
Active Learning for
Bayesian Neural
Networks with

Gaussian Processes

Lukas Erlenbach

Born 01.08.1994 in Nastätten

October 28, 2020

Master’s Thesis Mathematics

Advisor: Prof. Dr. Jochen Garcke

Second Advisor: Prof. Dr. Martin Rumpf

Institut für Numerische Simulation

Mathematisch-Naturwissenschaftliche Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Contents

1 Introduction 1

2 Active Learning 6
2.1 From Supervised to Active Learning 6
2.2 A Solution Framework for Active Learning 9
2.3 Literature Review . 9

3 Gaussian Processes 16
3.1 Gaussian Processes - Definition . 16
3.2 Gaussian Processes - Predictions . 18

4 Bayesian Neural Networks 21
4.1 Feed-Forward Neural Networks . 22
4.2 Literature Review:

Active Learning for Neural Networks 23
4.3 Bayesian Neural Networks . 25
4.4 Training Bayesian Neural Networks 26
4.5 BNN and Active Learning . 30

5 Connection between Neural Networks and Gaussian Processes 33
5.1 Single-Layer Neural Networks . 33
5.2 Multi-Layer Neural Networks . 34
5.3 GPA Sampler . 35
5.4 Fast Batch GPA Sampler . 41

6 Experimental Results 44
6.1 Implementation Details . 44
6.2 Housing and Airline Datasets . 46
6.3 Behavior of the GPA Samplers . 47
6.4 Complete Active Learning Framework 56
6.5 QM9 Dataset and SchNet . 59
6.6 HJB Equations . 61

7 Conclusion 67

A Appendix 78
A.1 Runtimes on the Airline Dataset . 78
A.2 Results for HJB Equations with QMC Points 80

Notation

Symbol Meaning

w.r.t. with respect to
i.i.d independent and identically distributed

X ⊂ Rn input space
T ⊂ Rd target space, often d = 1
D = (X, Y) training data with input X and labels Y
ftrue(.) true underlying function of a learning problem

f̂(.) approximation function or model within the solution process
L loss function
Xpool pool for an active learning problem

A(x|D, f̂) acquisition function in the greedy active learning framework

∼,∝ distributed according to, proportional to
E [x] ,Eq(x) [x] expectation of x, expectation of x, when x ∼ q(x)
N (µ, σ2) normal or Gaussian distribution with mean µ and variance σ2

GP (m(.), k(., .)) Gaussian Process

L number of hidden layers of a neural network
wl width of layer l ∈ {1, . . . , L} of a neural network
W l, bl weight matrices and biases of a neural network
φ(.) non-linearity applied in a neural network
x ∈ X input point
xl(x) ∈ wl computed value at intermediate layer

θ parameters of a (Bayesian) neural network
fnn(x, θ) forward pass of input x through a neural network with parameters θ
p(θ) prior for the network parameters
p(θ|D) a posteriori distribution of the parameters
p(Y |X, θ) likelihood of training data given parameters θ
p(Y |X) marginal likelihood of the training data
η variational parameters
q(θ|η) variational distribution of the network parameters
KL [p||q] Kullback-Leibler divergence of distributions p and q
F(D, η) evidence lower bound

Acknowledgments

I want to express gratitude towards my advisor Prof. Dr. Jochen Garcke for
suggesting the topic of this thesis and for providing valuable feedback and guidance
over the last year. Furthermore, I want to thank Prof. Dr. Martin Rumpf for being
the second advisor. Thanks to Meike, Janis, Mark, Lauritz, Marc and Joachim for
proofreading the earlier versions of this work. Furthermore, I am grateful for finding
friends within the EFG which made my last six years of studying mathematics in
Bonn possible and special. Finally, I thank my family and Melanie for their ongoing
support and encouragement.

