
Wavelets for diffusion models

Felix Blanke
Born August 30, 1999 in Frankfurt am Main

January 22, 2024

Master’s Thesis Mathematics

Advisor: Prof. Dr. Jochen Garcke

Second Advisor: Prof. Dr. Christian Bauckhage

Institut für Numerische Simulation

Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents
Introduction iv

1 Foundations of wavelet theory 1
1.1 Filters and filterbanks . 1

1.1.1 Filters in the frequency domain . 3
1.1.2 Filter representation with Toeplitz matrices 4
1.1.3 Low-pass and high-pass filter . 4
1.1.4 Filter banks . 6
1.1.5 Sampling in the filter bank . 7
1.1.6 Matrix representations of filter banks 9
1.1.7 Perfect reconstruction and orthonormal filter banks 10

1.2 Wavelets . 11
1.2.1 Multiresolution analysis . 11
1.2.2 Daubechies-Wavelets and Symlets 16
1.2.3 Fast wavelet transform . 17
1.2.4 Wavelet packet transform . 19
1.2.5 Wavelets on 2d signals . 20

1.3 Handling signal boundaries for wavelets . 21
1.3.1 Boundary handling by signal extension 22
1.3.2 Boundary handling with boundary filters 23

2 Diffusion models 27
2.1 Diffusion models in discrete-time . 27

2.1.1 Learning to reverse the diffusion . 29
2.1.2 A simplified loss function and sampling from a DDPM 33
2.1.3 DDPM as a score-based model . 34
2.1.4 Taking the time horizon to infinity 35

2.2 Diffusion models in continuous-time . 36
2.2.1 Sampling from continuous-time diffusion models 38

2.3 Choosing the noise schedule . 38

3 Wavelets for diffusion models 41
3.1 Multiscale diffusion models in the wavelet domain 42

3.1.1 Discretization error and score regularity 42
3.1.2 Preconditioning through normalized wavelet coefficients 43

3.2 Incorporating wavelets into diffusion model backbones 46

4 Numerical Experiments 49
4.1 Evaluation metrics . 49

i

Contents

4.2 Setup . 53
4.3 Higher-order wavelets and boundary handling 55
4.4 A finer discretization of the unconditional model 59
4.5 Progressively decreasing the number of inference steps per level 62
4.6 Increasing the number of wavelet levels . 63

5 Discussion and outlook 66

Appendix 69
1 Further plots and samples . 69

Bibliography 78

ii

Acronyms

CNN convolutional neural network

DDPM denoising diffusion probabilistic model

DWT discrete wavelet transform

EMA exponential moving average

FFT fast Fourier transform

FID Fréchet Inception distance

FIR filter finite impulse response filter

FWT fast wavelet transform

GAN generative adversarial network

GPU graphics processing unit

iFWT inverse fast wavelet transform

KL divergence Kullback-Leibler divergence

MRA multiresolution analysis

ODE ordinary differential equation

SDE stochastic differential equation

SMLD denoising score matching with Langevin dynamics

WPT wavelet packet transform

WSGM wavelet score-based generative model

iii

Introduction

Diffusionmodels are a class of probabilistic models that allow sampling from complex data
distributions. They are the current state of the art models for image generation [DN21].
They have also gathered attention from the general public through the astonishing quality
of images that current models are able to generate [Pod+23]. In particular, they are known
for the sampling of images conditioned on text input [Ram+22]. However, we focus on
unconditional image generation.

As diffusion models are at the cutting edge of research into generative models the field
is very fast moving. Introduced by Sohl-Dickstein et al. [SWMG15] they started to gain
traction in 2020 [HJA20].
In contrast, wavelets are a field-tested concept from functional analysis [SN96]. Their

name means “small wave” which describes their nature: a function that allows for local-
ization in space and frequency. This very useful notion has wide applications in classical
signal processing as well as “modern” deep learning. One particular application wavelets
are used in is denoising, due to the separation of frequency components they enable. As we
will see, this is the task that diffusion models essentially have to solve in order to generate
image samples. Furthermore, we will see that wavelets help us to address a longstanding
problem for generative image models: the frequency bias. This means that generative
images tend to show discrepencies in the spectral distribution to the distribution of real
images, particularly in the high frequencies.

In addition to being local in space and time,wavelets have another characteristic property:
they work on multiple scales, i.e. they successively approximate signals by adding finer
and finer details. We will see that embracing this multiscale structure allows us to spend
significantly less time to sample images of the same fidelity. So far, this approach was only
tested with the most simple wavelet and the same approximation effort on all scales. We
will evaluate possible ways to extend the method.

However, quantifying the fidelity of generated images is a hard task. Aswewill discuss in
this work, wavelets are the key to one approach to quantitative comparison of the generated
images to real ones. However, it will turn out that the originally proposed way is flawed,
requiring us to construct a mitigation. This is probably the most exciting section of this
work.

Structure of the work

This work is structured into five chapters. The first chapter introduces foundational notions
of wavelet theory. To this end, we first introduce filters and filter banks (section 1.1). We
discuss conditions posed on filter banks which allow us to construct a basis of 𝐿2(ℝ) that
is localized in space and frequency—the so-called wavelet basis (section 1.2). Further,

iv

we introduce two important wavelet transformations: the fast wavelet transform and
the wavelet packet transform. In section 1.3 we introduce multiple boundary handling
techniques that enable us to apply wavelet transformations to signals of finite length.
The second chapter is concerned with the introduction of diffusion models. Starting

with a in discrete-time diffusion model (section 2.1) we derive in detail how it is trained
and consider different interpretations of the optimization goal. This allows us to draw
a connection to diffusion models in continuous-time (section 2.2) which use SDEs to
formulate the diffusion model. Lastly, we discuss different choices of the noise schedule
which dictates the behaviour of the diffusion model.

In the third chapter we combine the foundational notions introduced in the previous
sections and discuss how wavelets can be used in the context of diffusion models. First,
we introduce a model that moves the diffusion model into a multiscale wavelet domain
(section 3.1). As we will see, this allows for the formulation of theoretical guarantees on
required number of steps. Then, we will discuss a way of also adopting the wavelet domain
structure into the underlying architecture (section 3.2).

The fourth chapter experimentally examines extensions of the multiscale wavelet diffu-
sion model we have introduced to wavelets of higher order, different boundary handling
techniques and varying number of discretization steps. To be able tomeasure the effects, we
discuss the standard metric for quantitatively evaluation of generated images and its flaws.
We then analyze a method based on the comparison of wavelet signal representations and
propose two variants.
Finally, chapter five contains a short summary of the work and the presented results,

discusses the findings and offers an outlook.

Own contribution

The following contributions can be found in this work:
• review of the basics of diffusion models, in particular in discrete-time (chapter 2),
• theoretical analysis of the Fourier and wavelet packet power spectrum Kullback-

Leibler divergences [VWG23]; identification and empirical validation of a flaw in
the application of the metric to image batches

• proposal of (i) a mitigation of the flaw in the metrics and (ii) of an extension to
evaluate the spectral and spatial energy distribution simultanuously,

• implementation of WSGMs as well as frequency-spatial convolution and attention
blocks in the modular diffusers framework [Pla+22] to facilitate reusability,

• extension of the wavelet-based diffusion model WSGM to higher-order wavelets with
different boundary handling techniques and discretizations

• discussion of the obtained results.
The own contribution in chapter 1 is limited as we follow Blanke [Bla21] very closely in

the representation of the results.

v

Introduction

Acknowledgments

I would like to take this opportunity to express my gratitude for the support I have received.
First of all, I would like to thank Prof. Dr. Jochen Garcke for his supervision, patience
and the opportunity to work on such a dynamic research topic. I would also like to thank
Prof. Dr. Christian Bauckhage for taking over the second correction and to Dr. Moritz
Wolter for the stimulating discussions and inspiration. To the Fraunhofer SCAI I would
like to express my gratitude for the access to the Löwenburg computing cluster for this
project in the scale necessary for the training of diffusion models. My heartfelt thanks go to
Thomas Blanke, Hanna Blanke, Lorenzo Conti, and Gina Muuss for attentive proofreading
at a late hour and Katharina Axtmann for her indulgence.

vi

1 Foundations of wavelet theory
This chapter introduces foundational notions of wavelet theory. The presentation of con-
tents is adapted closely from Blanke [Bla21] which is based on Strang and Nguyen [SN96].
The starting point for wavelet theory are signals with finite energy, i.e. functions 𝑓 ∈

𝐿2(ℝ𝑑). Our goal is to construct an orthonormal basis of 𝐿2(ℝ𝑑) from functions localized
in time and frequency, so-called wavelet functions. Fundamental for this construction is an
important duality between the wavelet transform on continuous-time signals and operators
on discrete-time signals. Hence, we first introduce some basic notions from signal theory
on discrete-time signals in section 1.1. In section 1.2 we consider continuous-time signals
and highlight said duality which leads us to the wavelet basis and a fast algorithm for its
calculation.

In this chapter we first constrict ourselves to one-dimensional signals. Thinking of audio
signals as an intuition might be helpful. In section 1.2.5, we discuss how the introduced
notions can be extended to higher-dimensional signals. In particular we discuss two-
dimensional signals as our experimental setup is concerned with the synthesis of images.

1.1 Filters and filterbanks

Definition 1.1. A (discrete-time) signal x is a finite-element sequence, i.e. an element of

ℓ2(ℤ) ≔ {x ∶ ℤ → ℝ ∣ ∑
𝑛∈ℤ

|x(𝑛)|2 < ∞}.

We note ℓ2 as a shorthand for ℓ2(ℤ). As an index set we utilize ℤ so that the sequence does
not end for both rising and falling indices.

Remark. We can interpret discrete-time signals as the result of a discretization of continuous-
time signals 𝑓 ∈ 𝐿2(ℝ𝑑) on a regular grid [SN96], as depicted in figure 1.1.
An important signal is the so-called unit impulse 𝛿:

Definition 1.2. The unit impulse 𝛿 ∈ ℓ2 is defined as

𝛿(𝑛) ≔ {
1 𝑛 = 0,
0 else.

Definition 1.3. A filter H ∶ ℓ2 → ℓ2 is a linear operator that transforms a signal by convolu-
tion with a fixed signal h ∈ ℓ2. For a signal x ∈ ℓ2 we have

[Hx](𝑛) = [h ∗ x](𝑛) = ∑
𝑘∈ℤ

h(𝑘)x(𝑛 − 𝑘).

We call the fixed signal h impulse response as it is the result of applying a filter to the unit
impulse. The length of a filter is defined as the length of its impulse response.

1

1 Foundations of wavelet theory

𝑡
𝑇

Figure 1.1: An exemplary signal on ℝ as well a discretized signal with a sampling rate of 𝑇.

Definition 1.4. An important special case are finite impulse response filters (FIR filters), i.e.
filters with a finite length.

These filters are important in practice, as encoding filters by their impulse response and
calculating the convolution with the impulse response is infeasible for impulse responses
of infinite length.

Definition 1.5. We call a filter causal if its impulse response is zero for all negative indices.

Example 1.6. Two filter that will appear repeatedly in this thesis are the moving average
H0 and the moving difference H1. The moving average is a causal FIR filter with impulse
response

h0(𝑛) = {
1
2 𝑛 = 0 or 𝑛 = 1,
0 else.

(1.1)

Thus applying this filter corresponds to the average of the current signal value x(𝑛) and
the previous value x(𝑛 − 1):

H0x(𝑛) = 1
2
x(𝑛) + 1

2
x(𝑛 − 1)

The moving difference has the impulse response

h1(𝑛) =
⎧{
⎨{⎩

1
2 𝑛 = 0,
−1

2 𝑛 = 1,
0 else.

(1.2)

and is thus also a causal FIR filter. The output of the filter is the difference of the current
signal value x(𝑛) and the previous value x(𝑛 − 1):

H1x(𝑛) = 1
2
x(𝑛) − 1

2
x(𝑛 − 1)

A visualization of the application of both filters to the exemplary signal from figure 1.1 is
depicted in figure 1.2.

2

1.1 Filters and filterbanks

𝑡

Figure 1.2: Application of the moving aveage (blue) and the moving difference (red) to
the examplary signal from figure 1.1.

The above representation of a filter is set in the “time domain”, associating a filter with
its impulse response. The application of the filter corresponds to a convolution of the input
signal with the impulse response.
There are two further ways of representing a filter that will be of use in this work: the

representation in the “frequency domain” using the discrete Fourier transform and the
representation as an infinite so-called Toeplitz matrix (cf. section 1.1.2).

1.1.1 Filters in the frequency domain

Definition 1.7. The Fourier transformation of a signal x ∈ ℓ2 is

𝑋(𝜔) = ∑
𝑘∈ℤ

x(𝑘)e−i𝑘𝜔.

Lemma 1.8. For x ∈ ℓ2 exists a unique Fourier transformation 𝑋 ∈ 𝐿2([−𝜋, 𝜋]).

Proof. This follows directly from the Fischer-Riesz theorem [e.g. Bea04, Theorem13.12].

Lemma 1.9 (Strang and Nguyen [SN96, p. 5]). The Fourier transformation of a filtered signal
equals the multiplication of the input signal’s Fourier transformation with the Fourier transformation
of the filter’s impulse response.

We can thus also associate a filter with the Fourier transformation 𝐻 of its impulse
response. We call 𝐻 the frequency response of the filter.

Example 1.10. The frequency response of the moving average H0 is

𝐻0(𝜔) = ∑
𝑘∈ℤ

h0(𝑘)e−i𝑘𝜔 = 1
2

+ 1
2
e−i𝜔 = ei𝜔/2 + e−i𝜔/2

2
e−i𝜔/2 = cos(𝜔

2
)e−i𝜔/2.

Example 1.11. The frequency response of the moving difference H1 is

𝐻1(𝜔) = ∑
𝑘∈ℤ

h1(𝑘)e−i𝑘𝜔 = 1
2

− 1
2
e−i𝜔 = ei𝜔/2 − e−i𝜔/2

2
e−i𝜔/2 = i sin(𝜔

2
)e−i𝜔/2.

3

1 Foundations of wavelet theory

1.1.2 Filter representation with Toeplitz matrices

Definition 1.12. An (infinite) Toeplitz matrix 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈ℤ is a matrix with constant diago-
nal entries, i.e.

𝑎𝑖𝑗 = 𝑎𝑘𝑙 for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ ℤ with 𝑖 − 𝑗 = 𝑘 − 𝑙.

Lemma 1.13. The application of a filter H to a discrete signal x ∈ ℓ2 corresponds to the (infinite)
matrix vector product of the Toeplitz matrix 𝐻 = (ℎ𝑖𝑗)𝑖,𝑗∈ℤ with x where ℎ𝑖𝑗 ≔ h(𝑖 − 𝑗).

Proof. We can write the matrix vector product 𝐻x as

𝐻x =
⎡
⎢
⎢
⎢
⎣

⋱
⋯ h(0) h(−1) h(−2) ⋯
⋯ h(1) h(0) h(−1) ⋯
⋯ h(2) h(1) h(0) ⋯

⋱

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

⋮
x(−1)
x(0)
x(1)

⋮

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋮
⋯ + h(0)x(−1) + h(−1)x(0) + h(−2)x(1) + ⋯
⋯ + h(1)x(−1) + h(0)x(0) + h(−1)x(1) + ⋯
⋯ + h(2)x(−1) + h(1)x(0) + h(0)x(1) + ⋯
⋯ + h(3)x(−1) + h(2)x(0) + h(1)x(1) + ⋯

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For any 𝑛 ∈ ℤ, the 𝑛-th entry of 𝐻x is therefore

[𝐻x](𝑛) = ∑
𝑗∈ℤ

ℎ𝑛𝑗x(𝑗) = ∑
𝑗∈ℤ

h(𝑛 − 𝑗)x(𝑗) = [h ∗ x](𝑛),

which is the result of applying h to x.

Thus, we can identify a filter H with the corresponding Toeplitz matrix 𝐻. If H is causal,
then 𝐻 has the form of an infinite lower triangular matrix; ifH is an FIR filter, each row
of 𝐻 contains a finite number of entries, namely the entries of the impulse response in
reverse order. Hence, the Toeplitz matrix representation of causal FIR filters, to which we
will mainly restrict ourselves, has the form of an infinite lower triangular band matrix.
Remark. For a filterHwe have become familiar with three different representations: the
impulse response, the frequency response and the Toeplitz matrix. For the rest of the work,
we use the following notations: we notate the impulse response as a bold lowercase letter,
e.g. h, and the frequency response as an italicized uppercase letter, e.g. 𝐻. For the Toeplitz
matrix, we overload the notation and write it - just like the filter itself - as a bold capital
letter, e.g. H.

1.1.3 Low-pass and high-pass filter

As the name filter suggests, filters are used to remove certain unwanted components from
a signal. The two filter types relevant to wavelet theory are the so-called low-pass and

4

1.1 Filters and filterbanks

−𝜋 −𝜋
2

𝜋
2

𝜋

0.5

1

𝜔

|𝐻(𝜔)|

ideal low-pass filter

−𝜋 −𝜋
2

𝜋
2

𝜋

0.5

1

𝜔

|𝐻(𝜔)|

ideal high-pass filter

Figure 1.3: Absolute frequency response of the ideal low-pass filter (left) and high-pass
filter (right). The absolute frequency response of the ideal filter (blue) and
the approximation with the first 10 (green) and 20 (red) terms are shown.
The deflections at the jump points ±𝜋/2, which are described as the Gibbs
phenomenon, are clearly visible.

high-pass filters. These remove low-frequency and high-frequency signal components
respectively and leave the remaining signal components unchanged. To do this, we divide
the frequency range [−𝜋, 𝜋] into two equal parts: the frequency interval (−𝜋

2 , 𝜋
2) forms the

low frequencies, the rest the high frequencies.
How a filter H affects different frequency components can be seen in the frequency

response𝐻 of the filter. The removal of a frequency𝜔 by the filter corresponds to |𝐻(𝜔)| = 0;
retaining the frequency, on the other hand, corresponds to |𝐻(𝜔)| = 1.
This allows us to define ideal high-pass and low-pass filters:

Definition 1.14. The ideal low-pass filter is a filter that leaves the frequency band (−𝜋
2 , 𝜋

2)
unchanged and removes the remaining frequencies. The ideal high-pass filter H1 in turn
is a filter that removes the frequency band (−𝜋

2 , 𝜋
2) and leaves the remaining frequencies

unchanged. The frequency responses of H0 and H1 have the form

𝐻0(𝜔) = {
1 𝜔 ∈ (−𝜋

2 , 𝜋
2),

0 else;
𝐻1(𝜔) = {

0 𝜔 ∈ (−𝜋
2 , 𝜋

2),
1 else.

(1.3)

Lemma 1.15 (Strang and Nguyen [SN96, pp. 45]). The ideal high-pass and low-pass filters
have the impulse responses

h0(𝑛) =
sin 𝜋𝑛

2
𝜋𝑛

=
⎧{
⎨{⎩

1
2 𝑛 = 0,
0 𝑛 even, 𝑛 ≠ 0,
(−1)𝑘+1 1

𝜋𝑛 𝑛 = 2𝑘 + 1;
h1(𝑛) = (−1)𝑛h0(𝑛) (1.4)

and are thus no FIR filter.

5

1 Foundations of wavelet theory

Remark. As the ideal high-pass and low-pass filters are no FIR filter, they are unsuitable
for applications. Even finite approximations of the ideal filters, e.g. by restricting them to
the first 𝑁 filter coefficients, are not an optimal solution due to the Gibbs phenomenon
[cf. Bea04, section 14A; SN96, pp. 46], as illustrated in figure 1.3. For this reason, various
methods for constructing non-ideal FIR high-pass and low-pass filters have been proposed
[see SN96, Section 2.3].
Our minimum requirement for non-ideal low-pass filters is that the lowest-frequency

signal, i.e. the constant signal, remains unchanged and the highest-frequency discrete
signal, i.e. the alternating signal x(𝑛) = (−1)𝑛, is set to 0. Alternatively, the following must
apply to the frequency response 𝐻

|𝐻(0)| = 1, |𝐻(±𝜋)| = 0.

This minimum requirement applies in reverse for non-ideal high-pass filters:

|𝐻(0)| = 0, |𝐻(±𝜋)| = 1.

These are minimum criteria. In the course of this work, we will get to know further
conditions that a filter must fulfill in order to be suitable for the construction of wavelets.

Example 1.16. We have already seen an example of a non-ideal low-pass and high-pass
filter: the moving average and the moving difference. The former calculates the average
of two consecutive signal values. Thus, figuratively speaking, rapid changes in the signal
are averaged out, resulting in a low-pass filter. As a high-pass filter, the moving difference
acts in the opposite way. By forming differences of successive signal values, changes in the
signal are highlighted and the “base level” of the signal is removed.

A visualization of the magnitude of the frequency responses of both filters is shown in
figure 1.4. We can see that the filters meet the minimum requirements for low-pass and
high-pass filters.

1.1.4 Filter banks

A common scheme of signal processing applications is the analysis of a signal. This involves
transforming a signal into a form that facilitates the extraction of relevant information or
further processing. We have already seen an example of such an analysis with the high-
pass and low-pass filters. Here, a signal is reduced to its high-frequency or low-frequency
component. However, information is lost during this reduction as certain frequency ranges
are removed from the signal. The original signal can therefore not be reconstructed.

In some applications, however, it is necessary that no loss of information occurs during
the analysis. Another representation of the signalwith desirable properties should therefore
be found, from which the signal can be reconstructed. We call this reconstruction process
synthesis.
As discussed, individual high-pass and low-pass filters do not fulfill this property by

definition, as certain frequency ranges are removed from the signal. However, if we take a
suitable pair of high-pass and low-pass filters together, we do not lose any information.
Instead, we simply split the signal into a high-frequency and a low-frequency component,

6

1.1 Filters and filterbanks

−𝜋 −𝜋
2 0 𝜋

2
𝜋0

0.2

0.4

0.6

0.8

1

𝜔

|𝐻
(𝜔

)|

absolute frequency response

Moving average: |𝐻(𝜔)| = cos(𝜔
2)

Moving difference: |𝐻(𝜔)| = sin(𝜔
2)

Figure 1.4: Magnitude of the frequency response of the moving average (blue) and the
moving difference (red). We recognize that the designations “low-pass filter”
or “high-pass filter” are justified in each case

.

which we can then recombine to form the original signal. This brings us to the concept of a
filter bank. This uses a suitable pair of filters for analysis and synthesis, with the analysis
pair consisting of a high-pass filter and a low-pass filter. We also call the analysis pair
analysis bank and the synthesis pair synthesis bank. The analysis takes place by applying
both filters of the analysis bank to the signal and thus dividing the signal into a high-
frequency and a low-frequency signal component. For the synthesis, we apply a filter from
the synthesis bank to each of these two signal components and add them together. This is
shown schematically in figure 1.5.

In the following section, we will learn about criteria for choosing suitable filters so that
the synthesis part of a filter bank inverts the analysis part.1.

1.1.5 Sampling in the filter bank

This first concept of a filter bank still has a crucial problem: For an input signal with finite
length2 the filters of the analysis bank each generate a filtered signal of at least the same
length.
If both are applied, the required disk space doubles, although the information content

1Specifically, we do not require direct invertibility, but allow a delay in the signal during reconstruction to
enable causal filters. More on this later.

2We discuss exactly how to apply filters to a finite signal in section 1.3.

7

1 Foundations of wavelet theory

remains constant. The solution to this problem is downsampling: we discard every second
entry of the filter results.

Definition 1.17. The downsampling operator (↓ 2) removes all odd components from a
signal x. For v ≔ (↓ 2)x we have v(𝑘) = x(2𝑘). We thus obtain

v = (↓ 2) [⋯ x(−1) x(0) x(1) x(2) ⋯] = [⋯ x(−2) x(0) x(2) ⋯] .

Lemma 1.18. Let H be a filter with impulse response h and x a signal. Then

[(↓ 2)Hx](𝑛) = ∑
𝑘∈ℤ

h(2𝑛 − 𝑘)x(𝑘).

Proof. Let v ≔ Hx = ∑𝑘∈ℤ h(𝑛 − 𝑘)x(𝑘). We then have

[(↓ 2)v](𝑛) = v(2𝑛) = ∑
𝑘∈ℤ

h(2𝑛 − 𝑘)x(𝑘).

During reconstruction, the synthesis should generate a signal of the same length as the
output signal. To compensate for the halving of the signal length through downsampling,
we use the upsampling operator.

Definition 1.19. The upsampling operator (↑ 2) is the counterpart to the downsampling
operator and inserts a 0 between all components of a signal y. For u ≔ (↑ 2)y we have

{
u(2𝑘) = y(𝑘)
u(2𝑘 + 1) = 0

.

So we get

(↑ 2) [⋯ y(−1) y(0) y(1) ⋯] = [⋯ y(−1) 0 y(0) 0 y(1) 0 ⋯] .

Remark. For the rest of this work, we will see these two operators as part of the analysis
bank and the synthesis bank respectively. The analysis bank thus consists of the application
of the analysis filters followed by the downsampling operator; in the synthesis bank, the
upsampling operator is followed by the synthesis filters.
Remark. To construct a wavelet basis in section 1.2, we will iterate the analysis bank of a
filter bank several times. However, we currently discard half of the signal entries and thus
significantly reduce the energy of the analysis result, especially when applied repeatedly.
We will compensate for this loss of energy by scaling the output of the analysis bank by
the factor

√
2 and thus doubling the energy.

