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1 Introduction

Mathematical models and computational simulations are widely used in diverse
applications to describe systems in natural sciences and engineering. Often, how-
ever, the input parameters of the models are uncertain. Uncertainty quanti�ca-
tion aims at characterizing these uncertainties, includes them in the mathematical
description, and tries to quantify how likely outcomes of the model are.

An example for such a mathematical model that describes some real world appli-
cation is a partial di�erential equation (PDE) which is given by

L(ω)(u(ω)) = f(ω) in D ⊂ Rn (1)

together with suitable boundary conditions. In this, case the operator L, the
forcing term f , and the boundary conditions can be uncertain. This randomness
of the input might be expressed in a dependence on a set of random variables, or
random �elds.

Uncertainty quanti�cation deals with problems in many areas, such as physics,
chemistry, economics, meteorology. Examples, where the model is of the
form (1), are the deformation of solid objects modeled by linear elasticity, where
the properties of the material are considered as random variables, or the descrip-
tion of groundwater �ow, where the permeability of the rock or sand is represented
by a random �eld.

In general, the uncertainty can stem from di�erent sources. Often a distinction
is made between epistemic uncertainty and aleatoric uncertainty, although the
classi�cation is not always clear. Epistemic uncertainties arise due to a lack of
knowledge, for example missing information of physical properties of a medium, or
simplifying model assumptions, whereas aleatoric uncertainties cannot be reduced
by additional knowledge. They are inherent to the problem, for example the
location and magnitude of earthquakes ([1]).

For any given model, the uncertainty in the input parameters will propagate
through the model such that the output will also be random. Hence, the solution
u of (1) is itself a random function and u(ω) is just one realization. In many
applications, not the random function u(ω) is of interest, but rather the value of
some function applied to u. These values are known as quantities of interests.
For example, one might be interested in the statistics of u, meaning the expec-
tation, variance, or higher moments. Other examples include the probability for
u exceeding a certain value or the average of the function in a subdomain of D.
The quantities of interest are often speci�c to the application (see [1] and [2] for
more examples).

Uncertainty quanti�cation is a broad area and includes many aspects. While
forward uncertainty quanti�cation analyzes, given the distribution of the ran-
domness in the input parameters, how the uncertainty propagates through the
model, inverse uncertainty quanti�cation problems are interested in improving
the uncertainty description of the input data based on available measurements
of the output of the model. Other aspects include global sensitivity analysis and
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determine which random input variables have the largest in�uence on the out-
put. Further �elds in uncertainty quanti�cation are optimization and design of
experiments, model validation, model calibration (see [3, 1]). In this thesis, we
will focus on the propagation of the uncertain parameters through the model and
discuss how to compute the quantities of interest. For this, we assume that the
distribution of the input parameters are given.

In practice, the models investigated are complex and computationally challenging
to evaluate, in particular when the dimensionality of the problem is large. Hence,
there is a typical trade-o� between the computational cost and accuracy. In this
thesis, we will address how to obtain a result with high accuracy while keeping
the cost low when various approximations are applied.

We will focus on the elliptic PDE

− div(a(x, ω)∇u(x, ω)) = f(x) in D

as a model problem, where the di�usion coe�cient a(x, ω) is subject to uncer-
tainty. Either it depends on a �nite set of random variables or it is given by
a random �eld which is in general in�nite-dimensional. This equation is often
studied, for example, in groundwater �ow problems where the permeability of
the medium varies randomly from one point in the spatial domain D to another
and the di�usion coe�cient is therefore described by a random �eld with a given
covariance function. As quantities of interest, we will compute the expectation
E[u(x)] and second moment E[u2(x)].

In order to compute these quantities of interest, several numerical approximations
need to be applied. First, in the case where the di�usion coe�cient is given
by a random �eld, the random �eld has to be replaced by a �nite-dimensional
approximation. A widely used approach is the Karhunen-Loeve expansion (see,
e.g., [4]). Given the covariance function and mean of a random �eld on a compact
domain with bounded variance and continuous covariance, the random �eld is
expanded into a series of random variables which are uncorrelated and sometimes
independent. The coe�cients of the expansion exhibit a certain decay. Thus, the
in�uence of the random variables in the model decreases. A �nite-dimensional
approximation to the random �eld is obtained by the truncation of the series. It
is then convenient to parametrize the randomness of the input by replacing the
random variables by parameters y which are de�ned on the image of the random
variables. Depending on the decay rate of the coe�cients which is related to the
smoothness of the covariance function, this can easily lead to a high-dimensional
parametric problem.

Second, the evaluation of E[u(x)] and E[u2(x)] requires solving a high-dimensional
Bochner integration problem. We will focus on collocation and sampling meth-
ods. A classical approach is the Monte Carlo method which is based on random
sampling and averaging of the outcomes. It has a major advantage in being inde-
pendent of the stochastic dimension but converges only with a rate of 1/2. If the
function under consideration is to some degree di�erentiable, other quadrature
methods can provide better convergence results. In this case, the quadrature
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points are deterministic and one-dimensional quadrature methods can be com-
bined to build a product quadrature.

In either case, the quadrature method requires the repeated evaluation of the
integrand, which means that the PDE must be solved for many di�erent values
of the parameter y. For that, a third approximation needs to be considered. For
each point y, the deterministic PDE is solved by a discretization in the spatial
variable, for example, by applying a �nite element method.

In order to have a good approximation to the quantities of interests, the trunca-
tion level, spatial and stochastic discretizations have to be chosen such that the
errors are small. This leads to a large computational e�ort. A small error re-
quires a large truncation level, leading to a high-dimensional integration problem
which needs to be approximated with many quadrature points. Moreover, for
each quadrature point the PDE must be solved with a high accuracy. This ex-
ponential growth of computational complexity with dimension, due to combining
di�erent methods, is known as the curse of dimensionality.

Throughout this thesis, we consider the sparse grid method in order to break the
curse of dimensionality. This method balances the di�erent numerical approxima-
tions by combining high with low discretization levels of each numerical method.
In particular, we concentrate on the representation of the sparse grid in form of
the combination technique. Provided the solution possesses some kind of mixed
regularity, it allows reducing the computational cost, while almost preserving the
accuracy of a single-level combination of the numerical methods.

In general, two di�erent approaches can be pursued. On the one hand, a sparse
grid is constructed based on a-priori theoretical estimates that hold for a certain
class of problems. For example, the sparse grid is constructed such that conver-
gence rates can be assured for problems where the solution u satis�es mixed reg-
ularity conditions in terms of y and x. The a-priori approach relies on knowledge
about properties of the solution. On the other hand, an a-posteriori approach
can be applied, where the sparse grid structure is discovered in the course of the
algorithm and is based on suitable indicators. While no theoretical estimates are
required, the sparse grid obtained is speci�c to the problem investigated.

In the �rst part of this thesis, we will take the a-priori perspective and discuss
how to apply a sparse grid regarding di�erent numerical approximations in the
process of computing the quantities of interest. To begin with, we use a sparse
grid within a product quadrature to reduce the computational complexity of the
high-dimensional integration. In addition, we include the �nite element approxi-
mation while keeping the truncation level �xed and consider a sparse grid between
the spatial and stochastic discretization. We adapt the work of [5] and [6] to con-
struct a sparse grid such that the �nite element and quadrature methods are
equilibrated in an optimal way, taking into account the computational cost. In
particular, we will prove that the lower convergence rate of the quadrature and
�nite element method can be achieved up to a logarithmic term as a convergence
rate for computing the quantities of interest.

3



In a further section, we investigate a sparse grid between the truncation of the
Karhunen-Loeve expansion and the resolution of the quadrature method. For
that, we consider an integration problem over an in�nite-dimensional domain.
We apply either a Monte Carlo rule or construct a product quadrature which
exploits the anisotropy of the integrand and balance it with the truncation to
a �nite set of variables. This leads to a reduction of the cost when a in�nite-
dimensional problem is considered.

In the second part of this thesis, we approach the problem from an a-posteriori
viewpoint and construct an approximation to the quantities of interest with an
adaptive algorithm. We modify the dimension-adaptive combination technique
proposed in [7, 8] for product integration and the simulation of polymeric �uids
such that the spatial and stochastic approximation is balanced in the computa-
tion of quantities of interest for a stochastic partial di�erential equation. The
algorithm is based on a pro�t indicator. It detects the anisotropy of the stochas-
tic variables and adjusts the quadrature levels. In a further step, the algorithm
is extended to problems with an in�nite-dimensional stochastic parameter space.
The truncation to a �nite number of random variables is not assumed to be �xed.
Rather the algorithm takes into account the truncation level of the Karhunen-
Loeve expansion as an additional direction for the combination technique. In this
way, a problem-speci�c sparse grid is found that includes the truncation, spatial
and stochastic approximation.

Finally, the dimension-adaptive combination technique is applied to a problem
arising from the study of groundwater �ows. This area is of particular interest for
the energy sector and management of water. There, the �ow through a porous
medium is often modeled by a Darcy �ow problem. However, as typically only
very little data about the sediments is available, the permeability of the sediment
is often described with a lognormal random �eld. Using the dimension-adaptive
combination technique, we compute the expectation of the �ow and pressure.

The thesis is structured as follows: In Section 2 we will state the problem con-
sidered in this thesis more precisely. Subsequently, in Section 3, the numerical
methods for the computation of the Bochner integrals, the spatial discretization,
and the reduction of a random �eld to a �nite-dimensional stochastic parameter
space will be presented. Sections 4 and 5 address the a-priori approach. In Section
4, we will describe the regular sparse grid method and the combination technique.
Thereafter, we will consider an anisotropic version of the sparse grid which allows
considering methods with di�erent approximation properties in Section 5. The a-
posteriori part of this thesis consists of the description of the dimension-adaptive
combination technique for �xed and variable number of stochastic variables in
Section 6. The thesis concludes with a numerical example for the �ow through a
porous medium in Section 7.

Detailed references will be given at the beginning of each section. Throughout
this thesis, we will avoid the use of generic constants by using the notation C . D
and C h D if C . D and D . C.
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2 Problem Description

As mentioned in the introduction, we will discuss the computation of statistics
of the solution of a PDE throughout this thesis. As a model problem we consider
the elliptic PDE

− div(a(x, ω)∇u(x, ω)) = f(x) in D ⊂ Rn (2)

together with zero Dirichlet boundary conditions, whereby the derivatives are
only with respect to the spatial variable x. Let (Ω,F ,P) be a complete proba-
bility space, then u(x, ω) is a solution to (2) if the equation (2) is satis�ed for
almost every ω ∈ Ω. Throughout the thesis, we denote the spatial domain with
D ⊂ Rn, n = 1, 2. If not speci�ed otherwise, we will assume D = [0, 1]n.

We consider two cases: either we assume that the di�usion coe�cient a(x, ω)
depends on a �nite set of random variables, or we consider a random �eld for
a(x, ω) and need to reduced it to a �nite-dimensional problem.

2.1 Finite-dimensional Stochastic

In the case of a �nite-dimensional stochastic, we assume that the stochastic depen-
dence is given by a �nite number of random variables. Let (Ω,F ,P) be a complete
probability space and let y(ω) = (y1(ω), . . . , ym(ω)) ∈ Rm be a m-dimensional
random vector whose components are independently distributed. Then the di�u-
sion coe�cient can be written as

a(x, ω) = a(x,y(ω)).

Instead of considering the PDE (2) for ω ∈ Ω in the abstract probability space, it
is easier to formulate the equation in terms of the variables y. Thus, we de�ne the
measure Py = y#P as the pushforward of the probability measure on Ω through
the map

y : Ω→ Γ, ω 7→ (y1(ω), . . . , ym(ω))

with Γ = Γ1× . . .×Γm where Γi is the image of yi for i = 1, . . . ,m. The di�usion
coe�cient a(x,y) and the solution u(x,y) are thereby considered in dependence
of y, where y lies in Γ, a subset of Rm. More generally, the variable y does not
need to originate from a probabilistic setting, but can describe a dependence of
the di�usion coe�cient on a set of parameters.

In any case, the PDE (2) is studied in the parametrized version: We aim at �nding
the function u(x,y) such that, for (Py-almost) every point y ∈ Γ, it solves

− div(a(x,y)∇u(x,y)) = f(x) x ∈ D,
u(x,y) = 0 x ∈ ∂D,

(3)

where the di�erential operators div and ∇ are again with respect to the spatial
variable x.
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For the distribution of y we make the following assumptions. We assume that the
probability measure on Γ is absolutely continuous with respect to the Lebesgue
measure, i.e., dPy = ρ(y)dy. Moreover, we assume that the probability density ρ
is known explicitly and, requiring independence of the variables, it can be written
as

ρ(y) =
m∏
i=1

ρi(yi).

Further, we need to make assumptions to ensure existence and uniqueness of a
solution to the PDE. To that end, we assume two constants amin and amax exist
such that for all x ∈ D and Py-almost every y ∈ Γ

0 < amin ≤ a(x,y) ≤ amax <∞.

The Lax-Milgram lemma (see, e.g., [9]) then guarantees well-posedness of (3),
in the sense that for Py-almost every y ∈ Γ there exists a unique solution
u(y) ∈ H1

0 (D) for f ∈ L2(D). Furthermore, it holds that

‖u(y)‖H1
0 (D) ≤

C

amin
‖f‖L2(D)

with C > 0 being the Poincaré constant. This ensures that the solution u is in
L2
ρ(Γ, H

1
0 (D)). It is also possible to consider a right hand side in (3) which depends

on a set of random variables. In this case, we need to require ‖f‖L2(D) ∈ L2
ρ(Γ)

for u ∈ L2
ρ(Γ, H

1
0 (D)).

As mentioned in the introduction, we intend to compute the �rst and second
moment of the solution to the PDE. With respect to the push forward measure,
computing the quantities of interest corresponds to the evaluation of the integrals

E [up(x,y(ω))] =

∫
Ω

up(x,y(ω))dP(ω) = Ey [up(x,y)] =

∫
Γ

up(x,y)ρ(y)dy (4)

for p = 1, 2. Since u ∈ L2
ρ(Γ, H

1
0 (D)), these Bochner integrals are well-de�ned.

We will drop the dependence on y in Ey in the further notation.

2.2 In�nite-dimensional Stochastic

In many applications the di�usion coe�cient is described by a random �eld
a(x, ω) instead of depending on a �nite number of random variables. In this
case, we will approximate the di�usion coe�cient by a function that depends
only on a �nite set of random variables. For that, the random �eld is written
in the Karhunen-Loeve expansion which will be discussed in Section 3.3. The
expansion is of the form

a(x, ω) = E[a(x)] +
∞∑
k=1

√
λkψk(x)yk(ω),
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where yk are uncorrelated random variables. By truncating the series after m
terms, the problem can be reduced to one with a �nite-dimensional stochastic.

Also, in the in�nite-dimensional case, existence and uniqueness of (3) needs to be
assured. It is provided by the Lax-Milgram lemma, when the di�usion coe�cient
is coercive. Therefore, we assume that the random variables are bounded, for
example, yk ∈ U(−

√
3,
√

3), and that the mean E[a(x)] is such that there exist
constants amin, amax > 0 with

P
[
amin ≤ ess inf

x∈D
a(x, ω) ≤ ess sup

x∈D
a(x, ω) ≤ amax

]
= 1.

3 Numerical Methods

As mentioned in the introduction, several numerical approximations need to be
applied which will be discussed in this section in order to compute the quan-
tities of interest. First, we only treat the case where the stochastic input is
�nite-dimensional. Although other approaches exist, like a stochastic Galerkin
method (e.g., [2]), we focus on methods where the random dependence of u is
approximated by evaluating the function on a set of points yi ∈ Γ which are
later combined to approximate the integral. This has the advantage of being
able to use deterministic code for solving the PDE. We will start with discussing
quadrature methods for evaluating the Bochner integral in Section 3.1. For each
quadrature point, the solution to the PDE needs to be approximated as well for
which we apply a �nite element method discretization in space (see Section 3.2).
In the last part, we look at an in�nite-dimensional stochastic and discuss the
Karhunen-Loeve expansion and �nite noise truncation which approximates the
random �eld by a �nite number of random variables.

3.1 Quadrature Methods

As stated above, in order to calculate the moments of the solution to the PDE,
we must approximate the Bochner integral

(Iv)(x) =

∫
Γ

v(x,y)ρ(y)dy (5)

over the m-dimensional domain Γ, where v(x,y) = up(x,y) with p = 1, 2. For
this purpose, we consider quadrature rules of the type

(Iv)(x) ≈ (QNv)(x) =
N∑
i=1

wiv(x,yi)

which are based on the evaluation of the integrand at N quadrature points yi ∈ Γ
that are considered with a quadrature weight wi.

We will look at various quadrature rules of this type which arise from two di�erent
perspectives: On the one hand, we will consider a sampling method where the
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quadrature points are sampled from the domain Γ according to the distribution.
On the other hand, deterministic methods are considered, where the function
is evaluated on a set of collocation points yi ∈ Γ. Interpolating these solutions
v(x,yi) provides an approximation to the integrand. The integral (Iv)(x) is then
approximated by integration of the interpolant.

Di�erent properties can be studied for quadrature rules to measure the quality
of the method. Either the degree of polynomial exactness, which is the maximal
degree of polynomials integrated exactly by the quadrature formula, or the con-
vergence rate of the error in terms of the number of quadrature points N can be
evaluated. We will focus on the latter. Since the integral is itself a function in x,
the quadrature error must be measured in a spatial norm. As u ∈ L2

ρ(Γ, H
1
0 (D)),

we have E[u] ∈ H1
0 (D) and E[u2] ∈ W 1,1

0 (D). Therefore, we require an error
bound of the form

‖(I −QN)v‖X . ε(N)‖v‖Y(Γ,X ),

where X = H1(D) for p = 1 and X = W 1,1(D) for p = 2. The space Y(Γ,X ) ⊂
L2
ρ(Γ,X ) is a suitable Bochner space whose choice depends on the quadrature.

The rate of convergence is given by the decay rate of ε(N), where we use N , the
number of quadrature points, as a measure for the cost of the quadrature method.
This assumes that each evaluation of the integrand can be done in constant time.

In order to apply the same quadrature method with di�erent approximation
power, we de�ne a sequence of quadrature rules Ql = QNl where the number
of quadrature points is de�ned by a level parameter l. We assume Nl < Nl+1

and liml→∞Ql(v) = I(v), so that the sequence of quadratures applied to a func-
tion converges to the integral. As we will see later on, it is sometimes favorable to
be able to construct a nested sequence of quadrature rules, where the quadrature
points of Ql {yi}Nli=1 are a subset of the nodes {yi}Nl+1

i=1 used for Ql+1. However,
this property is not required. Hence, we also discuss non-nested quadrature rules.

In the next subsections, we will discuss separately the di�erent quadrature rules
used for computing the quantities of interest. The approximation of integrals
is of fundamental interest in numerical mathematics. Hence, di�erent quadra-
ture methods have been developed with various properties, which can be found
in many textbooks (for example, [10, 11]). Here, we consider three di�erent
methods. As they have di�erent properties, their application is convenient in dif-
ferent situations. We start with the dimension-independent Monte Carlo method.
Then we move to one-dimensional quadrature rules and discuss the trapezoidal
and Gaussian quadrature rule. Finally, the univariate methods can be combined
to a tensor product quadrature rule which will be addressed in the last part.

3.1.1 Monte Carlo Sampling

One possible way to approximate the integral (5) is to apply a Monte Carlo
quadrature. It is often used because little knowledge about the integrand is
necessary for convergence.
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The Monte Carlo quadrature approximates the integral from a probabilistic point
of view. It is based on the law of large numbers which states that the statistical
average of a set of N independent and identically distributed (i.i.d.) random
variables converges to the expectation. Thus, the Monte Carlo quadrature points
{yi}Nyi=1 are sampled from the set Γ independently according to the distribution of
y, which is given by the density ρ. In addition, each of the samples is considered
to be equally important which is expressed by choosing uniform weights wi = 1

N
.

Together, this yields the formula for the Monte Carlo quadrature

(QNv) (x) =
1

N

N∑
i=1

v(x,yi).

By construction, the Monte Carlo method is unbiased

E

[
1

N

N∑
i=1

v(x,yi)

]
=

1

N

N∑
i=1

E [v(x,yi)] = E [v(x,y)] .

Furthermore, a sequence of nested quadrature rules can easily be constructed.
This only requires sampling additional points {yi}Nl+1

i=Nl+1 independently.

Since random samples are used, not the di�erence ‖Iv − QNv‖X , but the root
mean square error (RMSE) is considered for quantifying the convergence

RMSE =
√

E [‖(I −QN)v‖2
X ].

A straightforward calculation (cf. [12]) provides the following convergence rate of
the mean square error for v ∈ L2

ρ(Γ,X )

E
[
‖ (I −QN) v‖2

X
]
≤ 1

N
‖v‖2

L2
ρ(Γ,X ).

This implies a convergence rate of 1/2, which is slow compared to other one-
dimensional quadrature rules. In order to double the accuracy, the number of
samples needs to be quadrupled. This leads to a large number of quadrature
points being required to achieve a small error.

Nevertheless, the Monte Carlo quadrature has some advantages. The method is
easy to implement and does not require any smoothness assumptions, except for
the existence of the variance. Furthermore, the rate of convergence is independent
of the dimension of the integration domain Γ. Hence, it can be applied to high-
dimensional problems and provides a better rate than a product quadrature.
These major advantages are the reasons why Monte Carlo is often chosen as a
quadrature method in applications.

In addition, there are several approaches to improve the error. For the standard
Monte Carlo quadrature, various methods, known as variance reduction tech-
niques, aim at reducing the constant in the error estimate. These approaches
replace the integrand or adjust the sampling such that the variance of the in-
tegrand is smaller, while maintaining the same mean value. Among the most
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commonly used techniques are methods such as antithetic variables, importance
sampling, control variates and strati�cation. However, with all these techniques,
the convergence rate of 1/2 is not a�ected ([13, 2]).

Another approach, the Quasi Monte Carlo method, is based on replacing the
random samples by a set of deterministic points. There, a sequence of points is
designed to cover the domain Ω in a good way, measured by the concept of low
discrepancy. Di�erent sequences exist, including Halton, Hammersley and Sobol
points. Provided there is some regularity of the integrand, the Quasi Monte Carlo
methods achieve an error rate of O

(
N−1 log(N)d

)
, depending on the discrepancy

of the point set. For more details, see for example, [2] or [14], and for the com-
putation of moments of a PDE [15]. We will not discuss these methods further
here. Instead, we will focus next on a di�erent type of quadrature rules.

3.1.2 Univariate Quadrature Rules and Product Quadrature

Instead of sampling points in the entire parameter space Γ, the integral (5) can
be regarded as an integration problem in each parameter yk for k = 1, . . . ,m. An
m-dimensional quadrature rule is then obtained by the combination of univariate
quadratures.

Therefore, we discuss in the following the approximation of an integral over a
one-dimensional domain �rst. We look at two commonly used types of one-
dimensional quadrature rules which both rely on an interpolation of the integrand.
Later, the univariate rules will be combined to a tensor product quadrature rule.

Newton Cotes

The class of Newton Cotes rules are integration methods for an integration prob-
lem over a bounded interval Γ = [t1, t2]. They are based on polynomial inter-
polation of the integrand on equidistant nodes. The corresponding weights are
obtained by integration of the Lagrange basis polynomials. Thus, depending on
the number of quadrature points N , the Newton Cotes formulas have the poly-
nomial degree of exactness N − 1. Furthermore, Newton Cotes formulas can be
constructed such that for a function v ∈ Cr(Γ,X ), r ∈ N

‖(I −QN)v‖X . N−r‖v‖Cr(Γ,X ).

Examples for Newton Cotes formulas are the trapezoidal and Simpson rules. How-
ever, since the interpolation polynomials tend to have large oscillations when the
number of nodes is large, low order composite rules are often applied, which use
piecewise polynomial interpolations of the integrands instead. Although various
composite Newton Cotes rules could be investigated, we will consider only the
composite trapezoidal rule, which takes the form

10



(QNv)(x) =
N∑
i=0

wiv(x, yi)

with yi = t1 + ih, where h = t2−t1
N

and wi = h
2
for i = 0, and i = N and wi = h

otherwise.

