...
...

Ad1 . . . Add


where each Aij ∈ L(Y), i, j = 1, . . . , d, is called a block operator matrix.

2. The adjoint of A is the block operator matrix A∗ ∈ L(Yd) such that
(A∗)ij = (Aji)

∗.

3. A is self-adjoint if A = A∗.

4.4.2 Kernel sum-of-squares

In this section, we will present the kernel sum of squares method of [Muzellec
et al., 2022] to learn functions constrained to the SPD manifold with boundary.
The authors developed a model that utilizes a positive operator in a vector-
valued RKHS to constrain the learned function to the bounded SPD cone.

The idea of a kernel sum-of-squares is derived from the sum-of-squares cri-
terion for the positivity of polynomials. In analogy, [Marteau-Ferey et al., 2020]
use a similar form to enforce a pointwise non-negativity constraint on the out-
put of kernel methods. Central to their approach is that they aim to construct
a universal model that keeps the convexity of the learning problem. [Muzellec
et al., 2022] expanded the model then to the case of positive semi-definite matrix
outputs.

Learning SPD matrix-valued functions is a vector-valued problem, therefore
we can build upon the theory introduced in the previous section. However,
instead of searching in the whole space, we will look for a function inside a
constrained set. We formulate the risk minimization problem

inf
f∈XY

f(x)∈Sym+

R(f) + Ω(f). (4.41)
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The first difficulty is to construct a model class guaranteed to take values in
the desired set, while keeping many of the properties that make kernel methods
appealing. Given a scalar feature map ϕ : X → H we define our model as

FA(x) = Φ(x)∗AΦ(x), with A ∈ Sym+(Hd), (4.42)

where Φ(x) ∈ L(Rd,Hd) corresponds to

Φ(x) =


ϕ(x) 0H . . . 0H
0H ϕ(x) . . . 0H
...

...
. . .

...
0H 0H . . . ϕ(x)

 . (4.43)

Note that A is a block operator matrix. An equivalent representation is given
by

FA =

⟨ϕ(x), A11ϕ(x)⟩H . . . ⟨ϕ(x), A1dϕ(x)⟩H
...

. . .
...

⟨ϕ(x), Ad1ϕ(x)⟩H . . . ⟨ϕ(x), Addϕ(x)⟩H

 (4.44)

We have that this model class is linear in its parameter, and constrained to the
symmetric positive semi-definite matrices.

Theorem 4.4.1 ( [Muzellec et al., 2022] ). Given A,B ∈ L(Hd) and α, β ∈ R
it holds FαA+βB(x) = αFA(x) + βFB(x). Moreover, if A ∈ Sym+(Hd) then
FA(x) ∈ Sym+(Rd) for all x ∈ X . If the feature map ϕ corresponds to a universal
kernel, this model is able to approximate PSD-valued functions arbitrarily well.

The hypothesis class defined by 4.44 gives rise to the optimization problem

inf
A∈Sym+(Hd)

R̂(FA(x1), . . . , FA(xn)) + Ω(A) (4.45)

For the following we will give an explicit regularization map

Ω(A) = λ1Tr(A) +
λ2
2
||A||2HS (4.46)

with two regularization parameters λ1, λ2 ≥ 0. The above map can be seen as
a generalization of the elastic net regularization to the operator case.

A very interesting observation first pointed out in [Marteau-Ferey et al.,
2020] is that the original point-wise constraints on the outputs become con-
straints on the parameters of the model. This fundamentally derives from those
function constraints defining an infinite dimensional manifold.

Theorem 4.4.2 (Representer theorem for SPD matrix outputs [Muzellec et al.,
2022]). The empirical risk minimization problem for functions taking values in
the SPD manifold with boundary 4.45 has a solution A∗, which may be written
as

A∗ =

N∑
i,j=1

Φ(xi)CijΦ(xj)
∗,
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where Cij ∈ Rd×d, i, j ∈ [N ], and

C =

C11 · · · C1N

...
. . .

...
CN1 · · · CNN

 ∈ Sym+(RNd).

The version of the kernel sum-of-squares presented here is separable by Φ(xi)
∗Φ(xj) =

k(xi, xj)I for a scalar kernel k. We can evaluate the optimal solution FA∗ by
means of the k

FC(x) =

N∑
i,j=1

k(xi, x)k(xj , x)Cij , x ∈ X . (4.47)

The derivation of the finite dimensional representation involves multiple steps
and is quite technical, so we only state the result. For convex empirical risk R̂
and λ2 > 0 the optimal parameter A∗ is unique. After a reparametrization of
the pd-constraint matrix C, and the feature map Φ, the problem can be reduced
to solving a finite-dimensional matrix problem

min
B∈Sym+(RNd)

R̂(FB(x1), . . . , FB(xN )) + Ω(B) (4.48)

where for a new finite dimensional feature map Ψ the model is expressed by
FB(x) = Ψ(x)TBΨ(x).

The representer theorem allowed us to reduce an infinite dimensional prob-
lem on the cone of positive operators into finite dimensional problem on the
cone of SPD matrices plus the boundary of singular matrices. This makes the
problem numerically tractable, but we still need to respect the manifold condi-
tion in our optimization methods, which can be expensive. There is a remedy
to this, however, if our risk function fulfills the classical conditions of being con-
vex, lower semi-continuous and bounded from below, we can formulate a dual
problem defined over the vector space of symmetric matrices. This then allows
us to use unconstrained first-order methods.

First we define the negative part of a symmetric matrix by means of the
singular value decomposition. Let W ∈ Sym(Rd), then

[W ]− = OT max(0,−D)O (4.49)

where is the maximum is taken elementwise over the eigenvalues of W . For
convex risk R̂ we can define a dual formulation using the notion of a Fenchel
conjugate, which is given by

R̂∗(W ) = sup
A∈Sym(Rd)N

{
N∑
i=1

⟨Ai,Wi⟩F − R̂(A)

}
(4.50)

for W ∈ Sym(Rd)N . Using this we can get a dual formulation of the kernel
sum-of-squares problem.
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Theorem 4.4.3 ( [Muzellec et al., 2022]). Let R̂ : Sym(Rd)N → R be convex,
lower semi-continuous and bounded from below and Ω the elastic net regularizer
as defined in 4.46. Assume that 4.45 admits a feasible point, and denote R̂∗

the Fenchel conjugate of R̂. Then, If λ2 > 0 and λ1 ≥ 0, 4.45 has the following
dual formulation:

max
W∈Sym(Rd)N

R̂∗ − 1

2λ2

∥∥∥∥∥
[

N∑
i=1

ΨiWiΨ
T
i + λ1I

]
−

∥∥∥∥∥
2

F

(4.51)

whereWi ∈ Sym(Rd), i ∈ [N ] denotes the i-th matrix element ofW ∈ Sym(Rd)N .
Further, ifW ∗ is an optimal solution of 4.51, an optimal B∗ for the primal prob-
lem 4.45 is

B∗ =
1

λ2
Ψ−1

[
N∑
i=1

ΨiW
∗
i Ψ

T
i + λ1I

]
−

Ψ−T . (4.52)

Using both the finite-dimensional form of the model and the dual problem we
can set up the least squares regression problem on the manifold of SPD matrices
including their boundary. For that, we take training points x1, . . . , xN ∈ Rp and
labels A1, . . . , AN ∈ Sym+(Rd). The least squares problem on positive semi-
definite matrices is given by

min
B∈Sym+(RNd)