Chapter 1

Introduction

More often than not, machine learning models require large amounts of labeled data
for a successful training process. This is not a problem, if training instances are
already available in sufficient numbers or if additional data can easily be obtained.
There are, however, also applications where data acquisition is more difficult and
where the available data becomes a valuable good which determines and limits the
performance of employed models. Typical examples of this problem include image-
based cancer diagnosis and speech recognition but also engineering or modeling-
related tasks. Often, unlabeled data (e.g. images) is readily available but human
experts or costly computations are required to get the corresponding label (e.g. [can-
cer] or [no cancer]). Machine learning models, such as neural networks, are highly
optimized to extract as much information as possible from the data presented to
them. If the performance is unsatisfactory for the particular application, the only
way to improve it is to increase the number of training instances.

The purpose of Active Learning techniques is to guide this data selection process
called sampling. In contrast to a Passive Learner which only observes the presented
instances, an Active Learner, usually a pair of a machine learning model and a sam-
pling policy, also interacts with unlabeled data. Based on the trained model and the
already seen labeled data, the sampling policy decides which instances should be
labeled and added to the training data to improve the performance of the model.
Compared to generating additional labels for randomly chosen points, a successful
active learning framework can exponentially reduce the number of required labels.
This has a tremendous impact on the before-mentioned applications: thousands of
working hours of medical professionals and other human experts could be saved
without compromising any quality of the machine learning models.

The main motivation and guideline for this work is given by Tsymbalov et al.
[Tsy+19]. They established a pool-based active learning strategy which is tailored
towards neural networks and regression problems. Although neural networks have
arguably become the most popular machine learning model, active learning for neu-
ral networks and regression problems is currently not very well developed. This
highlights the importance of the authors work.

Before the Active Learning Problem is introduced more formally in chapter 2, we
motivate the topic using an example for active learning on a simple 1d-regression

1

Chapter 1

task in the remainder of this chapter. The strategy developed in [Tsy+19] origi-
nated from the connection between neural networks and Gaussian processes which
we shortly present in chapter 3. In chapter 4 we will extend the neural network to
a probabilistic model with the introduction of Bayesian neural networks and show
how they can be trained with the Bayes by Backprop algorithm from [Blu+15]. The
application to active learning follows in chapter 5. After connecting neural networks
and Gaussian processes (based on [Lee+17]) the sampling strategy from [Tsy+19]
is presented and extended with a more general updating procedure. Finally, we test
the presented approach extensively in chapter 6 before concluding and providing an
outlook in chapter 7.

To illustrate the active learning problem, consider the following toy example of
a noisy function which has a minor slope and a sine oscillation in the center as
shown in figure 1.1. In the pool-based active learning setting there are two datasets.
The training data consists of labeled points (black dots) which are used for model
training. The pool data is initially unlabeled (gray dots). In the toy example
the training data consists of ten randomly selected instances and 1,000 pool points.
After training on the initial training data, active learning operates in iterations:
additional points from the pool are selected to get labeled and added to the training
data. The model is then retrained on the increased dataset. Choosing (or sampling)
points from the pool that contribute positively to the training process of the model
is the main challenge in the active learning problem.

In the following we will compare two sampling strategies and see that a smart
strategy can improve the trained model significantly compared to a random selection
of points.

Figure 1.1: Initial training points in black, pool points in gray. Neural network
prediction after the first training is shown as the black line.

As model we implement a simple feed-forward neural network in TensorFlow
([Mar+15]) which has two dense layers of 100 neurons each and train it on the ten
initial training points. The predictions from this network can be seen in figure 1.1.
In this toy active learning framework we allow the selection of five unlabeled in-
stances in each active learning iteration. These points get labeled and then added

2

to the training instances before the network training is continued. As this is only a
toy example, we can easily provide the labels for the pool data but keep in mind that
the labeling in an application would be done by humans or computer simulations
and the corresponding costs could be high.

Because the algorithm does not know the labels of the points in the pool, it is
not clear which instances should be added to improve the network. As a baseline
sampling strategy we select five points at random. After the addition of these points
the network is re-trained on the now 15 labeled instances. The predictions of the
resulting network can be seen in the upper plot of figure 1.2: The instances which
were selected in the first active learning iteration are circled and the points chosen
for the second iteration are marked with a cross. Observe that the predictions are
close to the labels of the training points but in general the improvement after adding
five points is small.

Figure 1.2: Network prediction after training on 15 randomly selected points (upper
plot) and on 25 points (lower plot). Points selected in the first active learning
iteration are circled, points selected in iterations two and four are marked with a
cross.