For a function v ∈ C2(Γ,X ), the composite trapezoidal rule satis�es the error
bound

‖(I −QN)v‖X . N−2 max
y∈Γ
‖∂2

yv(y)‖X . (6)

Furthermore, since equidistant quadrature points are applied, a nested sequence
of trapezoidal rules can be de�ned. Choosing Nl = 2l, it holds that {yi}Nli=0 ⊂
{yi}Nl+1

i=0 and the quadrature error of Ql is of order O(2−2l).

Gaussian Quadrature

As a second class of univariate quadrature rules, Gaussian quadrature methods
will be considered. These rules are also based on an interpolation among a set
of points, which, however, is chosen such that the highest degree of polynomial
exactness can be achieved. In this way, a quadrature rule with N nodes can be
constructed that is exact for polynomials up to degree 2N − 1.

Di�erent to the Newton Cotes formulas, we do not require a bounded set Γ and
the integration problem can be generalized to a weighted integral∫

Γ

v(y)ρ(y)dy.

For the approximation of this integral, the function v is replaced by a global
polynomial that interpolates v at a set of quadrature points {yi}Ni=1 and the
weights are computed according to

wi =

∫ b

a

`
{yj}j
i (t)ρ(t)dt,

where `
{yj}j
i (t) are the Lagrangian interpolation polynomials.

To achieve the highest possible degree of polynomial exactness, the N roots of
the polynomial pN are chosen as quadrature nodes, where pN is the orthogonal
polynomial of order N with respect to the inner product

(v, w)L2
ρ(Γ) =

∫
Γ

v(y)w(y)ρ(y)dy

in the space L2
ρ(Γ). Numerically, the quadrature nodes and weights can be com-

puted using a three-term recursion of the orthogonal polynomials and solving an
eigenvalue problem (see, for example, [11]).
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The rules are based on di�erent orthogonal polynomials, depending on ρ. Two
cases are relevant for us: Throughout the thesis we mainly assume y to be a
uniform random variable with values in the bounded interval Γ = [t1, t2], for
which the density is given by ρ ≡ 1

t2−t1 . Using an a�ne transformation, the
integral can be reformulated as an integral over [−1, 1] with a constant weight
function ρ, for which the corresponding orthogonal polynomials are the Legendre
polynomials. For this reason, the Gaussian quadrature in this case is called Gauss-
Legendre rule. For a random variable following the standard normal distribution,
the probability density function is given by ρ(y) = C exp(−y2

2
) and Γ = (−∞,∞).

Hence, the Hermite polynomials are used and the resulting quadrature is the
Gauss-Hermite quadrature.

Both the Gauss-Legendre and Gauss-Hermite quadrature nodes are non-nested.
There are nested versions, like the Clenshaw-Curtis rule [16] and extensions of
Gaussian rules [17, 18], but they are not considered here, as nestedness is not
required.

Once the quadrature weights and nodes are provided, the Bochner integral∫
Γ

v(x, y)ρ(y)dy

is approximated by

(QNv)(x) =
N∑
i=1

wiv(x, yi).

In the case of the Gauss-Legendre quadrature, we consider the quadrature as
an operator QN : C0(Γ,X ) → X with C0(Γ,X ) ⊂ L2

ρ(Γ,X ). The operator is
continuous with constant 1 ([19]). Furthermore, the following convergence rate
stated in [20, 21] holds true, which is based on the approximation analysis of the
interpolating function in L2

ρ(Γ,X ) ([19]).

Lemma 1. If the function v : Γ→ R is analytically extendable into a region in the
complex plane Σ(Γ, τ) = {z ∈ C : dist(z,Γ) ≤ τ} the Gauss-Legendre quadrature
error satis�es

‖(I −QN)v‖X ≤ g(τ) exp(−h(τ)(2N − 1))‖v‖C0(Σ(Γ,τ),X )

where g(τ) = 4
κ−1

and h(τ) = log (κ) with κ = 2τ
|Γ| +

√
1 +

(
2τ
|Γ|

)2

.

Similar results of exponential convergence hold for other Gaussian quadratures
as well, but they require the analysis in a di�erent weighted function space
C0
σ(Γ,X ) ⊂ L2

ρ(Γ,X ) (see [19] for details).

Lemma 1 implies an exponential convergence rate of the Gaussian quadrature for
smooth functions. If instead the integrand is of limited regularity, the convergence
rate reduces to an algebraic rate (see, e.g., [22]).
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Before concluding the section with discussing the product quadrature, we provide
a condition that ensures that the assumption in Lemma 1 is satis�ed. As we later
want to combine the univariate Gaussian quadrature rules to a product rule, v(y)
needs to be extendable for all y1, . . . , ym. For that, we introduce the notation

y∗k = (y1, . . . , yk−1, yk+1, . . . , ym) ∈ Rm−1

and

Γ∗k =
m×
i=1
i 6=k

Γi. (7)

The complex extendibility can be ensured by the following Lemma (cf. Lemma
6.3 in [23]).

Lemma 2. Let v ∈ C0(Γ) and let the derivatives of v satisfy

‖∂jykv‖C0(Γ) . j!µjk

with some µk > 0. Then, for τk ∈ (0, 1
µk

), the function

v : Γk → R, yk 7→ v(yk,y
∗
k)

admits an analytic extension into Σ (Γk, τk) = {z ∈ C : dist(z,Γk) ≤ τk}. The
function v is bounded with respect to the norm

‖v‖C0(Σ(Γk,τk);C0(Γ∗k)) = sup
z∈Σ(Γk,τk)

‖v(z)‖C0(Γ∗k).

The proof follows by the same arguments as in [23].

Tensor Product Quadrature

A straightforward way to obtain a quadrature rule over anm-dimensional domain
is the tensorization of univariate quadrature rules. For m univariate quadratures
Q

(i)
li

with Nli , i = 1, . . . ,m, quadrature nodes, we de�ne the product quadrature
as

(Qlv)(x) =
(
Q

(1)
l1
⊗ . . .⊗Q(m)

lm
v
)

(x)

=

Nl1∑
i1=1

· · ·
Nlm∑
im=1

w
(l1)
i1
· · ·w(lm)

im
v
(
x, y

(l1)
i1
, . . . , y

(lm)
im

)
with l = (l1, . . . , lm). Hence, the number of quadrature points for Ql is

∏m
i=1Nli .

The error can be bounded by the sum of the errors of the one-dimensional quadra-
ture rules using the continuity of the quadrature and integral operators.
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‖(I −Ql)v‖X

≤
m∑
k=1

∥∥∥(Q(1)
l1
⊗ · · · ⊗Q(k−1)

lk−1
⊗
(
I(k) −Q(k)

lk

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v
∥∥∥
X

.
m∑
k=1

sup
y∗k∈Γ∗k

‖
(
I(k) −Q(k)

lk

)
v(y∗k)‖Y(Γk,X ), (8)

where the norm ‖ · ‖Y(Γk,X ) depends on the one-dimensional quadrature rules.
We will discuss in detail the construction of an anisotropic product quadrature
consisting of one-dimensional Gauss-Legendre rules in Section 5.2.2.

In view of (8), the errors of all univariate quadrature rules should be balanced
since the largest will dominate the overall error of the product quadrature. This,
however, leads to computationally expensive methods as the dimensions increase.
To illustrate this, we consider a univariate quadrature rule with N points that
achieves an error of ε = N−r. Applying the same rule in all m directions leads
to a product quadrature with an error of ε. However, N = Nm quadrature
points have been used for achieving this error. The convergence rate in terms of
computational cost N , hence, reduces for the product quadrature to

‖(I −Q)v‖X = O(N−r/m).

This phenomenon, that for the same accuracy the number of points grows expo-
nentially with the dimensionality of the problem, is referred to as the curse of
dimensionality [24]. The same problem occurs for other approximations that rely
on a tensor product of numerical approximations.

After having discussed the approximation in the parameters y for the computa-
tion of the integrals, we will address the spatial discretization in the next section.

3.2 Finite Element Method

For each quadrature or sample point y ∈ Γ the function u(y) ∈ H1
0 (D) must

be evaluated. Since u is the solution to an elliptic PDE, this means solving a
deterministic PDE for each sample point. In general, this can only be done ap-
proximately. Here, we consider the case where the solution u(y) is approximated
by a linear �nite element method. Other �nite elements or a spectral method,
instead of a local approach, could also be considered.

For the �nite element method, we consider the PDE (3) in the weak formulation
where a weak solution satis�es∫

D

a(x,y)∇u(x,y)∇v(x)dx =

∫
D

f(x)v(x)dx

for all v ∈ H1
0 (D). An approximation to the solution can be obtained by con-

sidering a �nite-dimensional subspace Vh ⊂ H1
0 (D). We de�ne for a uniform and

regular triangulation Th the space of piecewise linear functions

Vh = {v ∈ C(D) : v|∂D = 0 and v|K ∈ P1 ∀K ∈ Th},
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where P1 denotes the space of linear functions and �nd uh(y) ∈ Vh such that∫
D

a(x,y)∇uh(x,y)∇vh(x)dx =

∫
D

f(x)vh(x)dx

for all vh ∈ Vh.

From standard theory for piecewise linear �nite elements, the approximation
properties of the �nite element solution uh(y) are known (see, e.g., [25, 26, 27]).

Lemma 3. Let h = maxK∈Th(diam(K)). If u ∈ C0(D̄) ∩ Hs+1(D) with s > 0,
then

‖u(y)− uh(y)‖H1(D) ≤ Chmin{1,s}‖u(y)‖Hmin{2,s+1}(D),

‖u(y)− uh(y)‖L2(D) ≤ Chmin{2,s+1}‖u(y)‖Hmin{2,s+1}(D).

Since for f ∈ L2(D) the PDE solution u(y) is in H2(D), Lemma 3 implies the
following statement.

Lemma 4. Let h = maxK∈Th(diam(K)). If f ∈ L2(D), the �nite element ap-
proximation satis�es

‖u(y)− uh(y)‖H1(D) . h‖f‖L2(D)

and

‖u2(y)− u2
h(y)‖W 1,1(D) . h‖f‖2

L2(D).

We will need to apply a sequence of �nite element solutions for the sparse grid
approach discussed in Section 4. Hence, we consider for the rectangular domain
D a sequence of uniform meshes {Tl}l with mesh widths hl = 2−l and consider
the sequence of piecewise �nite element spaces based on these meshes. Then,
the convergence rate for uh in the H1(D)-norm and u2

h in the W 1,1(D)-norm is
O(2−l).

For the numerical examples in this thesis, we will use the �nite element software
FEniCS ([28], version 2019.1.0) which is designed to solve partial di�erential
equations e�ciently. As the collocation and sampling methods combine the eval-
uations of u at a set of points {yi}i, we can use the available deterministic code
for solving the PDE.

3.3 Finite Noise Truncation

So far, we have considered the numerical methods for a problem where the
stochastic dependence is given by a �nite number of parameters. In the case
where the stochastic dependence is in�nite-dimensional, we need to approximate
in addition the stochastic input by a �nite-dimensional object. Therefore, we
disscuss in this section how to approximate the random �eld a(x, ω) by a �nite
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number of random variables. For that, we consider a truncation of the Karhunen-
Loeve expansion, but mention that there are also other expansions, including
more general polynomial chaos expansions and expansions using wavelets (cf. [2])
that could be considered for the approximation of the random �eld.

The Karhunen-Loeve expansion separates the stochastic and deterministic de-
pendency of the random �eld and can be seen as a basis representation of a in
L2
P(Ω)⊗ L2(D) ∼= L2

P(Ω, L2(D)). Furthermore, it is related to the singular value
decomposition for matrices. The random �eld is written in the form

a(x, ω) =
∑
k∈N

ψk(x)Zk(ω) (9)

where Zk are random variables and ψk are suitable functions onD. The Karhunen-
Loeve expansion is particularly nice, as it decomposes a in a bi-orthogonal way,
such that the functions ψk are orthogonal in L

2(D), and also the Zn are orthog-
onal in the probability space ([2]).

For the description of the Karhunen-Loeve expansion, we follow parts of [4]
and [2]. We assume that the random �eld is included in the Bochner space
L2
P(Ω;L2(D)). Hence, the expectation

E[a(x)] =

∫
Ω

a(x, ω)dP(ω)

and covariance function

cova(x,x
′) =

∫
Ω

(a(x, ω)− E[a(x)]) (a(x′, ω)− E[a(x′)]) dP(ω)

are well-de�ned. We further assume that the expectation and covariance functions
are known and that the covariance function is continuous, i.e., cova ∈ C(D×D).

We de�ne a linear operator C : L2(D)→ L2(D) by

(Cv)(x) =

∫
D

cova(x,x
′)v(x′)dx′,

which is a symmetric and positive semi-de�nite Hilbert-Schmidt operator.

Then, as a consequence of Mercer's theorem (see, e.g., [2]), we have the following
statement.

Theorem 1. Under the above assumptions, there exist a sequence of values λ1 ≥
λ2 ≥ . . . ≥ λk ≥ . . . ≥ 0 with limk→∞ λk = 0 and functions ψk : D → R such that∫

D

cova(x,x
′)ψk(x

′)dx′ = λkψk(x) (10)

and ∫
D

ψi(x)ψj(x)dx = δij.
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Furthermore, the random �eld a(x, ω) can be written as an in�nite series

a(x, ω) = E[a(x)] +
∞∑
i=k

√
λkψk(x)yk(ω) (11)

where the sum converges in the space L2
P(Ω, L2(D)).

The random variables yk are uncorrelated, centered random variables with unit
variance. They are de�ned by

yk(ω) =
1√
λk

∫
D

(a(x, ω)− E[a(x)])ψk(x)dx. (12)

In other words, ψk(x) and λk are the eigenfunctions and eigenvalues of the covari-
ance operator C, respectively, and ψk(x) and yk(ω) form orthonormal sequences
in L2(D) and L2(Ω). Another consequence of Mercer's theorem is uniform con-
vergence of the series (11).

Theorem 2. The series expansion (11) converges uniformly in x, i.e.,

sup
x∈D

E

(a(x, ω)−
m∑
k=1

√
λkψk(x)yk(ω)

)2
 = sup

x∈D

∞∑
k=m+1

λkψk(x)2 → 0

as m→∞.

As the distribution of the random di�usion coe�cient is often not explicitly
known, the equation (12) cannot always be used. Instead, it is often assumed that
the random variables are independently distributed. In the case of a Gaussian
�eld, this assumption is automatically satis�ed, as uncorrelated normal variables
are also independent, but random variables are unbounded. In order to ensure the
coercivity for the existence of solutions to the PDE (cf. Section 2.2), we assume
that yk is uniformly distributed in (−

√
3,
√

3), such that E[yk] = 0 and E[yk] = 1.

In the course of this thesis, we will make use of the size of the coe�cient of yk.
Hence, we de�ne, in addition, the sequence

γk :=
√
λk‖ψk(x)‖L∞(D) (13)

and assume that it is summable. The coe�cients γk then describe an anisotropy
with respect to the random variables yk. Since the yk are identically distributed,
the variability of the �eld a due to parameter yk is small, if the coe�cient is small.
Hence, the in�uence of the random variables is not equally strong.

Truncation

In practice, to avoid in�nite-dimensional stochastic domains, the Karhunen-Loeve
expansion is truncated after m terms, for which we write

am(x, ω) = E[a(x)] +
m∑
k=1

√
λkψk(x)yk(ω).
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By this truncation, the random dependence is reduced to a �nite number of
random variables. Hence, we are in the setting as for the �nite-dimensional
stochastic and the randomness can be parameterized, like in Section 2.1.

However, this truncation introduces an error. Measured in the L2
P(Ω, L2(D))-

norm, the error of the m-term truncation depends on the eigenvalues. Due to the
orthonormality of {ψk} and {yk}, it holds

‖a(x, ω)− am(x, ω)‖2
L2
P(Ω,L2(D)) =

∥∥∥∥∥
∞∑

i=m+1

√
λiψi(x)yi(ω)

∥∥∥∥∥
2

L2
P(Ω,L2(D))

=
∞∑

i,j=m+1

∫
Ω

∫
D

√
λj
√
λiψiψjyiyj dx dP(ω) =

∞∑
i=m+1

λi.

Hence, the decay of the eigenvalues controls the truncation error. In addition,
the Karhunen-Loeve expansion satis�es an optimality property in L2

P(Ω, L2(D)).
It is optimal under all possible decompositions of the random �eld of the form
(9):

{yi, ψi}mi=1 = argmin
(ξi,φi)∫

D φiφj=δij

E

∫
D

(
a(x, ω)− E[a(x)]−

m∑
i=1

ξi(ω)φi(x)

)2

dx

 .
However, if we consider other norms, there is no such optimality result. In fact,
other expansions may be better suited. For example, in [29], the authors proved
the non-optimality of the Karhunen-Loeve representation for the solution of a
PDE with lognormal di�usion coe�cient in a concrete example. Instead, they
found that the Levy-Ciesielski representation, where ψk are only locally supported
and are not orthogonal in L2(D), yields better convergence rates for the approx-
imation of u(y). Despite the fact that the Karhunen-Loeve expansion might not
be optimal, we will use this expansion for the approximation of random �elds in
this thesis.

As our goal is to compute the moments of the PDE solution, the truncated version
will eventually be used instead of the random �eld in (3). The error induced by
this has been investigated, for example, in [30] for the solution u of the PDE,
where the following was proven:

Theorem 3. The solution um to (3) with the random �eld am given by the
Karhunen-Loeve expansion truncated after m terms satis�es

‖u(y)− um(y)‖H1(D) . ‖f‖L2(D)

∞∑
k=m+1

γk

with γk as in (13) and a constant which depends on amin, but is independent of
m.

Hence, the decay properties of λk and γk determine the error made by the trun-
cation. Furthermore, these properties a�ect the stochastic dimension of the
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parametric PDE (3). If the coe�cients decay fast, less terms are needed in
the Karhunen-Loeve representation to obtain a small error. In contrast, if the
eigenvalues decay slowly, more terms are needed, resulting in a high-dimensional
parametrized problem.

Decay of Eigenvalues

Next, we discuss the decay of the coe�cients λk and γk. In general, the decay rate
for {λk} depends on the smoothness of the covariance function (see [31, 32, 33],
where the authors provided algebraic convergence rates for a ∈ L2

P(Ω, Hs(D))).
Here, we will examine the decay rates for the covariance functions used in our
numerical examples. We consider a certain class of random �elds, where the
covariance is described by the class of Matérn covariance functions. These func-
tions are often considered, as the regularity and eigenvalue decay is known. The
Matérn covariance kernels are de�ned by a stationary covariance function (see,
e.g., [34]).

De�nition 1. Let r = |x− x′|2 denote the distance between two points and let
ρ, σ2 > 0 be the correlation length and variance, respectively. Then the Matérn
covariance function of order ν > 0 is de�ned as

cov(r; ν) = σ2 21−ν

Γ(ν)

(
√

2ν
r

ρ

)ν

Kν

(
√

2ν
r

ρ

)
, (14)

where Γ is the gamma function and Kν the modi�ed Bessel function of the second
kind of order ν.

The formula (14) simpli�es for ν = s+ 1
2
with s ∈ N to

cov

(
r; s+

1

2

)
= σ2 exp

(
−
√

2s+ 1r

ρ

)
s!

(2s)!

s∑
i=0

(s+ i)!

i!(s− i)!

(
2
√

2s+ 1r

ρ

)s−i
.

Furthermore, in the limit ν →∞, the function converges to a Gaussian covariance
function

cov(r) = σ2 exp

(
−1

2

r2

ρ2

)
.

The parameter ν can be regarded as a smoothness parameter, as it controls the
smoothness of the covariance function at the point r = 0.

For this class of covariance functions, the eigenvalues of (10) satisfy (see [33])

λk . k−(1+2ν/n) ∀k ≥ 1,

where n is the dimension of D.

Furthermore, from [15] we have the decay rate for {γk}. For ν > n, the sequence
{γk} is summable and for all ε > 0

γk . k−
ν
n

+ε.
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Hence, the dimension of the domain and smoothness of the covariance func-
tion determine the asymptotic decay rates of the sequences, whereby smoother
covariance functions lead to a faster decay. The pre-asymptotic behavior is in-
�uenced by the correlation length ρ. Shorter correlation lengths increase the
pre-asymptotic domain.

For the limiting case, the Gaussian covariance function is analytic and, as a
consequence, exponential decay rates for the eigenvalues hold (see [32] Theorem
2.19)

λk ≤ c1e
−c2k ∀k ≥ 1

with constants depending on the variance and correlation length, whereby a longer
correlation length implies a faster decrease. In addition, the eigenfunctions are
also analytic, and uniformly bounded in L∞(D) such that the sequence {γk} also
decays exponentially.

Computation of Eigenpair

For most covariance functions, there is no analytical solution to the eigenvalue
problem available. Only in special cases are exact solutions known. In general,
however, the Karhunen-Loeve expansion can only be determined numerically.
Here, we brie�y discuss the approximation that was used for most of the numerical
examples based on the work in [35, 4].

The eigenvalue problem (10) is solved using a Galerkin approximation. Instead
of looking for eigenfunctions on the in�nite-dimensional space L2(D), the search
is restricted to a �nite-dimensional subset Vh ⊂ L2(D). The projection onto Vh
we denote by PVh : L2(D)→ Vh. and assume further that {φ1, . . . , φK} is a basis
of Vh. In order to �nd an approximative eigenpair (λhj , ψ

h
j ), we solve

〈Cψhj − λhjψhj , φi〉L2(D) = 0 ∀i = 1, . . . , K (15)

which is∫
D

(∫
D

cov(x,x′)ψhj (x′)dx′
)
φi(x)dx = λhj

∫
D

ψhj (x)φi(x)dx ∀i = 1, . . . , K.

Since ψhj ∈ Vh, it can be written as ψhj =
∑n

k=1 αj,kφk. Plugging this representa-
tion into (15), we need to solve the matrix eigenvalue problem

Wαj = λhjMαj

where

Wij =

∫
D

∫
D

cov(x,x′)φi(x)φj(x
′)dxdx′ and Mij =

∫
D

φi(x)φj(x)dx

with αj = (αj,1, . . . , αj,K)T . The matrix W is symmetric, semi-positive de�nite
andM is symmetric and positive de�nite. For this type of generalized eigenvalue
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problem, there are standard iterative solvers available which compute the largest
eigenvalues.

However, the entries ofW are usually not accessible and need to be approximated.
For that, we choose for Vh the �nite element space with piecewise linear functions
and approximate the covariance function by

cov(x,x′) ≈ covh(x,x
′) =

n∑
i,j=1

Ci,jφi(x)φj(x
′),

where Cij are the entries of matrix C with Cij = cov(xi,xj). The matrix W is
then approximated by

Wij ≈
∫
D

∫
D

covh(x,x
′)φi(x)φj(x

′)dxdx′

=
n∑

k,p=1

∫
D

∫
D

φk(x)φi(x)Ck,pφp(x
′)φj(x

′)dxdx′

= (MCM )ij .

The mass matrixM is available in standard �nite element software such that the
the generalized eigenvalue problem

MCMαj = λhjMαj

can be solved. Although solving the eigenvalue problem (10) only approximately
is an additional approximation to the truncation of the Karhunen-Loeve expan-
sion, we do not pay attention to this error. We use a �ne discretization of the
space for Vh and we assume that the eigenvalues and eigenfunctions are close
enough to the exact values.
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4 Sparse Grids and the Combination Technique

After having discussed the di�erent numerical methods separately, we now look at
the combination of these methods. As our goal is to compute the �rst and second
moment of the solution to the PDE as quantities of interest, an approximation
to that can be obtained by applying successively a truncation of the Karhunen-
Loeve expansion for the di�usion coe�cient, a �nite element approximation of
the PDE solution, and a quadrature method. This can be written as

E[up] ≈ Qupm,h, (16)

where Q is a quadrature method and um,h is the �nite element solution to the
PDE with the random �eld truncated to m terms.

The error of this computation can be split into di�erent parts

‖E[up]−Qum,h‖ ≤ ‖E[up]− E[upm]‖+ ‖E[upm]− E[upm,h]‖+ ‖E[upm,h]−Qu
p
m,h‖

where um is the solution of the PDE with a truncated random �eld am, while
um,h and uh denote the �nite element approximation of um and u, respectively.
The �rst term in the error bound is due to a truncation of the Karhunen-Loeve
expansion, the second term is the error caused by the �nite element discretization,
and the third term describes the quadrature error.