1

2N

N∑
i=1

∥FB(xi)−Ai∥2F + λ1TrB +
λ2
2

∥B∥2F (4.53)

with regularization parameters λ1 ≥ 0 and λ2 > 0.
We now use 4.4.3 to give a dual formulation of this problem

min
W∈Sym(Rd)N

−N
2

N∑
i=1

∥Wi∥2F + ⟨Wi, Ai⟩F +
1

λ2

∥∥∥∥∥∥[
N∑
j=1

ΨjWjΨ
T
j + λ1I]−

∥∥∥∥∥∥
2

F

(4.54)

with the primal-dual optimality relation given by

B∗ =
1

λ2
Ψ−1

[
N∑
i=1

ΨiW
∗
i Ψ

T
i + λ1I

]
−

Ψ−T . (4.55)

The optimization problem in 4.54 is smooth and strongly convex, leading to the
existence of a unique minimum. Since it is now also unconstrained in the vector
space of symmetric matrices, we are able to use accelerated Nesterov gradient
descent. Given symmetric matrices as initialization points, the gradients will
be symmetric so that the iterative procedure will not leave the space. This is
in stark contrast to the Log-Euclidean least squares regression, which we could
define similarly to 3.33 by looking for targets in the form of exp(f(x)). In this
case, our regression task is also defined for some unconstrained function f going
into the symmetric matrices. However, this kind of parameterization leads to a
problem that is non-convex and NP-hard.
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Although the kernel sum-of-squares model gives outputs for the less con-
strained case of Bures-Wasserstein parameterisation of SPD matrices - namely
the Euclidean metric submerged into the cone of PSD matrices - we might still
expect that this model will also be able to approximate the geometry defined
by the affine invariant metric. We therefore test the ability of this regression
model to interpolate the affine invariant Riemannian geodesic in Chapter 6.

An interesting question now is whether we can constrain the output of such a
model to the interior of the cone. A first naive attempt would be to require our
block operator matrix to be strictly positive. However, in infinite dimensions,
strict positivity and positive definiteness are not the same anymore. To be able
to learn within a closed set, we might shift the class of operators we consider to
a regularized version on which the Log-Hilbert-Schmidt distance [Minh et al.,
2014] is bounded. For these operators, we gain a vector space structure very
similar to the finite-dimensional Log-Euclidean case.

Definition 4.4.8 (Positive definite Hilbert-Schmidt operators).

Sym++(H) = {A+ µI > 0: A = A∗, A ∈ HS(H), µ ∈ R} (4.56)

We define the extended Hilbert-Schmidt norm by

||A+ µI||2HS+
= ||A||2HS + µ2 (4.57)

and building on that the Log-Hilbert-Schmidt distance just as in the finite di-
mensional case

dlogHS(A+ µ1, B + µ2) = || log(A+ µ1)− log(B + µ2)||HS+
. (4.58)

We conjecture that this structure might correspond to a linearization similar to
the finite-dimensional case, which opens the possibility of a representer theorem.
The infinite-dimensional structure of positive definite operators and covariance
operators is a very active area of research and entering it will be left for future
work. The interested reader is advised to look at [Larotonda, 2007] for an
exploration of the concept.

4.5 Conclusion

The theory of reproducing kernel Hilbert spaces is one of the central under-
pinnings of statistical learning theory. They have proven powerful in practical
applications, and the rigorous theory provides a framework for the mathemat-
ics of learning. Kernel methods however are still intimately tied to the notion
of linearity and depend on our data having a meaningful representation in a
Hilbert space. As we have seen in this chapter, even for a regular manifold
such as the Cartan-Hadamard SPD matrices, defining a kernel is not possible
for every geometry. A certain kind of linearization, either by the first-order
approximation of the Log-Euclidean metric or by the imposition of Euclidean
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topology as done with the Bures-Wasserstein metric enables us to transfer many
algorithms to the manifold case by performing them in its feature space.

The case of reproducing kernel Hilbert spaces of functions going into mani-
folds is even less explored. Here, we considered what, to the best of our knowl-
edge, is the first universal model for structured matrix kernels. Although de-
signed for the least constrained of our geometries, it provides a powerful tool
and a promising avenue for further research into approximating functions taking
values in non-linear spaces.

In the next section, we will look at a less mature but perhaps even more
powerful framework, that of neural networks. Neural networks connect to kernel
methods in the way that now we do not fix the kernel, and thus the feature map,
a priori, but have the algorithm itself choose the embedding. The hope is that
the resulting technique adapts better to variations in smoothness in a problem.



Chapter 5

Deep Learning

Today most state-of-the-art machine learning algorithms in various domains,
such as computer vision, natural language processing, or generative models, are
based on neural networks. The term neural network refers to a family of different
parametric machine learning models. The name is derived from its similarity
to how networks of neurons propagate information in form of electrical signals
in the human brain. Each neuron receives a number of electrical signals and
depending the strength of signals and connections either passes the signal to the
next neuron or suppresses it.

Similarly, at the basic level, neural networks are characterized by having
multiple layers, that is being composed of concatenated functions, each with
a different set of parameters. In the following we will focus on so-called feed
forward networks, which are networks in which information is strictly passed
from one layer to the next, without data skipping a layer or flowing backwards.

In the first section we will introduce the model class of two layer networks and
look at its approximation properties. Afterwards we elaborate on the optimiza-
tion procedure by which neural network models are typically trained. Following
that we will look at neural networks defined on SPD-valued data, in particular
the architecture of the SPDnet. We use [Goodfellow et al., 2016] as reference
for Euclidean deep learning.

5.1 The Feed Forward Architecture

To motivate neural networks, we again begin by looking at the (affine-)linear
class. It’s not without reason that there’s a facetious idiom that all machine
learning is, in the end, just linear regression. We set up the typical affine-linear
function where we first take the scalar product with a weight parameter w and
following that add a bias term b

fθ = ⟨w, x⟩+ b, where θ = (w, b). (5.1)

43
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To use such a model for classification, we can apply a nonlinear activation
function to the output. For the choice of the Heaviside function

σ(x) =

{
1 x > 0,

0 else ,
(5.2)

we gain the single-layer perceptron class

FPerc = {fθ(x) = σ(⟨w, x⟩+ b), where σ is the Heaviside function}. (5.3)

This first instance of an artificial neural network was first constructed by [Rosen-
blatt, 1958] for binary classification. However, this class fails to predict non-
linearly separable data. We are going to extend the idea of the perceptron class
by adding an additional, so called hidden, layer between the layer representing
the input and the output of the network. The networks considered will be fully-
connected, meaning that each neuron has a connection to all neurons in the
subsequent layer. Neural networks have a natural representation as a directed
acyclic graph, as visualized in Figure 5.1. The nodes represent the state of the
network, with each column comprising a vector. Meanwhile the edges of that
graph have weights attached that denote the strength of a connection between
nodes.