We will integrate this factor of
√

2 directly into the high-pass and low-pass filters used.
Instead of the low-pass filterH0 and high-pass filterH1 of the analysis bank, we use the
filters

C ≔
√

2H0 and D ≔
√

2H1.

In the context of filter banks, we also refer to these scaled filters as high-pass or low-pass
filters and always notate them with C for the low-pass filter and D for the high-pass filter.
We will write the corresponding synthesis filters with ̃C for the low-pass channel and D̃
for the high-pass channel.

8

1.1 Filters and filterbanks

Input x

C ↓ 2 …

D ↓ 2 …

↑ 2

↑ 2

F0

F1

Output ̂x

Figure 1.5: Schematic of a filter bank. We can see the analysis bank (left) and the synthesis
bank (right) with the normalized low-pass and high-pass filters C and D. The
analysis bank splits the signal x into a low-frequency and a high-frequency
component, each with half the length; the synthesis bank recombines these
components to produce the output x̂. The dots between the two parts indicate
further processing such as compression. For the reconstruction, we assume no
further processing (can close the gap mentally) and expect x̂(𝑛) = x(𝑛 − 𝑙) for
𝑙 ≥ 0.

1.1.6 Matrix representations of filter banks

Let L ≔ (↓ 2)C and B ≔ (↓ 2)D. Then we can write L and B as infinite matrices by deleting
the odd indexed rows from the Toeplitz matrices of C and D respectively. If we take both
matrices together, we obtain the representation of the analysis bank as an infinite matrix

H𝑡 ≔ [CD] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⋮
⋯ c(0) c(−1) c(−2) c(−3) c(−4) ⋯
⋯ c(2) c(1) c(0) c(−1) c(−2) ⋯

⋮
⋯ d(0) d(−1) d(−2) d(−3) c(−4) ⋯
⋯ d(2) d(1) d(0) d(−1) c(−2) ⋯

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For a signal x and a ≔ Lx, b ≔ Bxwe have in block notation

H𝑡x = [LB] x = [ab] .

A further matrix representation of the analysis bank is the block Toeplitz matrix:

Definition 1.20. We then obtain the infinite matrix H𝑏 by interleaving the rows of L and B.
The even rows of H𝑏 form the rows of L; the odd rows form the rows of B. The following
applies

{
(H𝑏)2𝑖,𝑗 = (L)𝑖,𝑗,
(H𝑏)2𝑖+1,𝑗 = (B)𝑖,𝑗.

9

1 Foundations of wavelet theory

H𝑏 has thus the form

H𝑏 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋱
⋯ c(0) c(−1) c(−2) c(−3) c(−4) c(−5) ⋯
⋯ d(0) d(−1) d(−2) d(−3) c(−4) d(−5) ⋯
⋯ c(2) c(1) c(0) c(−1) c(−2) c(−3) ⋯
⋯ d(2) d(1) d(0) d(−1) c(−2) d(−3) ⋯

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

We call H𝑏 a block Toeplitz matrix, since the 2 × 2 block diagonals of H𝑏 are constant.

1.1.7 Perfect reconstruction and orthonormal filter banks

Definition 1.21. Let x be a signal and a = Lx and b = Bx the outputs of the analysis bank.
Applying the synthesis bank then yields

x̂ ≔ C̃(↑ 2)a + ̃D(↑ 2)b = C̃(↑ 2)(↓ 2)Cx + D̃(↑ 2)(↓ 2)Dx.

We say that a filter bank allows for perfect reconstruction if the synthesis bank inverts the
analysis bank up to a delay of 𝑙 ≥ 0. This means that for all 𝑛 ∈ ℤ we have

x(𝑛) = ̂x(𝑛 − 𝑙).

Remark. We allow for a delay during inversion so that we can ensure the causality of the
synthesis filters used. Let’s assume that we have FIR filters as synthesis filters that allow
perfect reconstruction without delay. If these are not causal filters, there exists an 𝑙 ≥ 0
due to the finite impulse response, so that a delay of 𝑙 makes the filters causal. However,
this also leads to a delay of the reconstructed signal by 𝑙.

In the following, we will construct synthesis filters from the analysis filters. The calcula-
tions for this are simpler if the constructed synthesis filters are not causal. However, we
note that causality can be created by inserting a delay.

Definition 1.22. Let H be a filter. We call the filter H𝑇 with impulse response

h𝑇(𝑘) = h(−𝑘)

the transposed filter of H. The Toeplitz matrix of H𝑇 can be obtained by transposing the
Toeplitz matrix H.

Definition 1.23. We call a filter bank orthonormal if it allows for perfect reconstruction and

C̃ = C𝑇 ̃D = D𝑇,

i.e. the synthesis filters result from the analysis filters through transposition.

Remark. To construct an orthonormal filter bank, it is therefore sufficient to determine the
filters of the analysis bank in such a way that the filter bank enables perfect reconstruction.
The synthesis bank then results from the transposed filters.

10

1.2 Wavelets

Theorem 1.24 (Strang and Nguyen [SN96, pp. 147]). Let c be a low-pass filter of even length
𝑁. If we choose

d(𝑘) = (−1)𝑘c(𝑁 − 1 − 𝑘), (1.5)

then is the resulting filter bank orthonormal if and only if

∑
𝑘∈ℤ

c(𝑘)c(𝑘 − 2𝑛) = 𝛿𝑛,0. (1.6)

Remark. With the help of this theorem, an orthonormal filter bank even results from the
choice of a suitable low-pass filter. The high-pass filter follows from equation (1.5) and the
synthesis bank from the transposed analysis filters.

Example 1.25. Let’s look at our running example of the moving average and the moving
difference. We want to show that both filters together form a filter bank. To do this, we
scale the impulse responses by

√
2 and obtain

√
2h0 = (1√

2
, 1√

2
),

√
2h1 = (1√

2
, − 1√

2
).

We note that the filter pair fulfills the equation (1.5). Furthermore,

∑
𝑘∈ℤ

(
√

2h0(𝑘))2 = 1
√

22 + 1
√

22 = 1.

In addition, due to their small length, the even displacements of h0 do not overlap, so
that equation (1.6) is fulfilled. The filter bank with scaled moving average and moving
difference as analysis filters is therefore orthonormal.

1.2 Wavelets

In the previous section, we used filter banks to divide a discrete signal into a high-frequency
part (“details”) and a low-frequency part (“base level”). We want to use this concept to
approximate signals in 𝐿2(ℝ). Starting from a base level, we gradually add more details at
different resolutions, also called scales, to approximate the signal. The functions we use to
add the details are our wavelets. If we take the details at all resolutions together, no matter
how fine, we get a basis of 𝐿2(ℝ) – the wavelet basis.

We again follow the presentation of Blanke [Bla21] closely which is based on Strang and
Nguyen [SN96] and Daubechies [Dau92].

1.2.1 Multiresolution analysis

Definition 1.26 (Multiresolution analysis). A familiy (𝑉𝑗)𝑗∈ℤ of subspaces of 𝐿2(ℝ) is
called a multiresolution analysis (MRA), if they form a nested chain

{0} ⊂ ⋯ ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝐿2(ℝ) (1.7)

with the following properties:

11

1 Foundations of wavelet theory

(MS1) completeness:

⋃
𝑗∈ℤ

𝑉𝑗 = 𝐿2(ℝ) and ⋂
𝑗∈ℤ

𝑉𝑗 = {0}, (1.8)

where the closure is formed w.r.t. the 𝐿2(ℝ) norm,

(MS2) shift invariance:

𝑓(𝑡) ∈ 𝑉0 ⟺ 𝑓(𝑡 − 𝑘) ∈ 𝑉0 for all 𝑘 ∈ ℤ, (1.9)

(MS3) scale invariance:

𝑓(𝑡) ∈ 𝑉𝑗 ⟺ 𝑓(2𝑡) ∈ 𝑉𝑗+1 for all 𝑗 ∈ ℤ, (1.10)

(MS4) shift invariant basis: There exists a function 𝜙 ∈ 𝑉0 such that

{𝜙(𝑡 − 𝑘) | 𝑘 ∈ ℤ}

forms an orthonormal basis of 𝑉0.

The function𝜙 is called a scaling function. The orthogonal complement𝑊𝑗 of two subsequent
subspaces of the MRA

𝑉𝑗+1 = 𝑉𝑗 ⊕ 𝑊𝑗, (1.11)

is called a wavelet subspace.

MRAs are the central functional analytical concept of wavelet theory. The subspaces 𝑉𝑗
correspond to all functions that we have approximated up to a resolution of 2𝑗. Wavelet
subspaces 𝑊𝑗 represent the details described at the beginning, which are added at each
scale.
Remark. For 𝑓 ∈ 𝐿2(ℝ) let𝒫𝑉𝑗

(𝑓) be the orthogonal projection of 𝑓 onto 𝑉𝑗. Then item (MS1)
implies on the one hand that the MRA is not redundant and on the other hand that

lim
𝑗→∞

𝒫𝑉𝑗
(𝑓) = 𝑓.

Lemma 1.27 (Properties of a MRA). Let {𝑉𝑗}𝑗∈ℤ be a MRA. The following holds:

(i) 𝑊𝑗 ⟂ 𝑊𝑘 for all 𝑘 ≠ 𝑗,

(ii) 𝑉𝑗+1 = 𝑊𝑗 ⊕ ⋯ ⊕ 𝑊1 ⊕ 𝑊0 ⊕ 𝑉0 for all 𝑗 ≥ 0,

(iii) 𝑓(𝑡) ∈ 𝑊𝑗 ⟺ 𝑓(2𝑡) ∈ 𝑊𝑗+1 for all 𝑗 ∈ ℤ,

(iv) for all 𝑗 ∈ ℤ we have {𝜙𝑗𝑘 | 𝑘 ∈ ℤ} where 𝜙𝑗𝑘(𝑡) ≔ 2𝑗/2𝜙(2𝑗𝑡 − 𝑘) form an orthonormal
basis of 𝑉𝑗.

Proof. (i) Without loss of generality let 𝑘 be the smaller index of 𝑘 and 𝑗. Then 𝑊𝑘 ⊂
𝑉𝑗 ⟂ 𝑊𝑗.

12

1.2 Wavelets

(ii) follows directly from the repeated application of the definition of wavelet subspaces.

(iii) follows from the definition of wavelet subspaces and item (MS3).

(iv) Being a basis follows directly from the properties (MS2) to (MS4). We show the
orthonormality of the basis by reducing it via substitution to item (MS4):

‖2𝑗/2𝜙(2𝑗𝑡 − 𝑘)‖2
𝐿2(ℝ) = ∫

ℝ
2𝑗𝜙(2𝑗𝑡 − 𝑘)2 d𝑡 = ∫

ℝ
𝜙(𝑡)2 d𝑡 = ‖𝜙‖2

𝐿2(ℝ) = 1

For 𝑘 ≠ 𝑘′ we get by substitution

⟨2𝑗/2𝜙(2𝑗𝑡 − 𝑘), 2𝑗/2𝜙(2𝑗𝑡 − 𝑘′)⟩𝐿2(ℝ) = ∫
ℝ

2𝑗𝜙(2𝑗𝑡 − 𝑘)𝜙(2𝑗𝑡 − 𝑘′)d𝑡

= ∫
ℝ

𝜙(𝑡 − 𝑘)𝜙(𝑡 − 𝑘′)d𝑡

= ⟨𝜙(𝑡 − 𝑘), 𝜙(𝑡 − 𝑘′)⟩𝐿2(ℝ) = 0

Theorem 1.28 (Dilation equation). Let {𝑉𝑗}𝑗∈ℤ be a MRA. Then there exist coefficients c ∈ 𝑙2
such that the scaling function 𝜙 fulfills the dilation equation:

𝜙(𝑡) =
√

2 ∑
𝑘∈ℤ

c(𝑘)𝜙(2𝑡 − 𝑘) with c(𝑘) ∈ ℝ. (dilation equation)

For the coefficients c(𝑘) we have

∑
𝑘∈ℤ

c(𝑘)c(𝑘 − 2𝑚) = 𝛿𝑚,0. (1.12)

Proof according to Strang and Nguyen [SN96]. It holds 𝜙 ∈ 𝑉0 ⊂ 𝑉1. Thus, we can write 𝜙
using the orthonormal basis {

√
2𝜙(2𝑡 − 𝑘)} of 𝑉1 and get the dilation equation. We obtain

equation (1.12) bymultiplying the dilation equations for 𝜙(𝑡) and 𝜙(𝑡−𝑚) , then integrating
and using the orthonormality of the basis:

𝛿𝑚,0 = ∫
ℝ

𝜙(𝑡)𝜙(𝑡 − 𝑚)d𝑡 = ∫
ℝ

2(∑
𝑘∈ℤ

c(𝑘)𝜙(2𝑡 − 𝑘))(∑
𝑘∈ℤ

c′(𝑘)𝜙(2(𝑡 − 𝑚) − 𝑘))d𝑡

= ∫
ℝ

2(∑
𝑘∈ℤ

c(𝑘)𝜙(2𝑡 − 𝑘))(∑
𝑘∈ℤ

c(𝑘 − 2𝑚)𝜙(2𝑡 − 𝑘))d𝑡

= ∑
𝑘∈ℤ

c(𝑘)c(𝑘 − 2𝑚)

Theorem 1.29 (Wavelet basis, [Dau92, Theorem 5.1.1]). Let {𝑉𝑗}𝑗∈ℤ be a MRA. There exists
𝑤 ∈ 𝑊0 such that {𝑤(𝑡 − 𝑘) | 𝑘 ∈ ℤ} forms an orthonormal basis of 𝑊0 and

{𝜙(𝑡−𝑘) | 𝑘 ∈ ℤ} ∪ ⋃
𝑗≥0

{𝑤𝑗𝑘(𝑡) | 𝑘 ∈ ℤ} with 𝑤𝑗𝑘(𝑡) ≔ 2𝑗/2𝑤(2𝑗𝑡−𝑘) (1.13)

13

1 Foundations of wavelet theory

an orthonormal basis of 𝐿2(ℝ). The function 𝑤 has the form

𝑤(𝑡) =
√

2 ∑
𝑘∈ℤ

d(𝑘)𝜙(2𝑡 − 𝑘). (wavelet equation)

A possible construction of 𝑤 results if we choose d as in equation (1.5):

d(𝑘) ≔ (−1)𝑘c(𝑁 − 1 − 𝑘) with 𝑁 even (1.14)

where c are the coefficients of the dilation equation.

We call the function 𝑤 the “mother wavelet” as all wavelet subspaces are spanned from
scaled translations of this function.
Remark. The dilation equation and its counterpart, the wavelet equation, are central to
wavelet theory, as they allow us to write scaling functions or wavelets of one scale in the
basis of the next-higher scale – with basis coefficients that do not depend on the scale
used. This relationship between the different scales is fundamental to wavelet theory and
allows us, for example, to construct fast methods for switching bases between scales in the
following sections.

Lemma 1.30. Let {𝑉𝑗}𝑗∈ℤ be a MRAwith a scaling function 𝜙 whose Fourier transform is bounded
and continuous and non-zero in 𝜔 = 0. Further, let c be the coefficients from the dilation equation
and d the coefficients from the wavelet equation after the construction (1.14). Then c is a low-pass
filter that forms an orthonormal filter bank together with d.

Proof. One can show that under these conditions on the scaling function, c is a low-pass
filter scaled by

√
2 [VK95, Problem 4.3], i.e.

|𝐶(0)| =
√

2 and |𝐶(±𝜋)| = 0.

As we choose d as in (1.5), the orthonormality follows from (1.12) because of theorem 1.24.

Remark. The conditions posed on the scaling functions are in practice always fulfilled
[VK95, S. 226].
We have shown how we can construct an orthonormal basis of 𝐿2(ℝ) based on a MRA.

The central element here is the choice of a suitable scaling function, from which everything
else follows.
However, it is not easy to find a suitable scaling function. For example, the scaling

functions of two important classes of wavelets, which we introduce in section 1.2.2, cannot
be represented in closed-form [Dau92].

A more promising approach is to choose a suitable low-pass filter c, which we insert as
a coefficient in the dilation equation. This gives us a fixed-point equation that we can solve
for the scaling function—provided the low-pass filter fulfills certain properties that ensure
solvability.

We calculate this approach using a pair of low-pass and high-pass filters as an example:

14

1.2 Wavelets

Example 1.31 (Haar wavelets). We choose the moving average h0 = (1/2, 1/2) as a low-
pass filter and want to construct the scaling function 𝜙 from it. First, we scale h0 by

√
2,

receiving the low-pass filter of the filter bank

c =
√

2h0 = (1√
2

, 1√
2

).

From equation (1.14) then results with 𝑁 = 2 the high-pass filter

d(𝑘) ≔ (−1)𝑘c(1 − 𝑘) = (1√
2

, − 1√
2

) =
√

2(1
2

, −1
2

),

which we recognize as the scaled moving differences. We apply the dilation equation to c
and get the fixed point equation

𝜙(𝑡) = 𝜙(2𝑡) + 𝜙(2𝑡 − 1).

The solution to this simple equation can be just read off as the “rectangular” function

𝜙(𝑡) = 𝜙0 ≔ 𝟙[0,1)(𝑡) = {
1 0 ≤ 𝑡 < 1,
0 else.

We calculate that this is indeed a solution to dilation equation:

𝜙(2𝑡) + 𝜙(2𝑡 − 1) = 𝟙[0, 1
2)(𝑡) + 𝟙[1

2 ,1)(𝑡) = 𝟙[0,1) = 𝜙(𝑡).

Using the wavelet equation we can now construct the mother wavelet corresponding to 𝜙:

𝑤(𝑡) =
√

2 ∑
𝑘∈ℤ

d(𝑘)𝜙(2𝑡 − 𝑘) = 𝜙(2𝑡) − 𝜙(2𝑡 − 1) =
⎧{
⎨{⎩

1 0 ≤ 𝑡 < 1
2 ,

−1 1
2 ≤ 𝑡 < 1,

0 else.

The wavelets derived from 𝜙 and 𝑤 are called Haar wavelets according to Haar [Haa10]. In
figure 1.6 𝜙 and 𝑤 are depicted.

The Haar wavelets are the simplest of all wavelets due to the short length of the underly-
ing filters. Nevertheless, they are of great practical relevance. One reason for this is that
they do not require any boundary treatment due to their short length on finite signals (see
section 1.3).

For Haar wavelets, we were able to directly determine the scaling function 𝜙 that solves
the dilation equation. In general, we can only determine 𝜙 with a fixed point iteration,
applying the dilation equation repeatedly. Details on this construction can be found in
Strang and Nguyen [SN96, Section 7.2].

15

1 Foundations of wavelet theory

𝑡0

1
𝜙(𝑡)

1 𝑡0

1
𝑤(𝑡)

1 𝑡0

1
𝑤(2𝑡) 𝑤(2𝑡 − 1)

1

Figure 1.6: Scaling function (left), mother wavelet (center) and wavelets of the first scale
(right) of the Haar wavelets

.

1.2.2 Daubechies-Wavelets and Symlets

So far, we have only come across a single wavelet in the form of the simplest of all
wavelets—the Haar wavelet. In the following, we will outline the construction of two
related wavelet families: the Daubechies wavelets and the symlets. The Daubechies wavelets
are named after Daubechies [Dau88], who first described them. The symlets are a more
symmetrical variation of the Daubechies wavelets. We denote a Daubechies wavelets and
symlets of length 2𝑝 as db𝑝 respectively sym𝑝. For the derivation we follow Strang and
Nguyen [SN96] and Daubechies [Dau92].

As we have seen in the previous section, constructing a wavelet amounts to the choice of
a suitable low-pass filter as the high-pass filter can be obtained by applying equation (1.5).
As the ideal low-pass filter is not obtainable due to not being a FIR filter, we aim to use a
good approximation while only using filters with a finite impulse response.
As shown in figure 1.3 the absolute frequency response of an ideal low-pass filter is a

step function, which is flat everywhere. In particular, being flat at the extreme ends of the
frequency bands yields a good seperation of the very low and very high frequencies. This
idea is core to the low-pass filters used for both wavelet families: so-called maxflat filters.
These are causal FIR filters with an absolute frequency response that is maximally flat at 0
and ±𝜋 for a given filter length.
We now want to construct the filter coefficients of such a maxflat low-pass filter C of

length 2𝑝. As we want to obtain an orthonormal filter bank, the filter coefficients C need to
fulfill the 𝑝 conditions of equation (1.6). We use the remaining 𝑝 degrees of freedom to
choose 𝐶(𝜔) at 𝜔 = 0 and 𝜔 = 𝜋 maximally flat. This corresponds to the 𝑝 conditions

𝐶(𝜋) = 𝐶′(𝜋) = ⋯ = 𝐶(𝑝−1)(𝜋) = 0,

so 𝜋 being a 𝑝-fold zero of 𝐶. For symmetry reasons this also gives the same derivatives for

16

1.2 Wavelets

𝜔 = 0. Thus, we can write 𝐶(𝜔) as

𝐶(𝜔) =
2𝑝−1

∑
𝑛=0

c(𝑛)e−i𝑛𝜔 = (1 + e−i𝜔

2
)

𝑝

𝑅(e−i𝜔),

where 𝑅 is a polynomial of degree 𝑝−1. One can determine the coefficients of 𝑅 by spectral
factorization

|𝑅(𝑧)|2 = 𝑅(𝑧)𝑅(𝑧).

of the trigonometric polynomial |𝑅(𝑧)|2 [cf. Dau92, pp. 171]. However, this factorization
is not unique. Choosing it such that all roots of 𝑅 lie in or on the unit circle yields the
Daubechies wavelets. It is remarkable that for the special case of 𝑝 = 1, the Daubechies
wavelets coincide with the Haar wavelets. However, the Daubechies filters with large
lengths are very asymmetrical.

For 𝑝 > 1, it is impossible to choose the roots of the polynomial in a way that results in a
symmetric filter [Dau92]. The choice of roots that gets closest to a symmetric filter results
in the family of symlets. In figure 2 the scaling functions and mother wavelets are depicted
for Daubechies wavelets and symlets of length 2𝑝 = 8, 16, 24.

So far, we did not address the question why the choice of a wavelet family matters. The
following lemma shows that using longer Daubechies wavelets or longer symlets improves
the approximation accuracy. We thus refer to longer wavelets of these families as being of
“higher order”.

Lemma 1.32 (approximation accuracy [SN96]). For Daubechies wavelets and symlets of length
2𝑝 we have:

(i) all polynomials of degree 𝑝 − 1 or smaller are linear combination of {𝜙(𝑡 − 𝑘) | 𝑘 ∈ ℤ},

(ii) the mother wavelet 𝑤 has 𝑝 vanishing moments, i.e.

⟨𝑤, 𝑡𝑘⟩ = 0 for 𝑘 ∈ {0, … , 𝑝 − 1}.

1.2.3 Fast wavelet transform

We have seen in item (ii) of lemma 1.27 that we can decompose the subspaces 𝑉𝑗 of a
MRA into a direct sum of 𝑉0 and wavelet subspaces. Similarly, we have constructed two
orthonormal bases of 𝑉𝑗:

{𝜙𝐽𝑘 | 𝑘 ∈ ℤ} and {𝜙0𝑘 | 𝑘 ∈ ℤ} ∪
𝐽

⋃
𝑖=0

{𝑤𝑗𝑘 | 𝑘 ∈ ℤ}

A change of basis from the scaling function basis into the wavelet basis is called discrete
wavelet transform (DWT). In the following, we will introduce an efficient procedure to
calculate the DWT: the fast wavelet transform (FWT). It was first described by Mallat
[Mal89]. For the derivation, we follow Strang and Nguyen [SN96]. We use the notation
𝑦𝑗,− for a sequence {𝑦𝑗,𝑘}𝑘∈ℤ.

17

1 Foundations of wavelet theory

We first consider the step from 𝑉1 to 𝑉0 ⊕ 𝑊0. The further steps then follow inductively
due to the properties of MRAs. For 𝑓1(𝑡) ∈ 𝑉1 let 𝑎1,− be the coefficients of the basic
representation

𝑓1(𝑡) = ∑
𝑘∈ℤ

𝑎1𝑘𝜙1𝑘(𝑡) =
√

2 ∑
𝑘∈ℤ

𝑎1𝑘𝜙(2𝑡 − 𝑘).

We aim to construct a change in basis. We therefore look for 𝑎0,− and 𝑏0,− such that

𝑓1(𝑡) = ∑
𝑘∈ℤ

𝑎1𝑘𝜙1𝑘(𝑡) = ∑
𝑘∈ℤ

𝑎0,𝑘𝜙0,𝑘(𝑡)+∑
𝑘∈ℤ

𝑏0,𝑘𝑤0,𝑘(𝑡) = ∑
𝑘∈ℤ

𝑎0,𝑘𝜙(𝑡−𝑘)+∑
𝑘∈ℤ

𝑏0,𝑘𝑤(𝑡−𝑘).

For the calculation of the coefficients we consider the dilation equation for 𝜙(𝑡 − 𝑛) and
the wavelet equation for 𝑤(𝑡 − 𝑛) with 𝑛 ∈ ℤ. We substitute 𝑘 = 𝑙 − 2𝑛 and get

𝜙0,𝑛(𝑡) =
√

2 ∑
𝑙∈ℤ

c(𝑙 − 2𝑛)𝜙(2(𝑡 − 𝑛) − (𝑙 − 2𝑛)) =
√

2 ∑
𝑙∈ℤ

c(𝑙 − 2𝑛)𝜙1,𝑙(𝑡);

𝑤0,𝑛(𝑡) =
√

2 ∑
𝑙∈ℤ

d(𝑙 − 2𝑛)𝜙(2(𝑡 − 𝑛) − (𝑙 − 2𝑛)) =
√

2 ∑
𝑙∈ℤ

d(𝑙 − 2𝑛)𝜙1,𝑙(𝑡).