In the case where the di�usion coe�cient of the PDE depends only on �nitely
many random variables, the �rst error source does not occur. Furthermore, be-
yond the terms in (16), the quadrature error itself might consists of several terms.
If a product of one-dimensional quadrature rules is used for the m-dimensional
integration problem, the quadrature error can be split intom terms, as mentioned
in Section 3.1

‖(I −Q)upm,h‖ .
m∑
k=1

‖(I(k) −Q(k))upm,h‖.

So there might be di�erent error terms, depending on the problem and methods
applied. Analogous to the curse of dimensionality described for the product
quadrature, a small approximation error for E[up(x)] requires a high truncation
level, a �ne discretization in space, and a large number of quadrature points,
leading to large computational costs.

A possible approach to reduce the cost of computing the quantities of interest is
the sparse grid method, which we will discuss in the following. It allows to break
the curse of dimensionality, as it reduces the cost, while nearly preserving the
accuracy.

In this and the next section, we will look at the sparse grid approach considering
di�erent parts of the problem. To be clear, we denote with d the number of
numerical approximations taken into account for the sparse grid method, while
the variable m is used for the stochastic dimensions. One objective will be to
balance the spatial discretization and the quadrature in the stochastic parameters,
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while keeping the truncation level �xed. Additionally, we will take into account
a sparse grid also within the stochastic parameter set. In a later subsection, we
will equilibrate the truncation error and quadrature error.

We follow an a-priori approach throughout and adapt methods based on
knowledge about the regularity of the solution. First, we discuss the regular
sparse grid method which treats each direction equally, and subsequently an ex-
tension to an anisotropic method. This section contains a short overview over
works concerning sparse grid methods for stochastic PDEs, followed by the general
concept of sparse grids. Then, we look at the sparse grid combination technique
which allows to use the numerical methods discussed in Section 3. At the end,
numerical examples are presented.

4.1 Sparse Grids

The approach of using sparse grids has been studied in di�erent contexts. Basi-
cally, it can be applied whenever computational di�culties arise due to a high-
dimensional tensor product structure of the problem with a related exponential
growth of computational cost, and when the numerical methods applied allow for
de�ning a sequence of methods with increasing approximation power.

The basic principle was �rst used by Smolyak for high-dimensional integration
problems in the 1960s ([36]). When considering an m-fold product of one-
dimensional nested quadrature rules, the approach reduces the number of quadra-
ture points, which yields a substantial improvement in computational cost under
the condition of additional smoothness of the integrand.

The sparse grid method was introduced to PDE problems by Zenger [37], whereby
the expansion of a function in a hierarchical basis and the construction of asso-
ciated subspaces based on tensor products of hierarchical increment spaces was
developed. The sparse grid method has since been applied to various problems
in diverse contexts, including problems from physics, chemistry, engineering and
data mining (see [38] for more applications and references).

In the context of stochastic partial di�erential equations, Smolyak-type quadra-
tures have been applied in stochastic collocation methods to reduce the computa-
tional cost of the quadrature in the parameter space for moderate
dimensions ([19]), whereby anisotropic versions of the Smolyak quadrature have
also been studied [21, 39].

In addition, a sparse grid approach between the spatial discretization and quadra-
ture method for PDEs with a �nite number of stochastic dimensions has been
considered (see for example in [6, 23]). This combination is sometimes referred
to as a multilevel method, as the sparse grid approach combining the spatial
discretization and a Monte Carlo quadrature is related to the Multilevel Monte
Carlo method. Similarly, other quadrature methods have been applied in place of
a Monte Carlo method, including Quasi Monte Carlo and Smolyak-type quadra-
tures (see, [12, 20, 40]). In [41], the perception of sparse grids as a multilevel
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method has been extended to account for more than one spatial and one stochas-
tic parameter.

Here, we consider stochastic PDEs where the di�usion coe�cient is written in the
Karhunen-Loeve expansion. In the literature, this is often referred to as uniformly
elliptic case. The sparse grid has also been applied to problems with lognormal
di�usion coe�cients (e.g., [29, 42, 23, 43, 33] ), However, we restrict the a-priori
analysis to the uniformly elliptic case.

While a �nite parameter space or �xed truncation level has often been studied
in the above mentioned works, the interplay of the truncation error has also
been investigated in some settings. The authors in [44] use a multilevel approach
between Quasi Monte Carlo quadrature and an approximation to the PDE where
the dimension is not �xed. Further research has been conducted looking at the
computations of integrals over a countably in�nite-dimensional domain (see, for
example, [45, 46]).

In the following, the general concept of the sparse grid method is introduced. For
that, we will follow [6] and use the overviews on sparse grids [38] and [47].

4.1.1 General Concept

The sparse grid approach is based on a sequence of numerical methods and asso-
ciated subspaces with increasing approximation power. An approximation space
is constructed by combining increment spaces in an optimal way such that the
approximation power is nearly preserved, but the dimension of the space does
not grow exponentially. As the concept becomes clear when considering only two
directions (d = 2), we restrict ourselves to this case for the introduction of the
sparse grid method. Later, the formulas for d > 2 will be stated. We explain
the sparse grid method in a general setting. Thus, the spaces and norms are not
always speci�ed. Nevertheless, we mainly focus on the case of a �xed stochas-
tic dimension in this chapter, as a variable truncation level will be discussed
separately later.

We start with sequences of �nite-dimensional subspaces of some space Hi

V
(i)

0 ⊂ V
(i)

1 ⊂ . . . ⊂ Hi (17)

for i = 1, 2, such that the spaces have increasing approximation power and

Hi =
⋃
l∈N0

V
(i)
l . (18)

In the context of the problem we are interested in, the spaces {V (i)
l } refer to

di�erent sequences. If we are looking at a sparse grid involving the spatial dis-
cretization, the subspaces {V (1)

l } are a sequence of approximation spaces for the

spatial approximation, in our case �nite element spaces, while {V (2)
l } might cor-

respond to a sequence of quadrature rules. For a sparse grid replacing a product
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quadrature, both {V (1)
l } and {V

(2)
l } correspond to sequences of one-dimensional

quadrature rules which are stated sometimes in terms of the quadrature points
involved. When considering the truncation level, the space corresponds to a func-
tion evaluation taking into account only �nitely many variables.

The canonical way to obtain an approximation space in both directions would be
combining the spaces in a tensor product

V full

l1,l2
= V

(1)
l1
⊗ V (2)

l2
,

to which we refer to as the full grid space for level L if l1 = l2 = L.

In order to obtain a sparse grid version of this tensor product, we de�ne the
increment spaces

W
(i)
l+1 = V

(i)
l+1 \ V

(i)
l with W

(i)
0 = V

(i)
0 , i = 1, 2.

From these, the full spaces can be reconstructed by

V
(i)
L =

L⊗
l=0

W
(i)
l , i = 1, 2.

Hence, the full tensor product space V full

l can be written as

V full

L =
⊕

l1≤L, l2≤L

W
(1)
l1
⊗W (2)

l2
.

Now, instead of the full sum, the regular sparse grid space only includes some
increment spaces and is de�ned by

V SG

L =
⊕

l1+l2≤L

W
(1)
l1
⊗W (2)

l2
. (19)

The dimension of V SG

L is considerably reduced compared to V full

L if the

dimensions of V
(i)
l form a geometric sequence, as then dimV SG

L is of order

O
(

max
{

dimV
(1)
L , dimV

(2)
L

})
up to logarithmic terms, whereas

dimV full

L = dimV
(1)
L dimV

(2)
L .

For the computation of an approximation, using the sparse grid as an underlying
approximation space implies the formula

P SG

L u =
∑

l1+l2≤L

∆
(1)
l1
⊗∆

(2)
l2
u, (20)

where the di�erence operators ∆
(i)
l : Hi → W

(i)
l are de�ned by

∆
(i)
l u =

{(
P

(i)
l − P

(i)
l−1

)
u if l ≥ 1

P
(i)
l u if l = 0.
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The operators P
(i)
l correspond to applying the numerical method of level l. For

example, it can stand for a quadrature method with Nl nodes. In the case where
a spatial approximation to up, p = 1, 2, is considered, the operators P

(2)
l are given

by

P
(2)
l u = F(uhl) := uphl p = 1, 2, (21)

where uhl is the projection of u onto the �nite element space of level l computed
by the �nite element method.

In contrast to (20), the full grid solution is

P full

L u =
∑

l1≤L, l2≤L

∆
(1)
l1
⊗∆

(2)
l2
u.

Next, we want to motivate the choice of summing over the set {(l1, l2) : l1+l2 ≤ L}
in the sparse grid formulation. We refer to [38] for a detailed derivation. Using
(18), we can write the exact solution P∞u in the expansion

P∞u =
∞∑

l1,l2=0

∆
(1)
l1
⊗∆

(2)
l2
u.

The idea of the sparse grid is to �nd an approximation by only summing over a
�nite set of indices I ⊂ N2

PIu =
∑

(l1,l2)∈I

∆
(1)
l1
⊗∆

(2)
l2
u.

Hence, the error of this approximation can be bounded by

‖P∞u− PIu‖ ≤
∑

(l1,l2)/∈I

‖∆(1)
l1
⊗∆

(2)
l2
u‖.

The aim now is to �nd, for a prescribed computational cost, the optimal index set
I such that the error of the approximation is minimal. This can be formulated
as an optimization problem, referred to as a knapsack problem in combinatorial
optimization (see [38] for details).

A solution to the knapsack problem can be found, by considering the bene�t-cost
ratio

bcr(l1, l2) =
‖∆(1)

l1
⊗∆

(2)
l2
u‖

cost
(

∆
(1)
l1

)
cost

(
∆

(2)
l2

) ,
where cost

(
∆

(i)
li

)
denotes the cost of the evaluation ∆

(i)
li
u. The optimal set I

then only includes the indices l = (l1, l2) with the highest bene�t-cost ratios.
Indices with a bene�t-cost ratio below a threshold parameter are not used in the
sparse grid.
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In the case where ‖∆(1)
l1
⊗∆

(2)
l2
u‖ . 2−C(l1+l2) and also cost

(
∆

(1)
l1

)
cost

(
∆

(2)
l2

)
≈

2C
′(l1+l2) for constants C,C ′ > 0, the index set takes the form

I = {(l1, l2) ∈ N2| l1 + l2 ≤ L}. (22)

However, if the bene�t-cost ratio has a di�erent structure, the optimal set looks
di�erent. For example, we will look at a version of the sparse grid where the
bene�t-cost ratio is of the form bcr(l1, l2) ≤ 2−(s1+n1)l1−(s2+n2)l2 with possibly
s1 + n1 6= s2 + n2 in Section 5. Often in Multilevel methods, the numerical
methods are combined such that the accuracy is balanced even though the cost
required is not equal. In this case, the regular sparse grid method with set
{(l1, l2) ∈ N2| l1 + l2 ≤ L}, which balances the approximation powers, also
reduces the cost, but not in an optimal way.

We will come back to the concept of bene�t-cost ratio, when constructing an
adaptive algorithm that determines a good index set I in Section 6. For com-
pleteness, we state the generalization of the sparse grid method for more than
two dimensions. For d > 2, the regular sparse grid space is de�ned as

V SG

L =
⊕
|l|1≤L

W
(1)
l1
⊗W (2)

l2
. . .⊗W (d)

ld

and the approximation is obtained by the formula

P SG

L u =
∑
|l|1≤L

∆lu,

where

∆lu =
(

∆
(1)
l1
⊗ . . .⊗∆

(d)
ld

)
u.

Regarding the computational cost of the sparse grid, let us assume that
dimW

(i)
li

= 2li for i = 1, . . . , d. Then the dimension of the sparse grid space
is of order

O(NL log2(NL)d−1),

whereNL = 2L (see [48]), which is substantially smaller thanNd
L, the dimension of

the full grid space. As the exponential dependence on d is only in the logarithmic
term, the dimension of the sparse grid space is almost reduced to a linear term.
Despite the considerable reduction in the dimension of the approximation space,
the approximation power is not a�ected substantially, if additional regularity is
assumed. The precise conditions will be discussed in the next section.

4.1.2 Mixed Regularity

For the sparse grid approach to not deteriorate the accuracy, the contribution
of the indices that have been left out should be small. Therefore, we require a
decrease of the contribution with increasing levels, e.g.,

‖∆(1)
l1
⊗∆

(2)
l2
u‖ . 2−C(l1+l2). (23)
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This condition is satis�ed when the function that is approximated ful�lls some
mixed regularity conditions. In this subsection, we discuss the regularity assump-
tion which ensures that the accuracy is preserved for the sparse grid in the case
of a Smolyak quadrature and for a sparse grid between spatial and stochastic
approximation, with a �xed stochastic dimension.

With regard to a sparse grid in the quadrature, the integrand needs to have mixed
derivatives up to order r. More precisely, it needs to lie in the space

u ∈

{
v : Γ→ R,

∥∥∥∥ ∂|α|1v

∂yα1
1 . . . yαmm

∥∥∥∥
L∞(Γ)

<∞ for αi ≤ r

}
,

where the order r depends on the choice of the one-dimensional quadrature rules.

Under this assumption, the convergence rate with respect to the computational
cost is given by

O(N−rL log(NL)(d−1)(r+1)) (24)

(see [49]), which is the rate of the one-dimensional quadrature, reduced by only
a logarithmic term.

Including the spatial direction in the sparse grid, the mixed regularity needs to
hold additionally between the x and y variables. The condition (23) between the
spatial and stochastic approximation takes the form

‖ (Ql1 −Ql1−1)
(
F(uhl2 )−F(uhl2−1

)
)
‖X . 2−(l1+l2)‖f‖pL2(D), (25)

where the function F is as in (21). Depending on whether the �rst or second
moment is computed, X = H1(D) for p = 1, or X = W 1,1(D) for p = 2. This
condition needs to be checked separately for the di�erent quadrature rules, as the
quadratures require di�erent regularity assumptions on the integrand.

If Q is a Monte Carlo quadrature, the condition

‖ (Ql1 −Ql1−1)
(
F(uhl2 )−F(uhl2−1

)
)
‖L2

ρ(X ) . 2−(l1+l2)‖f‖pL2(D)

is straightforward and is satis�ed for an integrand that is square integrable with
respect to y ([12]). The norm in (25), however, needs to be replaced by L2

ρ(Γ,X )
as the quadrature does not provide a deterministic error analysis.

For other quadrature rules, the analysis of the error is based on estimates for the
derivatives of the integrand. Therefore, the derivatives of

(
F(uhl)−F(uhl−1

)
)

need to be bounded. The following results have been proven in [6] for the deriva-
tives of the di�erence between approximate and exact solution to the PDE.
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Lemma 5. For the PDE (3) with di�usion coe�cient given by the truncated
Karhunen-Loeve expansion, it holds for all α ∈ Nm and y ∈ Γ that

‖∂αy (u− uhl)(y)‖H1(D) . 2−l|α|! c|α| γα ‖f‖L2(D)

and

‖∂αy (u2 − u2
hl

)(y)‖W 1,1(D) . 2−l|α|! c|α| γα ‖f‖2
L2(D),

where γ is related to the coe�cient in the Karhunen-Loeve expansion and the
hidden constants are independent of y.

With these estimates, the required mixed regularity (25) can be derived for the
quadrature rules di�erent from Monte Carlo (see [6, 15]), whereby also the mixed
regularity between the stochastic variables is provided.

Based on (25), the following convergence estimate with respect to the sparse grid
level was proven in [6] for an equivalent representation of the sparse grid which
will be discussed in the next section.

Theorem 4. The computation of E [F(u)] with a sparse grid approach under
condition (25) satis�es

‖E [F(u)]−
∑

l1+l2≤L

(Ql1 −Ql1−1)(F(uhl2 )−F(uhl2−1
))‖X . 2−LL‖f‖pL2(D).

4.2 Combination Technique

In this section, we focus on a di�erent representation of the sparse grid, which
is also known as the combination technique and was introduced in [50]. Instead
of considering the increment spaces Wl, the combination technique relies on a
reformulation of the sparse grid formula (20) and combines solutions in certain
full, but small, tensor product spaces Vl. Since the combination technique is
equivalent to the sparse grid formula, the same error bounds hold.

Again, we will consider for simplicity the case d = 2 �rst. The underlying idea
of the combination technique is to use the telescope sum property to recover a
representation based on full grid solutions. Rearranging the terms in (20) yields

P SG

L u =
∑

l1+l2≤L

(Pl1,l2 − Pl1,l2−1 − Pl1−1,l2 + Pl1−1,l2−1)u

=
L∑

l1=0

L−l1∑
l2=0

(
P

(1)
l1

(
P

(2)
l2
− P (2)

l2−1

)
u− P (1)

l1−1

(
P

(2)
l2
− P (2)

l2−1

)
u
)

=
L∑

l1=0

P
(1)
l1
P

(2)
L−l1u−

L∑
l1=0

P
(1)
l1−1P

(2)
L−l1u (26)

=
∑

l1+l2=L

Pl1,l2u−
∑

l1+l2=L−1

Pl1,l2u

=: P ct

L u.
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In higher dimensions the combination technique representation is given by

P ct

L u =
d−1∑
i=0

(−1)i
(
d− 1

i

) ∑
|l|1=L−i

Plu. (27)

It is also possible to provide a formula in terms of full grid solutions for a generic
index set I ⊂ Nd

0 which satis�es some admissibility condition. As we will only use
it in Section 6, we do not specify the condition here and state only the formula
for completeness:

P ct

I u =
∑
l∈I

(
1∑
z=0

(−1)|z|1 χI (l + z)

)
Pl u,

where 1 = (1, . . . , 1) and χI(l) =

{
1 if l ∈ I,
0 otherwise.

The combination technique has some advantages compared to the original sparse
grid formulation. First, the formula (27) includes only full grid solutions Plu
and it does not require the computation of increments ∆lu. This has the major
advantage that no solvers on the increment spaces Wl need to be available, which
might be di�cult to construct. Instead, standard numerical methods can be
applied. In addition, the use of full grid spaces allows dropping the assumption
of nested approximation spaces in (17). Hence, we do not necessarily need to
consider quadrature methods and �nite element spaces that are nested.

Furthermore, the structure of (27) allows performing parallel computations. As
the computation of the full grid solutions Plu are independent from each other,
they can be solved in parallel. In this way, the computational time can be further
reduced. Because of these advantages, we will use the combination technique
representation of the sparse grid in our implementations.

Regarding the computational complexity of the combination technique, it can
be shown that it is of the same order as for the sparse grid. The combination
technique requires solving O(Ld−1) problems in small full grid spaces and the
computational cost is dominated by computing Plu for |l|1 = L, for which there

are

(
L+ d− 1
d− 1

)
combinations to form this sum. Hence, if the cost for computing

the solution in one direction is N
(i)
l = 2l, then

cost(P ct

L ) = O
(
NL log2N

d−1
L

)
.

In addition to the combination technique formula (27), other representations of
the sparse grid have been used which consider a mixture of full and increment
spaces (see [6]). For example, the intermediate step (26) can be considered such
that

P SG

L u =
L∑
l=0

∆
(1)
l P

(2)
L−lu. (28)
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By summing over l1 �rst, the roles l1 and l2 are reversed such that

P SG

L u =
L∑
l=0

P
(1)
L−l∆

(2)
l u. (29)

The corresponding spaces are given by

V SG

L =
L⊕

l1=0

W
(1)
l1
⊗

(
L−l1⊕
l2=0

W
(2)
l2

)
=

L⊕
l=0

W
(1)
l ⊗ V

(2)
L−l

and by

V SG

L =
L⊕

l2=0

(
L−l2⊕
l1=0

W
(1)
l1

)
⊗W (2)

l2
=

L⊕
l=0

V
(1)
L−l ⊗ V

(2)
l .

It is convenient to use this representation when it is easy to construct a nested
sequence of �nite-dimensional approximation spaces for one direction but not the
other.

The formulas (28) and (29) also demonstrate the connection to Multilevel meth-
ods used in [12, 51], which originate from the numerical integration of stochastic
di�erential equations [52] and apply di�erent quadrature levels to a sequence of
di�erences of spatial discretizations. For the coarsest spatial approximation, the
most accurate quadrature is used, while for the �nest spatial approximation, the
least accurate quadrature is applied. Basically, the multilevel method employs
the representation (29) with the sequence {P (1)

l }l corresponding to a sequence of

quadrature rules, and {P (2)
l u}l to the approximation to the PDE.

4.3 Numerical examples

Inclusion Problem

We �rst illustrate the advantages of the sparse grid approach compared to the
product quadrature. For that, we look at a problem where the sparse grid is
applied to the integration only. We adopt the inclusion problem studied in [53],
and compute the mean of the solution to the PDE, where the di�usion coe�cient
depends on four stochastic parameters. The inclusion problem is derived from a
thermal conduction problem where the conductivity is random in disjoint circular
subdomains. More precisely, the di�usion coe�cient is given by

a(x,y) = a0 +
4∑

k=1

χDk(x)yk,

where χDk = 1 on the set Dk ⊂ D and zero elsewhere. The subdomains Dk are
circles centered at xk with radius 1

8
, i.e., Dk = B(xk,

1
8
), with

{xk}4
k=1 =

{(
0.2
0.2

)
,

(
0.2
0.8

)
,

(
0.8
0.2

)
,

(
0.8
0.8

)}
.
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Figure 1: Illustration of the sets used in the inclusion problem.

For the right hand side of the PDE, the function f(x) = 100χDf (x) is applied
with Df = [0.4, 0.6]2 ⊂ D. An illustration of this setup is shown in Figure 1.

Furthermore, the parameters yk are uniformly distributed in [−0.99,−0.2] and
we set a0 = 1 which ensures the coercivity of the coe�cient. Due to the structure
of a(x,y), the in�uence of the stochastic variables is equally strong. We apply
the combination technique with trapezoidal quadrature rules for each of the four
stochastic dimensions while keeping the spatial discretization �xed with a mesh
of Nx grid points in each spatial dimension, where Nx = 64.

The convergence behavior is depicted in Figure 2. Choosing N
(i)
l = 2l quadrature

points for the trapezoidal rules, we expect a rate of the error of O(2−2LLd−1).
This rate can be observed, although the logarithmic term is almost not visible.
Furthermore, we compare the convergence of the combination technique with
respect to the computational cost with the full grid product quadrature. The plots
include the theoretical convergence rates for comparison. We observe that the
convergence rate of the trapezoidal quadrature with O(N−2) is almost preserved
with the combination technique and is only deteriorated by a logarithmic term.
Asymptotically, this logarithmic term will have less impact such that the rate
approaches O(N−2), whereas the rate for the full grid is O(N−1/2) due to the
dimensionality of the integration. This illustrates the curse of dimensionality and
the advantages of the sparse grid in this context.

So far, the spatial discretization has been �xed. From the convergence, we see
however, that we can obtain relatively small errors with the combination tech-
nique in the stochastic variables. A balance of the �nite element error would
require a high discretization in space. We therefore consider from now on nu-
merical examples for the combination technique with respect to both the �nite
element method and quadrature rule.
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Figure 2: Convergence of the combination technique for the computation of
E[u(x)] applied to the stochastic parameters measured with respect to a full
grid reference solution. Left: convergence with respect to the sparse grid level,
Right: convergence with respect to the computational cost compared to a full
grid product quadrature.

Spatial and Stochastic Discretization

First, we consider a constructed example with one spatial and one stochastic
variable. We look at the model problem for y ∈ U(−1, 1)

− div(a(x, y)∇u(x, y)) = f(x) in D = (−1, 1)

u(x, y) = 0 on ∂D

with

a(x, y) = e−y cos
(πx

2

)
and f(x) =

π2

4
cos (πx) (30)

such that the solution to the PDE is known and has the form

u(x, y) = ey cos
(πx

2

)
.

Hence, the function is smooth in both variables x and y and the regularity as-
sumptions are satis�ed, which are required for applying the sparse grid between
the space and stochastic variable for all three quadrature rules.

For example the trapezoidal rule for the computation of E[u(x)] can be used.
Choosing for the �nite element method of level l a mesh with Nx

l = 2l points, we
have by Lemma 5 for all y ∈ [−1, 1]

‖∂2
y(u− uhl)(y)‖H1(D) . 2−l ‖f‖2

L2(D).