Let us break up the composition of a two-layer neural network f

1. Input Layer: The input data, denoted as x(0), is passed to the input
layer f0. The transformation at this layer is given by

f0(x
(0)) = ⟨w0, x

(0)⟩+ b0

After this (affine-)linear transformation, a non-linear activation function
σ is applied element-wise to produce the output of the layer:

x
(1)
i = σ(f0(x

(0))i)

2. Hidden Layer: The output from the input layer, x(1), serves as the input
to the hidden layer. The transformation at this hidden layer is

f1(x
(1)) = ⟨w1, x

(1)⟩+ b1

This produces the output of the hidden layer:

x(2) = f1(x
(1))

3. Output Layer: The output of the hidden layer, x(2), is the final output
of the a two-layer network

y = f(x(0)) = x(2)
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y1

y2

Figure 5.1: Graph representation of a two-layer neural network.

Based on this description we can also write the model class of two-layer neural
networks in a more compact form as

F2-layerNN =

fθ(x) =
m∑
j=1

ajσ(⟨w, x⟩+ b), m ∈ N, θ = (a,w, b)

 (5.4)

An activation function σ : R → R is a nonlinear scalar function, which is applied
pointwise to the outputs of a, typically linear, neural network layer. The most
common are

σ(x) =
1

1 + e−x
(Logistic Sigmoid) (5.5)

σ(x) =
ex − e−x

ex + e−x
(Hyperbolic Tangent (tanh)) (5.6)

σ(x) = max(0, x) (ReLU - Rectified Linear Unit) (5.7)

Historically, sigmoidal activation functions such as the logistic sigmoid or the
hyperbolic tangent have been the most popular choices. However, both suffer
from the problem that the norm of the gradient with respect to the parameters
can become very large, especially for deeper networks, causing problems during
learning. In the modern era of deep learning, ReLU functions have become the
most common activation in practice. Since they remain zero for negative inputs,
there is a strong tendency for networks to become sparse, with many neurons
outputting zeros.
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(a) Sigmoid (b) Tanh (c) ReLU

Figure 5.2: Visualization of different activation functions: Sigmoid, Tanh, and
ReLU.

A special kind of activation function is given by the softmax function. It is
typically applied to final output of a neural network in the case of multi-class
classification. Assuming we have C classes and using the terminology from
above, the outputs become

yi = softmax(x
(2)
i ) =

exp(x
(2)
i )∑C

j=1 exp(x
(2)
j )

. (5.8)

Since each entry lies between zero and one, and the vector sums to 1, the output
vector y can now be seen as a probability distribution modeling the chance of
an input x belonging to each class.

In general a neural network fNN is built as a concatenation of linear func-
tions combined with pointwise non-linear activation functions. Typically we
characterize a network by the number L of its linear layers, often called the
depth

fL-layerNN(x) = fL(σ(fL−1(σ(· · · f1(x))))). (5.9)

For each layer fL−i we call width its number of neurons, which is its domain
dimension. In practical applications neural networks can be hundreds to thou-
sands of layers deep.

We now take a look at the approximation theoretic properties of the two-
layer neural network class. There is a series of theorems all with slightly different
prerequisites and statements that qualify the approximation power of a neural
network. We state a basic universal approximation theorem, which shows that
the class of two-layer neural networks can approximate any continuous function
on a compact set arbitrarily well.

Theorem 5.1.1 ( [Hornik, 1991]). Let σ : R → R be a nonconstant, bounded,
and monotonically increasing function. Then for all ε > 0, all compact sets
U ⊂⊂ R and all continuous functions f ∈ C(U), we have that

||f − fNN ||∞ < ϵ

for some fNN ∈ F2-layerNN.
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The theorem establishes that even a simple two-layer neural network archi-
tecture holds very powerful approximation properties. Note however, that the
statement requires the width of the network to be unbounded. That means
that we might have to potentially optimize an extreme amount of parameters,
bringing the difficulties of high-dimensional optimization.

5.2 Training neural networks

We are now going to take a closer look at the problem of fitting the parameters
of a neural network. Depending on the task at hand, there are essentially two
different losses employed. For a regression problem, the objective is given by
the familiar Euclidean least squares loss. Our optimization objective for this is

min
θ
J(θ) =

1

N

N∑
i=1

∥yi − fθ(xi)∥22. (5.10)

On the other hand, when dealing with a multi-class classification problem and
using softmax activation, the most commonly used objective function is the
cross-entropy loss

min
θ
J(θ) = − 1

N

N∑
i=1

C∑
j=1

yij log(fθ(xi))j (5.11)

for a classification problem with C different classes.
Because of the nonlinear activation function, neural network optimization

typically becomes a non-convex and challenging optimization problem to solve.
We cannot expect convergence to a global optimum, but practice has shown
that first-order methods often lead to good local minima.

One of the most popular optimization procedures is the gradient descent
algorithm. Gradient descent is based on the idea that being at a point in an
optimization landscape we take the current negative gradient, that is direction
of the steepest descent, and take a small step in that direction. Given enough
such steps, the hope is that we will eventually arrive at a minimum. Assuming
we are given an objective function J(θ), then the gradient descent update rule
can be formally written as

θk+1 = θk − η∇J(θk). (5.12)

Where:

• θk is the current point.

• η is the learning rate. It determines the step size in the direction of the
negative gradient.

• ∇J(θk) is the gradient of J evaluated at θk, which points in the direction
of the steepest ascent.
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The algorithm stops when ∥∇J(θk)∥ is sufficiently small, or after a prede-
termined number of iterations. In the case of neural networks the size of θ can
easily go into the thousands or even millions, making regular gradient descent
very computationally expensive. Thus in most cases a variant of stochastic gra-
dient descent is chosen instead. In mini-batch stochastic gradient descent we
choose a random subset B ⊂ {1, . . . , N} of the training data and instead of
computing the gradient with respect to the entire training data set we only
evaluate the gradient only for this subset

∇JB(θk) =
1

|B|
∑
i∈B

∇Ji(θk) (5.13)

where ∇Ji(θk) is the gradient for the i-th training point on the k-th iteration of
the parameter approximation and update the parameters based on that. Note
that for our objective functions Ji corresponds to the single sample loss for a
fixed pair (xi, yi).

Although originally developed for the purpose of easing the computational
burden there is growing evidence that the stochastic nature of the algorithm
plays a central role in the success of neural networks. Neural networks are in
fact mostly not explicitly regularized, but implicitly regularized by the algorithm
itself. The question that remains is how to compute the gradient with respect to

Gradient Descent Stochastic Gradient Descent

Figure 5.3: Comparison between Gradient Descent and Stochastic Gradient De-
scent. While gradient descent is more stable and follows a smooth and consistent
path to the minimum, stochastic gradient descent is inherently noisy. Gradient
descent usually finds a more accurate minimum, while the stochastic version can
suffer from oscillations, but is both faster to compute and less memory intensive.

the parameters. We need to adjust the weights of each layer in the direction of
steepest descent in parameter space. For large number of parameters and layers,
it is paramount that this accomplished in a fashion that avoids unnecessary
computations. Note that we can easily compute the gradient of a neural network
of depth L with respect to the output layer. For the final layer L, the gradient
of the objective Ji with respect to the parameter θ(L) is:

∂Ji
∂θ(L−1)

=
∂Ji
∂x(L)

∂x(L)

∂f (L)

∂f (L)

∂θ(L−1)
(5.14)
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where x(L) is the state after the activation function has been applied to the

output of the last layer, and ∂x(L)

∂f(L) is the derivative of the activation function.