Due to the orthonormality of the basis, calculating the scalar product of 𝜙0,𝑛 respectively
𝑤0,𝑛 with 𝑓1 yields an expression for the coefficients 𝑎0𝑛 respectively 𝑏0𝑛:

𝑎0𝑛 = ⟨𝜙0𝑛, 𝑓1⟩𝐿2(ℝ) = ∑
𝑙∈ℤ

c(𝑙 − 2𝑛)𝑎1𝑙,

𝑏0𝑛 = ⟨𝑤0𝑛, 𝑓1⟩𝐿2(ℝ) = ∑
𝑙∈ℤ

d(𝑙 − 2𝑛)𝑎1𝑙
with 𝑛 ∈ ℤ.

We compare this to lemma 1.18 and note the coefficients 𝑎0,− and 𝑏0,− stemming directly
from a filter bank applied to 𝑎1,−. However, it is important to note that the sign of the filter
indices is opposite to lemma 1.18. Therefore the analysis bank of the filter bank consists of
the transposed filters C𝑇 and D𝑇 with impulse responses

c𝑇(𝑘) = c(−𝑘) and d𝑇(𝑘) = d(−𝑘).

We can analogously apply the considerations from above for all 𝑗 ∈ ℤ in order to
calculate the coefficients 𝑎𝑗−1,− and 𝑏𝑗−1,− starting from the basis representation in 𝑉𝑗. If
we then apply the method to 𝑎𝑗−1,−, we obtain a representation of 𝑎𝑗,− in the basis of
𝑉𝑗−2 ⊕ 𝑊𝑗−2 ⊕ 𝑊𝑗−1. We can now repeat this to successively calculate the coefficients of
further wavelet subspaces. In total, this results in the fast wavelet transform. In figure 1.7
you can find a schematic representation of the FWT.
Remark. (i) In practice, the FWT is stopped after a fixed number 𝐽 of recusion steps. In

this case, we call the FWT to have 𝐽 levels or scales. For a three level FWT, we start
with 𝑎3,−, calculate the coefficients 𝑏2,−, 𝑏1,−, 𝑏0,− and stop at 𝑎0,−.

(ii) As long as the filters in use are of finite length, at each recursion step we generate
from the coefficient vector 𝑎𝑗,− of finite length two vectors 𝑎𝑗−1,− and 𝑏𝑗−1,− with half
the length each.

18

1.2 Wavelets

𝑎𝑗+1,−

C𝑇 ↓ 2 𝑎𝑗,−

D𝑇 ↓ 2 𝑏𝑗,−

C𝑇 ↓ 2 𝑎𝑗−1,−

D𝑇 ↓ 2 𝑏𝑗−1,−

⋯

⋯

Figure 1.7: Scheme of the fast wavelet transform.

(iii) Reverting the construction of the FWT, i.e. calculating the coefficients 𝑎𝑗+1,− based
on 𝑎𝑗,− and 𝑏𝑗,− yields the inverse fast wavelet transform (iFWT). This corresponds
to repeatedly applying the synthesis bank of the filter bank used in the FWT. The
resulting scheme is shown in figure 1.

(iv) The starting point of the FWT are the basis coefficients 𝑎𝑗,𝑘. Given a signal 𝑓 ∈ 𝐿2(ℝ)
or a discretization thereof, to apply the FWT we have to first calculate the base
coefficients of 𝑓 in the wavelet basis by orthognally projecting 𝑓 to 𝑉𝑗. This can be
done by calculating the scalar product of 𝑓 and the basis elements 𝜙𝑗,𝑘. If we are given
a discretized signal an approximation of the basis coefficients is required; different
approaches are discussed e.g. by Strang and Nguyen [SN96, S. 232f.].
However, this subtlety is often overlooked in practice, e.g. by popular implemen-
tations of the FWT [Lee+19; WBGH24]. As ignoring this subtlety is the norm in
application we follow accordingly to ensure comparability.

Theorem 1.33 (Runtime complexity of the FWT). For a filter length 𝑁 and a signal length
𝐿 = 2𝐽, the FWT for 𝐽 scales has a runtime complexity of 𝒪(𝑁𝐿).

Proof. Applying a filter to coefficients on level 𝑗 has a cost of 𝑁𝐿2𝑗−𝐽 as the coefficients on
level 𝑗 have a length of 2𝑗−𝐽𝐿. Summing these costs over all levels yields

𝑁𝐿 + 1
2

𝑁𝐿 + 1
4

𝑁𝐿 + ⋯ + 2−(𝐽−1)𝑁𝐿 < 2𝑁𝐿 = 𝒪(𝑁𝐿).

Remark. For a constant filter length 𝑁 the FWT has a linear runtime complexity and is
thus asymptotically faster than the fast Fourier transform (FFT), which has an asymptotic
runtime of 𝒪(𝐿 log𝐿) [SN96].

1.2.4 Wavelet packet transform

We look at the schematic representation of fast wavelet transform in figure 1.7. If we take
the calculated base coefficients as nodes, the FWT generates a directed binary tree. The root
is formed by the input coefficients 𝑎𝐽,−. The depth of the nodes in the tree corresponds to
the scale of the coefficients. To obtain the nodes of the next scale, the filter bank is applied

19

1 Foundations of wavelet theory

only to the scaling function coefficients 𝑎𝑗,−; the wavelet coefficients 𝑏𝑗,− are leaves of the
binary tree. Thus, the resulting binary tree consists of a linear number of nodes.

We now want to introduce another wavelet transformation with the wavelet packet trans-
formation. To do this, we complete the binary tree of FWT by also applying the filter bank
to the wavelet coefficients 𝑏𝑗,−. Then the coefficients of the 𝑗-th level of the complete tree
are the result of the 𝑗-scale wavelet packet transform. If the input coefficients have a length
of 𝐿, the 𝑗-scale wavelet packet transform generates 2𝑗 coefficients of length 𝐿/2𝐽. It can be
shown that this corresponds to a change of basis to the so-called Walsh basis [SN96, pp.
72]. The basis functions result from the scaling function 𝜙 by a recursive application of
dilation equation and wavelet equation corresponding to the path in the complete tree.

1.2.5 Wavelets on 2d signals

So far we constructed a wavelet basis over ℝ. However, we are in particular interested in a
wavelet basis of 𝐿2(ℝ2) as we are concerned with the generation of images. Therefore, we
introduce a simple extension of wavelet theory to two dimensions by applying a 1d wavelet
transform seperately to both axes. For this reason, the introduced extension is called a
separable 2d wavelet transformation. For the construction we are guided by Jensen and la
Cour-Harbo [Jl01, section 6.1]. Note that other constructions are possible, in particular in
a non-seperable fashion that genuinely uses the two-dimensionality of ℝ2 [SN96].
Let X ∈ ℝ𝑁×𝑁 be a two-dimensional quadratic signal of finite length, with 𝑁 rows and

columns. First, we apply a one-dimensional wavelet transform along the columns of X. Let
W be the 𝑁 × 𝑁 matrix representing the one-timensional wavelet transform, that can be
constructed e.g. using Gram-Schmidt boundary filters (cf. section 1.3.2). For each column
of X the wavelet transformation is obtained by multiplication withW𝑐. Thus, the matrix
product

Y𝑐 ≔ WX

yields a matrix with all columns being the wavelet transformations of columns of X.
Repeating this procedure along the rows of Y𝑐 can be done by multiplying the wavelet
transform matrixW to Y𝑇

𝑐 . Together, we get the result of the seperable two-dimensional
wavelet transform

Y ≔ (WY𝑇
𝑐)𝑇 = WXW𝑇.

With 2d FWT, the signal is divided into a high-frequency and a low-frequency part
along each axis, resulting in a total of four parts. The low-frequency part in both axes is
called the approximation coefficient and is noted as “a”. The other parts correspond to
directions of edges in the image, which are highlighted in this part: if the part of one axis
is high-frequency and the other is low-frequency, horizontal (“h”) or vertical (“v”) edges
in the image are highlighted. If the parts of both axes are high-frequency, this corresponds
to diagonal edges (“d”). This is shown schematically in figure 1.8a. We obtain the second
scale of the 2D-FWT by repeating this on the approximation coefficient of the previous scale
(see figures 1.8b and 1.8c). We note the coefficients obtained in this way by appending
the letter of the current scale (“a”, “d” etc.) to the letters of the previous scale. If we

20

1.3 Handling signal boundaries for wavelets

a h

v d

(a) First scale of a 2d FWT

h

v d

aa ah

av ad

(b) Second scale of a 2d FWT

h

v d

ah

av ad

aaa aah

aav aad

(c) Third scale of a 2d FWT

aaa

aav

avv

ava

vva

vvv

vav

vaa

aah

aad

avd

avh

vvh

vvd

vad

vah

ahh

ahd

add

adh

vdh

vdd

vhd

vhh

aha

ahv

adv

ada

vda

vdv

vhv

vha

hha

hhv

hdv

hda

dda

ddv

dhv

dha

hhh

hhd

hdd

hdh

ddh

ddd

dhd

dhh

hah

had

hvd

hvh

dvh

dvd

dad

dah

haa

hav

hvv

hva

dva

dvv

dav

daa

(d) 2d wavelet packet transformation using
three scales in frequency order.

Figure 1.8: Schemes of two-dimensional wavelet transforms.

repeat this decomposition on all coefficients of the previous scale, this corresponds to a 2D
wavelet-packet transformation (cf. figure 1.8d).

1.3 Handling signal boundaries for wavelets

In numerical applications, especially those related to machine learning, the signals often
have finite lengths. Images, for example, a common use case in signal processing, are
two-dimensional discrete signals with finite width and height. The theory introduced in
section 1.2 is formulated on unbounded signals in 𝐿2(ℝ). Simply moving to finite signals
leads to problems: the application of a causal FIR filter—the core of wavelet transforms—to
a signal ∑𝑁−1

𝑘=0 h(𝑘)x(𝑛 − 𝑘) is not possible at the signal edge, as undefined signal entries
would have to be accessed.

Methods for realizing the filter application at the signal edges are called boundary handling.
We will learn about two approaches in this section: signal continuation (section 1.3.1) and
boundary filters (section 1.3.2).

21

1 Foundations of wavelet theory

1.3.1 Boundary handling by signal extension

An obvious approach for the boundary treatment is to continue the finite signal to an
infinite signal and apply the developed methods to this continued signal. To do this, we
look at how a filter bank can be applied to the finite signal, as the other use cases such as
DWT can be derived from this. We will introduce this with an example that we will return
to in later sections.

Example 1.34. Suppose we want to apply the FWT with FIR filters of length 𝑁 to a finite
signal x of length 𝐿. LetH𝑏 be the block Toeplitz matrix of the filter bank of the transfor-
mation. Then we would actually have to form the matrix-vector productH𝑏x. However,
this is impossible as H𝑏 is an infinite matrix.

To remedy this, we continue x to an infinite signal in 𝑙2(ℤ) by adding zeros to the edges
of the signal. This gives us the infinite signal x̃ with

x̃(𝑘) =
⎧{
⎨{⎩

0 𝑘 < 0
x(𝑘) 0 ≤ 𝑘 < 𝐿
0 𝑘 ≥ 𝐿

.

This conitinuation is equivalent to the removal of all columns ofH𝑏 with a negative index or
an index larger than 𝐿 − 1. This gives us a matrix with a suitable finite number of columns
and we can form the matrix-vector product. However, the adjusted matrix still contains an
infinite number of rows, so the filter result is infinitely long.

We remember thatH𝑏 is a block Toeplitz matrix and the filter bank consists of FIR filters.
Therefore, only finitely many (block) diagonals of H𝑏 are non-zero and all rows of the
cropped matrix below or above a certain index consist only of zeros. If we remove these
“zero rows”, a finite 𝐾 × 𝐿 matrix H̃𝑏 remains, which we can multiply by the signal. For a
filter length 𝑁 = 6 and a signal length 𝐿 = 8 we thus have

H̃𝑏x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c(4) c(5)
d(4) d(5)
c(2) c(3) c(4) c(5)
d(2) d(3) d(4) d(5)
c(0) c(1) c(2) c(3) c(4) c(5)
d(0) d(1) d(2) d(3) d(4) d(5)

c(0) c(1) c(2) c(3) c(4) c(5)
d(0) d(1) d(2) d(3) d(4) d(5)

c(0) c(1) c(2) c(3)
d(0) d(1) d(2) d(3)

c(0) c(1)
d(0) d(1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(0)
y(1)
y(2)
y(3)
y(4)
y(5)
y(6)
y(7)
y(8)
y(9)
y(10)
y(11)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.15)

In this case, the resulting matrix has 𝐾 = 12 rows, which means that the result of the filter
application is longer than the output signal.

The boundary handling method in this example works with a continuation of the signal
with zeros. Such a continuation with a constant value is also referred to as padding. There

22

1.3 Handling signal boundaries for wavelets

are also other methods of signal continuation [cf. KV89]. In figure 1.9 four frequently used
methods of signal continuation are sketched. All of these methods are very similar to the
initial example. Only the matrix H̃𝑏 is continued also to the left and right so that none of
the FIR filters are “cut through” in the rows, as happened in the example.
With these continuations of the signal, discontinuities occur at the ends of the signal

in the continuation or in its derivative. These discontinuities lead to large coefficients
in the FWT and thus to boundary artifacts [Jl01, p. 144]. Furthermore, we have already
encountered another problem for some of these extension techniques.With the construction
above3 applying a single FWT step to a signal will lead to a longer output signal for all
orthonormal wavelets besides the Haar wavelet, where the elongation is proportional
to the filter length [Jl01]. This is caused by the rows for which only a part of the filter
overlaps with the signal still being relevant for the result, leading to a corresponding
elongation on both sides of the signal. Due to its short length, this does not apply to the
Haar wavelet. It is important to note that the fully extended output signal is necessary for
perfect reconstructability and cannot simply be shortened.

1.3.2 Boundary handling with boundary filters

All approaches to boundary handling discussed so far have amounted to continuing the
finite signal to an infinite signal in various ways. The boundary handling that we introduce
below is fundamentally different. It is not the signal that is adapted to the filters, but the
filters to the signal.
We do this by neglecting a property that all filters have implicitly had up to now: time

invariance. The matrix representation of the filters were Toeplitz matrices, i.e. they had
constant diagonal entries. They therefore filtered all parts of the signal equally. We now
want to adjust the filters at the edges of the signal in order to avoid boundary effects
despite the finite signal length. The adapted filters are no longer time-invariant; their
matrix representation will contain some modified rows.

The construction of the so-called Gram-Schmidt boundary filters discussed here follows
Blanke [Bla21] closely. Its contents is based on Herley and Vetterli [HV94], Jensen and la
Cour-Harbo [Jl01, section 10.3], and Strang and Nguyen [SN96, section 8.5].
The boundary filters also correspond to a wavelet basis. However, it is is not a basis of

𝐿2(ℝ) but of 𝐿2(𝐼) for an interval 𝐼. For details on this we also refer to Herley and Vetterli
[HV94].
As with signal continuation, our aim is to construct a finite matrix from the infinite

Block-Toeplitz matrixH𝑏 with which we can multiply a finite signal. However, we want
to avoid the problem of a signal length elongation and at the same time maintain the
orthogonality of the filter bank. We therefore want to construct a square, orthonormal
𝐿 × 𝐿 matrix H𝐿 for a signal of length 𝐿. For the construction, we require 𝐿 and the filter
length 𝑁 to be even and 𝐿 ≫ 𝑁.

The reason for the signal length elongation for extension techniques are the “incomplete”
rows at the top and bottom of the matrix. Therefore, our starting point is the 𝐿-column

3Alternative constructions are available for some variants like the periodic extension, mitigating this problem
[Jl01, section 10.4].

23

1 Foundations of wavelet theory

𝑡
0−1 1 2

(a) Boundary handling by padding with zeros.

𝑡
0−1 1 2

(b) Boundary handling by periodic extension.

𝑡
0−1 1 2

(c) Boundary handling by symmetric extension.

𝑡
0−1 1 2

(d) Boundary handling by extrapolation.

Figure 1.9: Four types of boundary handling of an example signal with bounded support.
The example signal is black, its extension red.

24

1.3 Handling signal boundaries for wavelets

matrix

Hin ≔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c(0) c(1) … … c(𝑁 − 2) c(𝑁 − 1)
d(0) d(1) … … d(𝑁 − 2) d(𝑁 − 1)

⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱
c(0) c(1) … … c(𝑁 − 2) c(𝑁 − 1)
d(0) d(1) … … d(𝑁 − 2) d(𝑁 − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (1.16)

which is obtained by extracting the 𝐿 columns of H𝑏 with complete rows. By selecting
only complete rowsHin is not a quadratic matrix.4 One can easily show thatHin consists of
(𝐿 − 𝑁 + 2) rows.

As the matrix Hin is obtained from an orthonormal filter bank we have

(Hin) ⋅ (Hin)𝑇 = I.

Thus, the rows ofHin form an orthonormal system. We now want to constructH𝐿 from
Hin by adding further rows at the top and bottom without breaking the orthonormality.
This is equivalent to completing the orthonormal system to an orthonormal basis of ℝ𝐿

which can easily be done using the Gram-Schmidt procedure on any basis completion. We
call the added rows boundary filters.

Lemma 1.35 (Herley and Vetterli [HV94]). LetHin as in (1.16) and x ∈ ℝ𝐿 with x orthogonal
to all rows ofHin. Then, all entries of x besides the outer 𝑁 − 2 entries are zero where 𝑁 denotes
the filter length.

Thus, applying the Gram-Schmidt procedure leads to boundary filters with non-zero
entries only on the signal boundary. However, we would prefer the boundary filters added
on top to only have entries on the left boundary and analogously for the filters added
at the bottom. To achieve this we start with a basis completion with non-zero entries on
only one of the signal ends. We choose our candidates from the rows of H̃𝑏 as defined in
equation (1.15). The inner rows of H̃𝑏 form Hin. Adding the next (𝑁 − 2)/2 rows on each
side yields the quadratic matrix

H = ⎡⎢
⎣

Hli
Hin
Hre

⎤⎥
⎦

∈ ℝ𝐿×𝐿,

where

Hli,Hre ∈ ℝ 𝑁−2
2 ×𝐿

are the rows added on top respectively on the bottom. By their construction only the first
or last 𝑁 − 2 entries of Hli and Hre can be non-zero, allowing us to write

Hli = [L 0] , Hre = [0 R] with 𝑁 − 2
2

× (𝑁 − 2) matrices L and R. (1.17)
4Besides the special case of Haar wavelets in whichHin already constitutes the transformation matrix we
want to construct.

25

1 Foundations of wavelet theory

Theorem 1.36 ([Bla21]). Let Hin as in (1.16), L and R as in (1.17). Furthermore, let L′ and
R′ be the orthonormalized rows of L respectively R, which are obtained using the Gram-Schmidt
procedure. Then,

⎡⎢
⎣

[L′ 0]
Hin

[0 R′]
⎤⎥
⎦

is an orthonormal 𝐿 × 𝐿 matrix.

We thus have constructed a procedure for the calculation of the boundary filters. One
can show that the runtime of this procedure is linear in the signal length if we assume the
filter length to be constant [Bla21].

26

2 Diffusion models

Diffusion models are a class of probabilistic generative models that allow sampling from
highly complex probabilty distributions, introduced by Sohl-Dickstein et al. [SWMG15]. At
the core of these models is a diffusion process that progressively morphs an input sample
into white noise. Diffusion models aim to reverse that process in order to sample from the
data distribution.

In this section wewill first introduce aMarkov chain based approach to diffusionmodels.
Then we will discuss a different ansatz based on stochastic differential equations, which
will turn out to be a generalization.

For the representation of diffusionmodels in this chapter, we followHo, Jain, and Abbeel
[HJA20] for the discrete-time case while the continuous-time case is based on Song et al.
[Son+21].

Definition 2.1 (Forward process). Let 𝑞 be the data probabilty distribution over ℝ𝑑 and
𝑇 > 0 a sufficiently large time horizon. Let 𝑝 be a well-behaved prior distribution, usually
𝑝 ≔ 𝒩(0, I). The forward process (x𝑡)𝑡∈𝒯 is an inhomogeneous Markov process that morphs
𝑞 into 𝑝, i.e. x0 ∼ 𝑞 and x𝑇 ∼ 𝑝. We denote its transition kernel as 𝑞(x𝑡 ∣ x𝑠) and its marginal
densities as 𝑞(x𝑡).
In the discrete-time case we have 𝒯 = {0, … , 𝑇 }. In the continuous-time case we set

𝒯 = [0, 𝑇] and require (x𝑡) to have almost surely continuous sample paths, i.e. we require
(x𝑡) to be a diffusion process.

Remark. The forward process is at the core of a diffusion model. Its role is to gradually
destroy structure in the signals. If we learn to reverse the forward process, we learn to
reconstruct this structure – the fundamental idea of diffusion models.
A visualization of a forward process is depicted in figure 2.1.

2.1 Diffusion models in discrete-time

There are two main formulations for diffusion models in discrete-time: denoising score
matching with Langevin dynamics (SMLD) [SE19] and denoising diffusion probabilistic
model (DDPM) [HJA20]. Bothmethods can be understood as score-based (cf. section 2.1.3)
and both can be generalized in a similar fashion in continuous-time, as discussed in
section 2.2. In this section we will introduce DDPMs.
A DDPMmodels both the forward process as well as its time reversal as discrete-time

Markov chains. The forward chain gradually adds Gaussian noise to the data according to
a fixed variance schedule 0 < 𝛽1, … , 𝛽𝑇 < 1. This leads to the transition kernel

𝑞(x𝑡 ∣ x𝑡−1) ≔ 𝒩(x𝑡; √1 − 𝛽𝑡x𝑡−1, 𝛽𝑡I), (2.1)

27

2 Diffusion models

Figure 2.1: Visualization of a one-dimensional forward process. Left: estimation of 𝑞(xt ∣ x0)
by generating 25000 sample paths with x0 = −5 on the left and x𝑇 on the right.
Right: Histogram of the generated samples x𝑇 (blue) and the standard Gaussian
density (orange). Inspired by Strümke and Langseth [SL23b].

or equivalently

x𝑡 = √1 − 𝛽𝑡x𝑡−1 + √𝛽𝑡𝝐𝑡 for 𝝐𝑡 ∼ 𝒩(0, I). (2.2)

Using the chain rule of probabilty and the Markov property yields

𝑞(x1, … , x𝑇 ∣ x0) =
𝑇

∏
𝑡=1

𝑞(x𝑡 ∣ x𝑡−1). (2.3)

Lemma 2.2 (Closed-form sampling of the forward process). Using 𝛼𝑡 ≔ 1 − 𝛽𝑡 and
̄𝛼𝑡 ≔ ∏𝑡

𝑠=1 𝛼𝑠 we have

𝑞(x𝑡 ∣ x0) = 𝒩(x𝑡; √ ̄𝛼𝑡x0, (1 − ̄𝛼𝑡)I) (2.4)

or equivalently with 𝝐 ∼ 𝒩(0, I)

x𝑡 = √ ̄𝛼𝑡x0 + √1 − ̄𝛼𝑡𝝐. (2.5)

Proof. We calculate using (2.3)

x𝑡 = √𝛼𝑡x𝑡−1 + √1 − 𝛼𝑡𝝐𝑡 = √𝛼𝑡𝛼𝑡−1x𝑡−2 + √(1 − 𝛼𝑡−1)𝛼𝑡𝝐𝑡−1 + √(1 − 𝛼𝑡)𝝐𝑡

= √𝛼𝑡𝛼𝑡−1x𝑡−2 + √(1 − 𝛼𝑡−1)𝛼𝑡 + (1 − 𝛼𝑡)𝝐𝑡−1

= √𝛼𝑡𝛼𝑡−1x𝑡−2 + √1 − 𝛼𝑡𝛼𝑡−1𝝐𝑡−1.

In the second step we used the fact that since 𝝐𝑡 and 𝝐𝑡−1 are independent and centered
Gaussians, their sum is a centered Gaussian as well with variance equal to the sum of the
variances of 𝝐𝑡 and 𝝐𝑡−1. Repeating this step yields the result.

28

2.1 Diffusion models in discrete-time

x0 … x𝑡−1 x𝑡 … x𝑇
𝑞(x𝑡 ∣ x𝑡−1)

𝑝𝜃(x𝑡−1 ∣ x𝑡)

Figure 2.2: Scheme of a DDPM [HJA20].

2.1.1 Learning to reverse the diffusion

Figure 2.2 shows the forward and backward Markov chain schematically. A central result
from Feller [Fel49], applied to this setting by Sohl-Dickstein et al. [SWMG15], allows us to
construct the reverse transitions:

Theorem 2.3 ([Fel49; SWMG15]). If all 𝛽𝑡 are chosen sufficiently small, then the reversal of the
diffusion process has the same functional form as the forward process and the reverse transitions
follow Gaussian distributions.