If we also apply the quadrature with Ny
l = 2l quadrature points, the convergence

of the trapezoidal rule (6) yields
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‖ (Ql1 −Ql1−1)
(
uhl2 − uhl2−1

)
‖H1(D) . 2−(2l1+l2)‖f‖L2(D),

whereby the cost is of order O(2l1+l2).

In view of the convergence rate of the �nite element method with respect to the
L2-norm, we can expect to achieve the same rate of convergence in the �nite
element method as for the quadrature methods such that

‖ (Ql1 −Ql1−1)
(
uhl2 − uhl2−1

)
‖L2(D) . 2−(2l1+2l2)‖f‖L2(D).

We plot the bene�t-cost ratio in Figure 3. As expected, the bene�t-cost ratio
becomes small when both discretization levels l1 and l2 become large. A triangular
shape of the set which consists of indices with a bene�t-cost ratio greater than a
threshold, is clearly visible. Furthermore, we observe that the the optimal index
set with respect to the L2(D)-norm includes the discretization methods up to
the same level. Hence, the regular sparse grid with the index set (22) is the
optimal choice. In comparison to that, the triangle for the error measured in the
H1(D)-norm includes higher discretization levels for the spatial variable than for
the stochastic, because the convergence of the spatial method is slower. Applying
a regular sparse grid yields, therefore, still an improvement. However, it is not
the optimal choice. A better choice for the index set will be discussed in the next
section.

Figure 3: Bene�t-cost ratio for the �nite element discretization and trapezoidal
rule. The plots are with a logarithmic scale and the bene�t is measured in the
L2(D)-norm (left) and H1(D)-norm (right).

We apply the combination technique to this example problem using the Monte
Carlo, trapezoidal and Gauss-Legendre rules. Since the convergence rates of the
stochastic method in terms of quadrature points do not coincide with the rate of
the �nite element method, the regular sparse grid is not optimal. Nevertheless,
we can equilibrate the errors and obtain the convergence rate of Theorem 4.

Moreover, we use a �nite element method with Nx
l = 2l such that the error in the

H1(D)-norm is of order O(2−l) and for the quadrature the number of points Nl

such that the error is of the same order. In addition, we include the convergence
plots of the combination technique for the trapezoidal rule balanced to the PDE
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solver in the L2(D)-norm. In this case the spatial and stochastic approximation
have the same convergence rate and the bene�t-cost ratio is of the form which
was assumed for the derivation of the regular sparse grid.

The convergence plots are shown in Figure 4. In terms of the sparse grid level, the
error behaves according to the error of the PDE discretization up to a logarithmic
term. This is consistent with the error bound in Theorem 4, but we observe a
factor

√
L instead of L. Also, in this example the curse of dimensionality is

broken, as the convergence with respect to the cost is the lower rate of the two
methods, which is only a�ected by a logarithmic factor.

Figure 4: Convergence results for the regular sparse grid for the Gauss-Legendre
(GL), trapezoidal (Tp) and Monte Carlo (MC) quadrature method. Left:
convergence with respect to sparse grid level. Right: convergence with re-
spect to the computational cost. As a reference the rates O(N−1/2 log(N)1/2),
O(N−1 log(N)1/2) and O(N−2 log(N)5/2) are shown.

PDE with Random Field as Di�usion Coe�cient

As a third example, we look at a situation where the di�usion coe�cient is given
by a random �eld and the Karhunen-Loeve expansion needs to be truncated. We
consider the PDE

− div(a(x, ω)∇u(x, ω) = 1 in D = (0, 1)

u(x, ω) = 0 on ∂D

together with the random �eld with E[a(x)] = 10 and Gaussian covariance func-
tion

cova(x1,x2) = 2 exp

(
−1

2

|x1,x2|2

0.1

)
,

for which we compute the Karhunen-Loeve expansion. As the covariance func-
tion is smooth with a relatively long correlation length, only few terms of the
Karhunen-Loeve expansion need to be considered. We �x the level of truncation
to eight stochastic variables and apply the combination technique in space and
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stochastic, whereby we use one-dimensional Gauss-Legendre quadrature rules.
By Lemma 5 and Lemma 2, the function u can be extended into some region
of the complex plane, such that exponential convergence of the Gauss-Legendre
quadrature holds. Furthermore, these statements provide for an anisotropy of
the stochastic variables expressed in the sequence γk. We use this to choose the
quadrature points such that the error is of order O(2−l).

For this example, we also consider, in addition to the computation of the expec-
tation E[u], the second moment E[u2]. The W 1,1(D)-norm is not accessible in the
�nite element software. We therefore look at the error in the H1(D)-norm for
the second moment, as H1(D) ⊂ W 1,1(D) is continuous embedded and therefore
‖v‖W 1,1(D) ≤ C(D)‖v‖H1(D).

Figure 5: Convergence behavior of the computation of �rst and second moment.
Errors are measured in H1(D) (solid) and L2(D) (dashed).

The convergence of the combination technique with eight stochastic and one spa-
tial direction is shown in Figure 5. According to the choice of approximation
power of the methods, we expect a convergence rate of essentially O(2−L) with
respect to the level L and that the rate of O(N−1) with respect to the com-
putational cost N is deteriorated at most by a logarithmic factor. Indeed, we
observe the expected behavior, whereby the powers on the logarithmic factors
are smaller than suggested. This is due to the fact that for small levels the num-
ber of quadrature points used is larger than required for a rate O(2−l), as the
number of points needs to be an integer. Furthermore, the number of quadrature
points does not grow geometrically with the level, which leads to a slower growth
in the computational cost than assumed for (24).

In addition to the H1(D)-error, we plot the L2(D)-error of the computation,
as it shows how the convergence rate of the sparse grid is dominated by the
slowest method. From the �nite element method, we could expect that the error
decreases with order 2. However, since we do not achieve this rate with the
quadrature methods, it is reduced to the slower convergence.
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5 Anisotropic Sparse Grids

As seen in the numerical examples, the regular sparse grid does not always re�ect
the behavior of the bene�t-cost ratio. In the case where we apply numerical
methods with di�erent convergence rates for the directions of the sparse grid, it
is favorable to use an anisotropic version of the sparse grid approach instead. For
example, if the method used in one direction converges faster than the method in
the second direction, the convergence is dominated by the slower method and less
computational work should be considered for the faster method. Therefore, we
will discuss in this section an approach that does not treat each direction equally
and that allows control of this anisotropy with a parameter. The parameter can
be chosen such that the methods are balanced based on an equal amount of work,
equal approximation power or equilibrated bene�t-cost ratio.

The anisotropic sparse grid was �rst described in [5]. There, an anisotropic sparse
grid was introduced for the approximation of a function on a product domain
Ω1 × Ω2, where Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 . For an approximation of this function
in L2(Ω1×Ω2), the method combines �nite-dimensional subspaces with di�erent
approximation power and dimensions in an optimal way. This method was also
transferred to the problem of estimation of an econometric model in [54].

The anisotropic sparse grid is basically an extension of the regular sparse grid as
described in Section 4 in the sense that it adjusts the index set I used for the
sparse grid based on the cost and accuracy properties of the numerical methods.

While the regular sparse grid uses the product of increment spaces Wl1 ⊗ Wl2

with the indices satisfying l1 + l2 ≤ L, which, viewed as a set in the l1, l2-plane,
form a triangular shaped domain with equally sized sides, the set of indices in
the anisotropic formulation form a scalene triangle. This allows including more
subspace in one direction than in the other. The particular shape of the scalene
triangle is determined by a parameter σ > 0 in such a way that the ratio of the
legs of the triangle is given by σ2. This is re�ected in the condition l1σ+ l2

σ
≤ L for

the indices. Accordingly, the anisotropic sparse grid space in terms of incremental
spaces is de�ned by

V σ
L =

∑
σl1+l2/σ≤L

Wl1 ⊗Wl2 .

The di�erence between the regular and anisotropic sparse grid is illustrated in
Figure 6.

In the following, the details of the anisotropic sparse grid together with the conver-
gence properties will be presented for combining two di�erent numerical methods.
We adapt the ideas of [5] and �rst consider the interplay between the spatial and
stochastic method. In a subsequent part, the anisotropic sparse grid approach is
used to balance the truncation of an in�nite-dimensional parameter space and its
stochastic approximation.
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Figure 6: Subspaces included in the sparse grid formulation. Left: regular sparse
grid, right: anisotropic sparse grid.

5.1 Anisotropic Sparse Grid Method for Quadrature and

Spatial Discretization

First, we discuss an anisotropic version of the sparse grid for the combination of
spatial and stochastic discretization. As before, we consider sequences of numeri-
cal methods, which correspond to a sequence of quadrature rules {Ql}l≥0 and the
function F applied to a sequence of projections onto �nite element spaces, i.e.,
{F(uhl)}l≥0, where F(u) = u or F(u) = u2.

We require again that the approximation increases such that

lim
l→∞

Qlv =

∫
v(z)dz and lim

l→∞
F(uhl) = F(u)

and de�ne as before the di�erence operator

∆
(1)
l v =

{
Qlv −Ql−1v if l ≥ 1,

Q0v if l = 0,
(31)

and

∆
(2)
l u =

{
F(uhl)−F(uhl−1

) if l ≥ 1,

F(uh0) if l = 0.
(32)

The di�erence in approximation power and cost of the spatial and stochastic
discretization is described with two parameters. We assume that the number
of quadrature points for Ql is given by cost(Ql) h 2n1l and that the degrees of
freedom of the �nite element spaces are chosen such that cost(uhl) h 2n2l. The
accuracy of the methods are described by s1 and s2, as we assume that the error
is of order O(2−sil) for i = 1, 2.

In [5], ni refers to the dimension of the underlying spaces and si to the degree
of polynomial exactness of the subspaces. Nevertheless, it is more convenient
to think of ni as a parameter that describes the cost needed for an error of
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order O(2−sil). Hence, it is not necessarily a positive integer. The values of ni
and si depend on the applied numerical method. However, the choice of ni implies
the value of si, as the ratio si/ni is �xed.

As for the regular sparse grid method, we need to require mixed regularity in
order for the sparse grid to work. We assume∥∥∥(∆

(1)
l1
⊗∆

(2)
l2

)
u
∥∥∥
X
. 2−(s1l1+s2l2)‖f‖pL2(D), (33)

which incorporates the approximation powers s1 and s2.

Provided these assumption on the numerical methods and regularity of u, the
anisotropic sparse grid solution is de�ned as

Qσ
Lu =

∑
σl1+l2/σ≤L

(
∆

(1)
l1
⊗∆

(2)
l2

)
u, (34)

where the choice of σ depends on what we want to equilibrate. If σ is chosen
according to σ =

√
n1/n2, the computational cost of both methods on the indices

σl1+l2/σ = L is balanced. An equilibrate error rate is obtained with σ =
√
s1/s2,

whereas an equilibrated bene�t-cost ratio is accomplished with

σ =

√
n1 + s1

n2 + s2.

Before discussing the computational cost and error rate for (34), we consider a
reformulation of (34) similar to the combination technique (see Section 4.2). This

has the advantage that the increments ∆
(1)
l1
⊗∆l2

(2)u do not need to be computed,
instead we can use full combinations of the quadrature and spatial discretization
Ql1F(uhl2 ).

For that, we note that the condition l1σ + l2/σ ≤ L implies

0 ≤ l1 ≤
1

σ
L− 1

σ2
l2,

0 ≤ l2 ≤ σL− σ2l1.

Using the telescoping sum, we obtain the following formulations. For σ ≥ 1 it is
simpler to use

Qσ
Lu =

dL/σe∑
l=0

QlF(uhdσL−σ2le)−
dL/σe∑
l=1

Ql−1F(uhdσL−σ2le), (35)

while for σ < 1 it is more convenient to apply the version

Qσ
Lu =

dLσe∑
l=0

QdLσ− l
σ2
eF(uhl)−

dLσe∑
l=1

QdLσ− l
σ2
eF(uhl−1

). (36)

Next, we state estimates on the convergence rate and computational cost of the
anisotropic sparse grid Qσ

L. Since the proofs of these statements follow by the
same arguments as in [5], most of the proofs will be omitted. Parts of the ideas
will appear in the proofs in Section 5.2. First, we start with the cost for computing
Qσ
L which is the analogon to Theorem 4.1 in [5].

39



Theorem 5. The computational cost for the anisotropic sparse grid quadrature

Qσ
Lu =

∑
σl1+l2/σ≤L

(
∆

(1)
l1
⊗∆

(2)
l2

)
u

measured in the number of quadrature points and degrees of freedom of the �nite
element method is

cost(Qσ
Lu) .

{
2Lmax{n1/σ,n2σ} if n1/σ 6= n2σ,

2Ln2σL if n1/σ = n2σ.

Similar to the regular sparse grid, the cost of the anisotropic version is essen-
tially given by the cost needed for Q

(1)
L/σ or uhLσ .This is again a reduction com-

pared to the full combination of �nite element and quadrature method with
O(2L(n1/σ+n2σ)). Furthermore, in the case of unequal computational cost (n1/σ 6=
n2σ), the method with the higher cost dominates the estimate.

Although the cost is reduced compared to the full grid, the convergence rate is
nearly preserved, which is stated in the following theorem.

Theorem 6. The anisotropic sparse grid

Qσ
Lu =

∑
σl1+l2/σ≤L

(
∆

(1)
l1
⊗∆

(2)
l2

)
u

satis�es for the computation of the expectation E[u(x)] (p = 1)

‖E[u]−Qσ
Lu‖H1(D) .

{
2−Lmin{s1/σ,s2σ} ‖f‖L2(D) if s1/σ 6= s2σ,

2−Ls2σ
√
L ‖f‖L2(D) if s1/σ = s2σ,

and for the second moment (p = 2)

∥∥E[u2]−Qσ
Lu
∥∥
W 1,1(D)

.

{
2−Lmin{s1/σ,s2σ} ‖f‖2

L2(D) if s1/σ 6= s2σ,

2−Ls2σL ‖f‖2
L2(D) if s1/σ = s2σ.

Proof. For p = 2, we have by the mixed regularity (33)

‖E [u]−Qσ
Lu‖W 1,1(D) ≤

∑
l1σ+l2/σ>L

∥∥∥∆
(1)
l1
⊗∆

(2)
l2
u
∥∥∥
W 1,1(D)

.
∑

l1σ+l2/σ>L

2−(s1l1+s2l2) ‖f‖2
L2(D)

.

{
2−Lmin{s1/σ,s2σ} ‖f‖2

L2(D) if s1/σ 6= s2σ,

2−Ls2σL ‖f‖2
L2(D) if s1/σ = s2σ,

where the last estimate follows in the same way as in Theorem 4.3 of [5].
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In the case p = 1, a stricter estimate can be shown by looking at the square of
the H1(D)-norm.

‖E [u]−Qσ
Lu‖

2
H1(D) .

∑
l1σ+l2/σ>L

∥∥∥∆
(1)
l1
⊗∆

(2)
l2
u
∥∥∥2

H1(D)

.
∑

l1σ+l2/σ>L

2−2(s1l1+s2l2) ‖f‖2
L2(D) ,

for which the same estimates hold such that we end up with

‖E [u]−Qσ
Lu‖

2
H1(D) .

{
2−2Lmin{s1/σ,s2σ} ‖f‖2

L2(D) if s1/σ 6= s2σ,

2−2Ls2σL ‖f‖2
L2(D) if s1/σ = s2σ.

Hence, the smaller rate of the two numerical methods will determine the conver-
gence rate of the anisotropic sparse grid method. The rate is only deteriorated
if s1/σ = s2σ. Furthermore, we note that this estimate with σ = 1 and s1 = s2

is the setting considered in Theorem 4. Although the statement coincides for
p = 2, we obtain an even better rate for the computation of the expectation, as
the factor L is reduced to

√
L.

Combining both results leads to an error estimate in terms of the computational
cost.

Corollary 1. Let the mixed regularity assumption (33) hold and denote with N
the computational cost for Qσ

L. De�ne

θ =
min{s1/σ, s2σ}
max{n1/σ, n2σ}

.

Then, in the case of n1/σ 6= n2σ, the following convergence rate holds for p = 1, 2.

‖E[up]−Qσ
Lu‖X .

{
N−θ‖f‖pL2(D) if s1/σ 6= s2σ,

N−θ(logN)p/2‖f‖pL2(D) if s1/σ = s2σ.

If n1/σ = n2σ, we have

‖E[up]−Qσ
Lu‖X .

{
N−θ(logN)θ‖f‖pL2(D) if s1/σ 6= s2σ,

N−θ(logN)θ+p/2‖f‖pL2(D) if s1/σ = s2σ.

Furthermore,in the case s1
n1
6= s2

n2
the optimal convergence rate θ∗ = min

{
s1
n1
, s2
n2

}
is achieved for all

σ ∈
(

min

{√
s1

s2

,

√
n1

n2

}
,max

{√
s1

s2

,

√
n1

n2

})
.

The corollary shows that the error of the sparse grid combining �nite element
method and quadrature, converges with the smaller of the two rates if the pa-
rameter σ is chosen in an optimal way. Only if the methods have the same
approximation properties such that s1/n1 = s2/n2, is the rate reduced by a log-
arithmic term.
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5.1.1 Numerical Examples

For an illustration of the anisotropic combination technique, we consider again
the constructed example with one stochastic and one spatial variable, where the
input of the PDE is given by (30).

While we applied a regular sparse grid, which corresponds to the choice σ = 1 with
equilibrated approximation powers s1 = s2, in Section 4, we want to illustrate
here that using the anisotropic version we can achieve a better convergence rate,
as no logarithmic factor deteriorates the convergence rate.

Only for the case where we considered the L2(D) error and applied the trapezoidal
rule for the quadrature, the optimal convergence rate was achieved, because in
this case s1

n1
= s2

n2
and the accuracy and cost of the methods are balanced with

the same parameter σ.

Furthermore, we mention that the obtained convergence rates in the last section
coincide with the predicted rates in Theorem 6 and Corollary 1. The observed
smaller exponents of the logarithmic terms are consistent with the improvement
in Theorem 6 for p = 1.

Here, we exemplify the convergence of the anisotropic sparse grid for the compu-
tation of the expectation with respect to the H1(D)-norm for di�erent σ. For the
computation of the second moment, we provide only the results for the optimal
choice of σ, as the convergence behavior is essentially the same. In both cases,
we choose Nl = 2l points for the mesh in D and for the quadrature method.
Hence, n1 = n2 = 1. We use the approximation power of the numerical methods
to choose the values of σ. The expected rates of the anisotropic sparse grid in
terms of the computational cost are shown for three choices in Table 1.

σ2 = n1

n2
= 1 σ2 = s1+n1

s2+n2
σ2 = s1

s2

Monte Carlo N−
1
2 log(N)

1
2 N−

1
2 N−

1
2 log(N)

1
2

Trapezoidal N−1 log(N) N−1 N−1 log(N)
1
2

Gauss-Legendre N−1 log(N) N−1
(
N−1 log(N)

1
2

)
Table 1: Predicted rates of convergence.

The convergence results are presented in Figure 7. The curves show an erratic
behavior because the probabilistic nature of the Monte Carlo method only pro-
vides an error rate in the mean square sense. Furthermore, the implementation
of the anisotropic method includes indices with l ≤ dL/σe and l ≤ dLσe, so that
the increase in levels considered in each direction is not equal for growing sparse
grid levels L.

The upper left panel depicts the convergence rates for the trapezoidal rule. From
Corollary 1 we expect that the optimal convergence rate of 1 is achieved for
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Figure 7: Convergence of anisotropic sparse grid method for the computation
of the expected value measured in H1(D)-norm with di�erent quadrature rules.
Top left: trapezoidal rule, top right: Monte Carlo method, bottom left: Gauss-
Legendre. Bottom right: convergence result for the computation of the second
moment with optimal choice of σ.

σ2 ∈ (1
2
, 1). Indeed, the numerical implementation exhibits this convergence rate

for the choice of an equilibrated bene�t-cost ratio. For σ2 chosen as the endpoint
of this interval, the convergence is, however, a�ected by a logarithmic term, which
results in slightly slower convergence.

Using the Monte Carlo quadrature (upper right panel) instead provides similar
results with an optimal interval σ2 ∈ (1, 2). However, the rate of the �nite
element method is not achieved, because the Monte Carlo only converges with a
rate 1/2. The Gauss-Legendre quadrature instead has a higher convergence rate,
as it converges exponentially for analytic functions. Hence, fewer levels should be
used for the y-direction than for the x-direction. For all s2 ∈ N, it holds u ∈ Cs2

in the stochastic variable such that the Gauss-Legendre quadrature satis�es the
asymptotic convergence rate O(2−s2). Hence, any choice for σ with σ2 ∈ (0, 1)
will achieve the convergence of order 1. This can be observed in the lower left
panel which provides the convergence analysis for σ2 = 1

4
, 1

2
, 1. Only for σ = 1

the rate is lowered, as in this case the cost is equilibrated.
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Overall, we observe that the convergence rate of the anisotropic sparse grid is
limited by the lower of the two rates of the separate numerical approximations.
Hence, if the regularity is provided, the Gaussian and trapezoidal quadrature
rules yield the faster convergence. Furthermore, it can be achieved that the lower
rate of both methods is not deteriorated by a logarithmic factor if the approxi-
mation power and cost are not equal for both methods, which is an improvement
compared to applying a regular sparse grid.

Finally, we observe in the lower right panel of Figure 7 that this also holds for
the computation of the second moment.

Although we presented here only numerical examples of the anisotropic sparse
grid for the simple case of one-dimensional spatial and stochastic domain, the
theoretical results also hold for higher-dimensional quadrature rules which sat-
isfy the condition (33). For example, a sparse grid quadrature in y might be
considered, which exhibit an convergence of O(2−rllm−1) using 2llm−1 quadrature
points. By slightly reducing the rate r, this quadrature �ts the considered setting,
as lt . 2lε for ε > 0 and t > 0. If the the stochastic variables are not equally
important, one could also consider an anisotropic quadrature method in the mul-
tidimensional case, where the levels for the quadrature are coupled to the �rst
random variable, such that the error and also the cost is of the required form.

5.2 Sparse Grid for Truncation and Quadrature

After having addressed a sparse grid within the stochastic variables and in com-
bination with the PDE solver, we consider in this section a di�erent part of the
computation of the quantities of interest. When the random �eld is written in the
Karhunen-Loeve expansion and subsequently parametrized, the exact solution of
the PDE depends on in�nitely many variables. The computation of the expecta-
tion or of a higher moment of the partial di�erential solution hence corresponds
to an integral over an in�nite-dimensional parameter space.

So far, the truncation to a �nite-dimensional parameter space has been �xed. In
this section, we will now look at the interplay between the �nite noise truncation
and stochastic approximation, while disregarding the spatial discretization. We
will use a sparse grid approach to reduce the complexity of computing a quantity
which requires a truncation of an in�nite-dimensional stochastic.

To that end, we consider a simpler problem. Instead of looking at a PDE solution,
we compute the expectation of a given function that depends on in�nitely many
random variables y = (y1, y2, . . .) as a quantity of interest.

For i ∈ N, let yi be independent uniformly distributed random variables tak-
ing values in Γ = [−1

2
, 1

2
] and de�ne the in�nite-dimensional parameter space

Γ =×∞k=1
Γk. Then, for a function G : Γ→ R, we are interested in the value

Ey [G(y)] =

∫
Γ

G(y)ρ(y)dy =

∫
Γ

G(y)dy. (37)

with ρ(y) ≡ 1. A rigorous de�nition of this integral is more delicate, as dy is
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a measure on an in�nite-dimensional space. In in�nite dimensions, there is no
analogue to the Lebesgue measure ([55]). However, it is possible to construct a
product measure on Γ (see [56]). The integral is then de�ned as the limit

Ey [G(y)] = lim
m→∞

∫
Γm
G(y1:m, 0, . . .)dy1:m,

where we use the notation y1:m = (y1, . . . , ym).

The existence of this limit can be shown under certain conditions on the function
G. In [45], the condition of G being in a certain reproducing kernel Hilbert space
was used. The existence of the limit requires the continuity of G and a certain
decrease of in�uence of the variables yk on the value G(y) as k → ∞. Here-
inafter, we assume that the integral is well-de�ned. If the variables derive from a
Karhunen-Loeve expansion, an unequal dependence on the stochastic variables is
given, because as stated in Section 3.3 the coe�cients in the Karhunen-Loeve ex-
pansion exhibit certain decay properties depending on the regularity of the �eld.
By Lemma 5 this anisotropy is also maintained in the PDE solution.