We can then compute the gradients of each layer by recursively stepping
backwards through the network, hence the name of the algorithm backpropa-
gation. For any layer L − k − 1, the gradient of the loss with respect to the
parameters θ(L−k−1) of that layer is:

∂Ji
∂θ(L−k−1)

=
∂Ji

∂x(L−k)

∂x(L−k)

∂f (L−k)

∂f (L−k)

∂θ(L−k−1)
(5.15)

while the derivative of the loss with respect to the state x(L−k−1) of the previous
layer is

∂Ji
∂x(L−k−1)

=
∂Ji

∂x(L−k)

∂x(L−k)

∂f (L−k)

∂f (L−k)

∂x(L−k−1)
(5.16)

5.3 Neural networks for data on manifolds

Neural networks have been enormously successful in many domains. However,
they rely on the assumption that the input and output data lie in a Euclidean
domain. Given that an increasing amount of data is well modeled on other
spaces, such as a Riemannian manifold, there has been much interest in extend-
ing neural network approaches to such domains. The SPDnet [Huang and Gool,
2017] is one of the first neural network architectures for non-Euclidean data and
the most prominent in the context of symmetric positive definite matrices.

We start by assuming that our inputs are defined on a manifold, in our
case X = Sym++(Rd) and the output is a real valued scalar y. Our goal is
to build a multi-layer network architecture that manages to incorporate the
geometric information inherent in the manifold. Since we want this information
to be available to all layers, the first challenge is to define functions that can be
concatenated while still respecting the manifold structure.

Given the homogeneous space structure of Sym++(Rd) = GL(Rd)/O(Rd),
the natural idea is to define the linear part of neural networks as the congruence
action of the general group. This leads to the definition of the Bimap layer

f
(l)
W (A) =W.A =WTAW (5.17)

for data A ∈ Sym++(Rd) and learnable weight matrices W ∈ GL(Rd). The
manifold assumption in deep learning posits that for typical learning task the
data lies on a much lower dimensional manifold. The thought is than that a
neural network through consecutive contractive operations is able to capture
that structure and exploit it. This heuristic idea is explicit in the construction
of the SPDnet, as we known the manifold the data resides upon. As such a
Bimap layer can be seen as a map from one SPD manifold to a - typically -
lower dimensional more discriminative one. Unfortunately, optimization over
the general linear matrices proves difficult as that manifold is non-compact.
In [Huang and Gool, 2017], the authors resolved this by restricting the weights
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to the semi-orthogonal matrices which form a compact manifold O(Rdk ,Rdk−1),
thereby defining the central piece of the SPDnet architecture.

The next question coming up is that of non-linearity. Two purposes are
served. First, we aim to increase the approximation power of the architecture.
Second, the non-linearity is necessary to prevent subsequent layers from collaps-
ing into a single global operation

f
(l)
W3

(f
(l)
W2

(f
(l)
W2

(A))) =W3.(W2.(W1.A)) =W ′.A (5.18)

for some W ′ ∈ O(Rd3 ,Rd0).
In analogy to the ReLU function, the authors of the SPDnet decided to define

a threshold function on the spectrum of SPD matrices to introduce non-linearity
into the network. This happens via means of the ReEig layer

ReEig(A) = σ(A) = σ(OADAO
T
A) = OA max(εI,DA)O

T
A (5.19)

where the threshold function with threshold value ϵ ≥ 0 is defined pointwise on
the singular values of the input matrix. A drawback of this approach is that
the sparsity-inducing effect of the original ReLU function is mostly lost if the
threshold ε is chosen too large.

We might desire, in some cases, to perform additional computations in Eu-
clidean space. For that, we can use the matrix logarithm in form of the LogEig
layer

LogEig(A) = vec(OA log(DA)O
T
A) (5.20)

to map our SPD data into the space of symmetric matrices and flatten it via
the vectorization operation vec. In practice the SPDnet architecture is always
used as a neural network with Euclidean output, being trained with either the
mean squared error or the cross entropy loss. Thus, there is always a LogEig
layer at the conclusion of the Riemannian part of the architecture. This implies
that the SPDnet fundamentally operates in a Log-Euclidean interpretation of
the SPD data.

There are two main challenges in optimizing the SPDnet architecture. One
lies in the fact that our parameters lie on a manifold themselves, the manifold
of semi-orthogonal matrices, sometimes also called Stiefel manifold. As such
using Euclidean methods, in particular the regular Euclidean gradient descent,
will almost certain lead to violations of the parameter constrain. Thus we will
have to utilize Riemannian optimization. The other difficulty lies the fact that
the ReEig and LogEig layer define structured matrix functions necessitating a
reformulation of the backpropagation algorithm.

For optimization on manifolds we need a Riemannian gradient. We first
define the differential on a Riemannian manifold.

Definition 5.3.1 (Riemannian differential). Let M, M′ be two Riemannian
manifolds, and let F : M → M′. We define the differential at a point p ∈ M to
be the linear map DF (p) : TpM → TF(p)M′ defined by

DF (p)[v] =
d

dt
F (γ(t))

∣∣∣∣
t=0

= (F ◦ γ)′(0), (5.21)
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where γ is a smooth curve on M, with γ(0) = p and γ̇(0) = v.

Using this differential we can than define the Riemannian gradient.

Definition 5.3.2 (Riemannian gradient). Let M be a Riemannian manifold.
For a smooth function f : M → R the Riemannian gradient is the unique vector
field∇f(x), such that for all points on the manifold p ∈ M and all their elements
v ∈ TpM

Df(x)[v] = ⟨v,∇f(x)⟩x. (5.22)

With this generalization of a gradient the Riemannian gradient descent is de-
fined, providing a universal scheme for first-order approximation on Riemannian
manifolds.

θk+1 = Expθk(−η∇J(θk)) (5.23)

The difficulty lies in knowing the gradient efficiently and being able to compute
it feasibly. Fortunately in the case of the semi-orthogonal manifold the gradient
is known in closed form

∇OJ
k(W k

i ) = ∇Jk(W k
i )−∇Jk(W k

i )((W
k
i )

tW k
i ) (5.24)

With this formula we can update the Bimap layer, however, we still need to
define a form of derivative for the other two layers. To see this, first notice that
both can be understood as functions acting purely on the eigenvalues of the
matrix. For such global matrix valued functions the partial derivative defined
previously is no longer valid. The theory of matrix backpropagation was origi-
nally developed by [Ionescu et al., 2015]. In their framework we first compute
the linear functional V giving the variation of the state of one layer xi with
respect to the previous layer state xi−1

d xi = V(d xi−1). (5.25)

As the tailor expansion of a matrix valued function f : Rd×d → R is given by

f(x+ d x) = f(x) +

〈
∂f

∂x
, d x

〉
+O

(
||d x||2

)
(5.26)

we can find the desired partial derivative with the help of the non-linear adjoint
given by

V∗
(
∂J

∂xi

)
=

∂J

∂xi−1
. (5.27)

This forms a universal scheme that can be applied to all structured matrix
functions. For the following expressions we will define two shorthand notations
operating on matrices. For a matrix A we will call the systematization

sym(A) =
1

2
(AT +A) (5.28)
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and the diagonalization

diag(A)ij =

{
Aij , i = j

0, else
. (5.29)

There is a general form for functions defined on eigenvalue decompositions.