Thus, the goal of a DDPM is to estimate the parameters of the Gaussian reverse transition
kernel 𝑝𝜃:

𝑝𝜃(x𝑡−1 ∣ x𝑡) = 𝒩(x𝑡−1; 𝝁𝜃(x𝑡, 𝑡), 𝚺𝜃(x𝑡, 𝑡)). (2.6)

Following Ho, Jain, and Abbeel [HJA20], we set 𝚺𝜃(x𝑡, 𝑡) ≔ 𝜎2
𝑡 I with 𝜎2

𝑡 as fixed hyper-
parameters.1 The rest of this section is concerned with deriving the mean approximating
function 𝝁𝜃(x𝑡, 𝑡) in detail. The structure is based on Sohl-Dickstein et al. [SWMG15] and
Ho, Jain, and Abbeel [HJA20], some calculations are adapted from Strümke and Langseth
[SL23b].
Remark. In the definition of the forward process we defined the data distribution over ℝ𝑑,
i.e. over a continuous space. However, images as the application we are interested in are of
discrete nature, usually modeled with values in {0, 1, … , 255} or as quantized values in
the interval [−1, 1]. This can be addressed by introducing a discrete decoder bridging from
the continuous endpoint of the reverse process 𝒩(x0; 𝝁𝜃(x1, 1), 𝜎2

1I) to the discrete data
distribution 𝑞(x0). As the addition of the discrete decoder does not affect the simplified
loss function used in training we omit this detail here and refer to Ho, Jain, and Abbeel
[HJA20] instead.

To learn 𝝁𝜃(x𝑡, 𝑡) we aim to minimize the model’s negative log likelihood (NLL). How-
ever, as optimizing the log likelihood directly is generally intractable we introduce the
so-called evidence lower bound (ELBO) as our optimization target.

Lemma 2.4 (Evidence lower bound (ELBO)). We have

log 𝑝𝜃(x0) = ∫ 𝑞(x1∶𝑇 ∣ x0) log 𝑝𝜃(x0∶𝑇)
𝑞(x1∶𝑇 ∣ x0)

dx1∶𝑇
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝐿

+ DKL(𝑞(x1∶𝑇 ∣ x0) ∥ 𝑝𝜃(x1∶𝑇 ∣ x0))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≥0

(2.7)

1There are formulations that also train a model for the variances 𝚺𝜃(x𝑡, 𝑡) and incorporate this into the loss
function accordingly[ND21].

29

2 Diffusion models

where DKL(⋅ ‖ ⋅) denotes the Kullback-Leibler divergence (KL divergence) [KL51]. Thus, 𝐿 is a
lower bound on the log likelihood. This lower bound is called the evidence lower bound (ELBO).

Proof. We calculate

log 𝑝𝜃(x0) = ∫ 𝑞(x1∶𝑇 ∣ x0) log 𝑝𝜃(x0)dx1∶𝑇

= ∫ 𝑞(x1∶𝑇 ∣ x0) log[𝑝𝜃(x0∶𝑇)
𝑝𝜃(x1∶𝑇 ∣ x0)

𝑞(x1∶𝑇 ∣ x0)
𝑞(x1∶𝑇 ∣ x0)

]dx1∶𝑇

= ∫ 𝑞(x1∶𝑇 ∣ x0) log 𝑝𝜃(x0∶𝑇)
𝑞(x1∶𝑇 ∣ x0)

dx1∶𝑇 + ∫ 𝑞(x1∶𝑇 ∣ x0) log 𝑞(x1∶𝑇 ∣ x0)
𝑝𝜃(x1∶𝑇 ∣ x0)

dx1∶𝑇

= 𝐿 + DKL(𝑞(x1∶𝑇 ∣ x0) ∥ 𝑝𝜃(x1∶𝑇 ∣ x0))

Using the ELBO we can derive an upper bound on the negative log likelihood in our
setting:

Theorem 2.5. We can bound the negative log likelihood

− log 𝑝𝜃(x0) ≤ 𝐿𝑇 +
𝑇 −1
∑
𝑡=1

𝐿𝑡 − 𝐿0 (2.8)

with

𝐿𝑡 ≔ 𝔼𝑞(x𝑡+1∣x0)[DKL(𝑞(x𝑡 ∣ x𝑡+1, x0) ∥ 𝑝𝜃(x𝑡 ∣ x𝑡+1))] 𝑡 = 1, … , 𝑡 − 1, (2.9)

𝐿𝑇 ≔ DKL(𝑞(x𝑇 ∣ x0) ∥ 𝑝(x𝑇)), (2.10)

𝐿0 ≔ 𝔼𝑞(x1∣x0)[log 𝑝𝜃(x0 ∣ x1)]. (2.11)

Proof. Using 𝑞(x𝑡 ∣ x𝑡−1, x0) = 𝑞(x𝑡−1∣x𝑡,x0)𝑞(x𝑡∣x0)
𝑞(x𝑡−1∣x0) , theMarkov property of the forward process

and a telescope sum property, we first calculate

log 𝑝𝜃(x0∶𝑇)
𝑞(x1∶𝑇 ∣ x0)

= log[𝑝𝜃(x𝑇)
𝑇

∏
𝑡=1

𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡 ∣ x𝑡−1)

]

= log 𝑝𝜃(x𝑇) +
𝑇

∑
𝑡=1

log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡 ∣ x𝑡−1)

= log 𝑝𝜃(x𝑇) + log 𝑝𝜃(x0 ∣ x1)
𝑞(x1 ∣ x0)

+
𝑇

∑
𝑡=2

log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡 ∣ x𝑡−1, x0)

= log 𝑝𝜃(x𝑇) + log 𝑝𝜃(x0 ∣ x1)
𝑞(x1 ∣ x0)

+
𝑇

∑
𝑡=2

log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡−1 ∣ x𝑡, x0)

𝑞(x𝑡−1 ∣ x0)
𝑞(x𝑡 ∣ x0)

= log 𝑝𝜃(x𝑇)
𝑞(x𝑇 ∣ x0)

+ log 𝑝𝜃(x0 ∣ x1) +
𝑇

∑
𝑡=2

log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡−1 ∣ x𝑡, x0)

.

30

2.1 Diffusion models in discrete-time

Plugging this into the ELBO yields

− log 𝑝𝜃(x0) ≤ − ∫ 𝑞(x1∶𝑇 ∣ x0) log 𝑝𝜃(x0∶𝑇)
𝑞(x1∶𝑇 ∣ x0)

dx1∶𝑇

= − ∫ 𝑞(x1∶𝑇 ∣ x0)[log 𝑝𝜃(x𝑇)
𝑞(x𝑇 ∣ x0)

+ log 𝑝𝜃(x0 ∣ x1) +
𝑇

∑
𝑡=2

log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡−1 ∣ x𝑡, x0)

]dx1∶𝑇

= − ∫ 𝑞(x𝑇 ∣ x0) log 𝑝𝜃(x𝑇)
𝑞(x𝑇 ∣ x0)

dx𝑇 − ∫ 𝑞(x1 ∣ x0) log 𝑝𝜃(x0 ∣ x1)dx1

−
𝑇

∑
𝑡=2

∫ 𝑞(x𝑡−1, x𝑡 ∣ x0) log 𝑝𝜃(x𝑡−1 ∣ x𝑡)
𝑞(x𝑡−1 ∣ x𝑡, x0)

dx𝑡−1 dx𝑡

=
≕𝐿𝑇

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞DKL(𝑞(x𝑇 ∣ x0) ‖ 𝑝𝜃(x𝑇)) −

≕𝐿0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∫ 𝑞(x1 ∣ x0) log 𝑝𝜃(x0 ∣ x1)dx1

+
𝑇

∑
𝑡=2

∫ 𝑞(x𝑡 ∣ x0)DKL(𝑞(x𝑡−1 ∣ x𝑡, x0) ‖ 𝑝𝜃(x𝑡−1 ∣ x𝑡))dx𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐿𝑡−1

.

Remark. 𝐿𝑇 represents how close the result of the forward process is to our assumed prior
distribution 𝒩(0, I). As we fixed the variance schedule 𝛽𝑡 as hyperparameters this is a
constant which we ignore in training.
We will now show how we can reparametrize 𝐿𝑡 to formulate a simple loss function.

Lemma 2.6. We have

𝑞(x𝑡−1 ∣ x𝑡, x0) = 𝒩(x𝑡−1; 𝝁̃𝑡(x𝑡, x0), ̃𝛽𝑡I)

where

𝝁̃𝑡(x𝑡, x0) ≔
√

̄𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

x0 +
√𝛼𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡 and ̃𝛽𝑡 ≔ 1 − 𝛼𝑡−1

1 − 𝛼𝑡
𝛽𝑡. (2.12)

Proof. Using Bayes’ rule we calculate

𝑞(x𝑡−1 ∣ x𝑡, x0) = 𝑞(x𝑡−1 ∣ x0)𝑞(x𝑡 ∣ x𝑡−1, x0)
𝑞(x𝑡 ∣ x0)

Markov= 𝑞(x𝑡−1 ∣ x0)𝑞(x𝑡 ∣ x𝑡−1)
𝑞(x𝑡 ∣ x0)

.

All of these terms can be evaluated using equations (2.1) and (2.4).

Thus, all KL divergences in 𝐿𝑡 compare Gaussians and are tractable in close form ex-
pressions:

Lemma 2.7 ([Duc07]). Let 𝒩𝑎 ≔ 𝒩(𝝁𝑎, 𝚺𝑎) and 𝒩𝑏 ≔ 𝒩(𝝁𝑏, 𝚺𝑏) be 𝑑-dimensional multi-
variate Gaussian distributions. The KL divergence between both can be calculated as

DKL(𝒩𝑎 ‖ 𝒩𝑏) = 1
2

[log det𝚺𝑏
det𝚺𝑎

− 𝑑 + tr(𝚺−1
𝑏 𝚺𝑎) + (𝝁𝑏 − 𝝁𝑎)𝑇𝚺−1

𝑏 (𝝁𝑏 − 𝝁𝑎)] (2.13)

31

2 Diffusion models

Lemma 2.8. For 𝑡 = 2, … , 𝑡 we can reformulate 𝐿𝑡−1 as

𝐿𝑡−1 = 𝔼𝑞(x𝑡∣x0)[
1

2𝜎2
𝑡

∥𝝁̃𝑡(x𝑡, x0) − 𝝁𝜃(x𝑡, 𝑡)∥2] + 𝐶 (2.14)

where 𝐶 is a constant that does not depend on 𝜃.

Proof. The reverse kernel 𝑝𝜃(x𝑡−1 ∣ x𝑡) = 𝒩(x𝑡−1; 𝝁𝜃(x𝑡, 𝑡), 𝚺𝜃(x𝑡, 𝑡)) and the forward
posterior 𝑞(x𝑡−1 ∣ x𝑡, x0) = 𝒩(x𝑡−1; 𝝁̃𝑡(x𝑡, x0), ̃𝛽𝑡I) are both Gaussians (equation (2.6)
and lemma 2.6). We explicitly calculate their KL divergence:

DKL(𝑞(x𝑡−1 ∣ x𝑡, x0) ‖ 𝑝𝜃(x𝑡−1 ∣ x𝑡))

= 1
2𝜎2

𝑡
∥𝝁𝜃(x𝑡, 𝑡) − 𝝁̃𝑡(x𝑡, x0)∥2 + 1

2
[log det𝜎2

𝑡 I
det ̃𝛽𝑡I

− 𝑑 + 𝑑
̃𝛽𝑡

𝜎2
𝑡

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕𝐶

.

Lemma 2.8 offers a straightforward parametrization of 𝝁𝜃 as an approximation of the
mean of the forward process posterior 𝝁̃. Nevertheless, we continue by reparametrizing
x𝑡(x0, 𝝐) =

√
𝛼𝑡x0 +√1 − 𝛼𝑡𝝐 for 𝝐 ∼ 𝒩(0, I) using (2.5). Plugging this into equation (2.12)

yields

𝝁̃𝑡(x𝑡(x0, 𝝐), x0) = 𝝁̃𝑡(x𝑡(x0, 𝝐), 1√
𝛼𝑡

(x𝑡(x0, 𝝐) − √1 − 𝛼𝑡𝝐))

=
√

̄𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

1√
𝛼𝑡

(x𝑡(x0, 𝝐) − √1 − 𝛼𝑡𝝐) +
√𝛼𝑡(1 − 𝛼𝑡−1)

1 − 𝛼𝑡
x𝑡(x0, 𝝐)

= [𝛽𝑡
(1 − 𝛼𝑡)

√𝛼𝑡
+

√𝛼𝑡(1 − 𝛼𝑡−1)
1 − 𝛼𝑡

]x𝑡(x0, 𝝐) − 𝛽𝑡

√1 − 𝛼𝑡
√𝛼𝑡

𝝐

= [𝛽𝑡 + 𝛼𝑡 − 𝛼𝑡
(1 − 𝛼𝑡)

√𝛼𝑡
]x𝑡(x0, 𝝐) − 𝛽𝑡

√1 − 𝛼𝑡
√𝛼𝑡

𝝐

= 1
√𝛼𝑡

[x𝑡(x0, 𝝐) − 𝛽𝑡

√1 − 𝛼𝑡
𝝐]

This allows us to reformulate 𝐿𝑡−1 as follows:

𝐿𝑡−1 − 𝐶 = 𝔼x0,𝝐[1
2𝜎2

𝑡
∥ 1
√𝛼𝑡

(x𝑡(x0, 𝝐) − 𝛽𝑡

√1 − 𝛼𝑡
𝝐) − 𝝁𝜃(x𝑡(x0, 𝝐), 𝑡)∥

2

]. (2.15)

Thus, 𝝁𝜃(x𝑡, 𝑡) should predict 1√𝛼𝑡
(x𝑡 − 𝛽𝑡

√1−𝛼𝑡
𝝐). As x𝑡 is available to the model we can

choose to approximate the noise 𝝐 from x𝑡 instead using a noise prediction model 𝝐𝜃(x𝑡, 𝑡).
This leads to the parametrization

𝝁𝜃(x𝑡, 𝑡) = 1
√𝛼𝑡

(x𝑡 − 𝛽𝑡

√1 − 𝛼𝑡
𝝐𝜃(x𝑡, 𝑡)). (2.16)

If we apply this parametrization to (2.15) we get

𝐿𝑡−1 − 𝐶 = 𝔼x0,𝝐[𝛽2
𝑡

2𝜎2
𝑡 𝛼𝑡(1 − 𝛼𝑡)

∥𝝐 − 𝝐𝜃(√𝛼𝑡x0 + √1 − 𝛼𝑡𝝐, 𝑡)∥
2
]. (2.17)

32

2.1 Diffusion models in discrete-time

The formulation (2.17) of the loss function, i.e. learning a noise predictor 𝝐𝜃 and substracting
the predicted noise as the core of the reverse diffusion step (cf. equation (2.16)), lends
denoising diffusion probabilistic models their name.
Remark. The computations above can be repeated in a similar fashion for 𝐿0 using x0
instead of 𝝁̃(x𝑡, x0).

2.1.2 A simplified loss function and sampling from a DDPM

In the previous section we have derived that training a DDPM amounts to learning the
mean 𝝁𝜃(x𝑡, 𝑡) of the Gaussian reverse transition kernel. We have seen that this can be
either done directly by approximating the mean of the forward process posterior 𝝁̃ or by
learning predictor for the added white noise 𝝐. For both cases minimizing the ELBO of the
negative log likelihood corresponds to minimizing a weighted mean squared error loss.

Ho, Jain, and Abbeel [HJA20] found that training the noise predictor to be more stable in
practice. Additionally, they found training on an unweighted variant of the loss beneficial
to sample quality, i.e. to minimize

𝐿simple ≔ 𝔼𝑡,x0,𝝐[∥𝝐 − 𝝐𝜃(√𝛼𝑡x0 + √1 − 𝛼𝑡𝝐, 𝑡)∥
2
] (2.18)

with 𝑡 ∼ 𝒰({1, … , 𝑇 }). Besides simplicity the usage of an unweighted variant of the ELBO
is advantageous as the weighting term is large for small 𝑡. Removing these large weights
emphasizes timesteps with a larger amount of noise that are more difficult to denoise
[HJA20]. The resulting training algorithm for a DDPM is displayed in algorithm 1.

Algorithm 1 DDPM training [HJA20]
1: repeat
2: Draw x0 ∼ 𝑞.
3: Sample 𝑡 ∼ 𝒰({1, … , 𝑇 }).
4: Sample 𝝐 ∼ 𝒩(0, I).
5: Take a gradient descent step on ∇𝜃∥𝝐 − 𝝐𝜃(

√
𝛼𝑡x0 + √1 − 𝛼𝑡𝝐, 𝑡)∥2.

6: until converged

To sample from 𝑝𝜃(x𝑡−1 ∣ x𝑡)with a noise predictor 𝝐𝜃 we apply equations (2.6) and (2.16)
and have

x𝑡−1 = 1
√𝛼𝑡

(x𝑡 − 𝛽𝑡

√1 − 𝛼𝑡
𝝐𝜃(x𝑡, 𝑡)) + 𝜎𝑡z with z ∼ 𝒩(0, I).

Guided by experimental evaluation [ND21] we use 𝜎2
𝑡 = ̃𝛽𝑡 as defined in equation (2.12).

In the case of 𝑡 = 1, we follow Ho, Jain, and Abbeel [HJA20] and use the calculated mean
of the forward process posterior directly as our sample, skipping the addition of noise.
The resulting algorithm is displayed in algorithm 2.

However, this sampling procedure requires 𝑇 evaluations of 𝝐𝜃. As evaluating a large
deep learning model hundreds of times is very expensive, a major focus in research on

33

2 Diffusion models

Algorithm 2 DDPM full sampling [HJA20]
1: Sample x𝑇 ∼ 𝒩(0, I).
2: for 𝑡 = 𝑇 , … , 1 do
3: Set x𝑡−1 ← 1√𝛼𝑡

(x𝑡 − 𝛽𝑡
√1−𝛼𝑡

𝝐𝜃(x𝑡, 𝑡))
4: if 𝑡 > 1 then
5: Sample z ∼ 𝒩(0, I).

6: x𝑡−1 ← x𝑡−1 + √ ̃𝛽𝑡z.
7: end if
8: end for
9: return x0

diffusion models is reducing the cost of sampling, preferably without affecting the training
procedure [SME21; Lu+22; Rom+22; Jol+21].

A simple approach is to perform inference on a coarser variance schedule derived from
the variance schedule used in training [SME21; ND21]. Let (𝑆𝑘)𝑘=1,…,𝐾 for 𝐾 < 𝑇 be
an increasing subsequence of (1, … , 𝑇) of length 𝐾. We construct the sampling variance
schedule from the training noise schedule 𝛼𝑡 as

𝛽s
𝑘 ≔ 1 −

𝛼𝑆𝑘

𝛼𝑆𝑘−1

, ̃𝛽s
𝑘 ≔

1 − 𝛼𝑆𝑘−1

1 − 𝛼𝑆𝑘

𝛽s
𝑘

The sampling is done using this coarser schedule, which results in algorithm 3. Multiple
approaches to construct the subsequence (𝑆𝑘) are used in practice [LLLY24], e.g. dividing
the uniformly discretizing the interval [1, 𝑇] and rounding.

Algorithm 3 DDPM reduced step sampling [SME21; ND21]
Require: Number of inference steps 1 ≤ 𝐾 ≤ 𝑇.
1: Construct sampling timesteps (𝑆𝑘) of length 𝐾.
2: Sample x𝑆𝐾

∼ 𝒩(0, I).
3: for 𝑡 = 𝐾, … , 1 do
4: Set x𝑆𝑡−1

← 1
√1−𝛽s

𝑡
(x𝑆𝑡

− 𝛽s
𝑡

√1−𝛼𝑆𝑡

𝝐𝜃(x𝑆𝑡
, 𝑆𝑡))

5: if 𝑡 > 1 then
6: Sample z ∼ 𝒩(0, I).
7: x𝑆𝑡−1

← x𝑆𝑡−1
+ √ ̃𝛽s

𝑡z.
8: end if
9: end for
10: return x0

2.1.3 DDPM as a score-based model

We have seen that training a DDPM is done by optimizing the unweighted variational
bound 𝐿simple. Our interpretation in the previous sections of this goal is training a noise

34

2.1 Diffusion models in discrete-time

predictor to gradually reconstruct x0 by removing the predicted noise—a process that can
be described by “denoising”. In this section, will introduce a different interpretation of the
loss function, helping us in section 2.2 to generalize to continuous-time.

Definition 2.9 (Score). Let 𝑝 be the probability density of a distribution 𝒫. We call ∇x𝑡
log 𝑝

the score2 of the distribution 𝒫 where log denotes the natural logarithm.

If we now calculate the score of 𝑞(x𝑡 ∣ x0) of a DDPM using (2.4), we get

−∇x𝑡
log 𝑞(x𝑡 ∣ x0) = ∇x𝑡

‖x𝑡 −
√

𝛼𝑡x0‖2

2(1 − 𝛼𝑡)
= x𝑡 −

√
̄𝛼𝑡x0

1 − 𝛼𝑡

(2.5)
= 1

√1 − 𝛼𝑡
𝝐.

Hence, the reparametrization equation (2.18) can also be interpreted as

𝐿simple = 𝔼𝑡,x0,𝝐[∥𝝐 − 𝝐𝜃(√𝛼𝑡x0 +
√

1 − 𝛼𝝐, 𝑡)∥
2
]

= 𝔼𝑡,x0,𝑞(x𝑡∣x0)[(1 − 𝛼𝑡)∥∇x𝑡
log 𝑞(x𝑡 ∣ x0) − s𝜃(x𝑡, 𝑡)∥

2
]

(2.19)

with s𝜃(x𝑡, 𝑡) ≔ −√1 − 𝛼𝑡𝝐𝜃(x𝑡, 𝑡).
We can therefore view the optimization goal as estimating the score function. Models

with this goal are called score-based [SE19]. The particular formulation of the score esti-
mation is known as denoising score matching [Vin11] which builds a bridge between the
denoising task we have considered so far and score estimations. There are other score
estimation techniques available that can be used instead [HD05; Vin11; SGSE20].

2.1.4 Taking the time horizon to infinity

The noise schedule in the construction of a DDPM depends implicitly on the choice of the
time horizon 𝑇. The larger we choose 𝑇 and the more diffusion steps we thus make, the
smaller the variance of the added noise 𝛽𝑡 must be. Expanding the time horizon 𝑇 leads
to improvements in practice while also increasing the required amount of compute effort
[ND21]. We are interested in the result of making infinitesimal small steps in the Markov
chain. We sketch a derivation based on Song et al. [Son+21].
We consider the forward transition kernels equation (2.2)

x𝑡 = √1 − 𝛽𝑡x𝑡−1 + √𝛽𝑡z𝑡−1 for z𝑡−1 ∼ 𝒩(0, I).

First, we define an auxillary variance schedule ̂𝛽(𝑇)
𝑖 ≔ 𝑇 𝛽(𝑇)

𝑖 where the superscript denotes
that ̂𝛽(𝑇) is defined with respect to a variance schedule for time horizon 𝑇. We assume that
𝛽(𝑇)

𝑖 were constructed by uniformly discretizing a sufficiently regular variance schedule
function 𝛽∶ [0, 1] → [0, 1], i.e.

𝛽(𝑖
𝑇

) = ̂𝛽(𝑇)
𝑖 for all 𝑇 > 0.

2Note that in context of diffusion models the score is defined contrary to statistics, where the gradient w.r.t.
the model parameters is used.

35

2 Diffusion models

For a given timescale 𝑇, let Δ𝑡 ≔ 𝑇 −1 and x, z be functions over [0, 1] with

x(𝑖Δ𝑡) = x𝑖 and z(𝑖Δ𝑡) = z𝑖.

Now, inserting this into equation (2.2) and doing a Taylor approximation yields

x(𝑡 + Δ𝑡) = √1 − 𝛽(𝑡 + Δ𝑡)Δ𝑡x(𝑡) + √𝛽(𝑡 + Δ𝑡)Δ𝑡z(𝑡)

= x(𝑡) − 1
2

𝛽(𝑡 + Δ𝑡)Δ𝑡x(𝑡) + √𝛽(𝑡 + Δ𝑡)Δ𝑡z(𝑡) + 𝒪(Δ𝑡)

= x(𝑡) − 1
2

𝛽(𝑡)Δ𝑡x(𝑡) + √𝛽(𝑡)Δ𝑡z(𝑡) + 𝒪(Δ𝑡)

Rearanging the terms leads to the difference quotient

x(𝑡 + Δ𝑡) − 𝑥(x(𝑡))
Δ𝑡

= −1
2

𝛽(𝑡)x(𝑡) + √𝛽(𝑡) z(𝑡)√
Δ𝑡

+ 𝒪(Δ𝑡)
Δ𝑡

which results in the following SDE for Δ𝑡 → 0:

dx = −1
2

𝛽(𝑡)xd𝑡 + √𝛽(𝑡)dw (VP SDE)

where w denotes a Wiener process.
Remark. The calculation shows that DDPMs can be regarded as a discretization of a SDE
using a Euler-Maruyama scheme [KP92]. We call the SDE variance preserving (VP) as its
solution has a constant unit variance if x(0) has unit variance [Son+21].

2.2 Diffusion models in continuous-time

In the previous section we have seen that DDPMs can be understood as a discretization of
a particular stochastic differential equation (SDE). The goal of this section is to introduce
a more general framework for this notion based on Song et al. [Son+21].