An approximation of (37) requires �rst a reduction of G to a function Gm : Γm →
R on a �nite-dimensional domain and subsequently a replacement of the integral
by a quadrature rule. For the �rst step, we de�ne the m-dimensional surrogate
Gm by

Gm(y1:m) = G(y1, . . . , ym, 0, 0 . . . , ).

Only the �rst m variables y1:m = (y1, . . . , ym) are considered, while for k > m
the function is evaluated at a �xed anchor point y = 0. This choice is natural
for the centered variables yk. Viewed from another perspective, this means the
function G is evaluated at the projection of y onto the �nite-dimensional space

{y ∈ RN : yi = 0 for i > m}.

Thus, we can obtain an approximation of the integral by QGm with Q being an
m-dimensional quadrature method.

Since we want to use a sparse grid e�ect between the projection onto a �nite-
dimensional parameter space and the quadrature rule, we need a sequence of
truncation levels and quadrature methods. To that end, let {Ql}l be a sequence
of quadrature rules with increasing accuracy. For Ql, we assume for any �nite-
dimensional function v : Rm → R the error bounds

| (I −Ql) v| . 2−s1l‖v‖Y (38)

with a constant that is independent ofm and where the norm ‖·‖Y depends on the
quadrature rule. We remark that the assumption includes that the quadrature
Ql can be applied to any �nite-dimensional function and that the estimate is
independent of m.
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Furthermore, we assume that liml→∞Qlv =
∫
v(y1:m)dy1:m such that∫

v(y1:m)dy1:m =
∞∑
l=0

(Qlv −Ql−1v) +Q0v

=
∞∑
l=0

∆Q
l v

(39)

with the di�erence operator de�ned as in (31).

In the same manner, we consider an increasing sequence of truncation levels

m0 < m1 ≤ m2 ≤ . . . ≤ ml ≤ . . . <∞

such that the function evaluation can be written as

G(y) =
∞∑
l=1

(
G(y1, . . . , yml , 0, . . .)−G(y1, . . . , yml−1

, 0, . . .)
)

+G(y1:m0 , 0, . . .)

=
∞∑
l=0

∆lG(y)

(40)

with

∆lG(y) =

{
Gml(y1:ml)−Gml−1

(y1:ml−1
) if l ≥ 1

Gm1(y1:m0) if l = 0.

We assume that the truncation levels {ml}l are chosen such that the error made
by the truncation decreases according to

‖G(y)−Gml(y1:ml)‖Y . 2−s2l (41)

for some s2 > 0.

The anisotropic sparse grid integral approximation then takes the form

Qσ
LG :=

∑
σl1+l2/σ≤L

∆Q
l1

∆l2G. (42)

This is equivalent to the formulations (cf. (35) and (36))

Qσ
LG =

L/σ∑
l=0

QlGσL−σ2l −
L/σ∑
l=1

Ql−1GσL−σ2l, (43)

respectively

Qσ
LG =

Lσ∑
l=0

QL
σ
− l
σ2
Gl

Lσ∑
l=1

QL
σ
− l
σ2
Gl−1. (44)
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We note that in (43) and (44) the quadrature rules are applied to functions on
di�erent �nite-dimensional spaces as the truncation level of G changes. Hence,
the sequence of quadrature rules must be capable of approximating the integral
over any �nite-dimensional space. For the analysis of the error of the sparse grid
formulation, it is important that the error bounds and cost estimations for Ql

are independent of the dimension of the underlying space.

The straightforward choice for the quadrature is a Monte Carlo or Quasi Monte
Carlo quadrature rule, as their convergence rates only depend on the number of
quadrature points and not on the dimension. We will consider the Monte Carlo
quadrature in Section 5.2.1. As the convergence of the Monte Carlo method is
rather slow, a product of one-dimensional quadrature rules is considered in the
second part. There the decrease of importance of the variables is used to construct
a sequence of product rules that have error and cost bounds independent of the
dimension.

Before we look at these di�erent quadrature methods in detail, we can prove an
error bound for the representation (42).

Theorem 7. Let the conditions (38) and (41) hold. Then the approximation
Qσ
LG de�ned by (42) satis�es∣∣∣∣∫

Γ

G(y)dy −Qσ
LG

∣∣∣∣ .
{

2−Lmin{s1/σ,s2σ} if s1/σ 6= s2σ

2−Ls1/σL if s1/σ = s2σ.

Proof. Using the expansion (39) and (40), we get

|Ey [G(y)]−Qσ
LG| =

∣∣∣∣∣∣
∫

Γ

G(y)dy −
∑

l1σ+l2/σ≤L

∆Q
l1

∆l2G

∣∣∣∣∣∣
≤

∑
l1σ+l2/σ>L

∣∣∣∆Q
l1

∆l2G
∣∣∣ ≤ ∑

l1σ+l2/σ>L

∥∥∥∆Q
l1

∥∥∥
Y→R
‖∆l2G‖Y .

The assumptions (41) and (38) imply

|∆Q
l1
v| ≤ |(I −Ql1)v|+ |(I −Ql1−1)v|
≤ 2−s1l1‖v‖Y + 2−s1(l1−1)‖v‖Y . 2−s1l1‖v‖Y

and analogously,

‖∆l2G‖Y ≤ ‖G−Gml2
‖Y + ‖G−Gml2−1

‖Y . 2−s2l2 .
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Therefore,

|Ey [G(y)]−Qσ
LG| .

∑
l1σ+l2/σ>L

2−s1l12−s2l2

≤
L/σ∑
l1=0

∞∑
l2=Lσ−l1σ2+1

2−s1l12−s2l2 +
∞∑

l1=L/σ+1

∞∑
l2=0

2−s1l12−s2l2

.
L/σ∑
l1=0

2−s1l1−s2σL+s2l1σ2

+
∞∑

l1=L/σ+1

2−s1l1

.2−s2σL
L/σ∑
l1=0

2−l1(s1−s2σ2) + 2−s1L/σ

=2−s2σL

L/σ∑
l1=0

2−l1σ(s1/σ−s2σ) + 2−L(s1/σ−s2σ)

 .

We distinguish between three cases. If s1/σ > s2σ the exponents are negative
such that

|Ey [G(y)]−Qσ
LG| . 2−s2σL (1 + 1) . 2−s2σL.

If instead s1σ < s2σ, we �nd

|Ey [G(y)]−Qσ
LG| . 2−s2σL

(
2−L(s1/σ−s2σ) + 2−L(s1/σ−s2σ)

)
. 2−s1σL.

For s1σ = s2σ, we have

|Ey [G(y)]−Qσ
LG| . 2−s2σL

L/σ∑
l1=0

1 + 1

 . 2−s2σL
L

σ
.

This bound holds, due to the equivalence of the formulations, also for the ap-
proximations obtained by the combination technique (43) or (44). The theorem
is similar to Theorem 6, but here the quadrature is combined with di�erent trun-
cation levels instead of �nite element solutions. The theorem shows that the rate
of convergence is essentially given by the smaller of the quadrature and truncation
convergence rates given by condition (38) and (41). Since {Gml}l depends on a
varying number of variables which is unbounded, the evaluation is not constant
anymore. A cost model for Ql1Gml2

, therefore, needs to account for this. For ex-
ample, the cost ofQl1Gml2

can be measured in terms of the number of quadrature
points in Ql1 times the number of variables ml2 that are considered in the eval-
uation of G. Consequently, the cost of Qσ

LG is reduced compared to QL/σGmLσ ,
while up to a logarithmic term the approximation power is the same. The exact
cost of computing Qσ

LG depends on the particular choice of the sequence {ml}l
and the cost of the quadrature rules.
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5.2.1 Monte Carlo

In this section, we examine how a Monte Carlo method can be applied in combina-
tion with the truncation level. For the Monte Carlo quadrature to be applicable,
we need that G is square integrable, since then Gm is square integrable for any m.
Let Ql be the Monte Carlo quadrature with Nl = 2l sample points. The estimate
(38) is then satis�ed in the root mean square error sense√

E [|(I −Ql)v|2] . 2−
1
2
l‖v‖L2

ρ(Γm).

Hence, if the condition (cf. (41))

‖G(y)−Gml(y)‖L2
ρ(Γ) . 2−s2l (45)

is satis�ed, the statement of Theorem 7 holds in the root mean square sense.

The condition (45) measures how much of the value G is covered by the �rst ml

variables. To quantify this, we consider a certain class of functions. Note that
this assumption can be weakened, for example to Hölder-continuous functions.

Assumption 1. Assume G : Γ → R is continuously di�erentiable and for every
k ∈ N

sup
y∈Γ
|∂ykG(y)| . γk

for a decreasing sequence {γk}k that is summable.

First of all, the summability of {γk}k ensures that G is square integrable. Here
two choices for the sequence {γk}k are considered. Either the sequence decays
algebraically, meaning

γk . k−α

with α > 1 such that {γk}k ∈ `1, or with an exponential rate

γk . 2−βk

for some β > 0. These choices are motivated by the decay rates for the coe�cients
in the Karhunen-Loeve expansion of a random �eld. If a(ω, x) ∈ L2(Ω, Hs(D)),
then the coe�cients satisfy an algebraic decay rate, while for an analytic covari-
ance function for the random �eld the decay is of the second type (cf. Section
3.3).

Under the above assumption, we can show that condition (45) is satis�ed when
the levels ml are chosen appropriately.

Lemma 6. Let G : Γ→ R satisfy Assumption 1.

(i) If γk . k−α for α > 1 and if the truncation levels are chosen according to
ml = 2l, then

‖G(y)−Gml(y))‖L2
ρ(Γ) . 2−(α−1)l.

49



(ii) If instead γk . 2−βk for β > 0 and ml = l, then

‖G(y)−Gml(y))‖L2
ρ(Γ) . 2−βl.

Proof. (i) Using the mean value theorem, we have, for M > ml,

‖GM(y)−Gml(y))‖L2
ρ(Γ) ≤ sup

y∈Γ
|G(y1:M)−Gml(y1:M))|

≤
M∑

k=ml+1

sup
y∈Γ
|∂ykG(y)| sup

yk∈Γ
|yk|

.
M∑

k=ml+1

γk.

Then taking the limitM →∞ yields together with the lower semi-continuity
of the norm

‖G(y)−Gml(y))‖L2
ρ(Γ) .

∞∑
k=ml+1

γk .
∞∑

k=2l+1

k−α =
∞∑
i=l

2i+1∑
k=2i+1

k−α

.
∞∑
i=l

2i 2−αi . 2(1−α)l,

where in the last step it was used that α > 1.

(ii) Similarly,

‖G(y)−Gml(y))‖L2
ρ(Γ) .

∞∑
k=ml+1

γk .
∞∑

k=l+1

2−βk . 2−βl.

We now turn to the cost estimation of the sparse grid formulation computed by
the combination technique formula (43) or (44). We provide an upper bound for
the cost for the two di�erent choices of truncation levels.

Theorem 8. The cost of computing Qσ
LG is given

(i) for the truncation levels ml = 2l by

cost(Qσ
LG) .

{
2Lmax{1/σ,σ} if σ 6= 1,

2σLL if σ = 1,

(ii) and for the choice ml = l by

cost(Qσ
LG) . 2L/σ.
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Proof. (i) We recall that the number of the quadrature points used for Ql was
chosen as Nl = 2l. We assume w.l.o.g. that Qσ

LG is computed according to
(43).

cost(Qσ
LG) =

L/σ∑
l=0

cost(QlGσL−σ2l) +

L/σ∑
l=1

cost(Ql−1GσL−σ2l)

≤
L/σ∑
l=0

2l2(σL−σ2l) +

L/σ∑
l=1

2(l−1)2(σL−σ2l)

.
L/σ∑
l=0

2l2(σL−σ2l) = 2σL
L/σ∑
l=0

2l(1−σ
2).

For σ > 1, we obtain cost(Qσ
LG) . 2Lσ, while for σ < 1 the estimate

cost(Qσ
LG) . 2σL2L/σ(1−σ2) = 2L/σ holds. In the case σ2 = 1 we end up with

cost(Qσ
LG) . 2σL

∑L/σ
l=0 1 . 2σLL.

(ii) Similarly,

cost(Qσ
LG) =

L/σ∑
l=0

cost(QlGσL−σ2l) +

L/σ∑
l=1

cost(Ql−1GσL−σ2l)

≤
L/σ∑
l=0

2l(σL− σ2l) +

L/σ∑
l=1

2(l−1)(σL− σ2l)

.
L/σ∑
l=0

2l(σL− σ2l) = σ2

L/σ∑
l=0

2L/σ−ll . 2L/σ.

An error bound in terms of the cost is given by the following corollary.

Corollary 2. Let G be like in Lemma 6, ml = 2l, and set

θ =
min{ 1

2σ
, (α− 1)σ}

max{ 1
σ
, σ}

.

Then

∣∣∣∣∫
Γ

G(y)dy −Qσ
LG

∣∣∣∣ .

N−θ if σ 6= 1 and σ2 6= 1

2(α−1)
,

N−θ logN if σ2 = 1
2(α−1)

and α 6= 3
2

N−θ(logN)θ if σ = 1 and α 6= 3
2

N−θ(logN)(1+θ) if σ = 1 and α = 3
2
.
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In the second case, set

θ = min

{
1

2
, βσ2

}
and obtain ∣∣∣∣∫

Γ

G(y)dy −Qσ
LG

∣∣∣∣ .
{
N−θ if σ2 6= 1

2β
,

N−θ logN if σ2 = 1
2β
.

Proof. The statement follows from combining Lemma 6 and the Theorems 7 and
8.

By maximizing θ in Corollary 2, the optimal choice for σ can be found. In the
�rst case, the optimal rate of θ = min{1

2
, α− 1} is obtained by

σ2 ∈
(

min

{
1,

1

2(α− 1)

}
,max

{
1,

1

2(α− 1)

})
.

Hence, the rate is limited either by the decay in the variables or the Monte Carlo
method. In the second case, the importance of yk decreases faster such that the
optimal rate θ = 1

2
is achieved for

σ2 >
1

2β
.

5.2.2 Product Quadrature Rule

In this section, we will consider a quadrature rule that is a product of one-
dimensional quadrature rules instead of a Monte Carlo quadrature. The mo-
tivation behind this is that, as seen above, using a Monte Carlo method, the
convergence rate for the sparse grid can be at most of order 1/2, as the Monte
Carlo method does not achieve a higher rate. An alternative might be to consider
a product of one-dimensional quadrature rules with higher convergence rates.

However, unlike the Monte Carlo method, a tensor product built from one-
dimensional quadrature rules is not independent of the dimension, as it su�ers
from the curse of dimensionality. Furthermore, for a combination with the trun-
cation of the parameter space, we need to have a sequence of quadrature rules
whose convergence rates do not depend on the dimension of the integration do-
main. Simply applying the product quadrature with the same number of points
in each direction would therefore not lead to a useful quadrature rule, even if a
sparse version is considered. However, we can use the knowledge that the vari-
ables yi are not equally important to construct an anisotropic product quadrature
method whose cost and error can be estimated independently of the dimension.
The construction of a sequence of such quadrature methods is discussed next.
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For that, we consider a sequence of quadrature rules {Ql}l of the form

Ql = Q
(1)

N
(l)
1

⊗ . . .⊗Q(m)

N
(l)
m

,

where the number of points N
(l)
k for each k = 1, . . . ,m is determined by the

structure of the integrand. Hence, only the level parameter l controls the accuracy
of the quadrature. In the following, we will discuss this product quadrature where
Q

(k)

N
(l)
k

are one-dimensional Gauss-Legendre quadratures because, in the case of

smooth integrands, they exhibit exponential convergence rates. Although we have
shortly mentioned the product quadrature in Section 3.1, we will here consider
the speci�c choice of Gaussian quadratures in more detail and construct a rule
for possibly varying stochastic dimensions.

We emphasize that a full, but anisotropic, tensor product of quadrature rules is
considered. Alternatively, one could also study an anisotropic sparse grid quadra-
ture method, which, for example, has been studied for the stochastic collocation
method in [19, 39] and in a multilevel formulation balancing the PDE solver and
the quadrature method in [21, 23]. Here, however, we consider only the case of a
full product.

Before looking at how to balance a Gauss-Legendre product quadrature with
the truncation level, we need to assess the accuracy of the product quadrature.
Following ideas in [15], the number of quadrature points in each direction can be
chosen such that the product quadrature satis�es condition (38) independently
of the dimension.

Lemma 7. Let v ∈ C(Γm) ⊂ L2
ρ(Γ

m) be a function, such that for all k = 1, . . . ,m,
it is analytically extendable into Σ(Γk, τk) = {z ∈ C : dist(z,Γk) ≤ τk}. If a
tensor product of Gauss-Legendre quadratures with

N
(l)
k ≥

ln(2)

2h(τk)
l +

1

2

quadrature points is considered, where h(τk) = ln(2τk +
√

1 + 4τ 2
k ), then the error

is bounded by

|(I −Ql)v| . 2−l max
k=1,...,m

‖v‖C0(Σ(Γk,τk);C0(Γ∗k))

m∑
k=1

g(τk)

with g(τ) = 4
(2τ+

√
1+4τ2−1)

and Γ∗k as in (7). If in addition {g(τk)}k is summable,
the bound is independent of m:

|(I −Ql)v| . 2−l max
k=1,...,m

‖v‖C0(Σ(Γk,τk);C0(Γ∗k)).

Proof. The error of the m-dimensional quadrature rule can be estimated in terms
of the one-dimensional errors as

|(I −Q)v| ≤
m∑
k=1

∣∣(Q(1) ⊗ · · · ⊗Q(k−1) ⊗
(
I(k) −Q(k)

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v
∣∣ .
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As the quadrature Q : C0(Γ) → R and the integral operator I : C0(Γ) → R are
continuous with constant 1, it holds that

|
(
Q(1) ⊗ · · · ⊗Q(k−1) ⊗

(
I(k) −Q(k)

)
⊗ I(k+1) ⊗ . . .⊗ I(m)

)
v|

. sup
y∗k∈Γ∗k

|
(
I(k) −Q(k)

)
v(y∗k)|,

and the error estimate for the Gauss-Legendre quadrature (cf. Lemma 1) then
provides the bound

|
(
I(k) −Q(k)

)
v(y∗k)| ≤ g(τk) exp

(
−h(τk)

(
2N

(l)
k − 1

))
sup

z∈Σ(Γk,τk)

|v(z,y∗k)|

with g(τ) = 4
(2τ+

√
1+4τ2−1)

. Inserting the choice of N
(l)
k yields

|
(
I(k) −Q(k)

)
v(y∗k)| ≤ g(τk)2

−l sup
z∈Σ(Γk,τk)

|v(z,y∗k)|.

Therefore,

|(I −Q)v| ≤ 2−l
m∑
k=1

g(τk) sup
z∈Σ(Γk,τk)

sup
y∗k∈Γ∗k

|v(z,y∗k)|.

Since g(τ) . τ−1, the error estimate in Lemma 7 is independent of m if the
sequence {τ−1

k }k is summable. Furthermore, for the assumptions to be satis�ed,
G must be analytically extendable. Therefore, we assume the following:

Assumption 2. Let G ∈ C0(Γ) admit the partial derivatives ∂jykG for all k ∈ N
and let the following bounds hold for all k ∈ N

‖∂jykG(y)‖C0(Γ) . j!γjk.

We further assume either γk = k−α for some (1− δ)α > 1 with δ ∈ (0, 1) �xed or
γk = 2−βk for some β > 0.

By Lemma 2, the Assumption 2 implies that for each k ∈ N the function G can
be extended into Σ(Γk, τk) = {z ∈ C : dist(z,Γk) ≤ τk} with τk ∈

(
0, γ−1

k

)
. So

we can extend G into Σ(Γk, τk) with τk = γ−1+δ
k for some �xed δ ∈ (0, 1). We

note that the sequence {τk} grows to in�nity for k → ∞. The introduction of
δ > 0 ensures that γkτk = γδk → 0 as k → ∞, which will be needed later for the
combination with di�erent truncation levels. The parameter δ, however, increases
the cost of the product quadrature.The assumptions on the form of γk provides
the summability of {τ−1

k }k.

Having an estimate for the error, we also want a dimension-independent bound
regarding the cost complexity of the product quadrature.
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Lemma 8. Let the N
(l)
k be chosen according to

N
(l)
k =

⌈
ln(2)

2h(τk)
l +

1

2

⌉
.

Then the total number of quadrature points used for Ql can be bounded

(i) in the case of γk ≤ 2−βk by

cost(Ql) . 2
1

3(1−δ)β l log2( l−2
(1−δ)β+1)+ κ

(1−δ)β l

with κ = log2(3
2
e1/3),

(ii) and for γk ≤ k−α by

cost(Ql) . 2κ2l/(1−δ)α+ϑl

with κ = log2(3
2
e1/3) and ϑ = 1

3 ln(2)

(
1
2

+ 1
2+(1−δ)α

)
.

Proof. The cost complexity of Ql is simply the product of the number of quadra-
ture points in each direction.

cost(Ql) =
m∏
k=1

N
(l)
k .

As m is not �xed and we want a bound independent of m, we can view the
function as a function on Γ =×∞k=1

Γ and bound the cost by

cost(Ql) ≤
∞∏
k=1

N
(l)
k .

For a �xed l, the number of N
(l)
k decreases with increasing k and eventually

N
(l)
k = 1. Hence, the in�nite product is well-de�ned and the cost complexity is

given only in terms of l.

In the following, we use the behavior of τk to identify the number of terms to be
considered in the product. For clarity, we assume the constant in γk . k−α and
γk . 2−βk to equal 1.

(i) First, the case γk . 2−βk is considered. For �xed l, N
(l)
k > 1 if and only if

ln(2)
2h(τk)

l > 1
2
. This holds true when

l ln(2) > h(τk) = ln

(
2τk +

√
1 + 4τ 2

k

)
> ln(4τk).

With τk ≥ 2(1−δ)βk it follows

l > 2 + (1− δ)βk
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which is equivalent to

k <
l − 2

(1− δ)β
.

We de�ne Ml = d l−2
(1−δ)β e such that N

(l)
k = 1 for k > Ml. The cost is then

estimated by

cost(Ql) =
∞∏
k=1

N
(l)
k =

Ml∏
k=1

⌈
ln(2)l

2(ln(2τk +
√

1 + 4τ 2
k ))

+
1

2

⌉
≤

Ml∏
k=1

ln(2)l

2 ln(4τk)
+

3

2

≤
Ml∏
k=1

l

2((1− δ)βk + 2)
+

3

2
=

Ml∏
k=1

3

2

(
l

3((1− δ)βk + 2)
+ 1

)
.

In order to estimate the product, we can consider the logarithm of the cost

ln(cost(Ql)) =

Ml∑
k=1

(
ln

(
3

2

)
+ ln

(
l

3((1− δ)βk + 2)
+ 1

))

≤Ml ln

(
3

2

)
+

Ml∑
k=1

l

3((1− δ)βk + 2)
,

where we used that ln(x+ 1) < x for x > 0.

The sum can be bounded above by

Ml∑
k=1

l

3((1− δ)βk + 2)
≤ l

3(1− δ)β

Ml∑
k=1

1

k
≤ l

3(1− δ)β
(1 + ln(Ml)).

Hence, for the cost it holds, with the estimate Ml ≤ l−2
(1−δ)β + 1,

cost(Ql) ≤ exp

(
Ml ln

(
3

2

)
+

l

3(1− δ)β
(1 + ln(Ml))

)
. 2

l
(1−δ)β log2( 3

2
)+

log2(e)
3(1−δ)β l+

l
3(1−δ)β log2( l−2

(1−δ)β+1)

= 2
1

3(1−δ)β l log2( l−2
(1−δ)β+1)+ κ

(1−δ)β l

with κ = log2(3
2
e1/3).

(ii) Similarly, for the case γk ≤ k−α, we obtain N
(l)
k > 1 only if

k < 2
l−2

(1−δ)α .

Thus, we set Ml =
⌈
2

l−2
(1−δ)α

⌉
and apply similar arguments as before.