Theorem 5.3.1 ( [Ionescu et al., 2015]). Let A ∈ Sym++ have an eigenvalue
decomposition A = ODOT . Then the variations with respect to the two com-
ponents of the decomposition are respectively given by

dD = diag(OT dAO) (5.30)

and
dO = 2O(KT ⊙ sym(OT dAO)) (5.31)

where ⊙ is the Hadamard product and K the Loewner matrix operating on the
eigenvalues of D

Kij =

{
1

λi−λj
, i ̸= j

0, else
. (5.32)

The partial derivative of an eigenvalue function is then given by

∂J

∂A
= O

(
2

(
KT ⊙ sym

(
OT ∂J

∂O

))
+ diag

(
∂J

∂D

))
OT . (5.33)

With the help of this matrix calculus we can finally state the partial deriva-
tives for ReEig layer

∂J

∂O
= 2 sym

(
∂J

∂xk

)
Omax(ϵI,D) (5.34)

∂J

∂D
= QOT sym

(
∂J

∂xk

)
O (5.35)

where Q is a diagonal matrix representing the gradient of max(ϵI,D) given by

Qii =

{
1, Dii > ϵ

0, else
(5.36)

and the LogEig layer

∂J

∂O
= 2 sym

(
∂J

∂xk

)
O log(D) (5.37)

∂J

∂D
= D−1OT sym

(
∂J

∂xk

)
O (5.38)

as derived in [Huang and Gool, 2017].
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5.4 Conclusion

In this chapter we have looked at the model class of neural networks, which
through the concatenation of global linear operations with entrywise non-linear
activations give a universal approximator for continuous functions. The same
principle translated to defining an architecture taking in SPD-valued data and
using bilinear layers adapted to respect both symmetry and positive definiteness
of the data. This way we were able to propagate data through the network while
staying on the manifold. As in the Euclidean case the training procedure was
comparatively difficult in contrast to the simplicity of the model class. Both
the gradient descent procedure and the computation of the gradient needed to
be generalized to the manifold case.

An open question is the construction of multi-layered model classes, such
as neural networks, for estimators of manifold-valued functions. As was shown
in [Chakraborty et al., 2022] there is a straightforward generalization of the
convolution operation often used in neural network architectures to the manifold
case by use of the Karcher mean. However, it was also noted that the repeated
use of those Karcher mean collapses into a single mean operation in the case
of manifolds with constant curvature very similarly as in 5.18. The question
of whether this necessarily happens for the case with non-constant curvature
remains an open conjecture. For the SPDnet a reduction to a single function
was stopped by use of a non-linearity. This might also be a possibility for the
case of neural networks taking values in manifolds although it is far from trivial
to design effectively nonlinearities.
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Chapter 6

Numerical Experiments

This chapter presents several numerical experiments to investigate learning with
SPD-valued data. A particular focus will be on exploring the Bures-Wasserstein
geometry. This will be done both for encoding functions defined on SPD ma-
trices and using the Bures-Wasserstein ansatz of viewing SPD matrices as a
manifold with a boundary to learn functions that go into that cone.

We start by classifying natural images using their covariance descriptors,
which define, properly regularized, if necessary, SPD matrices. We then compare
the accuracy of exponential kernels defined by the squared Euclidean, Log-
Euclidean, and Bures-Wasserstein distances and the SPDnet architecture. Using
kernel PCA defined by the respective geometric kernels will provide insight into
how the kernels differ in class separation.

Next, we will demonstrate the difficulty of global learning on SPD matrices
by comparing the error of kernel ridge regression on sets of SPD matrices with
increasing bounds on the maximum eigenvalue.

Finally, we will adapt the experiments of [Muzellec et al., 2022] on interpo-
lating a Bures-Wasserstein geodesic with the kernel sum-of-squares and fit an
affine-invariant geodesic instead. The goal is to explore the prospects of using
Bures-Wasserstein regression models to approximate affine-invariant relation-
ships.

All kernel methods are based on their scikit learn implementation [Pedregosa
et al., 2011] fitted with custom distances, while we use the SPDnet architecture
defined in [Brooks et al., 2019] for setting up the neural network part. The
kernel sum of squares experiment is based on the source code published by
[Muzellec et al., 2022]. Geometric computations are done by the Geomstats
library [Miolane et al., 2020b], covariance descriptor preprocessing by [Kongfei,
2020].

55
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6.1 Support Vector Classification

A common task in computer vision is image content classification. A central
problem is the high dimensionality of image data; in fact, even a small grayscale
image of 1024 × 1024 pixels has more than a million degrees of freedom when
viewed as a vector. In practice, it has been shown that the relevant information
is already encoded in a small number of variables. Pixelwise features f(x, y) ∈
(Rm×m)n can be intensity, RGB color values, or color gradients. In covariance
descriptors [Tuzel et al., 2006], the image is represented by the covariance matrix
of these features.

Definition 6.1.1 (Covariance descriptor). Let X = {x1, . . . , xn} be a set of n
features sampled from m2 pixels and µX the mean vector of the features. Then
the covariance descriptor of an image is given by the covariance matrix of these
features

ΣX =
1

n

n∑
i=1

(xj − µX)(xj − µX). (6.1)

The advantages of this representation connect to the geometrical structure
of the SPD matrices. Suppose we apply an affine transformation such as a
rotation or change in illumination to the image. In this case, this will have
no effect on the relations of the covariance descriptors, since an affine change
of the underlying random variable corresponds to the congruence action of the
general linear group of the covariance matrices. This robustness is very useful in
classification, since we assume that the classes should not change just because
we rotate the image. However, we have to keep in mind that some information
will be lost, since covariance descriptors only encode linear relations.

In the following, we will compare several algorithms, both kernel methods
and neural networks, specifically designed to take advantage of the geometric
structure of SPD matrices. We will also include a classifier based on the Bures-
Wasserstein metric and compare it to SPD methods.

6.1.1 Covariance Descriptors

For our experiments, we choose the well-known ETH-80 dataset [Leibe and
Schiele, 2003], which contains 3280 images in 8 categories: apples, cars, cows,
cups, dogs, horses, pears, and tomatoes. There are 10 different objects for each
category, each taken from 41 different angles, always against a homogeneous
blue background. We show four examples from the data set in Figure 6.1. For
each image in the data set, we build the covariance descriptors from the feature
vector

f(x, y) = [x, y, I, |Ix|, |Iy|] (6.2)

following [Jayasumana et al., 2015,Minh and Murino, 2017]. Let us break down
the features in some more detail. The x and y are giving us the 2D coordinates
of the pixels when viewing the image as a plane. I is the intensity at each
pixel, while |Ix|, |Iy| are the absolute value of the derivative of the intensity
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Figure 6.1: Images from the ETH-80 dataset.

in direction of x respectively y. See Figure 6.2 for a showcasing of the image
features. Now, we will construct the covariance descriptor of those five feature
vectors for each photograph, giving us a data set of 3280 5 × 5 SPD matrices.
To avoid numerical complications from some matrices being close to singular-
ity, we regularize them by adding a small constant value to each eigenvalue
of the matrix. Note that during the construction of our data set, the target
classes stayed unchanged. We take a preliminary look at the data set using

Figure 6.2: An image and its features. From top-left to bottom-right: Original
image, x-coordinate, y-coordinate, image intensity (|I|), absolute value of inten-
sity derivative in x-direction (|Ix|), and absolute value of intensity derivative in
y-direction (|Iy|).