Recalling definition 2.1, the forward diffusion process in continuous-time is defined as
{x𝑡}𝑇

𝑡=0 with x0 ∼ 𝑞, x𝑇 ∼ 𝒩(0, I) and almost surely continuous sample paths. We now
model x as the solution of an Itô SDE

dx = f(x𝑡, 𝑡)d𝑡 + 𝑔(𝑡)dw (2.20)

wherew is the standard Wiener process, f(⋅, 𝑡) ∶ ℝ𝑑 → ℝ𝑑 the so-called drift coefficient of
x𝑡 and 𝑔∶ ℝ → ℝ a scalar-valued function called diffusion coefficient of x𝑡.3 This SDE has a
unique strong solution in both state and time if the coefficients are globally Lipschitz in
both state and time [Øks03, Theorem 5.2.1].

Example 2.10 (VP forward SDE). The (VP SDE) can be described in this framework with

f(x𝑡, 𝑡) = −1
2

𝛽(𝑡)x𝑡, 𝑔(𝑡) = √𝛽(𝑡).
3The framework can be extended tomatrix-valued diffusion functions aswell as diffusion functions depending
on x [Son+21].

36

2.2 Diffusion models in continuous-time

Example 2.11 (VE forward SDE). In section 2.1 we introduced DDPMs, one of the two
main formulations of diffusion models in discrete-time, and associated it to the (VP SDE).
The other formulation, denoising score matching with Langevin dynamics (SMLD) [SE19],
can be associated to a SDE as well, the so-called variance exploding (VE) SDE [Son+21]. In
the continuous-time diffusion model framework, the VE SDE can be described as

dx = √d[𝜎2(𝑡)]
d𝑡

dw (VE SDE)

for an increasing noise schedule 𝜎∶ [0, 𝑇] → ℝ+. The name of the VE SDE stems from the
fact that it always yields a process with exploding variance when 𝑡 → ∞ [Son+21].

A central result by Anderson [And82] allows us to construct the reverse stochastic
process, playing the role of theorem 2.3 in continuous-time:

Theorem 2.12 ([And82]). The reversal of a diffusion process is also a diffusion process given by
the reverse-time SDE:

dx = [f(x𝑡, 𝑡) − 𝑔(𝑡)2∇x𝑡
log 𝑞(x𝑡)]d𝑡 + 𝑔(𝑡)d ̄w. (2.21)

with ̄w reverse-time Wiener process and d𝑡 negative timestep.

Given a model to estimate the score of the marginal distribution, we can thus sample
from the diffusion model by simulating the SDE (2.21).

The score function can be estimated using denoised scorematching [Vin11], an approach
we have encountered in section 2.1.3. To estimate the score function ∇x𝑡

log 𝑞(x𝑡) we train
a time-dependent score-based model s𝜃(x, 𝑡) to minimize

𝔼𝑡,x0,𝑞(x𝑡∣x0)[𝜆(𝑡)∥s𝜃(x𝑡, 𝑡) − ∇x𝑡
log 𝑞(x𝑡 ∣ x0)∥

2
] (2.22)

with 𝑡 ∼ 𝒰([0, 𝑇]) and 𝜆∶ [0, 𝑇] → ℝ>0 a weighting function. Equation (2.22) can be
considered a continuous generalization of equation (2.19) with

𝜆 ∝ 1
𝔼[‖∇x𝑡

log 𝑞(x𝑡 ∣ x0)‖2]
.

To evaluate equation (2.22) we typically need to know the transition kernel 𝑞(x𝑡 ∣ x0).
When 𝑓(⋅, 𝑡) is affine, the transition kernel is a Gaussian which parameters can often be
obtained in closed form [Son+21].

Example 2.13 (VP reverse SDE). The reversal of the (VP SDE) is

dx = [−1
2

𝛽(𝑡)x𝑡 − 𝛽(𝑡)∇x𝑡
log 𝑞(x𝑡)]d𝑡 + √𝛽(𝑡)dw̄. (2.23)

As the drift is an affine function,we can calculate the transition kernel in closed form [Son+21]:

𝑞(x𝑡 ∣ x0) = 𝒩(x𝑡; x0 exp(−1
2

∫
𝑡

0
𝛽(𝑠)d𝑠), (1 − exp(− ∫

𝑡

0
𝛽(𝑠)d𝑠))I). (2.24)

37

2 Diffusion models

2.2.1 Sampling from continuous-time diffusion models

Sampling from continuous-time diffusion model is done by solving the reverse SDE (2.21).
This allows for a variety of choices regarding the solver. Using a simple Euler-Maruyama
solver for the (VP SDE) leads to DDPMs as discussed in section 2.1.4. We also have a
multitude of general purpose SDE solvers available, e.g. stochastic Runge-Kutta methods
[KP92].

To improve on general purpose solvers Song et al. [Son+21] propose so-called predictor-
corrector samplers. The general purpose numerical solvers acts as a predictor, proposing
an estimate of the sample at the next timestep. Using the information that we use a score-
based model s𝜃(x, 𝑡), we can employ score-based Markov chain Monte-Carlo approaches
to directly sample from 𝑞(x𝑡)[Par81; GM94] and correct the sample from the numerical
solver.
Another approach considers a deterministic ordinary differential equation (ODE) that

matches the marginals of the SDE at each timestep instead:

dx = [f(x𝑡, 𝑡) − 1
2

𝑔(𝑡)2∇x𝑡
log 𝑞(x𝑡)]d𝑡.

This ODE is called the probability flow ODE [Son+21]. Solving it allows us to deterministi-
cally map noise vectors x𝑇 ∼ 𝒩(0, I) to samples x0 from the data distribution 𝑞. In case of
a time-dependent score-based model s𝜃(x, 𝑡) the probability flow ODE is an instance of a
neural ODE [CRBD18], allowing to deploy various solvers [Kid21].

2.3 Choosing the noise schedule

An important detail in the design of diffusion models is the choice of the noise schedule
which governs the interpolation between the input sample x0 and white noise 𝝐 at 𝑥𝑇.
The noise schedule determines how much information of the input sample is available
at intermediate timesteps 𝑡, deciding how fast the structure is destroyed in the forward
diffusion. In practice the choice of the noise schedule has high effect on the performance of
a diffusion model [ND21].
There are two main ways to parametrize a noise schedule in discrete time. Either by

choosing the variance schedule 𝛽𝑡 of the transition kernels or by choosing the paramters 𝛼𝑡
used in the closed-form sampling of the forward process equation (2.4). Both can derived
from the other as

𝛽𝑡 = 1 − 𝛼𝑡
𝛼𝑡−1

with 𝛼0 = 1 and 𝛼𝑡 =
𝑡

∏
𝑠=1

(1 − 𝛽𝑠).

To ensure x0 ∼ 𝑞 and x𝑇 ∼ 𝒩(0, I), we require 𝛼0 ≈ 1 and 𝛼𝑇 ≈ 0.
Ho, Jain, and Abbeel [HJA20] propose to derive a noise schedule for DDPMs by linear

interpolation between fixed 𝛽1 and 𝛽𝑇. For 𝑇 = 1000 they choose 𝛽1 = 10−4 and 𝛽𝑇 = 0.02.
The resulting values of 𝛼𝑡 are depicted in figure 2.3 together with further noise schedules.

Nichol andDhariwal [ND21] observed that for this linear schedule𝛼𝑡 was approximately
zero for the last 20% of timesteps, making this part of the reverse process an ineffecient

38

2.3 Choosing the noise schedule

use of compute. To address this Nichol and Dhariwal [ND21] propose the so called cosine
schedule, parametrizing 𝛼𝑡 directly:

𝛼𝑡 = 𝑓(𝑡)
𝑓(0)

, 𝑓(𝑡) ≔ cos(𝑡/𝑇 + 𝑠
1 + 𝑠

⋅ 𝜋
2

)
2

(2.25)

where 𝑠 = 0.008 is an offset value introduced to improve training stability for small 𝑡.
In case of a discretization of a continuous-time diffusion model with an affine drift

function, the implicitely used noise schedule can be derived from the forward transition
kernel. For the (VP SDE) this yields

𝛼𝑘 = exp(− ∫
𝑡𝑘

0
𝛽(𝑠)d𝑠)

where {𝑡𝑘}𝐾
𝑘=1 is a discretization of [0, 𝑇].

Figure 2.3: ̄𝛼𝑡 during the forward diffusion process for a linear schedule[HJA20], a cosine
schedule[ND21] and an exponential schedulewith quadratic timestep sampling
with 𝑇 = 5 [GCDM22] for 1000 timesteps each. The curves for the cosine
schedule and the exponential schedule lie on top of each other.

A particular instance of the (VP SDE) used in the next chapter uses 𝛽 ≡ 2 together with
a quadratic discretization, i.e.

𝑡𝑘 = (𝑘
𝐾

)
2

𝑇

In this case, we have

𝛼𝑘 = e−2𝑘2𝑇 𝐾−2 and 𝛽𝑘 = 1 − e−2𝑇 𝐾−2[𝑘2−(𝑘−1)2] = 1 − e−2𝑇 𝐾−2(2𝑘−1).

39

2 Diffusion models

Using the identity 1 − e−𝑧 ≈ 𝑧 for small 𝑧, we get 𝛽𝑘 ≈ 2𝑇2𝑘−1
𝐾2 which for 𝐾 = 1000

and 𝑇 = 5 approximately corresponds to the linear schedule [HJA20] as can be seen in
figure 2.3.

40

3 Wavelets for diffusion models

Diffusion models have shown remarkable success in generating high-fidelity images. Ar-
chitecturally, they are built around a score-based model s𝜃 approximating the score of a
marginal distribution. As we use denoising score matching for the score approximation
(cf. section 2.1.3) the model is a noise predictor.

Wavelet representations have a long standing track record in signal processing. They have
been used successfully for denoising in the context of classical signal processing [SN96]
as well as in model approaches [HD22; Tia+23], motivating their use for denoising score
matching. In the context of deep learning architectures, wavelets see increasingly frequent
use, e.g. in image colorization [Li+23], image superresolution [HHST17;Mos+23; SSLZ23],
image enhancement [Liu+20; Jia+23; Hua+23] and video enhancement [Wan+20], style
transfer [Yoo+19] and generative image models [Zha+22; GHBC21; GCDM22; PDT23;
VWG23; Yua+23; YZFW23]. To explain the widespread adoption of UNets [RFB15] as the
backbone of diffusion models Williams et al. [Wil+23] show that a representation in the
Haar wavelet basis is learned through maxpooling layers which leads to a good inductive
bias.

For diffusion models alike other generative image models such as generative adversarial
networks (GANs) [Goo+14], discrepencies in capturing the spectral data distributions
are reported [DKK20; WBHG22; Fra+20; GHBC21; Rah+19]. In particular, DDPMs have
been observed to be biased towards the dominant frequency bands of the data distribution
leading to defects in the recovery of high frequencies, especially for DDPMs with a small
backbonemodel [YZFW23]. This frequency biasmotivates the use of signal representations
in the spectral domain, e.g. using a DWT or WPT.
One idea to address the frequency bias is to run the diffusion process in wavelet space

instead of pixel space, learning the structure of frequency bands directly. To that end the
data distribution x0 ∼ 𝑞 is reformulated over wavelet coefficient space and the forward
process corrupts the wavelet coefficients instead of the image pixels. To sample new images,
new wavelet coefficients are generated and reassembled using the iFWT. Multiple variants
of this approach have been examined: Yuan et al. [Yua+23] generate all coefficients of a
single level Haar wavelet transform and observe increased image quality. Phung, Dao, and
Tran [PDT23] also uses the single level Haar wavelet transform, focussing on reducing the
inference time while retaining high image quality as applying the wavelet transformation
halves the spatial dimensions. Training diffusion models on the low-frequency coefficients
of multilevel Haar wavelet transforms have been used in related tasks like image restoration
[Hua+23] and image enhancement [Jia+23].
These results limit the generated wavelet coefficients to one decomposition level and

are thus no multiscale approach However, using multiple scales in diffusion models has
been found to be advantagous, e.g. in so-called cascaded diffusion models [Sah+22; Ho+22a]
that successively sample images of a higher resolution, conditioned on the generated

41

3 Wavelets for diffusion models

image from the previous resolution. While not using wavelets explicitely this approach is
closely related to a multiscale wavelet approach successively generating the low-frequency
coefficients.
In section 3.1 we introduce an approach that uses a multiscale wavelet approach that

successively generates the high-frequency coefficients conditioned on the previous level low-
frequency coefficients, based on Guth et al. [GCDM22]. As we will discuss, this offers
provable advantages for multiscale Gaussian processes which in practice also extend to
image synthesis.
In addition to the change of domains, wavelets are used to improve the noise estima-

tion backbone of a diffusion model, either in the wavelet domain [PDT23; Yua+23] or
by including the wavelet transform into the archtitecure also in pixel domain [YZFW23].
Furthermore, wavelets are used to adapt the loss function, e.g. to improve training conver-
gence [PDT23] or to address the spectral bias [VWG23]. In section 3.2 we will introduce
one approach of using the wavelet domain structure in the noise estimation and propose
an extension using the WPT.

3.1 Multiscale diffusion models in the wavelet domain

We consider the continuous-time diffusion model determined by the Itô SDE

dx = −xd𝑡 +
√

2dw (3.1)

which we recognize as the (VP SDE) with 𝛽 ≡ 2. Using equation (2.24) we get that the
solution is the Ornstein-Uhlenbeck process [SL23a]:

x = e−𝑡x0 +
√

1 − e−2𝑡z for z ∼ 𝒩(0, I).

Sampling from this diffusion model is done by solving the reverse SDE (2.23):

dx = −[x + 2∇x𝑡
log 𝑞(x𝑡)]d𝑡 +

√
2dw̄

with a negative infinitesimal timestep d𝑡 and a reverse Wiener process w̄. Given a score-
approximating model s(x𝑡, 𝑡) ≈ ∇x𝑡

log 𝑞(x𝑡), we can approximate the SDE by discretizing
at times {𝑡𝑘}𝑁

𝑘=0 with 𝑡𝑁 = 𝑇 and 𝑡0 = 0 and a stepsize 𝛿𝑘 ≔ 𝑡𝑘 − 𝑡𝑘−1:

x̃𝑡𝑘−1
= ̃x𝑡𝑘

+𝛿𝑘[x̃𝑡𝑘
+s(x̃𝑡𝑘

, 𝑡𝑘)]+√2𝛿𝑘𝝐𝑘 with 𝝐𝑘 ∼ 𝒩(0, I) and ̃x𝑇 ∼ 𝒩(0, I). (3.2)

In the following, we will ignore the approximation error of the score, i.e. we assume
s(x𝑡, 𝑡) = ∇x𝑡

log 𝑞(x𝑡).

3.1.1 Discretization error and score regularity

We are interested how the regularity of the score function ∇x𝑡
log 𝑞(x𝑡) affects the dis-

cretization ̃x. Denoting the distribution of the sampled images ̃x0 as ̃𝑞, we thus look for a
bound of the distance between ̃𝑞 and the data distribution 𝑞 as function of the score.

42

3.1 Multiscale diffusion models in the wavelet domain

First, we consider the simple case of a Gaussian data distribution x0 ∼ 𝒩(0, 𝚺) in 𝑑
dimensions. Let 𝜅 be the condition of the covariance matrix 𝚺. Assuming a normalized
signal energy, i.e. tr𝚺 = 𝑑, and a uniform discretization with 𝛿𝑘 = 𝛿 Guth et al. [GCDM22,
Theorem 1] show that

DKL(𝑞 ‖ ̃𝑞) ≤ 𝐸𝑇 + 𝐸𝛿 + 𝐸𝑇 ,𝛿

with the following error terms: 𝐸𝑇 stemming from the mismatch between x𝑇 and ̃x𝑇, 𝐸𝛿
representing the error through the time discretization and 𝐸𝑇 ,𝛿 a higher-order term with
𝐸𝑇 ,𝛿 = 𝒪(𝛿 + e−4𝑇) when 𝛿 → 0 and 𝑇 → ∞. Importantly, for any approximation error
𝜀 > 0 there exists 𝑇 , 𝛿 ≥ 0 such that

𝐸𝑇 + 𝐸𝛿
𝑑

≤ 𝜀 and 𝑇 /𝛿 ≤ 𝐶𝜀−2𝜅3

with 𝐶 ≥ 0 a constant. This gives us a direct bound on the number of time steps 𝑁 = 𝑇 /𝛿
necessary to achieve a fixed error depending on the condition 𝜅 of the covariance matrix.
If 𝜅 increases we can thus expect the necessary number of timesteps to follow suit. Guth
et al. [GCDM22, Theorem 2] also extend this result to non-Gaussian processes, relating
the bound on the discretization error on the regularity of the score function. As the bound
on the discretization error is determined by the condition 𝜅 in the Gaussian case, Guth
et al. [GCDM22] conjecture for non-Gaussian processes that an ill-conditioned covariance
matrix requires a high number of discretization steps to reach a small discretization error.
Natural images contain a wide range of frequency bands as they contain high-level

structures as well as fine details. Their power spectrum is often modeled to follow a power
law decay [GCDM22]

𝑃(𝜔) ∼ (𝜉𝜂 + |𝜔|)−1

with 𝜂 = 1 and 𝜂 ≈ 2𝜋/𝐿 for 𝐿 × 𝐿 images. The score of the resulting process is not
well-conditioned [GCDM22].

3.1.2 Preconditioning through normalized wavelet coefficients

As we have seen in the previous section the number of discretization steps necessary
depends on the condition of the covariancematrix.Wewill now show that using normalized
wavelet coefficients acts as a preconditioner, thus lowering the bound on the number of
timesteps. We will focus on the case of quadratic 2d images but more general formulations
are possible [GCDM22].

Let L andB be the subsampled convolutional operators of the 2d FWT for an orthonormal
wavelet and L𝑇,B𝑇 their inverse counterparts. The FWT is applied to an 𝐿×𝐿 input image x,
successively decomposing the signal into a low-frequency component with (2−𝑗𝐿)2 entries
and three high-frequency components of the same size. We denote the normalized low-
frequency component on level 𝑗 with 2𝑗−1 ≥ 1 as x𝑗 with x0 = x and the corresponding
normalized detail coefficients as x̄𝑗. We calculate x𝑗 and ̄x𝑗 as

x𝑗 = 𝛾−1
𝑗 Lx𝑗−1 and ̄x𝑗 = 𝛾−1

𝑗 Bx𝑗−1.

43

3 Wavelets for diffusion models

Note that x𝑗 and ̄x𝑗 differ from the regular FWT by the inclusion of a normalization factor
𝛾𝑗 guaranteeing that 𝔼[‖ ̄𝑥𝑗‖2] = 3(2−𝑗𝐿)2. The decomposition is calculated for 𝐽 levels
where typically 𝐽 ≈ log

2
𝐿.

Figure 3.1: Scheme of a wavelet score-based generative model (WSGM) [GCDM22].

Definition 3.1 (Conditional wavelet renormalization, [GCDM22]). The conditional wavelet
renormalization of a data distribution x ∼ 𝑞 is a factorization into conditional probabilities
over normalized wavelet coefficients:

𝑞(x) = 𝛼𝑞𝐽(x𝐽)
𝐽

∏
𝑗=1

̄𝑞𝑗(̄x𝑗 ∣ x𝑗) (3.3)

where the scalar 𝛼 depends on the normalization factors 𝛾𝑗.

If 𝑞(x) is a distribution over image data, typically 𝑞 is highly non-Gaussian as are ̄𝑞𝑗(̄x𝑗)
due to the sparse nature of wavelet detail coefficients. However, it has been observed that
the conditional distrbutions ̄𝑞𝑗(̄x𝑗) are much closer to Gaussians [WS99]. Furthermore,
the normalized wavelet coefficients ̄x𝑗 have a white spectrum by choice of normalization.
Therefore, ̄𝑞𝑗(̄x𝑗 ∣ x𝑗) should be closer to a white Gaussian distribution, leading to a well-
conditioned covariance matrix. This allows us to use fewer discretization steps if to sample
from ̄𝑞𝑗(̄x𝑗 ∣ x𝑗).
The coefficient x𝐽 of the largest scale 𝐽 is the result of repeated applications of a low-

pass filter. We can consider low-pass filtering as averaging (cf. section 1.1.3). Hence, x𝐽
is close to Gaussian if the image x has independent structures [GCDM22]. Note that in

44

3.1 Multiscale diffusion models in the wavelet domain

practice this does not hold, as we stop the FWT early to avoid the domination of boundary
effects. Nevertheless, in theory equation (3.3) gives us a factorization of 𝑞 into a product of
distributions that are all close to Gaussian.

A wavelet score-based generative model (WSGM) [GCDM22] embraces this notion by
successively sampling from all factors of (3.3). First, an unconditional diffusion model is
used to sample x𝐽. Then, conditional diffusion models successively sample ̄x𝑗 conditioned
on the previously generated x𝑗. We apply the normalized iFWT to construct x𝑗−1 from x𝑗
and x̄𝑗.
For each scale 𝑗 ≤ 𝐽, we define the forward processes as

dx̄𝑗 = −x̄𝑗 d𝑡 +
√

2dw̄𝑗 and dx𝐽 = −x𝐽 d𝑡 +
√

2dw𝐽 (3.4)

where w̄𝑗 andw𝐽 are Wiener processes. For each forward process we train a score-based
model to approximate the score of the marginals of the forward processes, i.e.

s𝜃,𝐽(x𝐽,𝑡, 𝑡) ≈ ∇x𝐽,𝑡
log 𝑞(x𝐽,𝑡) and ̄s𝜃,𝑗(̄x𝑗,𝑡, 𝑡, x𝑗) ≈ ∇x̄𝑗,𝑡

log 𝑞(̄x𝑗,𝑡 ∣ x𝑗).

To sample we adapt the discretization (3.2). First, x𝐽 is sampled unconditionally using

x𝐽,𝑡𝐽,𝑘−1
= x𝐽,𝑡𝐽,𝑘

+𝛿𝐽,𝑘[x𝐽,𝑡𝐽,𝑘
+s𝜃,𝐽(x𝐽,𝑡𝐽,𝑘

, 𝑡𝐽,𝑘)]+√2𝛿𝐽,𝑘𝝐𝐽,𝑘 with 𝝐𝐽,𝑘, x𝐽,𝑇 ∼ 𝒩(0, I).

Starting at 𝑗 = 𝐽, we successively sample x̄𝑗 conditioned on x𝑗:

x̄𝑗,𝑡𝑗,𝑘−1
= x̄𝑗,𝑡𝑗,𝑘

+𝛿𝑗,𝑘[̄x𝑗,𝑡𝑗,𝑘
+s𝜃,𝑗(̄x𝑗,𝑡𝑗,𝑘

, 𝑡𝑗,𝑘, x𝑗)]+√2𝛿𝑗,𝑘𝝐𝑗,𝑘 with 𝝐𝑗,𝑘, x̄𝑗,𝑇 ∼ 𝒩(0, I)

and apply the normalized iFWT to calculate

x𝑗−1 = 𝛾𝑗L𝑇x𝑗 + 𝛾𝑗B𝑇x̄𝑗.

An illustration of WSGMs can be found in figure 3.1. The pseudocode for training a WSGM
and sampling from it is given in algorithms 4 and 5. Using a similar reasoning as in the
runtime analysis of the FWT one can show that the asymptotic complexity of WSGMs is
𝒪(𝑁𝐿2) for 𝐿 × 𝐿 images.

As we have discussed, due to the whitening of the normalization and the conditioning
on the low-frequency coefficients, we expect the necessary number of discretization steps
to reach an error 𝜀 to be significantly smaller for WSGMs compared to a standard diffusion
model. Guth et al. [GCDM22] have proved this for Gaussian processes if a constant
discretization step size 𝛿 is used for all scales. In particular, they have shown that the
normalization of wavelet coefficients performs a preconditioning of the covariance, whose
eigenvalues then remain of the order of 1. As a consequence, the number of discretization
steps necessary to reach an error 𝜀 for WSGMs is independent of the size of the generated
images.

Theorem 3.2 ([GCDM22]). Let x be a Gaussian stationary process of power spectrum 𝑃(𝜔) =
𝑐(𝜉𝜂 + |𝜔|𝜂)−1 with 𝜂, 𝜉 > 0. If the wavelet has a compact support, 𝑞 ≥ 𝜂 vanishing moments and
is 𝐶𝑞 then the first-order terms 𝐸𝑇 and 𝐸𝛿 in the sampling error of WSGM DKL(𝑞 ‖ ̃𝑞) are such
that for any 𝜀 > 0, there exists 𝐶 > 0 such that for any 𝛿, 𝑇:

(1/𝑑)(𝐸𝑇 + 𝐸𝛿) ≤ 𝜀 and 𝑁 = 𝑇 /𝛿 ≤ 𝐶𝜀−2.

45

3 Wavelets for diffusion models

Remark. All wavelets of the Daubechies family with a length of 𝑁 = 2𝑞 have 𝑞 vanishing
moments. In particular, the Haar wavelet has only one vanishing moment. Since for the
power spectrum of natural images we usually have 𝜂 = 2 [GCDM22], the conditions are
fulfilled for all wavelets of the Daubechies wavelet family except the Haar wavelet.
Remark. WSGMs can be considered as a cascaded diffusion model [Sah+22; Ho+22a] as
multiple diffusion models are used in a cascaded fashion, generating increasingly larger
images. However, the wavelet analogue of other cascaded diffusion model approaches is
to sample from 𝑞(x𝑗+1 ∣ x𝑗). Sampling from 𝑞(̄x𝑗 ∣ x𝑗) allows us to explicitely exploit the
preconditioning discussed above.