We perform two more active learning iterations, each selecting five more points
at random, add them to the training set and retrain the network. After a total of
three iterations the training data consists of 25 labeled points. The predictions of

3

Chapter 1

the network can be seen in the lower plot of figure 1.2. Because of bad luck, almost
no points from the two peaks of the underlying function were selected and labeled.
This exactly constitutes the problem of selection additional data points randomly.
Without knowing about these peaks the network can not predict them well and, as
a result, the network approximation of the function is far from optimal.

To showcase how a successful active learning technique can improve upon the
random selection, we start again from the same initial network as shown in figure 1.1.
More precisely, we use the GPA Sampler from section 5.3 to choose points from the
pool. This sampling method relies on uncertainty estimations of the network output
to select instances having a particularly high variance, while also ensuring that the
points are well spread.

Figure 1.3: Network prediction after training on 15 (upper plot) and on 25 actively
selected points (lower plot). Points selected in the first active learning iteration are
circled, points selected for the next training are marked with a cross.

The five points selected by the GPA Sampler are circled in the upper plot of
figure 1.3. It can be seen that the majority of chosen points in the first iteration is
located in the central region and that re-training the network on 15 points clearly
improved the approximation quality of the network. Additionally, the points se-
lected in the second active learning iteration (crosses in the upper plot) are still
situated in the center. This indicates that the GPA Sampler still predicts a high

4

network uncertainty in that area and therefore decides for more points from there.

Looking at the lower plot of figure 1.3 we see that after three active learning
iterations and 15 selected points (25 training points total), the network fits the un-
derlying function reasonably well and certainly better than its counterpart with the
randomly selected points in figure 1.2. We are not restricted to just looking at the
network predictions but can also calculate their respective loss on the remaining pool
instances: After training of 25 points and a total of 10,000 training epochs, the first
network with randomly selected points has an RMSE of 0.66 while the network with
points chosen by the GPA Sampler has an RMSE of 0.22; a significant improvement.

For a final note on the toy example, we show both networks side by side after five
active learning iterations in figure 1.4. The RMSE of the actively trained network is
now at about 0.17, whereas we observe no improvement at all in the case of random
selection. Of course, this toy example is far from doing complex prediction tasks
such as cancer types in skin images but it illustrates well the underlying principles
and the possible advantages of using an active learning approach over passive learn-
ing. We will now continue in the next chapter with a more formal definition of the
Active Learning Problem.

Figure 1.4: Both networks after five active learning iterations, i.e. with a total of
35 training points and 15,000 epochs trained total. Network with randomly selected
points on the top, network with points chosen by the GPA Sampler at the bottom.

5

Chapter 2

Chapter 2

Active Learning

In this chapter we will now formally introduce the Active Learning Problem which we
want to tackle in the upcoming chapters. In general, active learning refers to algo-
rithms which proactively make decisions on additional data acquisition for training
purposes. This is useful in supervised learning scenarios when additional training
instances can be obtained at runtime but also when the available data is too big to
be used as a whole and the training process has to take place on a subset.

We will first be presenting the Supervised Learning Problem and then extend it to
a broad definition of an Active Learning Problem (2.1). The most common solution
approach via greedy point selection will be introduced in a solution framework (2.1)
before we give an overview on literature for active learning problems (2.3).

2.1 From Supervised to Active Learning

Supervised Learning is - broadly speaking - the machine learning task of inferring a
function from labeled data that generalizes well to new unseen data. This is usually
achieved by some kind of training process which determines the parameters of a
suitable model and ideally, the resulting model can be used to predict the labels of
previously unseen input data reasonably well. It is called supervised because the
access to already annotated instances gives the learning algorithm feedback on how
consistent the current models predictions are with the true labels.