multidimensional scaling (MDS) in Figure 6.3, which takes advantage of the
different distances between SPD matrices. MDS is a dimensionality reduction
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technique that reduces the dimension of the data while trying to preserve the
squared distances between data points as much as possible. Unlike PCA, which
is essentially a Euclidean technique, MDS allows us to compare the different
distances on the original data set. As we can see, the classes as a whole are

(a) Euclidean Distance (b) LE Metric Distance

(c) BW Metric Distance

Figure 6.3: MDS plots for different distance metrics. The classes are represented
by different colors as described in the legend.

clustered relatively tightly, with most classes showing little separability in any
of the reductions. The Euclidean distance and the Bures-Wasserstein distance
show similar behaviour in that most of the classes cluster very tightly, with the
exception of apples and cups, which show more separation and each form an
independent cluster. The Log-Euclidean metric, on the other hand, appears to
be qualitatively different. There appears to be a line of separation that divides
the classes into two categories along what appears to be the diagonal of the two
MDS dimensions. The class of cups separates again, but in a much tighter clus-
ter, while the apples now overlap more with the pears and tomatoes. Overall
inter-class variability seems comparable in all metrics.

6.1.2 Classification Experiments

We will classify the covariance descriptors using a support vector classifier fitted
using a exponential kernel

exp(−σd2(x, y)) (6.3)
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with the squared Euclidean, Log-Euclidean, and Bures-Wasserstein distance,
respectively. The parameter σ is chosen independently for each kernel using
cross-validation. The reason for this is that the scaling parameters are not
directly comparable. Matrices that are close at one distance may be far apart
at another distance, leading to different clustering and densities. Preliminary
tests have shown that using a single cross-validation procedure can cause some
kernel methods not to learn at all.

In addition to the kernel methods, we will train an instance of the SPDnet
using a cross-validation loss and the ADAM algorithm with a learning rate of
1 × 10−3. After each epoch we evaluate the network on the test set and save
the best parameters.

The accuracy results are reported in Table 6.1. As can be seen, the Eu-
clidean kernel and Log-Euclidean kernels perform minisculy worse than the
Bures-Wasserstein kernel. This is a positive result as it shows that the Bures-
Wasserstein geometry is able to capture meaningful relationships between SPD
matrices. In contrast the SPDnet performs significantly worse than the kernel
methods. A possible explanation could be that the SPDnet was originally de-
signed with a strong focus on dimensionality reduction. However, in our use
case, the matrices are already quite small, so the SPDnet has little chance of
finding a meaningful lower dimensional space. In the following, we will focus

Method Accuracy (%)
Euclidean Kernel 83
Log-Euclidean Kernel 83
Bures-Wasserstein Kernel 84
SPDnet 65

Table 6.1: Results of the covariance descriptor classification.

on kernel methods and understand how they encode similarity between SPD
matrices. Recall that the Gram matrix K of a kernel is a symmetric positive
definite matrix generated by evaluating the kernel on each pair of data points.
The first thing we do to get a deeper insight into the inner workings of each
kernel method is to visualize the computed Gram matrix for each of the three
kernels using a heat map in Figure 6.4. As we can see all of the kernels have very
full gram matrices signifying they are able to capture a lot of the information in
the training set. Zooming in we can see that the diagonal is slightly pronounced
which is to be expected as self-similarity of a feature should generally be strong,
we do not however, observe any diagonal dominance in the data which might
signal overfitting and misaligned hyperparameters. Comparing the three ma-
trices we see more sparsity in the Euclidean and Bures-Wasserstein kernels as
opposed to the Log-Euclidean kernel. Further sparse regions appear in similar
positions hinting at a possible connection of the feature embeddings.

We are also going to visualize the spectrum of each of these kernel matrices in
Figure 6.5. As can be seen from the plot, there are significant differences in the
decay of the spectrum. The Bures-Wasserstein kernel has a very slowly decaying
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Figure 6.4: Gram matrices visualized: (Left) Euclidean, (Middle) Log-
Euclidean, and (Right) Bures-Wasserstein.

spectrum that is well above the others. The Euclidean drops comparatively
faster, but much less than the Log-Euclidean kernel. The latter starts to fall very
steeply. This could be an indication that the Log-Euclidean kernel is particularly
well adapted to the special geometry of SPD matrices.

Figure 6.5: Spectrum of the Euclidean, Log-Euclidean and Bures-Wasserstein
kernel matrix. The smallest eigenvalue of the Bures-Wasserstein Gramian is
given by 2.7× 10−5, thus it is positive definite.

To further compare how the different kernels separate the classes in feature
space, we will run kernel PCA on each of them. Here, the covariance is taken in
the high-dimensional feature space and then projected down to the two leading
principal components so that we can visualize them in a scatterplot in Figure
6.6. We can see that the feature space embedding preserves a significant part of
the results of the MDS algorithm. Again, the classes cups, apples, and tomatoes
stand out in the Euclidean and Bures-Wasserstein kernels. Only this time they
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(a) Euclidean kernel (b) Log-Euclidean kernel

(c) Bures-Wasserstein kernel

Figure 6.6: Kernel PCA plots showing different distance metrics.

are more separated. In both cases, we can observe that these classes are mainly
separated from the other classes by the first principal component. Therefore,
they seem to be different in a very significant way. It is not straightforward
to interpret the dimensions, but as will be seen more clearly in the following
extended experiment, the first principal component here could correspond to a
homogeneity of color condition. On the other hand, we see a tight clustering
for the other classes, which do not vary much in the first principal component.
This behavior is in contrast to the result of the Log-Euclidean PCA, which shows
that the variance is much more distributed along the two principal components.
Again, we can see the separation line along a diagonal.

Extended feature set experiment

An interesting question that arises is whether adding more features improves
classification accuracy. In particular, which kernels are best able to incorporate
this additional information. For this next iteration of the experiment, we will
construct covariance descriptors based on the feature vector

f(x, y) = [x, y,R,B,G, I, |Ix|, |Iy|, |Ixx|, |Iyy|]. (6.4)

As before, we will include the coordinate, intensity, and magnitude of the deriva-
tives. This time, however, we will also include the RBG values at each pixel,
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as well as the strength of the second derivatives of the intensity. We will visu-
alize these features on another image, in this case a pear, see Figure 6.7. For
comparison we will also again plot the MDS reduction for the data set of the
covariance descriptors of the extended features in Figure 6.8. This time we see
a very clear separation between the Euclidean and Bures-Wasserstein distances
and the Log-Euclidean distance. For the Euclidean distance we see a very tight
cluster where most of the classes are grouped. However, we see that most of
the classes, especially the same classes that stood out in the previous behav-
ior, separate again. Cups, apples, and tomatoes form lines diagonal to the two
principal components. A qualitatively similar behavior can be seen in the Bures-
Wasserstein case, but here the classes are less tightly packed, suggesting that
the Bures-Wasserstein distance might be a little more suitable to explain the
differences in the classes. Overall, there seems to be a very pronounced gradient
of a latent variable that affects most of the classes, but the fact that the classes
are still parallel suggests that they remain quite distinct in high dimensional
space. In contrast, the Log-Euclidean MDS plot shows a clear oval shape, with
many of the classes seeming to be well separated. However, it is noticeable that
the cup class has a very high inter-class variation.