Algorithm 4WSGM training [GCDM22]
Require: Training data {x𝑚

0 }𝑀
𝑚=1, normalization .

1: for 𝑗 ∈ {1, … , 𝐽} do
2: for 𝑚 ∈ {1, … , 𝑀} do
3: x𝑚

𝑗 , ̄x𝑚
𝑗 ← FWT(x𝑚

𝑗−1). ▷ Wavelet transform the dataset
4: end for
5: Calculate normalization factor 𝛾𝑗.
6: end for
7: for 𝑗 ∈ {𝐽, … , 1} do ▷ Can be run in parallel
8: repeat
9: Draw (x𝑗, x̄𝑗,0) from {(x𝑚

𝑗 , x̄𝑚
𝑗)}𝑀

𝑚=1.
10: Sample 𝑡 from [0, 𝑇].
11: Sample 𝝐 ∼ 𝒩(0, I).
12: x̄𝑗,𝑡 ← e−𝑡𝛾−1

𝑗 ̄x𝑗,0 +
√

1 − e−2𝑡𝝐.
13: Take a gradient step on ∇ ̄𝜃𝑗

‖𝝐 − s̄ ̄𝜃𝑗
(x̄𝑗,𝑡, 𝑡 ∣ 𝛾−1

𝑗 x𝑗)‖2.
14: until converged
15: end for

Algorithm 5WSGM sampling [GCDM22]
1: 𝑥𝐽 ← unconditional_sample(𝑇 , 𝑁, 𝜃𝐽) ▷ Unconditional DM sampling
2: for 𝑗 ∈ {𝐽, … , 1} do
3: ̄x𝑗 ← EulerMaruyama(𝑇 , 𝑁, ̄s ̄𝜃𝑗

(⋅, ⋅ ∣ x𝑗)). ▷ Discretization (3.2)
4: x𝑗−1 ← iFWT(𝛾𝑗x𝑗, 𝛾𝑗 ̄x𝑗) ▷ Wavelet reconstruction
5: end for
6: return x0

3.2 Incorporating wavelets into diffusion model backbones

In the previous section we have introduced how diffusion models can be applied in wavelet
space. In particular, WSGMs offer a way to embrace the multiscale structure of the wavelet
transform which gives strong theoretical guarantees.

46

3.2 Incorporating wavelets into diffusion model backbones

In this section,wewant to discuss a different aspect of usingwavelets to improve diffusion
models which is often “orthogonal” to the choice of domain: the backbone model, i.e. the
model used to approximate the score function. Usually, a UNet [RFB15] is used for this
purpose [Ho+22a; GCDM22; Ho+22a].

While a single score-basedmodel s𝜃,𝑗 used in aWSGM acts on noisedwavelet coefficients
instead of pixels, its task is still denoising as WSGMs use denoising score matching. The
difference between a WSGM and a standard diffusion model is that a WSGM operates
in a different structure, e.g. having multiple wavelet coefficients that correspond to one
spatial location available. However, Guth et al. [GCDM22] use a vanilla conditional UNet
where the three generated detail coefficients are treated as channels, similar to colors. The
conditioning on the the approximation coefficients x𝑗 is done by a simple concatenation
with the input channels, resulting in 12 input image channels for images with three color
channels. This approach does not make use of the structure of the wavelet coefficients, as
the convolutional and attention operators of the network are only applied spatially.
As an obvious alternative, we could use 3d operators over the dimensions (𝐹 , 𝐻, 𝑊)

instead of 2d operators on (𝐻, 𝑊), where 𝐹 denotes the number of wavelet coefficients
and 𝐻 and 𝑊 the height and width of the coefficients respectively. For now, we set 𝐹 = 4
as we consider a single-level wavelet transform. Using 3d operators would allow to model
relationships between different wavelet coefficients. However, moving all operators to be
fully 3d would significantly increase the number of model parameters and inference time
of the model.

To mitigate this we look at video-based tasks for inspiration. While seemingly unrelated,
a video consists of a sequence of images called frames that are usually spatially corre-
lated—as are wavelet coefficients. The particular task of denoising a sequence of images
simultaneously is also faced by video diffusion models [Ho+22b]. There the 3d operators
are separated into a 2d spatial operator and a 1d “temporal” operator. For the convolutional
operator, multiple variants of this separation have been proposed in the video context
[Tra+18].
For the single-level WSGMs, Yuan et al. [Yua+23] implement these considerations in

a model they dub spatial-frequency UNet. Let x ∈ ℝ𝐵×𝐶𝑖×𝐹×𝐻×𝑊 be a batch of wavelet
coefficients with a batch size of 𝐵 and 𝐶𝑖 channels. For inputs to the model, we have 𝐶0 = 3.
We consider a convolutional operator that first applies a spatial convolution followed by a
frequency convolution. These operators were introduced as (2+1)d convolutions in the
context of videos [Tra+18]. The spatial convolution uses a 1×𝑘×𝑘𝑠 kernel while a 𝑓 ×1×1
kernel is used for the frequency convolution, with 𝑘 and 𝑓 being kernel sizes. The number
of input channels 𝐶𝑖 and output channels 𝐶𝑖+1 are fixed as model hyperparameters. As an
intermediate channel count Yuan et al. [Yua+23] use

𝑓𝑘2𝐶𝑖𝐶𝑖+1
𝑘2𝐶𝑖 + 𝑓𝐶𝑖+1

to get approximately the same number of parameters as a full 3d convolution. Although
no computational speedup is achieved by this choice, the number of activation functions
is effectively doubled and an inductive bias is introduced. Both have been found to be
benefitial [Tra+18].

47

3 Wavelets for diffusion models

For the attention operators Yuan et al. [Yua+23] propose to also use a (2+1)d split by
first using a spatial attention layer followed by a frequency attention layer. For the spatial
attention layer, the batch is temporarilly reshaped to be of the shape (𝐵 ⋅ 𝐹 , 𝐶𝑖, 𝐻 ⋅ 𝑊).
Similarly, the frequency attention is applied to a signal of the shape (𝐵 ⋅ 𝐻 ⋅ 𝑊, 𝐶, 𝐹).
A similar (2+1)d attention using a FFT instead has also been proposed by Guo et al.
[Guo+23].

Applied to a diffusionmodel that unconditionally generates all coeffients of a single-level
Haar wavelet transform, Yuan et al. [Yua+23] found the inclusion of frequency-spatial
blocks into the noise predictor to be benefitial to the image quality.

48

4 Numerical Experiments

In this chapter we examine the application of diffusion models in wavelet coefficient space
by extending WSGMs described in section 3.1. As in Guth et al. [GCDM22] our chosen
exemplary application is generating portrait photographies of human faces.

In section 4.1 we discuss metrics to evaluate the quality of the generated images. Starting
with the Fréchet Inception distance (FID) [Heu+17a] as the current standard metric in
the field we discuss its flaws, especially for the chosen task of generated images of human
faces. Motivated by an observed frequency bias of generative models we analyze metrics
based on KL divergences of power spectra of wavelet packet and Fourier representations
as introduced by Veeramacheneni, Wolter, and Gall [VWG23] and propose a variant
addressing shortcomings.
In section 4.2 we introduce the setup of the experiments and the implementation. In

the following sections we examine various ways to extend WSGMs: using higher order
wavelets with different boundary handling techniques (section 4.3), choosing different
numbers of inference steps per decomposition level (section 4.4) and increasing the number
of decomposition levels (section 4.6).

4.1 Evaluation metrics

Quantitatively measuring the performance of generative models is a difficult but impor-
tant task. Ideally, the model would generate samples indistinguishable from the data
distribution while covering all its modes.

In the context of generative models for images the current de facto standard metric is the
Fréchet Inception distance (FID) [Heu+17a]. Its core concept is to map a set of generated
images and a set of images from the data distribution separately to some vision-related
feature space [Kyn+23]. Multivariate Gaussians 𝒫 = 𝒩(𝝁, 𝚺) and 𝒫data = 𝒩(𝝁data, 𝚺data)
are then fitted to the feature space representations. The FID is then calculated as the Fréchet
distance [Fré57] between both Gaussians [DL82]:

d(𝒫, 𝒫data)2 = ‖𝜇 − 𝜇data‖2
2 + tr(𝚺 + 𝚺data − 2√𝚺𝚺data)

As a feature space representation, the activations of the last pooling layer of an Inception-V3
model[Sze+16] trained on the ImageNet dataset [Den+09] are used.

FID has seen widespread adoption and has been found to correlate reasonably well with
human judgement [Kyn+23; Heu+17b]. However, FID has some major shortcomings. The
calculated FID is sensitive to low-level choices in implementation, e.g. rounding [VWG23],
compression or resizing [PZZ22]. Additionally, several authors [Kar+20;MVB20;NMDB21;
Bor22; Alf+22] observe a difference in model ranking between FID and human judgement
on datasets other than ImageNet.

49

4 Numerical Experiments

Kynkäänniemi et al. [Kyn+23] show the FID feature space—one linear layer away from
the output layer—to be very close to the ImageNet classifications, i.e. the FID score mainly
depends on the ImageNet classification of the images. This is in particular problematic for
the use case of generating human face images as they do not constitute an ImageNet class.
Therefore, the ImageNet classification and thus the FID of human faces might depend on
background objects that resemble ImageNet classes such as a bow tie, leading to a high
distance between perceptually similar images [VWG23].

Generative imagemodels have been observed to fail in reproducing spectral distributions
in particular in the high-frequency bands [DKK20; WBHG22; Fra+20; GHBC21; Rah+19].
The discussed drawbacks of the FID motivate the search for a different feature space. To
address the low-frequency bias of generativemodels we consider the Fourier decompositon
of the signal as well as a wavelet packet representation. Both allow us to directly compare
energies between frequency bands. While a Fourier representation has a higher spectral
resolution a wavelet packet representation also incorporates spatial information, allowing
us to e.g. differentiate between the image boundaries and its center.
Following Veeramacheneni, Wolter, and Gall [VWG23] we use the KL divergence to

compare the energy in the Fourier orwavelet packet representation of the real and generated
images. As the KL divergence compares probability distributions, we interpret our feature
space probabilisticly by normalization. For an image A ∈ ℝ𝐶×𝐻×𝑊 with 𝐶 = 3 color
channels the spatially normalized wavelet packet energy is defined as

𝒫(A; 𝑐, 𝑝)[𝑖,𝑗] ≔
𝒲(A)2

[𝑐,𝑝,𝑖,𝑗]

∑𝐹ℎ
ℎ=1 ∑𝐹𝑤

𝑤=1 𝒲(A)2
[𝑐,𝑝,ℎ,𝑤]

(4.1)

where 𝒲 denotes the wavelet packet transform used. 𝐹ℎ and 𝐹𝑤 denote the spatial reso-
lution of the wavelet packet; 𝐹 = 4𝑙 the number of wavelet packets for a wavelet packet
transform with 𝑙 levels. The indices 𝑖 ∈ {1, … , 𝐹ℎ} and 𝑗 ∈ {1, … , 𝐹𝑤} specify the wavelet
packet coefficient for a specific packet 𝑝 ∈ {1, … , 𝐹} and color channel 𝑐 ∈ {1, … , 𝐶}.
We can interpret 𝒫(A; 𝑐, 𝑝) as a probability distribution describing the spatial energy

distribution for a given color channel 𝑐 and wavelet packet 𝑝. To compare two images
A,B ∈ ℝ𝐶×𝐻×𝑊 we average over the KL divergences of these probability distributions:

𝒟𝒲(A,B) ≔ 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

DKL(𝒫(A; 𝑐, 𝑝) ‖ 𝒫(B; 𝑐, 𝑝)). (4.2)

This divergence was introduced by Veeramacheneni, Wolter, and Gall [VWG23] as the
wavelet packet power spectrum KL divergence. However, as our target is to compare image
distributions instead of single images we need to extend this notion to comparing batches
A,B ∈ ℝ𝐵×𝐶×𝐻×𝑊 of 𝐵 images each. Veeramacheneni, Wolter, and Gall [VWG23] propose
to incorporate the batch dimension in the normalization, i.e. replacing 𝒫(A; 𝑐, 𝑝) with

𝒫b(A; 𝑐, 𝑝)[𝑏,𝑖,𝑗] ≔
𝒲(A)2

[𝑏,𝑐,𝑝,𝑖,𝑗]

∑𝐵
𝑏=1 ∑𝐹ℎ

ℎ=1 ∑𝐹𝑤
𝑤=1 𝒲(A)2

[𝑏,𝑐,𝑝,ℎ,𝑤]

.

50

4.1 Evaluation metrics

Denoting the proportion of total energy of image 𝑏 for channel 𝑐 in packet 𝑝 as

𝑤(A; 𝑐, 𝑝)𝑏 ≔
∑𝐹ℎ

ℎ=1 ∑𝐹𝑤
𝑤=1 𝒲(A)2

[𝑏,𝑐,𝑝,ℎ,𝑤]

∑𝐵
𝑏=1 ∑𝐹ℎ

ℎ=1 ∑𝐹𝑤
𝑤=1 𝒲(A)2

[𝑏,𝑐,𝑝,ℎ,𝑤]

and the 𝑏-th image in A as A𝑏 we have

𝒫b(A; 𝑐, 𝑝)[𝑏,𝑖,𝑗] = 𝑤(A; 𝑐, 𝑝)𝑏𝒫(A𝑏; 𝑐, 𝑝). (4.3)

For a specific color channel 𝑐 and wavelet packet 𝑝 we can thus interpret 𝒫b as sampling a
random image 𝑏 from the batch weighted by the proportion of total energy in the packet
and then sampling a random spatial location in the packet of this image. Using (4.3) we
can relate the resulting divergence to (4.2) as

𝒟𝒲,b(A,B) ≔ 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

DKL(𝒫b(A; 𝑐, 𝑝) ‖ 𝒫b(B; 𝑐, 𝑝))

= 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

𝐵
∑
𝑏=1

𝐹ℎ

∑
𝑖=1

𝐹𝑤

∑
𝑗=1

𝒫b(A; 𝑐, 𝑝)[𝑏,𝑖,𝑗] log
𝒫b(A; 𝑐, 𝑝)[𝑏,𝑖,𝑗]

𝒫b(B; 𝑐, 𝑝)[𝑏,𝑖,𝑗]

= 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

𝐵
∑
𝑏=1

𝑤(A; 𝑐, 𝑝)𝑏

𝐹ℎ

∑
𝑖=1

𝐹𝑤

∑
𝑗=1

𝒫(A𝑏; 𝑐, 𝑝)[𝑖,𝑗][log
𝑤(A; 𝑐, 𝑝)𝑏
𝑤(B; 𝑐, 𝑝)𝑏

+ log
𝒫(A𝑏; 𝑐, 𝑝)[𝑖,𝑗]

𝒫(B𝑏; 𝑐, 𝑝)[𝑖,𝑗]
]

= 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

𝐵
∑
𝑏=1

𝑤(A; 𝑐, 𝑝)𝑏 DKL(𝒫(A𝑏; 𝑐, 𝑝) ‖ 𝒫(B𝑏; 𝑐, 𝑝))

+ 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

𝐵
∑
𝑏=1

𝑤(A; 𝑐, 𝑝)𝑏 log
𝑤(A; 𝑐, 𝑝)𝑏
𝑤(B; 𝑐, 𝑝)𝑏

𝐹ℎ

∑
𝑖=1

𝐹𝑤

∑
𝑗=1

𝒫(A𝑏; 𝑐, 𝑝)[𝑖,𝑗]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=1

= 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

[DKL(𝑤(A; 𝑐, 𝑝) ‖ 𝑤(B; 𝑐, 𝑝)) +
𝐵

∑
𝑏=1

𝑤(A; 𝑐, 𝑝)𝑏 DKL(𝒫(A𝑏; 𝑐, 𝑝) ‖ 𝒫(B𝑏; 𝑐, 𝑝))].

We note that 𝒟𝒲,b consists of an average over the sum of two parts: the first is the KL
divergence of the total energy proportion between A and B, the second the expected KL
divergence of the spatially normalized wavelet packet energies of packets from A to its
correspondents from B if images are sampled according to the proportion of the total
energy in the packet. If all packets in A and B are normalized to the same total energy,
𝒟𝒲,b calculates the average pairwise KL divergence

1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

1
𝐵

𝐵
∑
𝑏=1

DKL(𝒫(A𝑏; 𝑐, 𝑝) ‖ 𝒫(B𝑏; 𝑐, 𝑝))

which can be interpreted as an average over the expected pairwise KL divergence between
the spatially normalized wavelet packet energies.

51

4 Numerical Experiments

However, the following lemma shows that the expected pairwise KL divergence itself
is not a statistical divergence. This is because a distribution compared with itself has a
non-zero value if the spatially normalizedwavelet packet energies are not constant between
images:

Lemma 4.1. Let 𝒟 be a divergence, 𝑆 = {𝒫𝑥 | 𝑥 ∈ 𝑋} a familiy of probability measures and
𝑞1, 𝑞2 probability distributions over 𝑋. Let

𝒟′(𝑞1, 𝑞2) ≔ 𝔼𝑥∼𝑞1,𝑦∼𝑞2
[𝒟(𝒫𝑥, 𝒫𝑦)]

be the expected pairwise divergence. We have

𝒟′(𝑞1, 𝑞1) = 0 ⟺ 𝒫𝑥 = 𝒫𝑦 a.s. for 𝑥, 𝑦 ∼ 𝑞1 iid.

Proof. As 𝒟 is a divergence, it is non-negative and 𝒟(𝒫𝑥, 𝒫𝑦) = 0 if and only if 𝒫𝑥 =
𝒫𝑦.

This is not just a theoretical problem, e.g. comparing a batch of real images to a batch of
generated images might lead to a smaller score than comparing a batch of real images to
the same batch but with a different image order (cf. table 4.1).

Furthermore, both components of 𝒟𝒲,b are dependent on the order of images. In partic-
ular, comparing a batch of images to a reordered batch of the same images might lead to a
high divergence if aligned image pairs have high pairwise divergences or if the reordering
significantly changes the total energy distribution.

As an alternative we propose to incorporate the batch dimension into (4.1) by averaging
the spatially normalized wavelet packet energy for all images, yielding the probability
distribution

𝒫spat(A; 𝑐, 𝑝)[𝑖,𝑗] ≔ 1
𝐵

𝐵
∑
𝑏=1

𝒫(A𝑏; 𝑐, 𝑝)[𝑖,𝑗] (4.4)

which can be interpreted as an estimation of the expected spatially normalized wavelet
packet energy. The corresponding divergence

𝒟spat(A,B) ≔ 1
𝐹𝐶

∑
1≤𝑝≤𝐹
1≤𝑐≤𝐶

DKL(𝒫spat(A; 𝑐, 𝑝) ‖ 𝒫spat(B; 𝑐, 𝑝)). (4.5)

is a measure how close the spatial energy distribution of the synthetic images matches the
real data’s distribution accross all frequency bands. While 𝒟𝒲,b estimates the expected
pairwise KL divergence, 𝒟spat estimates the KL divergence between expected probabilities.
In the setting of lemma 4.1, 𝒟spat approximates 𝒟(𝔼𝑥∼𝑞1

[𝒫𝑥], 𝔼𝑦∼𝑞2
[𝒫𝑦]). It is independent

of the order of images in the batch and a statistical divergence.
We stress that both 𝒟𝒲,b and 𝒟spat are measures for the approximation of the spatial

energy distribution on each frequency band but not for the energy distibution between
frequency bands as each frequency band is normalized separately. To address this we
construct a Fourier-based divergence in a similar fashion, using the absolute value of the
Fourier transform instead of the wavelet packet transform and removing all indexing over

52

4.2 Setup

Table 4.1: Results of different scores comparing 30k images from the CelebA dataset to the
same 30k images but in a different order as well as 30k images generated from a
2-level WSGM using Haar wavelets and 100 inference steps on each level. The
mean and standard deviation are reported for 5 runs with a different order of
real images each.1

𝒟symm
𝒲,b 𝒟symm

𝒲,bf 𝒟symm
ℱ,b

CelebA-reordered 4.731 ± 0.004 1.570 ± 0.003 0.311 ± 0.0004
Haar WSGM 4.335 ± 0.004 1.234 ± 0.001 0.278 ± 0.0008

the wavelet packet dimension. We denote the Fourier variant of 𝒟𝒲,b as 𝒟ℱ,b and the
variant of 𝒟spat as 𝒟freq.

However, the Fourier variants only capture how the energy levels of frequent bands
match, spatial distribution is not regarded. To address both, we adapt 𝒫 by extending the
state space to include the wavelet packet:

𝒫f(A; 𝑐)[𝑝,𝑖,𝑗] ≔
𝒲(A)2

[𝑐,𝑝,𝑖,𝑗]

∑𝐹
𝑓=1 ∑𝐻

ℎ=1 ∑𝑊
𝑤=1 𝒲(A)2

[𝑐,𝑓,ℎ,𝑤]

. (4.6)

We repeat the constructions above using 𝒫f instead of 𝒫 yielding

𝒟spat-freq(A,B) ≔ 1
𝐶

𝐶
∑
𝑐=1

DKL(1
𝐵

𝐵
∑
𝑏=1

𝒫f(A𝑏; 𝑐) ∥ 1
𝐵

𝐵
∑
𝑏=1

𝒫f(B𝑏; 𝑐)).

We denote the variant of 𝒟𝒲,b which uses 𝒫f as 𝒟𝒲,bf .
As the KL divergence is not symmetric, we define the symmetrized variant of each

introduced divergence as

𝒟symm(A,B) ≔ 𝒟(A,B) + 𝒟(B,A)
2

.

4.2 Setup

As we extend WSGMs we follow Guth et al. [GCDM22] closely for our setup to allow
comparisons. The task is to generate images from the distribution of the CelebA dataset
[LLWT15], depicting faces of celebrities that are centered and aligned by their eye position.
The images are cropped and resized to a resolution of 128 × 128, following [WBHG22]. We
randomly split the dataset into 150k training samples, 30k test samples and 20k validation
samples.

1Note that the range of values shown for 𝒟symm
𝒲,b does not match the ranges reported in Veeramacheneni,

Wolter, and Gall [VWG23] due to an error in the implementation, as confirmed in private discussion with
one of the authors.

53

4 Numerical Experiments

Separable 2DWavelet transforms are applied, separately for each color channel. For each
level and color channel, the wavelet coefficients are normalized to have zero mean and
unit variance.
As Guth et al. [GCDM22] we base our model on a discretization of the (VP SDE) and

optimize the denoising loss 𝐿simple but differ in the choice of the noise schedule. Guth
et al. [GCDM22] use an exponential noise schedule with quadratic timestep sampling for
training and linear timestep sampling for inference, i.e.

𝑇train = {(𝑘
𝑁

)
2

𝑇 ∣ 𝑘 = 1, … , 𝑁}, 𝑇inference = { 𝑘
𝑁

𝑇 ∣ 𝑘 = 1, … , 𝑁} for 𝑁 steps.

As seen in section 2.3 the former corresponds approximately to the linear noise schedule
as used by Ho, Jain, and Abbeel [HJA20]. We choose to use the computationally more
efficient cosine noise schedule (cf. section 2.3) and DDPM reduced step sampling with
𝜎2

𝑡 = ̃𝛽𝑡 as defined in (2.12) [ND21].

Evaluation To evaluate the performance of the trained generative models quantitatively
we report the FID. Additionally, we report 𝒟symm

spat , 𝒟symm
spat-freq, 𝒟

symm
freq introduced in section 4.1

as metrics how the real and synthetic distributions match spatially across frequency bands
and spectrally. Following Veeramacheneni, Wolter, and Gall [VWG23] we use a sym5
wavelet packet transform using 3 levels with a reflecting extension for boundary handling.

Architecture Following Guth et al. [GCDM22], the architecture of our noise estimator
is a UNet [RFB15] with 3 residual blocks at each scale and group normalization[WH18].
The number of scales and the channel size for each scale depends on the input resolution,
cf. table 4.2. The input resolution is halved in between layers; scales corresponding to an
unpadded resolution of 16 × 16 or 8 × 8 include attention layers [Vas+17]. The input and
output channel count for unconditional models is 3 each. For conditional models, the
output channel count is 9 corresponding to the three color channels per detail coefficient.
Conditioning on the low frequencies is done with a simple input concatenation along
channels, i.e. the input channel count is 12. As in Ho, Jain, and Abbeel [HJA20] we use a
sinusoidal positional encoding [Vas+17] to specify the diffusion time 𝑡.

Training was performed on four graphics processing units (GPUs) of type A100 or V100.
Inference times are reported for a single A100 GPU. All models were trained for 500k
optimization steps with a batch size of 64 for spatial resolutions of at least 64 × 64 and
128 below. We use the Adam optimizer [KB15] with a fixed learning rate of 10−4 and no
weight decay. As in Ho, Jain, and Abbeel [HJA20] we used exponential moving average
(EMA) [KB15] on model parameters with a decay factor of 0.9999.

Implementation We implemented ourmodel in aPyTorch [Pas+19] based implementation
using the diffusers [Pla+22] framework. To accelerate training, we made use of the accelerate
library [Gug+22] to train distributedly onmultipleGPUs and appliedmixedprecision train-
ing [Nar+17]. For the calculation of wavelet transforms we used the PyTorchWavelet Toolbox
[WBGH24]. Our implementation is available at github.com/felixblanke/wavelet-dm.