Formally, we are given a labeled dataset D = (X, Y) = {(xi, yi)}|D|i=1 which
consists of input-output pairs, where the input stems from an input space X and
the label from a target space T . Typically, the input space X is a subset of some
Rn and the target space T is the real line of dimension one, so that the input-output
pairs (x, y) ∈ D consist of an input- or feature vector x and an output value y which
we also call label. Furthermore, there is an unknown distribution q over X and an
also unknown underlying function ftrue : X → T . We assume that the input
vectors of the samples (x, y) in D are drawn independently according to this hidden
distribution and that y = ftrue(x). (Note: This formulation assumes that the given
dataset is noise-free. In most cases, it is more realistic to add some kind of noise
model to the underlying function, e.g. y = ftrue(x) + ε, ε ∼ N (0, σ2) like at the end
of section 3.2).

6

From Supervised to Active Learning 2.1

Our aim is to analyze the training data D in order to infer a function f̂ : X →
T which can be used to predict labels in T for unlabeled data from X . In many
cases, the function is inferred indirectly as part of a model that is optimized. In
all cases, we want the predicted labels to be ”reasonable” in the sense that they
should agree well with the underlying function ftrue. As we do not know ftrue, we
need a measure telling us how far away we expect other functions to be from the
true function. This measure is called a loss function and is formally described as
a function L : T × T → R≥0. Since the only available information about ftrue are
the training instances, L will be evaluated on them. For example one could take
the squared difference between the prediction and the known label or the negative
log-likelihood for a probabilistic model. We summarize:

Supervised Learning Problem

Input: a dataset D = (X, Y), a loss function L : T × T → R≥0
Task: find a function f̂ : X → T that minimizes the expected loss

Eq(x)
[
L(f̂(x), ftrue(x))

]

The expected loss can usually not be computed directly because q is unknown
and labels are given only for a subset of input points. Therefore, in practice this is
often circumvented by splitting the dataset D into a training and a validation set
D = Dtrain∪̇ Dval. While the training is performed on Dtrain, we approximate the
expected loss by computing the loss on the validation set:

Eq(x)
[
L(f̂(x), ftrue(x))

]
≈ 1

|Dval|
∑

(x,y)∈Dval

L(f̂(x), y) (2.1)

The ability to solve a specific Supervised Learning Problem depends on many
factors, for example the access to computational power and supplementary informa-
tion about the problem domain. The most central and limiting resource, however,
is often the training data. It needs to be of good quality and quantity to allow su-
pervised learning algorithms to perform well. The optimal training data should be
noise-free and well distributed across the input space but it should not contain too
many instances, as this would make learning difficult or at least very time consum-
ing. More often than not, the available data is less than ideal and active learning
can help in at least two very common scenarios. Firstly, when high quality data can
be obtained but at a high price and secondly, when the amount of data is too big.

Consider the example of image classification. Here, training data is obtained
by humans or human experts who give labels to the images. In most applications
this labeling is of high quality because classifying an image is easy for humans and
for more difficult applications, like cancer diagnosis, there are experts who spent
years training their classification skills. Yet, a tremendous amount of annotated

7

Chapter 2

images is required when training modern neural networks for image classification.
The most recent version of Google’s Inception-network (v4, [Sze+16]) has about 43
million trainable parameters and was trained on 1.2 million hand labeled images
from [Rus+14]. But also for smaller applications it can be valuable to develop a
smart strategy for deciding which images are actually required to improve the mod-
els performance. After a model is trained on an initial set of images, an active
learning algorithm could pick unlabeled images which only then would get labeled
by humans. This can reduce the total amount of required labels by a huge margin
because only images which actually improve the performance of the trained model
are selected. Other examples which fall into the same category of human annota-
tion are speech recognition but also physics or engineering when real life experiments
have to be supervised. The same scenario applies when labeling corresponds to the
conduction of expensive computer simulations.

Active learning also provides help in a second scenario which is becoming more
and more common with the development of cheap and digital storage. If suitable
data can be obtained from the internet, the training instances quickly get so nu-
merous that the training of a model becomes computationally demanding or even
unbearable. The user then has to decide which parts of the available data she uses
for the inference but it is rarely clear how to improve over a randomly selected sub-
set. In an active learning framework we would first train a supervised learning model
on a small subset of the available data. Afterwards, the active learning algorithm
would proactively decide which additional data is needed to continue the learning
process and therefore entail big speed-up opportunities.