∞∏
k=1

Nk ≤
Ml∏
k=1

ln(2)

2 ln(4k(1−δ)α)
l +

3

2
=

Ml∏
k=1

3

2

(
ln(2)l

3(ln(4) + (1− δ)α ln(k))
+ 1

)
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and for the logarithm of the cost

ln (cost(Ql)) ≤Ml ln

(
3

2

)
+

Ml∑
k=1

ln(2)l

3(ln(4) + (1− δ)α ln(k))
.

The sum can be bounded by

Ml∑
k=1

ln(2)l

3(ln(4) + (1− δ)α ln(k))

≤ ln(2)l

3

(
1

ln(4)
+

1

ln(4) + (1− δ)α ln(2)
+

Ml∑
k=3

1

ln(4) + (1− δ)α ln(k)

)

≤ l
3

(
1

2
+

1

2 + (1− δ)α

)
+

ln(2)l

3(1− δ)α

∫ Ml

2

1

ln(x)
dx

≤ l
3

(
1

2
+

1

2 + (1− δ)α
+

ln(2)

(1− δ)α
Li(Ml)

)
where Li(x) is the logarithmic integral function. It is known that Li(x)

behaves asymptotically like O
(

x
ln(x)

)
with a constant approaching 1 as x→

∞. Hence, together with the boundMl ≤ 2l/(1−δ)α at least for l large enough,
we get

Li(Ml) ≤
(1− δ)α2l/α

ln(2)l
.

Altogether,

cost(Ql) ≤ exp

(
2l/(1−δ)α ln

(
3

2

)
+
l

3

(
1

2
+

1

2 + (1− δ)α

)
+

1

3
2l/(1−δ)α

)
. 2κ2l/(1−δ)α+ϑl

κ = log2(3
2
e1/3) and ϑ = 1

3 ln(2)

(
1
2

+ 1
2+(1−δ)α

)
.

In both cases, the cost complexity of the product quadrature grows more than
exponentially in l. The actual cost might be lower when m < Ml. But this leads
to a bound which depends on m. Even an exponential decay of the in�uence on
G of the variables yk is not enough for the cost being of the form O(2sl), s > 0.
For that to hold, {γk} would need to converge faster than exponentially.

From Lemma 8 it is clear that for larger α and β the product quadrature is
less expensive. This can be expected as the higher decay in importance of the
variables is transferred to the choice of number of points N

(l)
k and this requires

less dimensions with N
(l)
k > 1.

Compared to the Monte Carlo quadrature, the anisotropic Gaussian product
quadrature does not provide the improvement which was hoped to be achieved.
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α 2 3 4 5 6

l 5 12 18 26 33

β 0.5 0.75 1 1.25 1.5

l 1 2 7 25 84

Table 2: Maximal level l for which the cost in order to achieve an error ofO(2−l) is
lower for the product quadrature than for the Monte Carlo method. The maximal
levels for di�erent decay rates are shown which are not slightly lowered by δ (i.e.,
δ = 0).

For the same order of error, say O(2−l), the Monte Carlo method needs O(22l)
sample points, which is less than the product quadrature, at least asymptotically.

However, for small and moderate levels l the required cost might be smaller for
the product quadrature. This regime, though, depends on the constants α and
β and the actual constant in the estimates γk . k−α or γk . 2−βk, respectively.
For an illustration, the maximal level l where the product quadrature is more
pro�table than the Monte Carlo method are tabulated in table 2 for di�erent α
and β under the assumption that all constants equal 1.

Sparse Grid

Next, we focus on how this product quadrature can be used in a sparse grid
method together with the truncation level of G. We need, hereby, to satisfy
the conditions (41) and (38). The latter is provided by Lemma 7 under the
Assumption 2 on G with s1 = 1 and the norm ‖ · ‖Y de�ned by

‖v‖Y = sup
k
‖v‖C0(Σ(Γk,τk);C0(Γ∗k)) = sup

k
sup

yk∈Σ(Γk,τk)

sup
y∗k∈Γ∗k

|v(yk,y
∗
k)| .

Hence, the only point left is to verify that the truncation levels ml are chosen
such that the condition (41) is satis�ed. For that, we need a stronger assumption
on G than Assumption 2. The bound on the �rst derivatives must also hold in
the region of analytic extension. This is similar to requiring a mixed condition
for the sparse grid.

Assumption 3. Let the function G and the sequence {γk}k be such that Assump-
tion 2 is satis�ed. In addition, assume that the bound for the �rst derivative hold
also on the extension into the complex plane, i.e., for any k ∈ N

sup
yk∈Σ(Γk,τk)

sup
y∗k∈Γ∗k

|∂yiG(yk,y
∗
k)| . γi

with a constant independent of k.

Lemma 9. Under Assumption 3 condition (41) is satis�ed, i.e.,

‖G(y)−Gml(y)‖Y . 2−s2l

(i) with s2 = δα if ml = 2l in the case of γk . k−α.

(ii) with s2 = δβ if ml = l in the case γk . 2−βk.
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Proof. For any k consider

sup
yk∈Σ(Γk,τk)

sup
y∗k∈Γ∗k

|G(yk,y
∗
k)−Gml(yk,y

∗
k)| .

Since |G(yk,y
∗
k)−Gml(yk,y

∗
k)| ≤

∑∞
i=ml+1 suptk∈Σ(Γk,τk) supt∗k∈Γ∗k

|∂iG(tk, t
∗
k)||yi|,

the Assumption 3 implies for k ≥ ml + 1

sup
yk∈Σ(Γk,τk)

sup
y∗k∈Γ∗k

|G(yk,y
∗
k)−Gml(yk,y

∗
k)|

≤1

2

∑
i=ml+1,i 6=k

γi + γk

(
1

2
+ γ

−(1−δ)
k

)

.
∞∑

i=ml+1

γi + γδk. (46)

Since γk is decreasing, the largest value is obtained for k = ml + 1.

The sum can be estimated in the same manner as in the proof of Lemma 6 by∑∞
i=ml+1 γi . 2−(1−α)l or

∑∞
i=ml+1 γi . 2−βl. Hence, in (46), the second term

dominates the bound

‖G−Gml‖Y .

{
2−δαl

2−δβl.

This provides the necessary convergence rate 41 of the truncation for the product
quadrature such that Theorem 7 holds. However, as the computational cost
grows fast for Ql, we cannot assess the computational cost of the sparse grid in
the same way as in Theorem 8. Eventually, the cost of the product quadrature
will dominate the cost of the sparse grid. But since the quadrature rule is applied
to a �nite-dimensional integrand, the bound provided in Theorem 8 is only an
upper bound. In the numerical examples, we �nd that the sparse grid with the
product quadrature yields a better convergence with respect to the cost than the
Monte Carlo quadrature, at least for a moderate overall sparse grid level L.

Connection to PDE

Before looking at numerical examples, we want to connect the ideas above to the
context of computing the �rst and second moment for a PDE solution where the
di�usion is given by a Karhunen-Loeve expansion of a random �eld. As mentioned
before, this problem involves an in�nite-dimensional parameter space.

In this case, the function G corresponds to the map y 7→ u(y) or y 7→ u(y)2,
where u(y) is the solution to the PDE

− div(a(x,y)∇u(x,y)) = f(x).
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In contrast to the above description of the integration problem, the function
takes values in a function space, like H1

0 (D) instead of R. Hence, the integral is
a Bochner integral and the assumptions must hold with respect to the Bochner
space.

In this case, the anisotropy of the integrand with respect to the stochastic vari-
ables is provided by the anisotropic dependence of the random �eld on the vari-
ables. The sequence {γk}k is given by γk = γ̃k/amin where γ̃k expresses the decay
of the coe�cients in the Karhunen-Loeve expansion of the random �eld a(x,y),
i.e.,

γ̃k =
√
λk‖ψk(x)‖L∞(D),

where λk are the eigenvalues and ψk(x) the eigenfunctions. As discussed in Sec-
tion 3.3, the sequence satis�es certain decay rates depending on the regularity of
the covariance function, which are either algebraic for example for the Matérn
covariance or exponential for a Gaussian covariance function. This explains why
we considered these choices for γk.

In [57], it was proven that the anisotropy of the �eld is transferred to the solution
of the PDE. A similar result like Lemma 5 provides the analytic extendibility of
the PDE solution.

Lemma 10. For any sequence of nonnegative integers ν = (νj)j≥1 with only
�nitely many νj nonzero, the function y 7→ u(y) admits a partial derivative ∂νy
and for all y ∈ Γ

‖∂νyu(y)‖H1
0 (D) . |ν|!

(
γ̃

amin

)ν
.

By this, the Assumption 2 is guaranteed. Furthermore, it has been shown that
the dependence of the solution on the parameters is analytically smooth [58], such
that the Assumption 3 holds by similar arguments as for Lemma 10.

Up to this point, the spatial discretization has not been considered. However, the
PDE can only be solved numerically, so that the assumptions need to be veri�ed
also for the spatial approximate solution. Furthermore, the spatial discretization
error needs to be balanced with the truncation and stochastic approximation
error. A further step for the computation of moments would therefore be to
include the spatial discretization in the sparse grid. We will not address this
here. Instead, an a-posteriori approach will be discussed in the second part. For
a given problem with countably many stochastic parameters, the method that
will be described determines adaptively how to balance the di�erent directions
(see Section 6.2).
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5.2.3 Numerical Examples

This section is dedicated to numerical results which illustrate the above conclu-
sions. As an example for G, we look at a function which is of the form

G(y) = F

(
c0 +

∞∑
k=1

γkyk

)
,

where F is a holomorphic function and γk ful�lls the above assumptions. We
choose the functions

G1(y) =
1

2 +
∑∞

k=1 k
−2yk

and

G2(y) =
1

6 +
∑∞

k=1 2−k/2yk

for our examples.

Numerical Examples Monte Carlo

First, we illustrate the motivation behind using a sparse grid between the trun-
cation level and quadrature method. For that, we look at the bene�t-cost ratio
for the combination of truncating to a �nite-dimensional space and applying the
Monte Carlo quadrature. The result for G1 is shown in Figure 8. The decrease
of the bene�t-cost ratio and the shape of a scalene triangle are clearly visible.
The slope of the contour lines is 3/4 as expected by the convergence rates of
each method separately. Therefore, including the hierarchical increments in the
triangle set with σ =

√
3/4 reduces the cost compared to a full grid solution in

an optimal way.

Convergence rates for this choice of σ, based on an equilibrated bene�t-cost ratio,
are shown in Figure 9, whereby the errors are measured with respect to a reference
solution obtained by the full combination of quadrature and truncation level. As
the rates only hold in the root mean square sense, the RMSE calculated over �ve
realizations and three realizations are shown. As a reference, we also display the
predicted rates given by Theorem 7 and Corollary 2. We observe that they are
achieved, but the Monte Carlo method limits the convergence to the rate 1/2.
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Figure 8: Tableau of bene�t-ratio with Ny = 2l quadrature points and truncation
levels ml = 2l in a logarithmic plot.

Figure 9: Convergence behavior of the sparse grid with a Monte Carlo and trun-
cation with respect to the sparse grid level (left) and computational cost (right).
The parameter σ =

√
3/4 is chosen to equilibrate the bene�t-cost ratio and the

error is measured in RMSE sense with �ve realizations. The dotted lines (red)
show three realizations.

For the case where γk decays exponentially, we consider function G2. The results
are illustrated in Figure 10 for di�erent choices of σ. They again show the ex-
pected convergence rates. Furthermore, for σ2 < 1 the rate of convergence is less
than 1/2 as predicted. Nevertheless, a larger choice for σ does not improve the
convergence rate to more than 1/2 in terms of computational cost, as the limiting
factor then becomes the Monte Carlo method.

62



Figure 10: Convergence of the RMSE with respect to sparse grid level and cost
for G2 with di�erent choices for σ. The expected rates are plotted with dotted
lines.

Numerical Examples Product Quadrature

Next, we look at the product quadrature. First, we examine the convergence
behavior of the product quadrature on its own by means of function G1. Figure
11 shows the behavior of error and cost for di�erent choices of δ. The rate for
the error O(2−l) as given by Theorem 7 is achieved with only minor di�erences
in δ. An even better than expected decrease is observed, as, due to rounding up
the number of quadrature points, N

(l)
k is slightly larger than required. For the

computational cost, however, we observe that the estimates in Lemma 8 are too
strong and the increase of the actual computational cost is slower. The bound
for rounding the numbers N

(l)
k and further estimates might be lower in practice.

Nevertheless, it can be observed that the real computational cost grows faster
than geometrically for all choices of δ. Since a larger choice of δ increases the
number of quadrature points, it is not surprising that this leads to a higher com-
putational cost. We recall that δ was only introduced for the sparse grid, so that
we could set δ = 0 when only considering the product quadrature, which leads to
the smallest cost.

The last panel in Figure 11 illustrates the convergence with respect to the actual
computational cost for δ = 0. Since the number of quadrature points increases
faster than exponentially with level l, the error decreases �rst faster and then
only slowly. The rate clearly surpasses the one of a Monte Carlo quadrature for
the �rst levels, but then the product quadrature performs worse.
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Figure 11: Convergence behavior for the product quadrature. Error measured
with respect to a reference solution. Top left: error rate for di�erent choices
of δ with respect to the discretization level, top right: actual cost (solid) and
predicted upper bounds (dashed) for di�erent δ, bottom: error rate with respect
to computational cost for δ = 0.

Finally, we look at the combination technique using the product quadrature. As
the results are similar for the case of faster convergent coe�cients, we only present
the case for function G1. We �x the parameter δ = 0.1 and compute the errors
with respect to a full combination reference solution Q11G1,m8 . The left panel in
Figure 12 shows the error with respect to the discretization level for the choice
σ2 = 5, which corresponds to an equilibrated approximation power. We see that
the error decreases even faster than the expected rate from Theorem 7 for similar
reasons as above.

The right panel illustrates the error in terms of computational cost for di�erent σ.
Since the error of the product quadrature does not decrease with a constant rate,
the best choice for σ is not obvious. For moderate L, a small σ and, therefore,
including higher levels for the quadrature method seems to work better. For the
choice σ2 = 0.5, a rate of roughly 1 is achieved, which is better than the Monte
Carlo rate, whereas larger σ lead to smaller rates. Since for the anisotropic sparse
grid the product quadratures with high levels are applied to functions where the
variable space has been truncated to a small number, the computational cost
for these quadratures is not as large as when applied to G1(y). The rate of
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the cost increase in the quadrature is, therefore, rather based on the rate for
lower discretization levels. This explains why σ < 1 leads to better results. By
this choice higher truncation levels than quadrature levels are considered, as the
quadrature is less expensive for small levels.

Figure 12: Anisotropic sparse grid with product quadrature. Left: convergence
with respect to discretization level for σ2 = 1/(2δ) and δ = 0.1. Right: conver-
gence with respect to computational cost for di�erent σ and δ = 0.1.
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6 Dimension-adaptive Combination Technique

In this part of the thesis, we will follow a di�erent approach than before and
look at an adaptive algorithm that constructs the sparse grid step by step. We
will discuss here the dimension-adaptive combination technique which is an a-
posteriori approach to the problem. Instead of applying a �xed structure of a
sparse grid to the problem, the dimension-adaptive combination technique aims
at identifying the important dimensions and re�nes adaptively the associated
solvers, whereby this identi�cation process is controlled by suitable indicators.

Di�erent to the a-priori case, the dimension-adaptive combination technique does
not require information about the solution beforehand. While in the previous sec-
tions the optimal way to balance the di�erent numerical methods was determined
based on the size of the contributions ∆lu which could be estimated by the reg-
ularity of the solution, the adaptive algorithm constructs heuristically the sparse
grid. Hence, the dimension-adaptive combination technique can also be applied
to problems where it is not clear how to combine the numerical approximations,
for example, in the case of unsmooth solutions or insu�cient knowledge about
the regularity.

The dimension-adaptive combination technique has been applied in the literature
in order to construct adaptively sparse grids in various contexts. The basic algo-
rithm was developed by Gerstner and Griebel for the tensor product of quadra-
ture rules [7]. This algorithm was adapted later to other problems including the
approximation of PDEs (see, e.g., [59]).

Here, we adapt the algorithm in order to compute the �rst and second moment
of the solution to the PDE (3). Similar algorithms have been explored for this
type of problem of stochastic parameterized elliptic PDEs in [60] and [61]. These
works, however, only consider a dimension-adaptive combination technique in the
stochastic parameter space. In contrast to that, we design a dimension-adaptive
combination technique such that a sparse grid that balances the quadrature rules
and the spatial discretization is constructed. In addition, we extend the algo-
rithm to the case where the di�usion coe�cient in the PDE is given as a random
�eld in the Karhunen-Loeve expansion and hence depends on in�nitely many
parameters. In this case, also the truncation level is adjusted during the algo-
rithm. An adaptive algorithm where the e�ective stochastic dimension varies has
been addressed in [61]. However, the truncation level was not balanced with the
�nite element method and quadrature rules. Here, we take these aspects into
account by considering the truncation as an additional direction in the sparse
grid formulation.

In the following, we �rst describe how the dimension-adaptive combination tech-
nique can be adapted to compute the quantities of interest in the case where the
dimension of the parameter space is �nite or �xed beforehand by a truncation
level that cannot be changed. Later, in the second part, we focus on the case of an
in�nite-dimensional parameter space and construct an algorithm that adaptively
determines the needed number of dimensions of the parameter space.
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6.1 Finite-dimensional Parameter Space

In this section, we assume that the parameter space ism-dimensional and that the
method for the spatial discretization is characterized by a single level parameter.
For solving the PDE, this means we use a �nite element method on a uniform
mesh with the same mesh width in all spatial dimensions. Hence, we havem+1 di-
rections that have to be considered by the combination technique, one spatial and
m stochastic dimensions. Given an array of levels l ∈ Nm+1, the �rst entry corre-
sponds to the spatial level such that the solver uses a mesh with Nx

l1
= O(2l1+1)

points in each direction. The remaining entries specify the stochastic levels with
Nyi
li+1

= 2li+1 quadrature points in each dimension 1 ≤ i ≤ m.

The dimension-adaptive algorithm constructs heuristically the set of increment
spaces that are used for the sparse grid. Hence, the sparse grid formula is based
on a generalized index set I. Di�erent to the a-priori case where the index set
is known beforehand, the main goal of the adaptive algorithm is to �nd a good
index set for the problem under consideration.

Given an index set I, the sparse grid solution is obtained by including the incre-
ments for the indices contained in I

PIu =
∑
l∈I

∆lu (47)

with ∆lu = ∆
(1)
l1
⊗ . . .⊗∆

(d)
ld
u and the di�erence operators

∆
(i)
li
u =

{
P

(i)
li
u− P (i)

li−1u if li ≥ 1,

P
(i)
l0
u if li = 0,

as before. However, we want to use the full grid solutions to construct the ap-
proximate solution and therefore consider the representation by the combination
technique formula which we stated in Section 4.2. For a generalized index set, we
obtain the solution by

P ct

I u =
∑
l∈I

clPlu (48)

with the coe�cients

cl =
1∑
z=0

(−1)|z|1 χI (l + z) ,

where 1 = (1, . . . , 1) and the characteristic function χ is given by

χI(l) =

{
1 if l ∈ I
0 otherwise.

In order to have an equivalence of the combination technique (48) and the sparse
grid formulation based on the increments (47), we need to impose a condition on

67



the index set I. As the equivalence is based on the telescoping sum e�ect, we
require that the index set I is downward closed, meaning it satis�es the following
admissibility condition:

For any l ∈ I it must hold that

l− ej ∈ I for 1 ≤ j ≤ d with lj ≥ 1 (49)

with ej being the j-th unit vector.

After having discussed how to obtain the solution provided a general index set,
we address in the following how a suitable index set can be found. The procedure
is described in Algorithm 1.

Algorithm 1 Dimension-adaptive Combination Technique

Input: Tolerance ε > 0
Output: Index set I and solution P ct

I u

1: l = (0, . . . , 0)
2: A = {l}, O = ∅
3: compute local pro�t indicator ηl
4: η = ηl
5: while η > ε do

6: Select the index j ∈ A with the largest pro�t ηj
7: A = A \ {j}, O = O ∪ {j}
8: η = η − ηj
9: for k = 1, . . . , d do

10: l = j + ek
11: if l− ei ∈ O ∀1 ≤ i ≤ d then
12: A = A ∪ {l}
13: Compute full grid solution Plu
14: Compute local pro�t indicator ηl
15: η = η + ηl
16: end if

17: end for

18: end while

19: Combine solutions Plu for l ∈ I = A ∪O according to (48) to obtain P ct

I u
20: return I = A ∪O and P ct

I u

The adaptive algorithm constructs a problem dependent sequence of index sets
I(1) ⊂ I(2) ⊂ . . . ⊂ I(it) which are at all times admissible in the sense of (49).
The algorithm starts o� with one index in I, namely l = 0, and adds successively
indices. To ensure the admissibility, we introduce two index sets A and O with
I = A ∪ O and A ∩ O = ∅ at all times. The set A denotes the active indices
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and we refer to the set O as the set of old indices. While the indices in O have
already been chosen to be considered for the sparse grid, the index set A contains
the indices in the neighborhood of O which do not destroy the admissibility when
added to O. Hence, they form the set of indices which can be added in order to
enlarge the set O.

In each iteration of the dimension-adaptive combination technique, the index
with the highest contribution is selected among the indices in A. This selection
is based on a local pro�t indicator ηl which will be discussed later on in more
detail. The selected index is then removed from A and added to the set O. The
neighborhood for the index set O has changed as a result of this process such that
there might be new indices, that if added to O, the resulting set is still admissible
in the sense of (49). Hence, the active index set A needs to be updated by adding
these indices to A.

In a �nal step, the full grid solutions are combined according to (48). Since during
the algorithm the solutions for l ∈ A were computed for the pro�t indicator, also
these indices are included into the computation of the combination technique
solution. The solution is built therefore with the index set I = A∪O, instead of
O.

A crucial point of the adaptive method is to select in line 6 the next index which
is added to O, as this step controls which direction is re�ned next. We estimate
how much an index contributes to the solution by associating to each index l
that might be added to I a local error indicator. Adding l in I corresponds to
including the increment ∆l in the sparse grid formula (47). Hence, we use as a
local error indicator

El = ‖∆lu‖X =
∥∥∥(∆x

l1
⊗∆y1

l2
⊗ . . .⊗∆ym

lm+1

)
u
∥∥∥
X

(50)

where X corresponds to the space in which the approximation of the quantities
of interest is considered. For evaluating El, when l is added, 2d full grid solutions
are required. However, we only need to compute Plu and can use the full grid
solutions that have been computed before in the course of the algorithm as the
index set needs to be admissible.

Taking into account the computational cost, the local error indicator El might
not be an optimal re�nement indicator, as including other indices might lead to
a similar error reduction while having much lower computational cost. A further
re�nement in one direction only makes sense if the required work is not too large.
Similar to the a-priori construction of the optimal index set for the regular sparse
grid, we therefore consider the bene�t-cost ratio as an indicator for the re�nement
of the numerical methods.

We measure the cost of computing the full grid solution Plu in terms of the
number of grid points used, i.e.,

cl = (Nx
l1

)n ·
m∏
i=1

Nyi
li+1
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with n being the dimension of the spatial domain and de�ne as local pro�t indi-
cator

ηl =
El
cl
.

Consequently, the algorithm searches among the indices in A for the one with
the highest bene�t-cost ratio and includes the indices for which either the error
indicator is large or the cost small.

The limit of the dimension-adaptive combination technique, however, also be-
comes apparent from this re�nement strategy. While in the a-priori case the
regularity assumptions provided that the contribution of ∆lu to the solution de-
creases with each re�nement, we cannot ensure this for general problems. Hence,
there may be forward neighbors of l with a high pro�t indicator, although the
indicator for l is small. In this case the algorithm does not re�ne this direc-
tion adequately. But only an a-priori analysis can provide the knowledge that is
needed to adjust the algorithm in order to circumvent these issues. In general,
the consideration of the computational cost in the indicator already counteracts
the problem, as not only the local error determines the re�nement.

Apart from the re�nement strategy, the stopping criterion must be chosen. As a
stopping criterion for the algorithm, di�erent criteria can be used which will be
looked at later in the numerical examples. One option is to stop when the given
upper bound on the work is exhausted:

C =
∑
l∈I

cl.