54

https://github.com/felixblanke/wavelet-dm

4.3 Higher-order wavelets and boundary handling

Table 4.2: Parametrization of the UNet used in the experiments. With a base channel count
of 𝐶 = 128, the number of channels at scale 𝑘 equals 𝑎𝑘𝐶 with multipliers (𝑎𝑘)
depending on the wavelet decomposition level. The input resolution depends
on the mode of boundary handling: “unpadded” applies to Gram-Schmidt
boundary wavelets or Haar wavelets, “padded” is calculated for wavelets of
length 8, e.g. db4 or sym4, using a boundary extension technique.

resolution

Level channel size multipliers (𝑎𝑘) unpadded padded

1 (2, 2, 4, 4) 64 × 64 67 × 67
2 (4, 4) 32 × 32 37 × 37
3 (4, 4) 16 × 16 22 × 22

0 (uncond.) (1, 2, 2, 4, 4) 128 × 128 –
2 (uncond.) (1, 2, 2, 2) 32 × 32 37 × 37
3 (uncond.) (2, 4, 4) 16 × 16 22 × 22

4.3 Higher-order wavelets and boundary handling

The use of wavelets in the context of generative models for images is not a new concept.
However, most existing work is based on Haar wavelets[GHBC21; Li+23; Liu+20; PDT23;
Wan+20; Yoo+19; Zha+22]. The twomain reasons given for this choice are the simplicity of
the Haar wavelet and the lack of boundary effects due to their short support. Overcoming
problems with boundary handling might enable us to make use of higher order wavelets
and their better approximation accuracy (cf. lemma 1.32 and [SN96]).
Guth et al. [GCDM22] introduced the WSGM and gave theoretical results that also

applied to wavelets of higher order, but only tested their model on images with Haar
wavelets. This motivates us to extend the setup to wavelets of higher order.

We select the db4wavelet with zero padding and extension by reflection as well as the
sym4 Gram-Schmidt boundary wavelets. Additionally, we also include a model using Haar
wavelets and a model that unconditionally generates images of full 128 × 128 resolution
without any wavelet transforms as a baseline. To choose these pairings, we ran a subset of
the experiments on all combinations and selected for each boundary technique the better
performing wavelet. We note however that we observed no significant difference between
the db4 and sym4wavelet in this regard.
All wavelet transforms used are separable 2D transforms with two levels, i.e. low fre-

quency coefficients of size 32 × 32 are generated unconditionally; normalized detail co-
efficients of size 32 × 32 and 64 × 64 are generated conditioned on the low frequency
coefficients of the respective size.
Examplary images sampled using sym4 boundary wavelets as well as the baseline are

shown in figure 4.1. Further images are depicted in appendix 1.
As a first experiment we evaluate all models using the same number of discretization

steps for each level. We report the FID and different power spectrum based metrics as
introduced in section 4.1. The resulting curves are depicted in figure 4.2. We observe

55

4 Numerical Experiments

that the FID curves for our models follow the same form and lie very close to each other.
Comparing to the cited results fromGuth et al. [GCDM22] we note the missing distinct gap
between our baseline model and the WSGMs. Our baseline model performs significantly
better than the baseline from Guth et al. [GCDM22]. Additionally, we note that our models
plateau around a FID value of 10 compared to 20 reported by Guth et al. [GCDM22] and
roughly an order of magnitude later at approximately 250 steps. We conjecture that these
observations might be caused by differences in the used backbone architectures. For the
curves of the 𝒟symm

spat metric measuring the divergences of the spatial distribution of wavelet
packet coefficients, we note all curves mathching except the db4model using zero padding.
We will address this case later in detail.

Figure 4.1: Generated samples for 2-level sym4 wavelet using Gram-Schmidt boundary
wavelets (left) and the baseline model trained in pixel space (right). All models
were sampled with 100 inference steps.

For both power spectrum basedmetrics that take the frequency distributions into account
the curves are not overlayed as in the spatial curve hinting at differences in the spectral
distribution of the generated samples. In both metrics we report larger values for the
baseline model showing a reduction of the frequency bias for wavelet-based models.

Between the wavelet models we observe the same behaviour under the spatio-frequency
metric. However, for smaller timesteps the boundary wavelet and zero padding models
seem to better approximate the energy distribution between frequency bands as their
Fourier-based metric is smaller.

Coming back to db4 with zero padding, we note seemingly contradicting scores. For 100
steps it performs worst in the purely spatial metric by more than an order of magnitude
while leading the combinedmetric 𝒟symm

spat-freq. To examine this further, we split the combined
metric into a low-frequency part using only the packets corresponding to the lower half
of the frequency bands and a high-frequency part using the other half of packets. Thus,
the low-frequency component measures the divergence of energy distributions accross

56

4.3 Higher-order wavelets and boundary handling

(a) FID w.r.t. the step count. (b) 𝒟symm
spat w.r.t. the step count.

(c) 𝒟symm
freq w.r.t. the step count. (d) 𝒟symm

spat-freq w.r.t. the step count.

Figure 4.2: Comparison of two-scaleWSGMs for different wavelets and boundary handling
techniques. All models use two scales and are sampled using the same number
of discretization steps across scales. We plot the influence of the number of steps
to different metrics: the FID (a) and power spectrum-based metric comparing
energy distributions of wavelet packets spatially (b), Fourier coefficient (c) and
wavelet packets accross frequency bands and spatially (d). Markers indicate
the type of wavelet transform used: padded (circle), unpadded (triangle) and
a standard DDPMmodel (square).
The dashed lines in (a) are taken from Guth et al. [GCDM22, Figure 4] by eye
as a baseline for a differing implementation of a standard score-based model
(“baseline”) and their WSGM implementation with Haar wavelets.
No metrics are reported for samples from the baseline model for more than 100
steps as the model failed to sample from the data distribution, showing only
noisy shapes not resembling human faces.

57

4 Numerical Experiments

the lower half of the frequency spectrum and accross the full spatial dimensions, and vice
versa. Both values as well as the numerical values for the FID and Fourier-based power
spectrum metric are reported in table 4.3. We notice a remarkably high value of 297.7 for
the high-frequency combined metric for the db4 wavelet with zero padding with 100 steps
while the corresponding low-frequency value is two orders smaller with 2.0. Calculating
the mean packet energy for both halves of the frequency spectrum reveals a large gap in
energy levels, with the value of the lower frequency half being over 350 times larges. This
explains how the combined metric for the full frequency band with 2.6 is so close to the
lower half’s value.

Table 4.3: Comparison ofWSGMs for differentwavelets and boundary handling techniques,
using two and three levels and a fixed number of discretization steps. We report
the spatio-frequency wavelet packet power spectrum metric on the packets of
the lower half (“lo”) and of the upper half (“hi”) of spectrum, the Fourier-baset
power spectrum-based metric and the FID. For each metric, we compare the
results for 50 respectively 100 discretization steps on all levels of the model.
“baseline” denotes a standard DDPM. We use “bd” as a shorthand for Gram-
Schmidt boundary filters.

𝒟symm
spat-freq lo [⋅103] 𝒟symm

spat-freq hi [⋅103] 𝒟symm
freq [⋅103] FID

Wavelet # Level 50st. 100st. 50st. 100st. 50st. 100st. 50st. 100st.

baseline – 23.3 7.2 75.7 38.1 48.6 18.0 20.1 14.7

Haar 2 4.5 1.8 64.6 28.9 13.0 4.1 23.2 14.3
db4-reflect 2 4.7 2.4 79.2 39.8 14.9 5.6 21.0 13.3
db4-zero 2 3.0 2.0 392.8 297.7 5.0 2.6 21.0 13.5
sym4-bd 2 4.3 2.3 60.1 26.5 5.9 3.8 28.6 18.0

Haar 3 2.9 1.6 21.1 13.7 3.9 1.4 18.2 11.0
db4-zero 3 4.3 2.5 31.5 23.2 3.0 1.8 17.2 11.9
sym4-bd 3 4.6 2.4 43.8 20.3 4.1 2.2 29.5 17.9

To explain the high metric value for the upper frequencies we visually inspect samples.
A representative image is depicted in figure 4.3. We notice a black border surrounding the
image as well darker edges parallel to the left and top image boundary. We suspect that
these artefacts are caused by the boundary handling technique. To check this we crop the
sampled images to the center 100 × 100 square, removing 14 pixels from each boundary,
and recalcuate all metrics. The results are reported in table 4.4. On the image centers db4
with zero padding approximates the packet coefficients for the higher-frequencies well
performing best under all 2-level models. This confirms boundary effects being the cause.

Comparing the other values in table 4.3, we note that theWSGMs fare significantly better
under the power-spectrum based metrics while achieving comparable yet slightly better
results for the FID. Comparing between wavelets shows no clear best 2-level model.

58

4.4 A finer discretization of the unconditional model

Table 4.4: Comparison ofWSGMs for differentwavelets and boundary handling techniques,
using two and three levels and a fixed number of discretization steps. All metrics
are calculated on the center 100 × 100 pixels of the generated images, cropping
14 pixels from each boundary. This is indicated by the suffix “-c14”. We report
the spatio-frequency wavelet packet power spectrum metric on the packets of
the lower half (“lo”) and of the upper half (“hi”) of spectrum, the Fourier-baset
power spectrum-based metric and the FID. For each metric, we compare the
results for 50 respectively 100 discretization steps on all levels of the model.
“baseline” denotes a standard DDPM. We use “bd” as a shorthand for Gram-
Schmidt boundary filters.

𝒟symm
spat-freq lo [⋅103] 𝒟symm

spat-freq hi [⋅103] 𝒟symm
freq [⋅103] FID

Wavelet # Level 50st. 100st. 50st. 100st. 50st. 100st. 50st. 100st.

baseline-c14 – 26.0 6.9 74.9 38.0 28.8 10.1 16.9 13.0

Haar-c14 2 4.1 1.8 64.4 29.9 10.5 3.8 21.4 13.2
db4-rf-c14 2 4.5 2.3 82.4 41.8 11.7 5.1 19.6 11.9
db4-zr-c14 2 3.3 2.0 30.8 21.8 5.2 3.1 18.9 11.4
sym4-bd-c14 2 4.3 2.2 65.6 30.7 5.8 3.7 28.6 17.8

Haar-c14 3 2.9 1.6 21.7 13.2 3.8 1.5 17.9 10.9
db4-zr-c14 3 3.7 1.9 23.2 13.9 2.9 1.7 16.3 11.0
sym4-bd-c14 3 4.1 2.0 48.5 23.5 3.6 2.0 29.6 17.4

4.4 A finer discretization of the unconditional model

Guth et al. [GCDM22] theoretically derived that preconditioning allows us to use fewer
sampling steps while maintaining the same error (cf. section 3.1.2). Conditionally generat-
ing normalized wavelet detail coefficients acts as a whitening and thus as a preconditioner.
For the unconditional model in a WSGM that generates the approximation coefficients on
the largest scale 𝐽 ≈ log

2
𝐿 for 𝐿×𝐿 images, Guth et al. [GCDM22] argue that the uncondi-

tional distrubution should be close to Gaussian. However, this assumption fails in practice
as we stop the wavelet decomposition early to avoid boundary effects dominating the full
signal. Additionally, to reasonably use a deep convolutional neural network (CNN) as a
backbone we cannot make the spatial dimensions arbitrarily small. Guth et al. [GCDM22]
observe the second level Haar approximation coefficients with a 32 × 32 resolution to also
follow a power law decay of their spectrum, confirming that the distribution is in fact not
close to Gaussian. Therefore, the theoretical results derived in section 3.1.2 do not apply to
the unconditional model.
We are thus motivated to increase the number of discretization steps selectively for

the unconditional model, testing 100 and 500 steps. We vary the number of inference
steps on the other scales. The results for Haar wavelets and sym4 wavelets with boundary
filters can be found in table 4.6. We report the low- and high-frequency variant of 𝒟symm

spat-freq
as introduced in the previous section. Furthermore, we compute all metrics on images

59

4 Numerical Experiments

Figure 4.3: Examplary image generated by an 2-scale WSGM using db4 wavelets with zero
padding for 100 steps on each level.

cropped to their 100 × 100 pixel center to control for boundary artefacts.
We find a monotonous improvement with an increasing step count accross all experi-

ments. As we would expect, varying the discretization on the detail coefficients and with
it the approximation error mainly influences the quality of high-frequency packets. Never-
theless, we also observe an improvement for the low-frequency packets, especially if the
step count is low.

For 5 diffusion steps on the sym4 wavelet we note a high spike in the metric for low- and
high-frequency packets. Comparing to the cropped images reveals in the low frequencies
the spike to be caused by boundary effects; for the high frequencies we also see a noticable
drop on the cropped images. For Haar wavelets, this spike is only apparent in the high
frequencies, suggesting that 5 steps simply are not sufficient for a descent approximation.
For larger step counts we observe no significant improvements by cropping, making further
boundary artefacts unlikely.
To fairly plot metrics of the different models we calculate the batch generation time,

i.e. the average time spent to generate a single batch of 250 images on an A100 GPU. The
calculated times are reported in table 4.5. The resulting plots for the Haar wavelet are
shown in figure 4.4; the plot for the sym4 wavelet can be found in the appendix in figure 3.
We have already found the use of the smallest step count to be insufficient, which is

supported by the plots. For all other step counts, the curves run below the reference
curve. This indicates a better error to runtime ratio throughout. To highlight the possible
improvements we note the Haar wavelet run using 500 base model steps and 50 steps for
the conditional models. This total runtime is comparable to using 100 steps on all scales.
Compared to this 100-step reference curve we see a drop in FID from approximately 15 to
10 and in 𝒟symm

freq by half an order of magnitude while also seeing some improvements for
the spatial and combined frequency-spatial packet energy distribution.

60

4.4 A finer discretization of the unconditional model

(a) FID w.r.t. the step count. (b) 𝒟symm
spat w.r.t. the step count.

(c) 𝒟symm
freq w.r.t. the step count. (d) 𝒟symm

spat-freq w.r.t. the step count.

Figure 4.4: Comparison of two-scale Haar wavelet WSGMs for a different number of dis-
cretization steps between the unconditional base model and the conditional
models. We plot the influence of the number of sampling steps for the con-
ditional models for 100 and for 500 steps in the unconditional model using:
the FID (a) and power spectrum-based metric comparing energy distributions
of wavelet packets spatially (b), Fourier coefficient (c) and wavelet packets
accross frequency bands and spatially (d). As a baseline we add a two-scale
Haar WSGM with the same number of steps on all scales.

61

4 Numerical Experiments

Table 4.5: Average inference time for a single inference step with a batch size of 250. The
padded sizes are given for a wavelet with a filter length of 8 like db4 or sym4.

level size [𝐶 × 𝐻 × 𝑊] sample time [s / batch]

Wavelet unpadded 1 9 × 64 × 64 0.51
Wavelet unpadded 2 9 × 32 × 32 0.30
Wavelet unpadded 2 (uncond.) 3 × 32 × 32 0.09
Wavelet unpadded 3 9 × 16 × 16 0.12
Wavelet unpadded 3 (uncond.) 3 × 16 × 16 0.07

Wavelet padded 1 9 × 67 × 67 0.62
Wavelet padded 2 9 × 37 × 37 0.46
Wavelet padded 2 (uncond.) 3 × 37 × 37 0.14

Pixel baseline – 3 × 128 × 128 1.20

4.5 Progressively decreasing the number of inference steps per
level

In the experiments we considered in the previous section, we used a different number of
sampling steps between the unconditional and the conditionalmodels, but kept the number
constant for all conditional models. In particular, the step count for the unconditional
model was kept fixed. In this section we vary the number of steps for all levels, calculating
the count as a multiple of the next level. That means that for a scaling factor of 𝛼 and 𝑘
steps on the 64 × 64 conditional model, we do 𝛼𝑘 steps on the 32 × 32 conditional model
and 𝛼2𝑘 on the unconditional model. To ensure a uniform discretization we choose the
step count of the 64 × 64 model such that 𝑘, 𝛼𝑘 and 𝛼𝑘2 are divisors of 𝑇 = 1000.

This setup is motivated by two observations. First, the batch generation time scales with
the spatial resolution of the coefficients. Thus, steps for the 64 × 64 model are significantly
more expensive than for the other models. Second, Ho et al. [Ho+22a] observe an error
propagation across models for cascaded diffusion models. We address this by increasing
the approximation accuracy for earlier models.

The results for 𝛼 ∈ {2, 2.5, 5} are plotted in figure 4.5 for the Haar wavelets and for the
sym4 boundary wavelets in figure 4 in the appendix.

For the Haar wavelets, we note that the curves are all below the reference curve, showing
a higher efficiency of the progressive step counts. Furthermore, in all four reported metrics
all curves run approximately parallel to the reference curvewhile being offset. This suggests
that the progressive step schedule has a similar approximation order as the reference curve.
Remarkably, all progressive step are close to parallel showing only small deviations in the
parts where their support overlaps, showing no difference between 𝛼 = 2 and 𝛼 = 5.
The sym4 wavelets paint a similar picture although less pronounced for the FID and

the Fourier-based power spectrum metric. However, in both power spectrum metrics that
consider spatial distributions we see sudden jumps for smaller step sizes. We speculate
that this is caused by the introduction of boundary artefacts for small step sizes, as we

62

4.6 Increasing the number of wavelet levels

have seen in previous experiments.

4.6 Increasing the number of wavelet levels

So far, all experiments used WSGMs with two scales which consist of an unconditional
model generating the approximation coefficients and two conditional models generating
the detail coefficients for both scales. As discussed in section 4.4 the distribution of the
approximation coefficients is not close to Gaussian since we stopped the FWT early. But
we expect it to get successively closer to Gaussian for an increasing number of scales as it
is further averaged. The added detail coefficients in turn are by construction always close
to Gaussian (cf. section 3.1.2). With respect to the condition, adding more scales should
thus always be benefitial.
However, we have to balance the number of scales with the boundary effects and the

design of the noise prediction backbone. As boundary filters have a length of 𝑁 − 2,
incrementing the number of scales by one for db4 or sym4wavelets would leave only the
central 4 × 4 coefficients independent of boundary filters. So adding more than one level is
infeasible for these wavelets.
We test the addition of a single scale, i.e. evaluating WSGMs with three scales. The

results are reported in tables 4.3 and 4.4. We note significant improvements for the energy
distributions between frequency bands and in the high-frequencies combined metric with
reductions by more than a factor of 2 for Haar wavelets. The FID and low-frequency metric
are also improved although more modestly. Especially for the Haar wavelet, which is not
affected by the boundary problematic, we see clear improvement for all metrics.
We further note no boundary artefacts for the db4wavelet with zero padding.

63

4 Numerical Experiments

(a) FID w.r.t. the step count. (b) 𝒟symm
spat w.r.t. the step count.

(c) 𝒟symm
freq w.r.t. the step count. (d) 𝒟symm

spat-freq w.r.t. the step count.

Figure 4.5: Comparison of two-scale Haar wavelet WSGMs for an increasing number of
discretization steps between models. The number of steps is chosen as the
step count on the previous level multiplied by a scaling factor 𝛼. We plot the
influence of the step count for 𝛼 ∈ {2, 2.5, 5} using: the FID (a) and power
spectrum-based metric comparing energy distributions of wavelet packets
spatially (b), Fourier coefficient (c) and wavelet packets accross frequency
bands and spatially (d). As a baseline we add a two-scale Haar WSGMwith
the same number of steps on all scales.

64

4.6 Increasing the number of wavelet levels

Table 4.6: Comparison of WSGMs with a different step count for the unconditional and
conditional models. We show results for Haar wavelets and sym4 wavelets using
boundary filters, each using two levels. We report the spatio-frequency wavelet
packet power spectrum metric on the packets of the lower half (“lo”) and of the
upper half (“hi”) of spectrum, evaluated on the full image as well as a 100 × 100
pixel center crop (“crop-14”). We conclude the experiment for 100 steps (a) and
500 steps (b) in the baseline model.

(a) Results for (𝑘, 𝑘, 100) steps.

𝒟symm
spat-freq lo [⋅103] 𝒟symm

spat-freq hi [⋅103]

no crop crop-14 no crop crop-14

𝑘 Haar sym4-bd. Haar sym4-bd. Haar sym4-bd. Haar sym4-bd.

5 6.3 172.4 5.1 4.7 193.4 565.5 181.9 254.2
25 2.7 3.6 2.5 2.8 62.3 70.8 63.0 74.7
50 2.1 2.6 2.1 2.4 37.9 40.6 38.8 45.3

100 1.8 2.3 1.8 2.2 28.9 26.5 29.9 30.7

(b) Results for (𝑘, 𝑘, 500) steps.

𝒟symm
spat-freq lo [⋅103] 𝒟symm

spat-freq hi [⋅103]

no crop crop-14 no crop crop-14

𝑘 Haar sym4-bd. Haar sym4-bd. Haar sym4-bd. Haar sym4-bd.

5 4.9 183.2 3.7 3.7 524.0 162.0 152.1 243.6
25 1.5 2.6 1.4 1.7 52.9 40.5 41.9 55.6
50 1.0 1.5 1.0 1.3 24.7 21.2 22.7 28.6

100 0.8 1.3 0.8 1.1 14.3 12.8 14.0 17.1
250 0.7 1.1 0.7 0.9 9.3 8.3 9.0 11.3
500 0.6 1.0 0.6 0.9 7.9 7.6 8.1 9.4

65

5 Discussion and outlook

In this work we have discussed uses of wavelet transforms in diffusion models. For this
matter we first introduced foundations of wavelet theory on infinite signals and possible
boundary handling techniques to allow applications to finite signals.
Then, we introduced DDPMs which are discrete-time diffusion models and derived

different interpretations for the optimization goal. Starting from approximating the for-
ward process posterior mean and equivalently predicting the added noise, we showed
a connection to score-based models through denoising score matching. Taking the limit
of the time horizon, we have seen how a DDPM can be seen as a discretization of an
SDE. Conclusively, we have introduced an SDE-based framework for diffusion models in
continuous-time. We closed the chapter by discussing the noise schedule used in diffusion
models, observing the equivalence between two noise schedules used in practice.

We then focussed on the use ofwavelets for diffusionmodels. In particular, we introduced
an SDE-based multiscale approach to running diffusion models in the wavelet domain
called WSGM. We discussed how this approach can be seen as a preconditioning to reduce
bounds on the necessary number of discretization steps for an error. We then introduced
how the score estimation backbone can be adapted to the structure of the wavelet domain.
To measure the quality of generated samples we discussed the current standard met-

ric—the FID—and its flaws. We investigated a recently introduced metric based on the KL
divergence between the power spectra of signal representation using wavelet packets and
the FFT. In the analysis of the approach we derived that the proposed way to apply the
metric to image distributions is equivalent to computing the expected pairwise divergence.
We have argued theoretically that this is no useful metric and supported this empirically.
Yet, we have shown that this flaw can bemitigated by calculating the divergence of expected
probabilities instead, leading to a different divergence. Additionally, we extended this
divergence by introducing a variant that compares the energy distributions spatially as
well as across frequency bands.

We then extended WSGMs to wavelets of higher order and different step counts. We
observed that depending on the discretization, the use of a higher order wavelet might
lead to improvements, in particular in the approximation of higher frequencies. However,
no wavelet or boundary handling technique performed clearly best for two-scale WSGMs.

The investigation of different discretization schemes was fruitful. In particular, choosing
more steps for the unconditional base model while using a reasonable but smaller step
count for the conditional model was clearlymore efficient than choosing a step size which is
constant across scales, offering in parts significant approximation improvements. Similarly,
we could show that choosing a progressively increasing step count also performed better
with a similar approximation order as the constant step count while maintaining an offset
in each metric.
Furthermore, we could show that increasing the number of decomposition scales in

66

a WSGM was strictly superior for the Haar wavelet, improving all metrics, especially
the approximation in the high-frequencies. For wavelets of higher order we only see
clear improvements in closing the spectral gap, in particular in the high frequencies. The
approximation in the low frequencies and the FID showed mixed developments. We
speculate that this might be caused by the significant length of the higher order wavelets
when compared to the base coefficients size.

We noticed that the choice of boundary handling mattered. We observed boundary
artefacts for zero padding as well boundary filters. However, the artefacts of the boundary
filters occured consistently but only for very small step sizes of the conditional models.
The artefacts of zero padding were maintained even for higher step counts but could be
avoided when the scale count was increased.
To conclude, we were able to show clear benefits of choosing less steps for conditional

models and for increasing the scale count for Haar wavelets.
However, these remarks only apply to sampled images of size 128 × 128 and two to

three scales—although the clear theoretical advantages of WSGMs lie in large image sizes
and their multiscale nature. Furthermore, we were also only able to conduct experiments
on a single dataset. The reason for both is the large computational cost of training and
evaluating diffusion models. The experiments that were conducted for this work amounted
to roughly estimated 6 months of GPU hours, stretching the possible scope of a Master’s
thesis. This corresponds to approximately emitted 200 kgCO2eq [LLSD19]. Additionally,
this cost increases the development and testing times of new ideas, slowing development
cycles. In particular, testing WSGMs requires a large image size which makes small image
datasets like CIFAR-10 unsuitable.

One idea that we were not able to evaluate for this work due to computational cost is the
inclusion of frequency-spatial convolutional and attention operators in the U-Net, testing
the potential of applying them in a multiscale environment and on wavelets of higher order.
Note that these experiments have been implemented but the increase of computational
cost due to the additional dimension of the operators made the experiments infeasible for
the scope of this work.