We build the covariance descriptors in the same manner as in the previous
experiment. This time we are going to work with 10 × 10 covariance matrices,
again regularized by Tikhonov regularization. The accuracy results are reported
in Table 6.2. Several things stand out. All kernel methods perform significantly
better, as expected. Furthermore, the geometric kernels separate a bit more
from the Euclidean kernel, suggesting that they are able to take better advantage
of the additional information provided by the extended features. Overall, the
classification accuracy is very high. The SPDnet is still inferior in performance,
although the gap has narrowed, suggesting that the primary reason for the
lower performance is the low complexity of the data set. Visualizing the Gram

Method Accuracy (%)
Euclidean Kernel 92
Log-Euclidean Kernel 96
Bures-Wasserstein Kernel 95
SPDnet 86

Table 6.2: Results of the covariance descriptor classification on extended fea-
tures.

matrices in Figure 6.10 we see the same qualitative behavior as before, only
more pronounced this time. The Euclidean kernel show much higher sparsity,
with the diagonal clearly visible, while the Log-Euclidean kernel is still very
dense.

Looking at the spectral curves in Figure 6.9, we see similar behavior as in
the previous experiment. The order in terms of decay remains the same, but
this time the Bures-Wasserstein and Euclidean curves are closer, while the gap
to the Log-Euclidean kernel is more pronounced.
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Figure 6.7: An image and its extended features. From top-left to bottom-
right: Original image, x-coordinate, y-coordinate, Red channel intensity (R),
Green channel intensity (G), Blue channel intensity (B), overall image intensity
(|I|), absolute value of intensity derivative in x-direction (|Ix|), absolute value of
intensity derivative in y-direction (|Iy|), second derivative in x-direction (|Ixx|),
and second derivative in y-direction (|Iyy|)

.
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(a) Euclidean Distance (b) LE Metric Distance

(c) BW Metric Distance

Figure 6.8: MDS plots on the extended descriptor set for different distance
metrics.

Figure 6.9: Spectrum of the Euclidean, Log-Euclidean and Bures-Wasserstein
kernel matrix. The smallest eigenvalue of the Bures-Wasserstein Gramian is
given by 7.2× 10−6, thus it is positive definite.
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Figure 6.10: Gram matrices visualized: (Left) Euclidean, (Middle) Log-
Euclidean, and (Right) Bures-Wasserstein.

The repetition of the kernel PCA algorithm, as visualized in 6.11 for this ex-
periment gives us further insight. For the Log-Euclidean and Bures-Wasserstein

(a) Euclidean kernel (b) Log-Euclidean kernel

(c) Bures-Wasserstein kernel

Figure 6.11: Kernel PCA plots showing different distance metrics.

kernels we can see very similar results. The principal component scatter plots
are mirror images of each other. We can see that the same classes are separated
similarly well. The images containing tomatoes are the most separated followed
by apples, in both cases markedly better than in the previous experiments. We
surmise that this is because we additionally encoded the red values explicitly.
The Log-Euclidean kernel PCA shows that the classes are very well separated,
with overall much lower inter-class variability than the other two kernels.
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6.2 Kernel Ridge Regression

In this section, we will analyze the effect of increasing the size of a bounded
set in the SPD matrices on the performance of kernel ridge regression defined
with different kernels. The goal is to see how well different kernels perform in a
regression setting.

We define the log-det map on the SPD matrices using the affine-invariant
Riemannian metric, since this is often what we want to approximate.

g(A) = log(det(A)) (6.5)

which is a function that goes from the SPD matrices to the real numbers. To
motivate this task we will follow [Boumal, 2023] and see that it conforms to
a form of linearity. For this we need a few definitions, all aiming at using
geodesics, interpreted as straight lines, to generalize notions on the manifold.
First, convexity is given by

Definition 6.2.1 (Geodesic convexity). A function f : Sym++(Rd) → R is
called geodesically convex, if f ◦ γ : [0, 1] → R is convex for every geodesic
γ : [0, 1] → Sym++(Rd).

In the general case the definition of geodesic convexity is a little more intri-
cate as geodesics might not exist or be unique between any two points of the
manifold. However, due to the very regular structure of the AIRM as a Cartan-
Hadamard manifold, the definition simplifies and we do not have to concern
ourselves with geodesic convexity for subsets of the manifold. The definition of
geodesic concativity is now straightforward

Definition 6.2.2 (Geodesic concativity). A function f : Sym++(Rd) → R is
called geodesically concave, if −f is geodesically convex.

With both these terms we can then define geodesic linearity

Definition 6.2.3. A function f : Sym++(Rd) → R is called geodesically linear
if it is both geodesically convex and geodesically concave.

The log-det map g is in fact geodesically linear on the SPD matrices with
the affine-invariant metric. A typical assumption in learning with SPD data is
that the matrices lie in a compact set of the form

{A ∈ Sym++(Rd) | c1 ≤ λmin, · · · , λmax ≤ c2} (6.6)

that is, sets defined by bounded eigenvalues. In this definition λmin and λmax

referred to the minimal and maximal eigenvalue of any matrix in the set. As
we discussed earlier, the geometric structure makes global learning difficult. We
now generate compact sets of 5 × 5 SPD matrices with an increasing upper
bound on the eigenvalues and their logarithmic determinants as targets. We
generate 100 SPD matrices by sampling a diagonal matrix from a multivariate
uniform distribution and an orthogonal matrix from the QR decomposition of
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a d× d multivariate normal distribution. We fit three exponential kernels with
the squared Euclidean, Log-Euclidean, and Bures-Wasserstein distances and
perform kernel ridge regression on each. All hyperparameters are set using
cross-validation. The result in Figure 6.12 shows that all three kernels have good

Figure 6.12: Error plot of the kernel ridge regression for the log-det map using
different kernels.

approximation properties for sufficiently small bounds. After a while the error of
the Euclidean increases exponentially with the bound. The Bures-Wasserstein
kernel proves to be a better approximation of affine-invariant linearity, but also
suffers from exponentially increasing error for larger bounds, asymptotically
converging to the Euclidean model. The Log-Euclidean kernel however does
not suffer from increasing error at all and continues to provide a very good
approximation of the AIRM even on larger scales.

We can also see how the kernel models adjust their bandwidth parameter
σ. For each maximum eigenvalue, we performed another cross-validation grid
search to allow each model to find the best hyperparameters. Notice that as the
bounds increase, the Euclidean and Bures-Wasserstein kernels choose smaller
and smaller σ to compensate, while the Log-Euclidean only adjusted the pa-
rameter once, as can be seen in Figure 6.13. The implication of this is again
that the log-Euclidean geometry is a true approximation of the affine invariant
one, while the others do not fit naturally.
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Figure 6.13: Bandwidth plot of the kernel ridge regression for the logdet map
using different kernels.