The promise of active learning methods is to minimize the number of additionally
requested labels while maximizing the approximation quality. Formally, the Active
Learning Problem is an extension of the Supervised Learning Problem mentioned
above. We should note that various formulations for active learning are known
(refer to section 2.3 for an overview) but we will only consider the pool-based variant:
Besides the labeled training data D another set of input points from X is given which
we call the pool Xpool. Candidates from Xpool can be selected and are evaluated by
a blackbox algorithm � (this could be a human, simulation software, a database,
..). The task remains the same as in the supervised learning problem but now the
additional evaluations can and shall be utilized to minimize the loss function even
further. We summarize:

Active Learning Problem

Input: a dataset D = (X, Y), a loss function L : T × T → R≥0, a pool
Xpool, a blackbox � which for x ∈ Xpool computes a y ∈ T

Task: find a function f̂ : X → T that minimizes the expected loss

Eq(x)
[
L(f̂(x), ftrue(x))

]

8

A Solution Framework for Active Learning 2.2

2.2 A Solution Framework for Active Learning

The most common solution framework for the active learning problem is via greedy
point selection. A supervised learning model is improved over multiple active learn-
ing iterations, each consisting of first, classical training on the labeled data and
second, the query of new labels for data points from the pool (just as in the toy ex-
ample from the introduction 1). The decision which points from the pool should be
labeled is made with help of an acquisition function A(.|D, f̂) : Xpool → R. This
function incorporates the information from the current training data D and current
approximation function f̂ and expresses beliefs on how beneficial the selection of a
point would be. The point in the pool maximizing A is selected for labeling:

xnew = arg max
x∈Xpool

A(x|D, f̂). (2.2)

In many scenarios it would be inefficient to only sample a single point in each
iteration, therefore, a fixed number of points with the highest A-values is labeled.
The pseudocode of the framework is given in algorithm 1.

Algorithm 1: Greedy Active Learning Framework

Data: an Active Learning Problem (D,L, Xpool,�), a trainable model, a
number of points to select N

Result: a trained supervised learning model
1 while termination criteria not satisfied do
2 train model on D according to L;
3 Xnew ← arg maxX∗⊂Xpool,|X∗|=N

∑
x∈X∗ A(x|D, model);

4 D ← D ∪ {(x,�(x))}x∈Xnew ;
5 Xpool ← Xpool \Xnew;

6 end
7 return: model

To really put this framework into practice, a few more details have to looked at
more closely. What is an appropriate number of points per iteration? What should
be the termination criteria in line 1? And how exactly should the training in line
2 be done? One of the more difficult questions involves the details of line 3 where
the framework selects N many points from Xpool with highest A values. We call
line 3 the (active learning) sampling policy according to which we select the new
datapoints and call an algorithm performing this selection a sampler. The central
goal of this thesis it to replace the greedy sampling policy from line 3 with a more
sophisticated sub-routine. We finish this chapter with an overview on active learning
research.

2.3 Literature Review

As already noted, the active learning problem arises naturally in a wide range of ma-
chine learning applications and has therefore attained a decent amount of attention
from researchers and users. This thesis mainly discusses a specific niche case, namely

9

Chapter 2

a fixed class of models (neural networks) and only regression problems, therefore,
this section is dedicated to giving a broader overview over the scientific work that
has been conducted on the topic and touches on the ideas and approaches which are
used to tackle active learning problems.

Most applications where active learning is used are in fact not regression prob-
lems but classification problems. This might be caused by the fact that classification
data can often be annotated more easily by humans or human experts, while it is
more difficult for persons to accurately guess values (think for example about clas-
sifying an image of an animal versus predicting the price of a house). Also, a big
percentage of applications involves classification of image data which perfectly fits
into the active learning problem, as large amounts of training data often need to
be generated by humans. With regards to models in general, those which provide
more information - like probabilistic models - are more commonly used because they
allow for smarter active learning strategies.

We roughly follow the outline of the most recent surveys on active learning
[Set09] from 2010 and [Agg+14] from 2014 which give a more complete overview
and introduction to the various approaches. Theoretical results are surveyed by
[BU16] but only classification problems are covered. Literature on active learning
for neural networks specifically will be covered in the next chapter in section 4.2. We
will now shortly present different scenarios, general sampling strategies, theoretical
results and related research topics.