Nevertheless, frequency-spatial blocks allow for an exciting extension. In the context of
FWT coefficients the frequency dimension 𝐹 in the frequency-spatial operators is always 4
aswe need all coefficients to be of the same spatial size, binding us to single-level FWTs. This
limits the spectral resolution available to the 1d frequency operators, since a single-level
2d wavelet transform only halves the spectrum along each axis. Addressing this limitation
would be possible with a structural change toWSGMs, generating the coefficients of a WPT
instead of FWT coefficients. This would allow for an increase in spectral resolution by using
amulti-levelWPT, strengthening the potential of the frequency operators. But this potential
would come at a cost. We would have to leave the original setting of WSGMs with their
theoretical guarantees. Also, we would either lose the multiscale property by generating
all packet coefficients of a certain scale or we could explore the whole quaternary tree of
the 2d WPT, requiring the generation of 4𝐽 coefficients where 𝐽 is the number of levels.
Nevertheless, the former approach has the appeal of generating a signal in a spectrally
localized representation by discretion of a single SDE.
For the application of WSGMs on FWT coefficients with boundary wavelets we used

an existing boundary filter implementation [WBGH24] following the construction of

67

5 Discussion and outlook

Herley and Vetterli [HV94]. The construction theoretically allows for an optimization of
the boundary filters although this is not implemented. This optimization might allow us
to mitigate the boundary artefacts occurring for very small step sizes. Alternatively, we
could use a boundary filter formulation by Cohen, Daubechies, and Vial [CDV93] that is
harder to implement but allows for better control of the corresponding wavelet basis of
𝐿2([0, 1]), e.g. retaining the maxflat properties of Daubechies wavelts.
To conclude, this work is concerned with a very exciting and fast moving topic. Our

results support the use of wavelets for diffusion models—as a multiscale approach for the
generation as well as in a quantitative measure of the sample distribution. However, as
always further research is necessary. We hope that we could sketch potential next avenues.

68

Appendix

1 Further plots and samples

⋯𝑎2,−

C↑ 2𝑎1,−

D↑ 2𝑏1,−

C↑ 2𝑎0,−

D↑ 2𝑏0,−

Figure 1: Scheme of the inverse fast wavelet transform

69

Appendix

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

(a) Daubechies wavelet of length 8.

0 1 2 3 4 5 6 7

−1

0

1

(b) Symlet of length 8.

0 2 4 6 8 10 12 14

−1

−0.5

0

0.5

1

(c) Daubechies wavelet of length 8.

0 2 4 6 8 10 12 14

−1

−0.5

0

0.5

1

(d) Symlet of length 8.

0 5 10 15 20
−1

−0.5

0

0.5

1

(e) Daubechies wavelet of length 12.

0 5 10 15 20
−1

−0.5

0

0.5

1

(f) Symlet of length 12.

Figure 2: Scaling functions (red) andmother wavelets (blue) for Daubechies wavelets (top)
and symlets (bottom) of lengths 8, 16 and 24 (from left to right)

.

70

1 Further plots and samples

(a) FID w.r.t. the step count. (b) 𝒟symm
spat w.r.t. the step count.

(c) 𝒟symm
freq w.r.t. the step count. (d) 𝒟symm

spat-freq w.r.t. the step count.

Figure 3: Comparison of two-scale sym4 boundary wavelet WSGMs for a different number
of discretization steps between the unconditional base model and the conditional
models. We plot the influence of the number of sampling steps for the conditional
models for 100 and for 500 steps in the unconditionalmodel using: the FID (a) and
power spectrum-based metric comparing energy distributions of wavelet packets
spatially (b), Fourier coefficient (c) and wavelet packets accross frequency bands
and spatially (d). As a baseline we add a two-scale sym4 boundary WSGM with
the same number of steps on all scales.

71

Appendix

(a) FID w.r.t. the step count. (b) 𝒟symm
spat w.r.t. the step count.

(c) 𝒟symm
freq w.r.t. the step count. (d) 𝒟symm

spat-freq w.r.t. the step count.

Figure 4: Comparison of two-scale sym4 wavelet WSGMs for an increasing number of
discretization steps between models. The number of steps is chosen as the step
count on the previous level multiplied by a scaling factor 𝛼. We plot the influence
of the step count for 𝛼 ∈ {2, 2.5, 5} using: the FID (a) and power spectrum-based
metric comparing energy distributions of wavelet packets spatially (b), Fourier
coefficient (c) and wavelet packets accross frequency bands and spatially (d). As
a baseline we add a two-scale sym4 boundary WSGM with the same number of
steps on all scales.

72

1 Further plots and samples

Figure 5: Samples for a DDPM with 100 discretization steps.

73

Appendix

Figure 6: Samples for a 2-scale WSGM with 100 discretization steps for Haar wavelets.

74

1 Further plots and samples

Figure 7: Samples for a 2-scale WSGMwith 100 discretization steps for sym4wavelets using
boundary wavelets.

75

Appendix

Figure 8: Samples for a 2-scale WSGM with 100 discretization steps for db4 wavelets using
extension by reflection.

76

1 Further plots and samples

Figure 9: Samples for a 2-scale WSGM with 100 discretization steps for db4 wavelets using
zero padding.

77

Bibliography

[Alf+22] Motasem Alfarra et al. “On the robustness of quality measures for gans.” In:
European Conference on Computer Vision. Springer. 2022, pp. 18–33.

[And82] Brian D.O. Anderson. “Reverse-time diffusion equation models.” In: Stochas-
tic Processes and their Applications 12.3 (1982), pp. 313–326.

[Bea04] Richard Beals. Analysis: an introduction. Cambridge u.a.: Cambridge Univ.
Press, 2004.

[Bla21] Felix Blanke. Randbehandlung bei Wavelets für Faltungsnetzwerke. Bachelor’s
Thesis. 2021.

[Bor22] Ali Borji. “Pros and cons of GAN evaluation measures: New developments.”
In: Computer Vision and Image Understanding 215 (2022), p. 103329.

[CDV93] Albert Cohen, Ingrid Daubechies, and Pierre Vial. “Wavelets on the Inter-
val and Fast Wavelet Transforms.” In: Applied and Computational Harmonic
Analysis 1.1 (1993), pp. 54–81.

[CRBD18] Ricky TQ Chen et al. “Neural ordinary differential equations.” In: Advances
in neural information processing systems 31 (2018).

[Dau88] Ingrid Daubechies. “Orthonormal bases of compactly supported wavelets.”
In: Communications on Pure and Applied Mathematics 41.7 (1988), pp. 909–996.

[Dau92] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 1992.
[Den+09] Jia Deng et al. “ImageNet: A large-scale hierarchical image database.” In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–
255.

[DKK20] RicardDurall,Margret Keuper, and JanisKeuper. “Watch your up-convolution:
CNNbased generative deep neural networks are failing to reproduce spectral
distributions.” In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, pp. 7890–7899.

[DL82] D.C Dowson and B.V Landau. “The Fréchet distance between multivariate
normal distributions.” In: Journal of Multivariate Analysis 12.3 (1982), pp. 450–
455.

[DN21] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on
image synthesis.” In: Advances in neural information processing systems 34
(2021), pp. 8780–8794.

[Duc07] John Duchi. “Derivations for linear algebra and optimization.” In: Berkeley,
California 3.1 (2007), pp. 2325–5870.

78

Bibliography

[Fel49] W. Feller. On the theory of stochastic processes, with particular reference to appli-
cations. Proc. Berkeley Sympos. Math. Statist. and Probability 1946, 403-432
(1949). 1949.

[Fra+20] Joel Frank et al. “Leveraging frequency analysis for deep fake image recogni-
tion.” In: International conference on machine learning. PMLR. 2020, pp. 3247–
3258.

[Fré57] Maurice Fréchet. “Sur la distance de deux lois de probabilité.” French. In:
Annales de l’ISUP VI.3 (1957), pp. 183–198.

[GCDM22] Florentin Guth et al. “Wavelet Score-Based Generative Modeling.” In: Ad-
vances in Neural Information Processing Systems. Vol. 35. 2022, pp. 478–491.

[GHBC21] Rinon Gal et al. “SWAGAN: A style-based wavelet-driven generative model.”
In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–11.

[GM94] Ulf Grenander and Michael I Miller. “Representations of knowledge in com-
plex systems.” In: Journal of the Royal Statistical Society: Series B (Methodological)
56.4 (1994), pp. 549–581.

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets.” In: Advances in Neural
Information Processing Systems. Vol. 27. 2014.

[Gug+22] Sylvain Gugger et al. Accelerate: Training and inference at scale made simple,
efficient and adaptable. https : / / github . com / huggingface / accelerate.
2022.

[Guo+23] Shi Guo et al. Spatial-Frequency Attention for Image Denoising. 2023. arXiv:
2302.13598 [cs.CV].

[Haa10] Alfred Haar. “Zur Theorie der orthogonalen Funktionensysteme.” German.
In:Mathematische Annalen 69.3 (1910), pp. 331–371.

[HD05] Aapo Hyvärinen and Peter Dayan. “Estimation of non-normalized statistical
models by score matching.” In: Journal of Machine Learning Research 6.4 (2005).

[HD22] Jun-Jie Huang and Pier Luigi Dragotti. “WINNet: Wavelet-inspired invertible
network for image denoising.” In: IEEE Transactions on Image Processing 31
(2022), pp. 4377–4392.

[Heu+17a] Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Con-
verge to a Local Nash Equilibrium.” In: Advances in Neural Information Pro-
cessing Systems. Vol. 30. 2017.

[Heu+17b] Martin Heusel et al. “Gans trained by a two time-scale update rule converge
to a local nash equilibrium.” In: Advances in neural information processing
systems 30 (2017).

[HHST17] Huaibo Huang et al. “Wavelet-SRNet: A wavelet-based CNN for multi-scale
face super resolution.” In: Proceedings of the IEEE international conference on
computer vision. 2017, pp. 1689–1697.

[HJA20] JonathanHo, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic
Models.” In: Advances in Neural Information Processing Systems. Vol. 33. 2020,
pp. 6840–6851.

79

https://https://github.com/huggingface/accelerate
https://arxiv.org/abs/2302.13598

Bibliography

[Ho+22a] Jonathan Ho et al. “Cascaded Diffusion Models for High Fidelity Image
Generation.” In: Journal of Machine Learning Research 23.47 (2022), pp. 1–33.

[Ho+22b] Jonathan Ho et al. Video Diffusion Models. 2022. arXiv: 2204.03458 [cs.CV].
[Hua+23] Yi Huang et al. WaveDM: Wavelet-Based Diffusion Models for Image Restoration.

2023. arXiv: 2305.13819 [cs.CV].
[HV94] Cormac Herley and Martin Vetterli. “Orthogonal time-varying filter banks

and wavelet packets.” In: IEEE Transactions on Signal Processing 42.10 (1994),
pp. 2650–2663.

[Jia+23] Hai Jiang et al. “Low-light image enhancement with wavelet-based diffusion
models.” In: ACM Transactions on Graphics (TOG) 42.6 (2023), pp. 1–14.

[Jl01] Arne Jensen and Anders la Cour-Harbo. Ripples in mathematics: the discrete
wavelet transform. 2001.

[Jol+21] Alexia Jolicoeur-Martineau et al. Gotta Go Fast When Generating Data with
Score-Based Models. 2021. arXiv: 2105.14080 [cs.LG].

[Kar+20] Tero Karras et al. “Analyzing and improving the image quality of style-
gan.” In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 8110–8119.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization.” In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015.

[Kid21] Patrick Kidger. “On Neural Differential Equations.” PhD thesis. University
of Oxford, 2021.

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency.” In: The
Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

[KP92] Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differen-
tial Equations. Springer Berlin Heidelberg, 1992.

[KV89] Gunnar Karlsson and Martin Vetterli. “Extension of finite length signals for
sub-band coding.” In: Signal Processing 17.2 (1989), pp. 161–168.

[Kyn+23] Tuomas Kynkäänniemi et al. “The Role of ImageNet Classes in Fréchet In-
ception Distance.” In: Proc. ICLR. 2023.

[Lee+19] Gregory R. Lee et al. “PyWavelets: A Python package for wavelet analysis.”
In: Journal of Open Source Software 4.36 (2019), p. 1237.

[Li+23] Jin Li et al. “Wavelet Transform-Assisted Adaptive Generative Modeling for
Colorization.” In: IEEE Transactions on Multimedia 25 (2023), pp. 4547–4562.

[Liu+20] Lin Liu et al. “Wavelet-based dual-branch network for image demoiréing.” In:
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIII 16. Springer. 2020, pp. 86–102.

[LLLY24] Shanchuan Lin et al. “Common diffusion noise schedules and sample steps
are flawed.” In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. 2024, pp. 5404–5411.

80

https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2305.13819
https://arxiv.org/abs/2105.14080

Bibliography

[LLSD19] Alexandre Lacoste et al. “Quantifying the Carbon Emissions of Machine
Learning.” In: arXiv preprint arXiv:1910.09700 (2019).

[LLWT15] Ziwei Liu et al. “Deep Learning Face Attributes in the Wild.” In: Proceedings
of International Conference on Computer Vision (ICCV). Dec. 2015.

[Lu+22] Cheng Lu et al. “DPM-solver: A fast ODE solver for diffusion probabilis-
tic model sampling in around 10 steps.” In: Advances in Neural Information
Processing Systems 35 (2022), pp. 5775–5787.

[Mal89] Stéphane Mallat. “A theory for multiresolution signal decomposition: the
wavelet representation.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 11.7 (1989), pp. 674–693.

[Mos+23] Brian Moser et al.Waving Goodbye to Low-Res: A Diffusion-Wavelet Approach
for Image Super-Resolution. 2023. arXiv: 2304.01994 [cs.CV].

[MVB20] StanislavMorozov,AndreyVoynov, andArtemBabenko. “On self-supervised
image representations for GAN evaluation.” In: International Conference on
Learning Representations. 2020.

[Nar+17] Sharan Narang et al. “Mixed precision training.” In: Int. Conf. on Learning
Representation. 2017.

[ND21] Alexander Quinn Nichol and Prafulla Dhariwal. “Improved Denoising Diffu-
sion Probabilistic Models.” In: Proceedings of the 38th International Conference
on Machine Learning. Vol. 139. Proceedings of Machine Learning Research.
PMLR, 2021, pp. 8162–8171.

[NMDB21] Charlie Nash et al. Generating Images with Sparse Representations. 2021. arXiv:
2103.03841 [cs.CV].

[Øks03] Bernt Øksendal. Stochastic Differential Equations. Springer Berlin Heidelberg,
2003.

[Par81] Giorgio Parisi. “Correlation functions and computer simulations.” In:Nuclear
Physics B 180.3 (1981), pp. 378–384.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In: Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada. 2019, pp. 8024–8035.

[PDT23] Hao Phung, Quan Dao, and Anh Tran. “Wavelet Diffusion Models Are Fast
and Scalable Image Generators.” In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). June 2023, pp. 10199–10208.

[Pla+22] Patrick von Platen et al. Diffusers: State-of-the-art diffusion models. https://
github.com/huggingface/diffusers. 2022.

[Pod+23] Dustin Podell et al. SDXL: Improving Latent DiffusionModels for High-Resolution
Image Synthesis. 2023. arXiv: 2307.01952 [cs.CV].

[PZZ22] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. “On aliased resizing and
surprising subtleties in GAN evaluation.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 11410–11420.

81

https://arxiv.org/abs/2304.01994
https://arxiv.org/abs/2103.03841
https://https://github.com/huggingface/diffusers
https://https://github.com/huggingface/diffusers
https://arxiv.org/abs/2307.01952

Bibliography

[Rah+19] Nasim Rahaman et al. “On the spectral bias of neural networks.” In: Interna-
tional Conference on Machine Learning. PMLR. 2019, pp. 5301–5310.

[Ram+22] Aditya Ramesh et al. “Hierarchical text-conditional image generation with
clip latents.” In: arXiv preprint arXiv:2204.06125 1.2 (2022), p. 3.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation.” In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. 2015, pp. 234–241.

[Rom+22] Robin Rombach et al. “High-resolution image synthesis with latent diffusion
models.” In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2022, pp. 10684–10695.

[Sah+22] Chitwan Saharia et al. “Image super-resolution via iterative refinement.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 45.4 (2022),
pp. 4713–4726.

[SE19] Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradi-
ents of the Data Distribution.” In: Advances in Neural Information Processing
Systems. Vol. 32. 2019.

[SGSE20] Yang Song et al. “Sliced score matching: A scalable approach to density
and score estimation.” In: Uncertainty in Artificial Intelligence. PMLR. 2020,
pp. 574–584.

[SL23a] Javier E. Santos and Yen Ting Lin. Using Ornstein-Uhlenbeck Process to un-
derstand Denoising Diffusion Probabilistic Model and its Noise Schedules. 2023.
arXiv: 2311.17673 [stat.ML].

[SL23b] Inga Strümke and Helge Langseth. Lecture Notes in Probabilistic Diffusion
Models. 2023. arXiv: 2312.10393 [cs.LG].

[SME21] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion
Implicit Models.” In: International Conference on Learning Representations. 2021.

[SN96] Gilbert Strang and Truong Nguyen.Wavelets and Filter Banks. 1996.
[Son+21] Yang Song et al. “Score-Based Generative Modeling through Stochastic Dif-

ferential Equations.” In: International Conference on Learning Representations.
2021.

[SSLZ23] Shuyao Shang et al. ResDiff: Combining CNN and Diffusion Model for Image
Super-Resolution. 2023. arXiv: 2303.08714 [cs.CV].

[SWMG15] Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilib-
rium Thermodynamics.” In: Proceedings of the 32nd International Conference on
Machine Learning. Vol. 37. Proceedings of Machine Learning Research. Lille,
France: PMLR, July 2015, pp. 2256–2265.

[Sze+16] Christian Szegedy et al. “Rethinking the inception architecture for computer
vision.” In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2818–2826.

82

https://arxiv.org/abs/2311.17673
https://arxiv.org/abs/2312.10393
https://arxiv.org/abs/2303.08714

Bibliography

[Tia+23] Chunwei Tian et al. “Multi-stage image denoising with the wavelet trans-
form.” In: Pattern Recognition 134 (2023), p. 109050.

[Tra+18] D. Tran et al. “A Closer Look at Spatiotemporal Convolutions for Action
Recognition.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA, June 2018, pp. 6450–6459.

[Vas+17] Ashish Vaswani et al. “Attention is All you Need.” In: Advances in Neural
Information Processing Systems. Vol. 30. 2017.

[Vin11] Pascal Vincent. “A connection between score matching and denoising au-
toencoders.” In: Neural computation 23.7 (2011), pp. 1661–1674.

[VK95] Martin Vetterli and Jelena Kovačević.Wavelets and subband coding. 1995.
[VWG23] Lokesh Veeramacheneni, Moritz Wolter, and Juergen Gall. Wavelet Packet

Power Spectrum Kullback-Leibler Divergence: A New Metric for Image Synthesis.
2023. arXiv: 2312.15289 [cs.CV].

[Wan+20] Jianyi Wang et al. “Multi-level wavelet-based generative adversarial network
for perceptual quality enhancement of compressed video.” In: European
Conference on Computer Vision. Springer. 2020, pp. 405–421.

[WBGH24] Moritz Wolter et al. “ptwt - The PyTorch Wavelet Toolbox.” In: Journal of
Machine Learning Research (2024).

[WBHG22] Moritz Wolter et al. “Wavelet-packets for deepfake image analysis and detec-
tion.” In:Machine Learning 111.11 (2022), pp. 4295–4327.

[WH18] Yuxin Wu and Kaiming He. “Group Normalization.” In: Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XIII. Vol. 11217. Lecture Notes in Computer Science. 2018,
pp. 3–19.

[Wil+23] Christopher Williams et al. “A Unified Framework for U-Net Design and
Analysis.” In: Advances in Neural Information Processing Systems 36 (2023).

[WS99] Martin J Wainwright and Eero Simoncelli. “Scale mixtures of Gaussians and
the statistics of natural images.” In: Advances in neural information processing
systems 12 (1999).

[Yoo+19] Jaejun Yoo et al. “Photorealistic style transfer via wavelet transforms.” In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 9036–9045.

[Yua+23] Xin Yuan et al. Spatial-Frequency U-Net for Denoising Diffusion Probabilistic
Models. 2023. arXiv: 2307.14648 [cs.CV].

[YZFW23] Xingyi Yang et al. “Diffusion probabilistic model made slim.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023,
pp. 22552–22562.

[Zha+22] Bowen Zhang et al. “Styleswin: Transformer-based GAN for high-resolution
image generation.” In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022, pp. 11304–11314.

83

https://arxiv.org/abs/2312.15289
https://arxiv.org/abs/2307.14648

List of Figures

1.1 An exemplary signal on ℝ as well a discretized signal with a sampling rate
of 𝑇. 2

1.2 Application of the moving aveage and the moving difference to an exam-
plary signal . 3

1.3 Absolute frequency response of the ideal high-pass and low-pass filter . . 5
1.4 Magnitude of the frequency response of themoving average and themoving

difference. 7
1.5 Schematic of a filter bank. 9
1.6 Scaling function and mother wavelet of the Haar wavelets 16
1.7 Scheme of the fast wavelet transform. 19
1.8 Schemes of two-dimensional wavelet transforms. 21
1.9 Four types of boundary handling of an example signal. 24

2.1 Visualization of a one-dimensional forward process. 28
2.2 Scheme of a DDPM. 29
2.3 ̄𝛼𝑡 during the forward diffusion process for different noise schedules. . . . 39

3.1 Scheme of a WSGM. 44

4.1 Generated samples sym4-bd. WSGM and DDPM. 56
4.2 Comparison of WSGMs for different wavelets and boundary handling tech-

niques for different fixed discretization steps. 57
4.3 Examplary image generated by an 2-scale WSGM using db4wavelets with

zero padding for 100 steps on each level. 60
4.4 Comparison of two-scaleHaarwaveletWSGMs for a different number of dis-

cretization steps between the unconditional base model and the constional
models. 61

4.5 Comparison of two-scale Haar wavelet WSGMs for an progressively in-
creasing number of discretization steps. 64

1 Scheme of the inverse fast wavelet transform 69
2 Scaling functions and mother wavelets of Daubechies wavelets and symlets

of different lengths . 70
3 Comparison of two-scale sym4 boundary wavelet WSGMs for a different

number of discretization steps between the unconditional base model and
the constional models. 71

4 Comparison of two-scale sym4 boundary wavelet WSGMs for an progres-
sively increasing number of discretization steps. 72

5 DDPM samples . 73

84

List of Figures

6 WSGM samples for Haar wavelet . 74
7 WSGM samples for sym4-bd. wavelet . 75
8 WSGM samples for db4-rf. wavelet . 76
9 WSGM samples for db4-zr. wavelet . 77

85

List of Tables

4.1 Results of comparisons between the CelebA dataset and itself as well as
generated images for different power spectrum-based scores. 53

4.2 Parametrization of the UNet used in the experiments. 55
4.3 Comparison of WSGMs for different wavelets and boundary handling tech-

niques, using two and three levels and a fixed number of discretization
steps. 58

4.4 Comparison of WSGMs on center-cropped images for different wavelets
and boundary handling techniques, using two and three levels and a fixed
number of discretization steps. 59

4.5 Average inference time for a single inference step with a batch size of 250. 62
4.6 Comparison of WSGMs using a different step count for the unconditional

and conditional models. 65

86

	Introduction
	1 Foundations of wavelet theory
	1.1 Filters and filterbanks
	1.1.1 Filters in the frequency domain
	1.1.2 Filter representation with Toeplitz matrices
	1.1.3 Low-pass and high-pass filter
	1.1.4 Filter banks
	1.1.5 Sampling in the filter bank
	1.1.6 Matrix representations of filter banks
	1.1.7 Perfect reconstruction and orthonormal filter banks

	1.2 Wavelets
	1.2.1 Multiresolution analysis
	1.2.2 Daubechies-Wavelets and Symlets
	1.2.3 Fast wavelet transform
	1.2.4 Wavelet packet transform
	1.2.5 Wavelets on 2d signals

	1.3 Handling signal boundaries for wavelets
	1.3.1 Boundary handling by signal extension
	1.3.2 Boundary handling with boundary filters

	2 Diffusion models
	2.1 Diffusion models in discrete-time
	2.1.1 Learning to reverse the diffusion
	2.1.2 A simplified loss function and sampling from a DDPM
	2.1.3 DDPM as a score-based model
	2.1.4 Taking the time horizon to infinity

	2.2 Diffusion models in continuous-time
	2.2.1 Sampling from continuous-time diffusion models

	2.3 Choosing the noise schedule

	3 Wavelets for diffusion models
	3.1 Multiscale diffusion models in the wavelet domain
	3.1.1 Discretization error and score regularity
	3.1.2 Preconditioning through normalized wavelet coefficients

	3.2 Incorporating wavelets into diffusion model backbones

	4 Numerical Experiments
	4.1 Evaluation metrics
	4.2 Setup
	4.3 Higher-order wavelets and boundary handling
	4.4 A finer discretization of the unconditional model
	4.5 Progressively decreasing the number of inference steps per level
	4.6 Increasing the number of wavelet levels

	5 Discussion and outlook
	Appendix
	1 Further plots and samples

	Bibliography