6.3 An outlook to manifold-valued prediction:
Kernel sum-of-squares

Next, we present numerical experiments using the PSD-valued kernel sum-of-
squares model. In their original paper, [Muzellec et al., 2022] demonstrated the
ability of the kernel sum-of-squares model to capture the Bures-Wasserstein ge-
ometry by interpolating a geodesic. Motivated by whether the model, originally
built to approximate functions going into the SPD manifold with boundary, can
also estimate maps going into the affine-invariant geometry, our goal will be to
replicate the experiments for an affine-invariant geodesic. To do this, we will
interpolate between the two matrices

A =

[
5 −2
−2 3

]
, B =

[
22 4
4 1

]
. (6.7)

We have fast convergence to a minimum loss of zero for the kernel sum of
squares model, with the gradient norm being zero within 1.00× 10−7 precision
after 23 iterations. However the model is fitted in the Frobenius norm. To
get a better intuition of the results the two geodesics are visualized in Figure
6.14. Looking at the predicted geodesic, we see that the determinants of the
predicted matrices are not fully linearly interpolated, as is a central goal of the
affine-invariant geometry. There is also visible tendency for the matrices to be
closer to singularity than in the true geodesic, which could be explained by the
Bures-Wasserstein geometry, which includes covariance matrices of less than full
rank. This effect is even more pronounced when comparing the true geodesic to
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Figure 6.14: The true (left) and predicted affine-invariant geodesic (right). The
SPD matrices are visualized as ellipses, where the axis are given by the two
eigenvectors of the matrix, while height and width are determined by the eigen-
values. The purple ellipse on the left end represents the matrix A, while the
yellow matrix at the right end represents the matrix B. For better visualization
we scale the determinants of the matrices by a factor dependent on the largest
determinant in the geodesic. Note that the determinant controls the volume of
the ellipses.

the predictions on a finer grid with additional points there were not part of the
training data, see Figure 6.15. There is a slight oscillation into the direction of
singularity of points that were added. To further illuminate on this we repeat

Figure 6.15: The true (left) and predicted affine invariant geodesic (right) on a
finer grid.

the experiment, but reduce the bandwidth parameter to consciously induce
overfitting. We show the predictions on the same grids in Figure 6.16. While
the geodesic on the training points improves and now almost exactly matches the
true geodesic, we get a Runge-like phenomenon on the finer grid. The fit in this
case is tight at the endpoints, but oscillates strongly in the direction of the cone
boundary. Another observation is that the curve also approaches a singularity
at the training points near the center of the geodesic. This is quite interesting
because it suggests that the function approximation in the Bures-Wasserstein
metric may follow laws close to the Euclidean case.
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Figure 6.16: The fitted geodesic (left) and the predictions on a finer grid (right)
with lower bandwidth. The geodesic now is a very close fit on the training
points, but when looking at newly sampled points the matrices become almost
singular.

6.4 Conclusion

In this chapter we have presented several numerical experiments aiming to pro-
vide further insight into the differences of the various geometries, in particular
the geodesic distances. In a classification task on image data we have evaluated
the support vector classifiers based on Gaussian kernels with different squared
geodesic distances and the SPDnet. We found that all kernel methods per-
formed well, while SPDnet performed mediocrely on the data set with a limited
number of features. A key observation is that the Bures-Wasserstein and Eu-
clidean distances lead to very similar behavior, as visualized by both the MDS
dimensionality reduction, kernel PCA and the heat map of the trained kernel
matrices. The Log-Euclidean metric, on the other hand, differed significantly
from both. In general, the Log-Euclidean metric seemed to be much better at
capturing the similarity relationships between different SPD matrices, with a
much denser heat map and more uniform PCA plots. However, this did not
translate into a difference in classification accuracy. One reason may be, as sug-
gested by the spectrum of the Bures-Wasserstein Gramian, that the variation
between SPD matrices, especially that between different classes, is already well
explained by a small number of variables. Since all kernels embed the data in an
infinite dimensional feature space, the differences between the geometries might
be nullified as the classes separate very neatly.

The same observation could be made in the kernel ridge regression exper-
iment, where both Bures-Wasserstein and Euclidean kernels showed exponen-
tially deteriorating performance in approximating a function that is geodesically
linear in the affine-invariant metric, while the Log-Euclidean metric showed lit-
tle increase in error. We conjecture that the Bures-Wasserstein metric, defined
as a quotient metric derived from a submersion of the Frobenius metric onto the
SPD matrices, is fundamentally Euclidean in its function approximation prop-
erties. The differences observed in the experiments may be primarily a matter
of scaling. The Log-Euclidean metric on the other hand is fundamentally non-
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Euclidean and a good approximation of the affine-invariant Riemannian metric.
Nevertheless as we have seen in the sum-of-squares experiment working on

the bounded cone of positive semi-definite matrices can be used to approxi-
mate SPD-valued functions if only properly tuned. The great advantage of the
Bures-Wasserstein metric over the Euclidean case is that while our matrices
may become singular, they remain symmetric and PSD. Further research on
parameter and error bounds or additional regularization techniques may thus
be fruitful.
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Chapter 7

Conclusion

This thesis has considered three metrics under which the symmetric positive
definite matrices become a Riemannian manifold. The affine-invariant metric
defines a geodesically complete manifold with negative curvature and, by its
invariance to the isometry group of the homogeneous space structure GL/O,
provides the maximal algebraic characterization of SPD matrices. However,
due to its non-compact nature, it eludes possible embedding into a reproducing
kernel Hilbert space, thus prohibiting the use of kernel methods. Its first-order
approximation, the Log-Euclidean metric, and the Bures-Wasserstein metric as
the quotient metric of the general linear group with Frobenius metric to the
right action of the orthogonal group enable such embeddings.

In our numerical experiments, we have seen that the performance in a classi-
fication task slightly favors the geometric approaches, albeit at a higher compu-
tational cost. The difference may not be so pronounced because the geometric
disparities flatten out in infinite dimensional feature space. Another considera-
tion is that both Log-Euclidean and Bures-Wasserstein geometric are Euclidean
on some level. The deeper study of topological and metric space aspects of the
learning problem is an area for further research.

In contrast, kernel ridge regression has shown that the geometries are not
the same. Taking a problem more tailored to the differential nature of SPD ma-
trices, both the Euclidean and the Bures-Wasserstein kernels showed decreasing
performance when approximating on an increasingly larger geodesic ball. Con-
versely, the Log-Euclidean kernel did not suffer from any degradation. This
suggests that the latter is more suitable than the Bures-Wasserstein kernel for
learning tasks that require a very close approximation to the affine-invariant
Riemannian manifold.

On the other hand, the SPDnet showed reasonable accuracy but underper-
formed the kernel methods in covariance descriptor classification. It is possible
that the data set in this experiment was too small or too simple for the net-
work to reach its full potential. Neural networks tend to perform well on large
data sets, while the advantage over kernel methods is generally smaller in the
small data regime. Another reason may be that the orthogonal constraints of
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the parameters proved to be limiting in terms of network expressiveness. Fur-
ther research could go in the direction of extending the parameters to a larger
manifold and finding ways to optimize on the full manifold of the general linear
group. Neural networks have shown that even local minima can lead to good
performance in practice, so the non-compact nature of the manifold may not be
a major obstacle.

Neural networks for functions taking SPD values are still a very open area of
research. The lack of vector space structure of sets of manifold valued functions
naturally leads to the formulation of maps as weighted averages. The global
nonlinearity of manifolds makes learning with multilevel structures difficult,
since the concatenation of manifold-valued functions can easily collapse to either
a single or a trivial function.

Learning on non-Euclidean spaces is challenging. Our familiar world and
intuition begin to fail and must be reconstructed. This brings both hardship and
understanding. Rising to the challenge of geometric learning leads to better and
more consistent algorithms for new data types, and respecting their structure
can inherently lead to more powerful learning schemes. It also serves as a driver
for new theory in the search for new ways to look at structure in data.
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