2.3.1 Problem Formulations

Depending on the specific application the unlabeled instances can be available in
different forms which we will briefly review here. We chose to only consider the
pool-based variant because it is most common and the other scenarios can often be
modified to apply pool-based results.

Query-based: In this scenario the learner is completely free to query any unlabeled
instance from the input space. For example, in the context of image learning this
would mean that the learner could generate an image and ask a human to obtain
the label, i.e. to classify it. There are also variants which only allow the learner
to ask for membership to a certain class or for the equivalence of instances. The
basic formulation was introduced in [Ang88] and extensively studied in [Ang90] and
[Ang04]. Recent research developed polynomial time algorithms for several formal
languages [AAF18] and automata [AAF20]. More practical oriented approaches in-
clude self-paced learning [TH19] where the learner chooses easier examples in the
beginning of the learning process. A recent survey features different query strategies
[KG20]. Query-based active learning gives the most power to the active learner, as
the choice of unlabeled instances is completely free and offers therefore the greatest
potential. A major drawback of this setting is that the requested instances might be
hard for humans to classify. For example, if a network generates an image it might
not make any sense to a human at all. An example of this problem is reported by
Land and Baum in [LB92]. They tried to use active learning for the classification
of handwritten letters and the active learner asked the humans to classify images

10

Literature Review 2.3

which were completely unrecognizable as letters. This formulation can be reduced
to the pool-based version by discretization of the input space. Stream-based active
learning problems can sometimes be naively reduced to a pool-based problems by
collecting a set of instances from the stream which is then used as pool.

Stream-based: As the name suggest, here, the unlabeled instances are drawn from
the underlying distribution and the learner has to decide if they are worth label-
ing one at a time. This variant is therefore applicable if the unlabeled instances
arise in stream-form from the problem setting, or if they are cheap to obtain. This
approach is also called selective sampling and its formulation was characterized by
[ACL90] and [CAL94]. Solution approaches include biased random decisions and
fixed thresholds which are used to decide if an instance should be labeled or not.
It has been used for applications in the financial industry [Sma+14], for document
classification [BBB13] and in combination with reinforcement learning [WCC19].
Theoretical research on stream-based active learning is not as well developed as for
the pool or query-based versions. However, [FK16] developed a general framework to
convert pool-based algorithms to stream-based version while preserving some theo-
retical guarantees. An argument for this version - besides certain applications which
require it - is that the unlabeled data does not have to be stored and the resulting
algorithms therefore require less memory. Yet, it is more difficult to make good la-
beling decision one by one in contrast to evaluating the complete input space or pool.

Pool-based: This is the most common of the three presented approaches because
in many applications a large amount of unlabeled data can be obtained basically
for free. Consider again image classification where millions of images are available
online or really any data which is stored or available online, such as user data in
social networks or audio data used for speech recognition. For a broader spectrum of
applications we refer to section 2.3 of [Set09]. The general approach was established
by [LG94] where they reduced the amount of required training data for a text classi-
fier by as much as a factor of 500. Following this, most of the research conducted on
active learning focused on this setting. We will not go into detail here, but continue
with approaches for sampling strategies which have all been used for the pool-based
setting. We also refer to section 4.2 for the most recent advances in the context of
pool-based active learning and neural networks.

2.3.2 Sampling Strategies

The key question in all active learning scenarios is how to select samples which most
benefit the learning procedure of the model. There are various intuitive ideas on
which data should be selected and corresponding strategies have been developed
and employed. Some of them try to request samples which directly improve the
model or represent the underlying population well. The first two approaches argue
the point of view that the selected samples should contain as much information as
possible. All the strategies boil down to the definition of a corresponding acquisition
function which can be used in a framework similar to algorithm 1. In general, a good
acquisition function has to balance between different objectives and the choice must
depend on the application and desired outcome.