Another is based on the pro�ts in the neighborhood set A. This approach esti-
mates how much pro�t is not covered yet. As the error contribution for indices
in the complement of I is not known, the only available information are the
contributions of the indices in A. Therefore, an estimate of the global pro�t is

η =
∑
l∈A

ηl (51)

The algorithm stops when the global pro�t indicator is below a tolerance ε. This
stopping criterion is used in Algorithm 1. It is also possible to replace the pro�t by
the error contribution in the stopping criterion providing a global error estimator.

A third stopping criterion looks at the di�erence between the solutions of two
iterations in order to estimate the error, i.e.,

‖P ct

I(t+1)u− P ct

I(t)u‖X ≤
∑

l∈I(t+1)\I(t)
‖∆lu‖X . (52)

The algorithm stops if this di�erence is smaller than ε r-times in a row. The
parameter r is introduced to avoid stopping too early, when the solution di�ers
only slightly from one iteration to another while the next would result in a larger
di�erence.
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Regarding the overall computational cost, the adaptive approach has a compu-
tational overload. Although every full grid solution corresponding to l ∈ A ∪ O
is computed during the algorithm, it is really only the solutions for l close to the
boundary of I that are needed for computing the combination technique solution
P ct

I u. More precisely, only those solutions are used where cl 6= 0. In the case of
nested spaces, the computational cost could be reduced by using the representa-
tion (47) of the sparse grid solution. This requires, however, the computation of
the solutions in the hierarchical increment spaces, which we do not consider in
this thesis.

6.2 In�nite-dimensional Parameter Space

An extended version of the above dimension-adaptive combination technique is
described in this section. While we did not specify the quadrature rule in the
previous section, we restrict ourselves to Gaussian quadrature rules here. The al-
gorithm is modi�ed such that the dimension of the parameter space can increase
during the algorithm. Therefore, this version allows for problems where the trun-
cation level of the Karhunen-Loeve expansion is not �xed beforehand and it can
be seen as an algorithm in an in�nite-dimensional stochastic parameter space, in
other words m =∞.

In the case of an in�nite-dimensional stochastic domain, a few additional def-
initions need to be introduced. Computationally, we can only treat function
evaluations with �nitely many terms in the Karhunen-Loeve expansion. We de-
note by M during the algorithm the currently considered number of terms in the
Karhunen-Loeve expansion and therefore the e�ective dimension of the parame-
ter space. As the truncation of the Karhunen-Loeve expansion is equivalent to
replacing the dependence of yi for i > M by the constant 0, we use a similar con-
cept to the anchored decomposition of a function in [62] and write as in Section
5.2

aM(x, y1, . . . , yM) = a(x, y1, . . . , yM , 0, 0, . . .).

We notice that a replacement by the constant evaluation at 0 yields the same
approximation in the parameter yi as a quadrature rule with one point. As the
random variables yi are centered, a Gaussian quadrature with one point would
estimate the integral over a constant function. We choose the number of quadra-
ture points as Nyi

li
= 2li , such that for li = 0 the variable yi is not regarded, while

for li ≥ 1 a quadrature is applied.

Therefore, we call the stochastic dimension i active if li ≥ 1 and inactive if li = 0.
Furthermore, to keep track of the stochastic variables that have been used, we say
a stochastic dimension i is activated when the index ei is included in the index
set O. We note that this concept of activeness is di�erent from the activeness of
the index set A.

The algorithm for the in�nite-dimensional case proceeds in the same way as Al-
gorithm 1 and is described in Algorithm 2. It starts with the parameter domain
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being one-dimensional (M = 1) and adds successively terms to the Karhunen-
Loeve expansion. In addition to the search for new admissible neighbor indices
to be added to A for a re�nement of the �nite element solver or quadratures
methods (line 10-18), we also need to check if a new variable yM+1 needs to be
added to the consideration (line 19-27). Adding the parameter yM+1 corresponds
to including the index eM+1 in the active index set A. As we need an admissible
index set, this, however, can only be the case when the index j selected in line 7
activates a new dimension.

Whenever a new variable yM+1 is taken into consideration, we need to extend the
indices which were added in previous steps of the algorithm to be an (M + 1)-
dimensional vector. We set the M + 1-th entry of the old indices to 0, as this is
equivalent to a truncation after M terms. Finally, M is increased to M + 1. This
procedure ensures that the dimension M is always one larger than the number of
activated stochastic dimensions. The inclusion of eM+1 in line 22 enables us to
increase the stochastic dimension in the next step.

Algorithm 2 Extended Dimension-adaptive Combination Technique

Input: Tolerance ε > 0
Output: Index set I and solution uctI

1: l = (0, 0)
2: act = (0, 0, . . .)
3: A = {l}, O = ∅
4: Compute local pro�t indicator ηl
5: η = ηl
6: while η > ε do

7: Select index j ∈ A with largest pro�t ηj
8: A = A \ {j}, O = O ∪ {j}
9: η = η − ηj

10: for k = 1, . . . , d do
11: l = j + ek
12: if l− ei ∈ O ∀1 ≤ i ≤ d then
13: A = A ∪ {l}
14: Compute full grid solution Plu
15: Compute local pro�t indicator ηl
16: η = η + ηl
17: end if

18: end for

19: if it exists n ∈ {1 . . . ,M} s.t. jn > 0 and actn = 0 then
20: actn = 1
21: l = eM+1

22: A = A ∪ {l}
23: M = M + 1
24: Extend indices in A, O
25: Compute local pro�t indicator ηl
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26: η = η + ηl
27: end if

28: end while

29: Combine solutions Plu for l ∈ A∪O according to (48) to obtain P ct

I u (48)
30: return I = A ∪O and solution P ct

I u

Looking at the extended dimension-adaptive combination technique from a the-
oretical perspective, the method iteratively re�nes one of three directions: ei-
ther the spatial discretization, the quadrature or the truncation of the in�nite-
dimensional parameter domain: A �ner discretization of the spatial domain is
governed by the �rst entry of the index. If instead the quadrature method is
re�ned, only one quadrature level among the stochastic dimensions that have al-
ready been activated is increased. The choice of this dimension depends on the
pro�t indicator. The truncation level is raised when a new stochastic dimension is
activated. Taking this perspective, we can choose an appropriate pro�t indicator.

Pro�t Indicator

Next, we discuss how to choose the local pro�t indicator in the in�nite-dimensional
case. Again, we want to use the ratio of the bene�t obtained by adding the index
to O and the cost required for the full grid computation. As before, the surplus
∆lu is used to measure how much an index contributes to the solution. But in
contrast to the �nite-dimensional case, we need to consider, in addition to the
quadrature and spatial discretization levels, also the varying truncation level.

We recall that the �rst entry of l is the level for the spatial discretization and the
l2:∞ = (l2, l3, . . .) are the quadrature levels. We set k = max{i ∈ N : li ≥ 1} for
the truncation level. The bene�t then is given by

∆lu =
(
∆y
l2:∞
⊗∆x

l1
⊗∆T

k

)
u, (53)

where

∆y
l =

∞⊗
i=1
li 6=0

∆yi
li

with ∆yi
j =

{
Q

(i)
j −Q

(i)
j−1 if j > 1,

Q
(i)
1 if j = 1.

For the di�erence operator of the quadrature, we only take into account the
stochastic dimensions which are active, meaning li+1 ≥ 1. For a simpler notation,
we set ∆yi

0 = Id if the function is constant in yi. Hence, we do not need to
distinguish between active and inactive dimensions in the product of di�erence
operators.

We focus in this part of the thesis on the computation of the expectation of the
solution to the PDE. Thus, ∆x

l is the di�erence operator for the projection P of
the PDE solution to the �nite element space.

∆x
l u =

{
Plu− Pl−1u if l > 0

P0u if l = 0.
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For the computation of the second moment, we would need to de�ne ∆x
l similar

to (32).

The di�erence operator with respect to the truncation level is denoted here by

∆T
k u =

{
uk − uk−1 if k > 1

u1 if k = 1

with uk being the solution of the PDE when the di�usion coe�cient a is replaced
by the truncation of the Karhunen-Loeve expansion ak. To have a well-de�ned
operator ∆l in (53), we drop the dependence of yj in uk whenever lj = 0 for j < k.

For an easier implementation of the error contributions (53), we can make use of
the fact that an inactive variable yi corresponds to a quadrature level li+1 = 0.
We can reformulate (53) if lk+1 > 1 as

∆lu =
(
∆y
l2:∞
⊗∆x

l1
⊗∆T

k

)
u

=

(
k−1⊗
i=1

∆yi
li+1

)
⊗
(

∆yk
lk+1
⊗∆x

l1

)
(uk − uk−1)

=

(
k−1⊗
i=1

∆yi
li+1

)
⊗
(

(∆yk
lk+1
⊗∆x

l1
)uk −

(
(Q

(k)
lk+1
⊗∆x

l1
)uk−1 − (Q

(k)
lk+1−1 ⊗∆x

l1
)uk−1

))
=

(
k−1⊗
i=1

∆yi
li+1

)
⊗
(

(∆yk
lk+1
⊗∆x

l1
)uk −

(
∆x
l1
uk−1 −∆x

l1
uk−1

))
=

((
k⊗
i=1

∆yi
li+1

)
⊗∆x

l1

)
uk,

where we used in the second to last equation the fact that constant functions are
integrated exactly by the quadrature rules.

In the case of lk+1 = 1, we notice that

Q
(k)
0 ∆x

l1
(uk − uk−1) = 0.

Hence we can replace ∆yk
1 by ∆̄yk

1 = Q
(k)
1 − Q

(k)
0 and use the same reasoning as

above.

Using again the fact that constant functions are integrated exactly, (53) can be
written as

∆lu =

 k⊗
i=1

li+1 6=0

∆yi
li+1
⊗∆x

l1

uk

=

(
k⊗
i=1

∆̄yi
li+1
⊗∆x

l1

)
uk (54)

with the modi�ed �rst order di�erence operator

∆̄yi
j =

{
Q

(i)
j −Q

(i)
j−1 if j > 0

Q
(i)
0 if j = 0.
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Hence, by (54) the local error contribution can be estimated with the same error
estimator as in the �nite-dimensional case and is applied to all variables that have
been activated.

We also need to modify the cost function for the extended dimension-adaptive
combination technique. As the number of terms in the Karhunen-Loeve trunca-
tion is not constant and could possibly grow to in�nity, we need to incorporate
the cost of evaluating the random �eld. We therefore use the cost function

cl = (Nx
l1

)n ·
∞∏
i=1

Nyi
li+1
· k = (Nx

l1
)n ·

k∏
i=1

Nyi
li+1
· k

with the spatial dimension n and k = max{i : li ≥ 1} being the maximal number
of stochastic variables considered for l. Here, Nx

l1
and Nyi

li+1
are again the num-

ber of degrees of freedom for the PDE solver and number of quadrature points,
respectively. Another cost model that is not investigated here looks only at the
number of active indices and uses k̃ = |{i ≥ 2: li ≥ 1}| instead of k (cf. [45],
chapter 7).

Provided the error contribution and cost, we can de�ne the local pro�t indicator
as before by

ηl =
‖∆lu‖X

cl
. (55)

As the algorithm only looks for indices in the direct neighborhood of O, it might
happen that the algorithm stops too early. To avoid including a too small number
of stochastic variables, which is the case when the error indicator is small for one of
the stochastic parameters and more stochastic parameters should be considered,
the algorithm can easily be modi�ed to be more robust. Instead of considering in
the index set A only one index which increases the number of activated variables,
a �xed number of indices corresponding to non-activated variables can be included
into A. By this, the algorithm can activate a stochastic dimension, even if the
local error indicator is small for lower terms in the Karhunen-Loeve expansion.
The number of considered stochastic variables is increased whenever the �xed
number of non-activated variables has been reduced by the activation of one
variable. Therefore, for the truncation level, possibly not one but a �xed number
of forward neighbor indices are considered.

6.3 Numerical Examples

As a �rst example, we look at an integration problem in two dimensions to illus-
trate how the dimension-adaptive combination technique adjusts the index set I
to the applied numerical discretizations and the considered problem. In this case,
solving the PDE on the spatial domain D is replaced by an integration problem
for which we can apply one of the discussed quadrature rules.
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We consider the integral

E
[∫ 1

0

u(x, y)dx

]
=

∫ 1

0

∫ 1

0

u(x, y)dxdy

for di�erent functions u. Furthermore, we use the trapezoidal rule for the variable
x, while for the y variable, either a Gaussian quadrature or a trapezoidal rule as
well is applied. We look at these two methods to demonstrate how the index set
also depends on the applied numerical methods.

We use the above described pro�t indicator to select the next index and a global
stopping criterion as in (51). The X -norm, however, needs to be replaced by
the absolute value for this integration problem. The resulting index sets for the
functions

u1(x, y) = ex + ey + exy,

and u2(x, y) = e−x
2

+ 100e−y
2

are depicted in Figure 13.

Figure 13: Index sets O (light) and A (dark) determined by the dimension-
adaptive combination technique with the stopping criterion η ≤ 10−9. The �rst
two panels show the index sets for u1 using a trapezoidal rule in y (left), and
a Gaussian quadrature (middle). Right panel shows index sets for u2 using a
trapezoidal rule for x and y.

First of all, it is observable that for the function u1 the adaptive approach provides
a similar index set to the one expected by the a-priori analysis. Comparing the
results for u1 with the two di�erent methods in y, it can be expected that less
quadrature points are needed for a Gaussian quadrature, as the convergence is
faster. Indeed, the shape of the index set is close to an isosceles triangle with
a trapezoidal rule, while for the Gaussian quadrature, less quadrature levels are
used than for the quadrature in x.

In addition to the di�erence in the index sets due to the numerical methods
applied, the constructed index set is also problem-dependent. To illustrate this,
we look at a di�erent integrand u2, which is, similar to the function u1, smooth.
The function u2 can be separated into a sum of a function in x and a function
in y. Therefore, the obtained index set does not have indices with medium cost
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in both directions. Rather, the approach re�nes one direction while keeping
the other �xed at the level of possible lowest work. In this case, the adaptive
algorithm �nds a better index set than we would get from the a-priori theory for
functions with mixed regularity. Furthermore, a di�erence in the number of levels
in the two directions is discernible, although we used the same numerical method
for the integration in x and y. The maximal level is slightly higher for the variable
y. This is due to the fact that the factors of the two terms are di�erent. The
dimension-adaptive algorithm resolves this anisotropic problem appropriately.

As a second example for the dimension-adaptive combination technique with a
�nite-dimensional parameter space, we look at a partial di�erential equation in
one dimension which depends on only one random variable. The overall number
of directions in this example is kept at two to be able to visualize the index sets.

For the example, we consider the model problem

− div(a(x, y)∇u(x, y)) = f(x, y) in D = (0, 1)

with y ∼ U(0, 1) and a(x, y) = 2xy + 1 such that the a > 0 for all y and apply
the algorithm with

f(x, y) = 2π sin (πy) (2y sin (2πx) + 2π (2xy + 1) cos (2πx))

such that the solution is smooth in x and y and known analytically:

uexact(x, y) = sin(πy) cos(2πx).

As the quantity of interest, we are interested in the computation of the expecta-
tion E [u(x, y)]. For that, we solve the PDE with piecewise polynomial elements,
while for the stochastic approximation, either a trapezoidal or Gauss-Legendre
quadrature is applied. Moreover, we evaluate the error of the computed result
in the H1(D)-norm. Therefore, we consider the H1(D)-norm for the local error
contribution estimation (50).

Figure 14: Index sets determined by the adaptive algorithm after 20 iterations
with a trapezoidal rule (left) and a Gauss-Legendre quadrature (right). The dark
blue represents the indices in A and the light blue in O.
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In Figure 14, the index sets obtained after 20 iterations are visualized for the
two cases. Similar as for the integration problem, we can detect di�erences in
the index sets. The index set for the trapezoidal rule includes re�nements of the
PDE solver and only slightly less levels for the quadrature method. This can
be expected, as the convergence rate of the PDE solver in the H1(D)-norm is
of order 1 and for the trapezoidal rule of order 2. Using the Gauss-Legendre
quadrature corresponds to a spectral approach for the stochastic domain. This
faster convergence of the Gaussian quadrature is identi�ed by the algorithm and
is re�ected in the index set, which includes signi�cantly higher levels in the spatial
direction than for the quadrature.

In Figure 15, the convergence rates are shown with respect to the computational
cost. Since the solution is smooth with respect to the combination of x and y,
the a-priori analysis would provide a convergence rate for the error measured in
the H1(D)-norm of essentially O(N−1). This rate is obtained by the dimension-
adaptive algorithm for both quadrature rules. Furthermore, we plot the error
measured in the L2(D)-norm. As the �nite element method converges with the
rate 2 in the L2(D)-norm, we could expect to achieve a higher convergence rate.
However, since the pro�t indicator is based on the H1(D)-norm, the L2-error can
also only decrease with the rate O(N−1). Nevertheless, a higher convergence rate
is in part observable for the Gaussian quadrature because the number of quadra-
ture points is doubled when adding a higher quadrature level which increases the
number of points more than needed.

Figure 15: Convergence plots for the mean of the solution to the PDE. The left
plot shows the convergence for the trapezoidal rule and the right for a Gauss-
Legendre quadrature. The error is measured in the L2(D)- and H1(D)-norm.
The dotted lines represent the rate N−1 and N−2 in both plots. Two di�erent
stopping criteria are shown.

Figure 15 also displays the di�erent stopping criteria proposed above. The crite-
rion (52), which evaluates the di�erence between the solutions of two iterations,
captures properly the decrease of the H1-error. Nevertheless, small oscillations
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are visible, even though the parameter r was set to 8. Finally, the global pro�t
indicator η (cf. (51)) is also shown. Rather than the H1-error, the H1-error per
unit cost is estimated by this choice. For the �nite-dimensional case, the choice
of stopping criterion can therefore be chosen dependent on the situation, i.e.,
whether the error or pro�t should be smaller than a prescribed threshold.

Next, we apply the extended version of the dimension-adaptive combination tech-
nique. To this end, we consider an example where the di�usion coe�cient of the
PDE is given by a random �eld. We compute the Karhunen-Loeve expansion for
a random �eld with mean E[a(x)] = 8 and a smooth covariance function

cova(x1,x2) = σ2 exp

(
−1

2

|x1 − x2|2

ρ2

)
, (56)

where the correlation length is ρ = 0.2 and the variance is chosen as σ2. For the
random �eld given in the Karhunen-Loeve expansion

a(x,y) =
∞∑
k=1

√
λkψk(x)yk,

we assume that the random variables yk are uniformly distributed in (−
√

3,
√

3)
to ensure coercivity. A realization of the �eld and the decay of the coe�cients in
the Karhunen-Loeve expansion is shown in Figure 16.

Figure 16: Left: realization of the random �eld with covariance function as in
(56). Right: decay of coe�cients in the Karhunen-Loeve expansion.

We compute for this choice of di�usion coe�cient the expectation E[u(x,y)] where
u(x,y) solves for a.e. y ∈ Γ

− div(a(x,y)∇u(x,y)) = f(x) in D = (0, 1)2,

u(x,y) = 0 on ∂D

with f(x) = 100. Moreover, we apply the adaptive algorithm using a pro�t
indicator (55) based on the L2(D)-norm, i.e., the local error contribution is given
by ‖∆lu‖L2(D).

The convergence of the algorithm in terms of the number of iterations and the
computational cost is shown together with the two stopping criteria (51) and
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Figure 17: Top row: convergence plot of the dimension-adaptive algorithm plotted
against the iteration number (left) and computational cost (right). The black
dashed line corresponds to the rate O(N−1). Bottom left: maximal levels in
the index set I for the spatial re�nement, for all random variables and for the
truncation level. Bottom right: quadrature level in O for each activated random
variable at three di�erent iteration steps (black: it. 30, dark: it. 300, light: it.
720).

(52) in Figure 17. The error is computed based on a reference solution obtained
with additional 150 iterations, as the exact solution is unknown. We observe
that the error decreases with increasing number of iterations. For the �rst it-
erations, the increase in the computational cost is high when many stochastic
dimensions are activated and many indices are added to A, so that the error only
decreases slowly at �rst with respect to the computational cost. After that, the
algorithm achieves a convergence rate of almost O(N−1). However, with increas-
ing activated stochastic variables, the number of indices in the neighborhood set
A which correspond to a re�nement of the quadrature becomes large. Many it-
erations are therefore needed to reduce the quadrature error, even though these
iterations are not expensive.

The obtained convergence results are consistent with the expected behavior from
the a-priori analysis. Since the convergence rate for solving the PDE is of order
1, this is the maximal rate which can be expected by the combination tech-
nique. We see that this rate is almost obtained. The adaptive approach with the
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Gaussian quadrature yields, therefore, a better rate than the often applied Monte
Carlo quadrature, which limits the convergence rate to −1/2.

The bottom left plot in Figure 17 illustrates the evolution of the index set. It
shows how the maximal level considered for each of the three re�nement direc-
tions (spatial, stochastic, truncation) increases during the algorithm, whereby
for the quadrature the maximal level in all stochastic dimensions is considered.
As expected, a �ner discretization of the spatial domain is needed than for the
stochastic parameters. Since the Gaussian quadrature converges exponentially,
low discretization levels for the quadrature are su�cient, which is re�ected by 2
being the highest level in the index set A.

Moreover, the number of activated stochastic dimensions increases step by step
during the algorithm. We observe that while most of the stochastic variables
have been included into the consideration during the �rst iterations, additional
stochastic variables are added sporadically whenever the other directions are ap-
proximated �ne enough.

The re�nement of each stochastic dimension is shown in the lower right panel
of Figure 17. It illustrates the quadrature levels for each stochastic variable at
di�erent points during the algorithm. While the �rst stochastic dimensions are
re�ned to a higher level, only the lowest level quadrature method is needed for
the higher stochastic dimensions. We observe that the algorithm adapts to the
anisotropy of the solution caused by the decay in the Karhunen-Loeve expan-
sion. It only re�nes those stochastic dimensions that contribute the most to the
solution, similar to the construction of the anisotropic product quadrature.

The algorithm activates during the 720 iterations 40 stochastic dimensions which
capture the uncertainty to an acceptable extent. The number of stochastic vari-
ables included depend on the decay of the coe�cients in the Karhunen-Loeve
expansion which in turn depend on the smoothness of the random �eld and cor-
relation length. Additional numerical examples show that random �elds with
less smooth covariance kernels, require more stochastic variables, as the decay
of the coe�cients is faster. In contrast, the algorithm activates less stochastic
variables when the correlation length is longer, matching the expected behavior.
Since apart from this di�erence the properties of the sparse grid are similar, these
examples are not presented here.

As a last example in this section, we apply the extended version of the dimension-
adaptive combination technique to a problem which we have not considered in
the a-priori analysis. To this end, we consider a problem in one dimension with
a di�usion coe�cient which is a lognormal �eld. This choice models the di�usion
coe�cient better in some applications, for example in groundwater �ow problems,
which will be discussed in the next section.

The di�usion coe�cient is written in this case as

a(x,y) = exp(b(x,y)),

where b(x,y) is a Gaussian �eld given in the Karhunen-Loeve expansion. Hence,
also a depends on in�nitely many parameters. Moreover, a lognormal �eld ensures
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that a(x, ω) is positive even if normal distributed random variables are considered
in the Karhunen-Loeve expansion.

We apply the dimension-adaptive combination technique in order to compute the
expectation to the one-dimensional PDE, where the forcing term is chosen as
f(x) = 1, and assume the �eld b has zero mean and a Matérn covariance function
with smoothness parameter ν = 2.5 and correlation length ρ = 0.2. The decay of
the coe�cients {

√
λk}k are shown in Figure 19.

As the dependence of the random �eld on the stochastic variables is di�erent, we
cannot directly compare this example with the previous one. Nevertheless, from
the decay of the coe�cients, we also expect that the �rst stochastic variables
need a higher quadrature rule than those with a smaller coe�cient. Indeed,
the algorithm adapts to the anisotropy in the random variables and re�nes the
dependence on the stochastic variables to a di�erent extent, as visible in Figure
18.

Figure 18: The maximal level in O for each stochastic dimension at four di�erent
iteration steps (black: it. 160, dark: it. 1280, medium: it. 2560, light:it. 4000).

Overall, we observe a similar behavior of the error as in the previous example. In
the top row of Figure 19, the convergence of the algorithm in terms of the number
of iterations and the computational cost is shown. Again, a reference solution is
used for the error computation. We observe that also for the lognormal case the
convergence rate is determined by the �nite element solver. Although we consider
here a one-dimensional spatial domain, we obtain a convergence rate essentially
of order 1, because we chose the pro�t indicator based on the H1(D)-norm this
time.

In this and also in the previous example, we observe a di�erent behavior of the
global error indicator η than in the case where the stochastic dimension was �xed.
While η behaved as the error per unit cost for the �nite-dimensional case, here
the global error indicator decreases more slowly. This might be due to the fact
that the number of neighboring indices in A which correspond to a re�nement of
the quadrature grows when more stochastic variables are activated. Hence, more
terms are considered in the sum (51).
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Figure 19: Top row: convergence plot of the dimension-adaptive algorithm ap-
plied to a lognormal problem plotted against the iteration number (left) and the
computational cost (right), where the dashed lines correspond to rates N−0.5 and
N−1. Bottom left: decay of coe�cients in Karhunen-Loeve. Bottom right: max-
imal levels in the index set I for the spatial re�nement, for all random variables,
and for the truncation level.

Finally, we illustrate the interplay of the truncation, quadrature and �nite ele-
ment method in Figure 20 and plot the index set O for one iteration step. We
consider the maximal level over all quadrature rules as one parameter for the
stochastic approximation. As expected, we observe that the shape is similar to
a tetrahedron. For a high resolution in one direction, the other directions are
resolved with a low discretization level. However, the shape is not exactly a
tetrahedron, as the quadrature is not independent of the truncation level.
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Figure 20: Visualization of index set O after 200 iterations of the algorithm.
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7 Application to Darcy Flow Problem

As an application of the dimension-adaptive combination technique, we will con-
sider the Darcy problem, a problem in uncertainty quanti�cation that arises in
the study of groundwater �ows. There uncertainty is introduced to describe a
heterogeneity of the medium or to circumvent a lack of knowledge, as the physi-
cal properties of the medium are often unknown or only a small number or noisy
measurements are available. The study of subsurface �ows is relevant, for exam-
ple, in water management, environmental and energy problems (see, e.g., [63]),
where it is important to understand the uncertainty and its propagation through
a �ow model.

In the Darcy problem the �ow of a single-phase �uid in a porous medium is
described by Darcy's law together with the law of mass conservation. These laws
are formulated in the following two equations:

a−1(x)u(x) = −∇p(x) in D,

divu(x) = f(x) in D,
(57)

where D ⊂ R2 is the spatial domain.

Here, u describes the Darcy �ux, the volume of �uid transported per total area
and time. The coe�cient a(x) describes the hydraulic conductivity which mea-
sures the transmissibility of the �uid through the porous medium, which in turn
depends on the intrinsic permeability, a property of the medium, and the dynamic
viscosity of the �uid. The function p is the hydraulic head, describing the �uid
pressure, and the right hand side f accounts for a possible source term.

In this context, we assume that the spatial domain is rectangular. In addition to
(57), boundary conditions need to be speci�ed which can be either Dirichlet or
Neumann boundary conditions. We distinguish the part of the boundary where
Dirichlet and Neumann boundary conditions are provided by ∂DD and ∂DN .

p = p0 on ∂DD and −∇p · n = g on ∂DN .

As mentioned above, the physical properties of the medium are subject to uncer-
tainty and the hydraulic conductivity is described by a random �eld a(x, ω). As a
consequence, the Darcy �ux u = u(x, ω) and pressure p = p(x, ω) are themselves
random functions. The pair (u, p)(x, ω) is a solution to the Darcy problem if (57)
is satis�ed for a.e. ω ∈ Ω.

The properties of the random �eld depend on the material of the sediment. The
variations of the �eld are usually large and encompass several orders of mag-
nitude. Therefore, the hydraulic conductivity is often modeled as a lognormal
random �eld. An example of the permeability �eld which determines the hy-
draulic conductivity is shown in Figure 21. It is included in the SPE10 data
set which is provided for reservoir modeling by the Society of Petroleum Engi-
neers ([64]) and which is widely used in the study of groundwater �ow (see, for
example, [65, 66, 67]). This data set consists of a realization of a geostatistical

85



model describing the permeability of the Tarbert formation, which is located in
the North Sea. It describes an area of 1200×2200 feet where the soil is composed
of sandstone, siltstone, and shales.

Figure 21: Logarithm of horizontal permeability �eld of two layers in the SPE10
data set in millidarcy. Left: Layer 10 composed of sandstone siltstone and shales.
Right: Layer 50 which is part of the �uvial Ness formation.

This data set also includes sediment layers which represent the �uvial Ness for-
mation (see right panel in Figure 21). The permeability in this formation is qual-
itatively di�erent as the formation consists of sediment layers shaped by running
water. Hence, areas of high-permeable sandstone channels with a long correla-
tion length and low-permeable areas of shales and coal with short correlation
lengths exit. The �eld therefore appears to follow rather a bi-modal lognormal
distribution than a lognormal distribution ([66]).

For the application of the dimension-adaptive algorithm, we restrict ourselves to
the case of a lognormal permeability �eld as shown in the left panel of Figure
21 corresponding to shallow-marine sediment layers. In this case, we can model
the hydraulic conductivity as a random �eld where the logarithm is a Gaussian
�eld, characterized by its mean and covariance function. Thus, we assume that
a(x, ω) = exp(b(x, ω)), where b(x, ω) is a Gaussian �eld. Like before, we expand
the random �eld b(x, ω) into a Karhunen-Loeve expansion and parametrize the
stochastic dependence, such that

a(x,y) = exp

(
∞∑
k=1

√
λkψk(x)yk

)
.

This leads to the parametrized version of (57). The solution (u(x,y), p(x,y))
solves for �xed y ∈ Γ

divu(x,y) = f(x) in D

a−1(x,y)u(x,y) = −∇p(x,y) in D

+ boundary conditions.

(58)
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This system can be rewritten as the second order elliptic PDE

− div(a(x,y)∇p(x,y)) = f in D,

which is the model problem considered before and for which we applied the
dimension-adaptive algorithm in Section 6.3. However, here we consider the
mixed formulation which is better suited for groundwater �ow problems, as also
the �ux u is of interest. The mixed formulation has the advantage that it solves
for (u, p) simultaneously and preserves mass locally.

In recent years, multilevel and sparse grid approaches have been applied for the
computations of quantities of interest for the Darcy problem, either in mixed
formulation or as elliptic PDE. In [68], a multilevel Monte Carlo method is con-
sidered which balances solving the mixed formulation with the number of Monte
Carlo samples. A sparse grid approach for the stochastic parameters after a
truncation of the Karhunen-Loeve expansion has been used in [69]. Furthermore,
an adaptive algorithm for the stochastic parameter set has been applied to the
elliptic PDE in [61].

Here, we apply the dimension-adaptive algorithm from Section 6, taking into
account the approximation error of PDE solving, stochastic approximation, and
restriction to �nitely many random variables. We compute in particular the
expectations E[u(x)] and E[p(x)] as quantities of interest. For that, the algorithm
from Section 6.2 is modi�ed, such that the mixed formulation (58) is used. Since
the algorithm uses standard �nite element code for solving the PDE for a point
y ∈ Γ, the algorithm can easily be adjusted to solve the mixed formulation
instead. In the next section, we therefore discuss the �nite element method used
for solving the mixed problem for a �xed y ∈ Γ.

7.1 Mixed Finite Elements

In order to solve (58) numerically, a mixed �nite element method is applied.
For that, we consider the weak formulation of the mixed formulation. For u we
de�ne the function space H(div, D) = {v ∈ L2(D)2 : div v ∈ L2(D)} together
with the norm ‖v‖H(div) :=

(
‖v‖2

L2 + ‖ div v‖2
L2

)1/2
. Then, for y ∈ Γ, the weak

formulation reads: Find (u, p) ∈ H(div, D)× L2(D) such that

r(u,v) + b(v, p) =

∫
∂D

p0 n · v dx ∀v ∈ H(div, D)

b(u, q) = −
∫
D

fq dx ∀q ∈ L2(D)

(59)

with the bilinear forms r : H(div, D) × H(div, D) → R and b : H(div, D) ×
L2(D)→ R de�ned for all v1,v2 ∈ H(div, D) and q ∈ L2(D) by

r(v1,v2) :=

∫
D

a−1v1 · v2 dx

b(v1, q) := −
∫
D

div(v1)q dx.
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For simplicity, we assumed zero boundary conditions on DN in the weak formu-
lation, but note that the boundary conditions of the type −∇p · n = g must be
integrated into the function space H(div, D), while the condition p = p0 on ∂D

D

is natural and is included in the weak formulation. The existence of a unique so-
lution to the saddle point problem (59) is guaranteed for lognormal random �elds
with a covariance function of log(a) that is regular enough, including Matérn
covariance functions (for details see [68] and references therein).

An approximate solution to the saddle point problem is found by solving the
discrete version of (59). There the spaces H(div, D) and L2(D) are replaced by
Vh ⊂ H(div, D) and Wh ⊂ L2(D) respectively.

As �nite element spaces we choose the pair of lowest order Raviart-Thomas ele-
ments Vh = RT1 = {v ∈ L2(D)2 : v|K = αk + βkx, αK ∈ R2, βk ∈ R ∀K ∈ Th
and v · n is constant across interfaces} and piecewise constant pressures
Wh = {q ∈ L2(D) : q|K ∈ P0 ∀K ∈ Th} for a triangulation Th of D.

This pair is chosen because it is stable in the sense that it satis�es a discrete
inf-sup condition and the bilinear form r is coercive on the set {vh ∈ Vh :
(vh, qh) = 0 ∀qh ∈ Wh}. The pair of lowest order of Raviart-Thomas elements
and discontinuous pressure exhibit a convergence rate for ‖uh−u‖H(div,D) +‖qh−
q‖L2(D) of order 1 at most. Under certain conditions higher convergence rates can
be shown for the pressure variable [68, 70].

7.2 Numerical Examples

We will consider the �ow problem on the unit square D = (0, 1)2 with f = 0.
The boundary conditions are speci�ed by

p = 0 on ∂D ∩ {x1 = 1},
p = 1 on ∂D ∩ {x1 = 0},

∇p · n = 0 on ∂D ∩ {x2 = 0 or x2 = 1}.

The algorithm of Section 6.2 is applied to estimate E[u] and E[p]. Since the
�nite element method has changed, the indicator, which is used to determine the
direction the algorithm re�nes next, needs to be adjusted. We need to modify
the local estimator for the error contribution in order to measure the bene�t
‖∆l(u, p)‖ of adding the index l to the index set. To this end, we use the norm

‖(v, q)‖ = ‖v‖H(div,D) + ‖q‖L2(D).

for the pair of functions (v, q) ∈ H(div, D)×L2(D). Hence, both components have
an in�uence on the adaptive re�nement. Corresponding to (55), the indicator
then is chosen as

ηl =
‖∆l(u, p)‖

cl
,

where cl denotes the cost.
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For the hydraulic conductivity, we consider di�erent lognormal random �elds. In
all cases we compute the Karhunen-Loeve expansion of log(a(x, ω)). First, we
look at two choices for the covariance function of the Gaussian �eld log(a(x, ω).
We assume Matérn covariance functions, but with di�erent smoothness parameter
ν. On the one hand, we consider a rather smooth random �eld b(x, ω) with
ν = 2.5, i.e., the covariance function is given by

cov(r) = σ2

(
1 +

√
5r

ρ
+

5

3

r2

ρ2

)
exp

(
−
√

5r

ρ

)

with r = |x1 − x2|2, correlation length ρ = 0.15 and σ2 = 5. On the other
hand, a rougher �eld is used, whereby the covariance function is chosen to be an
exponential covariance function (ν = 0.5) with correlation length ρ = 0.25 and
σ2 = 8. The mean of the �eld b is chosen as E[b(x)] = 3.

For both choices a realization of the �eld b is shown in Figure 22, where it can
be seen that they include values of the same magnitude as the data set in Figure
21.

Figure 22: Top row: realizations of random �elds with Matérn covariance func-
tions. Left: a relatively smooth �eld with smoothness parameter ν = 2.5. Right:
rougher random �eld with ν = 0.5. Bottom: decay of eigenvalues.

Figure 23 shows the behavior of the error for the �ux and pressure measured in
comparison with a reference solution obtained with 300 additional iterations of
the algorithm. The algorithm activates for the �rst �eld 73 stochastic variables
and 93 for the second. As the second random �eld is rougher, the decay of the
coe�cient is slower and thus more variables need to be included.
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Apart from this di�erence, we can observe a similar behavior for both random
�elds. The error for the �ux and pressure both decrease, whereby a larger error is
observable for the �ux. Since we use for the indicator the sum ‖u‖H(div)+‖p‖L2(D),
the error for u and p do not decrease independently from each other. With
respect to the computational cost we observe a convergence rate of approximately
1
2
. The convergence is limited to this rate, as the mixed �nite element method

on a two-dimensional domain does not converge faster. Considering this, the
faster convergence by the application of a product of Gaussian quadratures is not
exploited. A Monte Carlo method would lead to a similar convergence rate and
would simplify the algorithm due to its independence of the dimension. However,
we can expect to achieve higher convergence rates if the spatial discretization
exhibit a faster rate with the discussed dimension-adaptive algorithm, which is
not possible using a Monte Carlo method.

Figure 23: Convergence of dimension-adaptive combination technique applied
to the Darcy �ow problem. Top row displays errors for a lognormal �eld with
parameter ν = 2.5, bottom row for ν = 0.5.

In a last example, we incorporate the points of the data set in the description of
the random �eld. Instead of considering a random �eld that is structurally the
same as the SPE10 data set, but does not include the data, we use for the next
example the given values to construct the random �eld.

We assume that the data points describe the permeability �eld on the points
exactly and want to model the �eld on a �ner scale than provided by the data
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points. For that, we consider a random �eld on the �ner scale that interpolates
the data points, but provides a random description of the �eld in between. This
method of interpolating given data points is sometimes referred to as kriging.

Hence, the �eld under consideration arises from a di�erent modeling problem
than before. Instead of looking at general permeability �elds, we focus here on a
�eld that describes a particular sediment layer.

In order to obtain the random �eld described by a set of random variables, we
apply a code provided by Paul Constantine [71] which computes the Karhunen-
Loeve expansion and incorporates the available data points. However, only cer-
tain covariance functions for the �eld are available. Since the logarithm of the
random �eld in the entire domain does not seem to be based on a Gaussian covari-
ance function, we only consider a small subset of the data in the SPE10 data set
of the �rst horizontal layer for our application. We want to compute the solution
of the Darcy �ow problem for this domain with a �ner spatial resolution than in
the previous examples.

For that, we look at a rectangular shaped domain of 55 m × 27 m which includes
9 × 9 data points and scale the domain to D = (0, 1)2. We �nd that the given
data is best captured with log(a(x, ω)) being a Gaussian �eld with covariance
function

cov(x1,x2) = 10 exp

(
−1

2

|x1 − x2|2

0.01

)
.

Figure 24 shows the data points and a realization of the Gaussian �eld log(a(x, ω))
computed based on these points. For this random �eld, we look at the same PDE
problem as before.

Figure 24: Left: logarithm of permeability �eld data points provided by SPE10
data set on a small part of the domain of the �rst layer. Right: realization of
log(a(x, ω)) constructed to �t the data points.

The solution obtained by applying the dimension-adaptive combination technique
is shown in Figure 25. The pressure and �ux components are shown separately.
As the mean of the �eld is not constant anymore, but rather based on the given
data points, the expectation of �ow and pressure re�ects the di�erent hydraulic
conductivity in the domain.
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Figure 25: Functions E[u(x)] and E[p(x)] computed with dimension-adaptive
combination technique. The top row displays the components E[u1(x)] (left) and
E[u2(x)] (right), at the bottom the pressure E[p(x)] is shown.

Figure 26: Convergence behavior for Darcy problem with included data points.
Left: Error ‖u − uref‖H(div,D) and ‖p − pref‖L2(D) with respect to the compu-
tational cost. Right: Maximal index level in I after di�erent iterations of the
algorithm for spatial re�nement, for all activated random variables, and the num-
ber of activated stochastic dimensions.
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The algorithm proceeds for this problem similar to the other examples and the
error achieves also a rate of O(N−1/2) as illustrated in Figure 26. A di�erence,
however, is observable in the spatial discretization. For this example, the index
set I includes indices corresponding to higher discretization levels of the �nite
element solver than in the previously. This is not surprising as the mean of the
�eld is not constant and varies within several orders of magnitude. The variation
in the �eld, therefore, also exits when including no stochastic parameter.

This example provides an idea of the application of the dimension-adaptive com-
bination technique when one is interested in the modeling of the �ow through
porous medium for a particular application. Moreover, it shows that the al-
gorithm also works for a non-constant mean of the random �eld. This example,
however, portrays a very speci�c case, as the consideration of the �eld is restricted
to a small subdomain and the assumption of a Gaussian covariance function is
quite strong. Most likely, the usage of other covariance functions for this data set
is necessary.
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8 Summary and Outlook

In this thesis, we applied the sparse grid method in form of the combination
technique in order to solve problems in uncertainty quanti�cation which involve
di�erent numerical discretizations. We considered the computation of the �rst
and second moments of the solution to a PDE where the di�usion coe�cient
is random. For the computation of these quantities of interest, three numerical
approximations were looked at: a truncation of the Karhunen-Loeve expansion,
which approximates the random �eld by a �nite number of random variables, a �-
nite element method for solving the PDE and a quadrature method for the compu-
tation of the statistics of the PDE solution, which in general is high-dimensional.
To circumvent high computational costs that arise due to the curse of dimension-
ality, we applied the sparse grid combination technique, which combines di�erent
discretization levels of the numerical methods.

In order to �nd the sparse grid structure, we considered in this thesis an a-priori
and a-posteriori approach. In the part dedicated to the a-priori analysis, we
discussed �rst the regular sparse grid and later on an anisotropic version that
allows combining two methods in an optimal way when the approximation power
is not equal. Throughout this part, we focused separately on di�erent aspects
of the numerical approximation. We addressed how to balance the methods in
a sparse grid looking at the combination of parts of the truncation, spatial and
stochastic approximation.

The �rst focus was, after having shortly discussed the combination technique
for high-dimensional integration, on a sparse grid that combines the spatial dis-
cretization with the quadrature method while keeping the number of stochastic
variables �xed. We investigated the combination of the �nite element solver with
di�erent quadrature rules which have di�erent approximation power. While the
regular sparse grid already provided a reduction of the computational cost, we
found that it is not the optimal combination of the methods in the case when
they have di�erent approximation power. As an improved method, we applied
an anisotropic version of the sparse grid, which reduces the computational cost
to the cost of one method, whereby the convergence rate is preserved and is not
a�ected by a logarithmic term.

Another aspect in the a-priori analysis concentrated on balancing the truncation,
which reduces the in�nite-dimensional parameter space to a �nite-dimensional
space, and the quadrature method applied to this set of variables, while the
spatial discretization was disregarded. To this end, we looked at two methods for
the quadrature: the Monte Carlo method and an anisotropic product quadrature.

The Monte Carlo method has the advantage of a dimension-independent conver-
gence rate, but with a rather slow rate. Given the decay of importance of the
stochastic parameters, we combined the Monte Carlo quadrature with varying
truncation levels in a sparse grid and obtained by this a Multilevel Monte Carlo
method for the integration over an in�nite-dimensional parameter space that bal-
ances the methods in an optimal way with respect to the bene�t-cost ratio for
algebraically decaying stochastic variables.
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Furthermore, we constructed a product quadrature rule based on the decay of
importance of the stochastic variables, such that the convergence rate is indepen-
dent of the dimension. Although the cost of the product quadrature grows heavily
for approximations with high accuracies of the in�nite-dimensional integral, we
found in numerical examples that the product quadrature in combination with
the truncation provides good approximations for moderate discretization levels
and exhibit a convergence rate higher than the Monte Carlo method.

In the second part of the thesis, we determined the sparse grid structure using
an a-posteriori approach. No a-priori knowledge of the regularity of the solution
is required in this case, but rather a problem-dependent sparse grid structure is
detected. First, we successfully adapted the algorithm for a dimension-adaptive
combination technique to the problem of computing statistics of a PDE after
having �xed the number of stochastic variables. In a further step, we included
the truncation of the Karhunen-Loeve expansion as an additional direction in the
sparse grid to the quadrature rules and PDE solver. Hence, the error made by the
truncation is balanced with the quadrature error and �nite element error. We
constructed the algorithm such that the dimension-adaptive combination tech-
nique detects, in the course of the algorithm, the anisotropic structure within the
stochastic variables and adjusts the quadrature levels to it. Numerical examples
were provided to illustrate this.

This thesis concluded with the application of the dimension-adaptive combina-
tion technique to a groundwater �ow problem, where typically short correlation
lengths lead to high-dimensional problems. The algorithm was applied to the
Darcy �ow problem in mixed formulation, whereby the hydraulic conductivity
was modeled with a lognormal random �eld. We considered �elds with di�erent
smoothness for which the algorithm included the necessary stochastic variables
consistent with the decay of the coe�cients in the Karhunen-Loeve expansion.
We restricted the application to sediment layers where the hydraulic conductivity
can be modeled by a lognormal distribution, while for other formations a di�erent
model for the random �eld needs to be considered.

The application of the sparse grid method, either as an a-priori or a-posteriori
approach, led to an improvement for the computation of the statistics of the PDE
solution compared to the straightforward combination of the numerical methods.
Nevertheless, di�erent aspects seem worth investigating in future research.

A possibility for an improvement for the combination of an anisotropic quadra-
ture with the truncation level for the integration of a function that depends on
in�nitely many variables might be provided by considering a sparse version. Sim-
ilar to the product quadrature, the number of points for each direction would be
based on the decrease of importance of the variables, but the univariate quadra-
tures would then be combined in a sparse grid. If this allows the construction
of a sequence of quadrature methods whose approximation power and cost form
geometric sequences, the quadrature can be then balanced with the truncation in
an optimal way similar to the Monte Carlo method.
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Furthermore, as we considered only parts of the truncation, �nite element, and
quadrature method all at once in the a-priori analysis, an open question still is
how to balance all three numerical approximations in a sparse grid such that the
cost of computing the quantities of interest is reduced, but the accuracy is not
much a�ected. While the dimension-adaptive combination technique answers this
question for a given problem, the theoretical results have yet to be proven for a
class of functions. The analysis in the �rst part of this thesis can be used to that
end, but additionally a mixed regularity of the solution between the truncation,
�nite element and quadrature method has to be examined.

In the case where a Gaussian quadrature is applied, which potentially provides
the fastest convergence rate for the quadrature, we observed that the convergence
of the combination technique is limited by the convergence of the �nite element
solver. For a two-dimensional domain in particular, this reduces the fast con-
vergence of the Gaussian quadrature. Hence, the Monte Carlo method, which is
often applied, is usually not too restrictive.

One option to avoid a reduction of the convergence rate due to the dimension of
the spatial domain is to consider a sparse grid for solving the PDE. For that, it
needs to be guaranteed that the solution u(y) possesses mixed derivatives with
respect to the spatial variables. For elliptic PDEs on a smooth enough domain,
the regularity of the solution is determined by the right-hand side of the PDE.
Thus, higher regularity thanH1(D) in the spatial variables for the solution is often
provided. Hence, a sparse grid within the spatial variables should be possible.

Throughout this thesis, we mainly looked at numerical methods for solving the
PDE which at most can achieve a convergence rate of �rst order. However, if the
solution to the PDE is smooth enough in the spatial variable, one could consider
instead a �nite element method that exploits this regularity and achieves a higher
convergence rate. If we know that the solution is smooth, even spectral methods
could be considered, as the Gaussian quadrature converges exponentially. How-
ever, this also requires regular-shaped spatial domains, which might be the case
in the study of groundwater �ows, but are restrictive in other cases.

This thesis only addressed how to apply a sparse grid for the computation of the
expectation and second moment of a PDE. Other quantities of interest might
require additional or di�erent approximations. For example, if the quantities of
interest can not be exactly computed based on a surrogate function of u(x,y),
an additional approximation needs to be considered. In general, the sparse grid
approach is not limited to the study of our model problem. As uncertainty quan-
ti�cation is a broad area, sparse grid methods for other problems with several
approximations could be considered where several numerical methods are com-
bined in order to reduce the cost.
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