11

Chapter 2

Highest Uncertainty: It is intuitive to label instances for which the current model
is uncertain about the correct output. Providing the label for such a sample will
at least reduce the uncertainty of that particular instance and - hopefully - also in
general. For probabilistic models, uncertainty estimation is often straightforward,
yet, for non-probabilistic model more sophistication is needed (for example [TK02]
developed a strategy for support vector machines). A model independent approach
is to train multiple models and to estimate uncertainty by their disagreement as
proposed in [SOS92]. Query-by-committee can be used either with the same model
and different parameters (as suggested in [DE95] and already used with neural net-
works in [Fre+97]) or with completely different models (a small number of models
can already suffice [SCR08]).
Depending on the problem, different acquisition functions for ranking the unlabeled
instances are used. In classification many models output a probability distribution
over the possible classes. Therefore, it is straightforward to compute the probabil-
ity of the most likely class and rank the pool according to least confidence, i.e.
1 minus the probability of the most likely class. The most popular choice is the
Shannon-entropy ([Sha48]) which not only considers the most likely class, but also
the remaining distribution. For query-by-committee different acquisition functions
like the vote-entropy ([DE95]) or the KL-divergence ([KL51]) are used. For regres-
sion tasks, the output variance is a precise measure of uncertainty. In the Bayesian
setting which we will introduce in chapter 4, the posterior variance of the trained
neural network will be available at no extra cost.

Expected Model Change: This was introduced by [SCR08] for active learning
of multi instances. The idea is that the newly obtained instances should have a big
impact on the current model, i.e. cause a big change to its parameters. The change
of the model is measured by the length of the gradient w.r.t to model parameters
and therefore requires the gradients to be accessible. Considering an unlabeled in-
stance, its possible labels and respective likelihoods the expected model change can
be estimated. This method has performed well in empirical studies (refer section
3.3 in [Set09]) but needs proper rescaling if label classes are unbalanced and can be
computationally expensive.

Expected Error or Variance Reduction One can also try to directly improve
the objective function of the corresponding supervised learning problem. The im-
portant distinction to the uncertainty approach is that not the state of the model
before the choice of samples is considered but the state after new samples are added
and the model was retrained. Depending on the loss function the expected loss after
the addition of a sample can be estimated (as proposed in [RM01]). This approach
represents very precisely what we intend to achieve: selecting samples which lead
to a good generalization of the model which we typically measure with the loss
function. The crux of the idea lies in the fact that we do not know the labels of
the unlabeled instances beforehand and therefore have to guess how the addition
of an instance will reduce the error. This can for example be done by retraining
the model with each possible label and weighting the results with the probability of
really encountering that label, however this is computationally expensive and not
applicable if the real labeling procedure is not extraordinary expensive.

12

Literature Review 2.3

In [GG07] it was suggested to be optimistic and only consider the label class which
minimizes the expected loss. Other approaches which exploit specific model classes
and loss functions have also been successful (e.g.[Mos+07]). Another line of research
does not deal directly with the objective function but rather aims at reducing the
expected uncertainty, i.e. the variance after the addition of the new samples. This
is computationally cheaper (for some models the expected variance can even be ex-
pressed in a closed form [Mac92]) and one can imagine that reducing the variance
of the prediction should also reduce the errors made by the model. In chapter 5
we follow a similar idea and approximate a neural network with a Gaussian process
because the posterior variance of the latter can be calculated in a closed form. We
will also estimate the variance of the model after the addition of samples but in
this case only for the selection of more samples without the need of retraining the
network.

Density-based and Hybrid. Focusing on the individual instances and choosing
samples which maximize an acquisition function can run into problems by requesting
labels for outliers which are unrepresentative for the underlying distribution. This
can be avoided by weighting the primal acquisition function with a second function
which measures the representiveness of an instance. The second function can be
realized by different similarity measures like distances or via clustering; we refer
again to [SC08] for more details. And finally, all of the presented approaches can be
combined to form all sorts of hybrid strategies.

2.3.3 Related Topics

Different well known Machine Learning problems are similar in spirit as they also re-
quire a good learner to proactively make use of unlabeled data. More recently, there
have been attempts to use ideas from active learning research and apply them to
related areas (and vice versa) such as active semi-supervised learning [RKG18], ac-
tive transfer learning [Den+19] and active reinforcement learning [EVD08], [FLC17],
[WCC19].

In Semi-Supervised Learning not only the labeled dataset is provided but addi-
tional, unlabeled data is given. Additional labels cannot be obtained, but the the
unlabeled data can be used to draw conclusions about the underlying data distri-
bution in the input space. For example identifying different cluster within the data
can make predictions a lot easier. The approach presented in section 5.3 will also
make use of the unlabeled data to sample more diverse points.

In Transfer Learning the task is similar to supervised learning, yet additionally
labeled data from another somehow related dataset is given. It has been used suc-
cessfully with neural networks in distinct applications. Again, a successful learner
has to draw conclusions from data which can not be used in the traditional way as
it might be unlabeled and even stem from a different domain.

Reinforcement Learning deals with the problem of learning how to move an
agent through a ”world” via actions to reach states which provide certain rewards.

13

Chapter 2

In the beginning, the learner neither knows in which states it can expect a positive
reward, nor how to get there. Similar as in active learning, a good learning strategy
therefore has to make smart decisions on how to explore the space without being
sure about the outcomes of its actions.

2.3.4 Theoretical Results

To exemplify the enormous potential that lies in active learning we will start with
a commonly used example ([Set09], [Agh+19]) before reviewing the rigorous theory
which has been developed for active learning.

Assume a 1-d example of an unknown binary threshold function fα(x); α ∈ [0, 1]
which is 1 if x > α and 0 otherwise and that we want to learn this function up to an
error of ε > 0. If we draw random samples x∗ ∈ [0, 1], we have to evaluate O(1/ε)
times on average (e.g. by hitting both the intervals [α − ε/2] and [α + ε/2]) to get
to an error of ε. Regard the following active learning strategy: Consider the points
{0, 1ε, 2ε, . . . , 1}. We know that the point before α evaluates to 0 and the point
after α to 1, therefore, we can conduct a binary search to find the transition point
in only O (log(1/ε)), an exponential reduction of evaluations! Of course this is only
a simple toy example but the great promise of active learning (and declared goal
of theoretical research) is to achieve similar reductions also in multi-dimensional,
multi-class, noise-corrupted and more realistic settings.

In general, theoretical guarantees for active learning algorithms are given within
the probably approximately correct (PAC) learning model [Val84] which requires the
learner to achieve an error of at most ε with a high probability. Results typically
include v, the Vapnik-Chervonenkis (VC)-dimension [VC71] as a factor which mea-
sures the complexity of the model space and the dimension of the input space d.

After a negative result [ER90] which showed that membership queries are essen-
tially useless for a large set of model classes, an exponential reduction (from the
standard O(d/ε) to O(log(d/ε))) was proven in [Fre+97] using a committee of net-
works under the assumption that the underlying function is drawn according to a
known distribution. For learning half-spaces with networks the same reduction of
queries was shown by [DKM05] without the need for multiple models but with an
improved updating rule. For the pool-based version lower and upper bounds were
provided in [Das05] covering several worst cases which can require Ω(1/ε). But later
it was shown in [BHV10] that these worst cases can almost always be avoided.

The beforementioned results assume that a perfect labeling can be realized with
the specified model class. As this often is an unrealistic assumption (model classes
are very small compared to the space of all possible function and do only rarely in-
clude noise), the PAC learning theory can be extended to the agnostic case which
no longer requires a maximum error of ε to be achieved but an error that is at most
ε worse than the best possible error within the model class. A first algorithm with
exponential gains in some settings was presented in [BBL09] and later improved and
extended to more scenarios in [DHM08] where they reduced the problem to special

14

Literature Review 2.3

kind of supervised learning. More recent results [ABL18] also consider bigger noise
rates of Ω(ε).

For regression, the active learning theory is less well developed and convergence
rates are only known for specific problem, data, model and noise settings. For con-
stant noise, convergence rates for two function classes could be proven in [WNC06].
In [Cha+15] active learning for maximum likelihood estimation was considered. It
was general enough to include regression problems but could only prove a constant
factor improvement over passive learning. No rates, however a connection between
the fisher-information-ratio (FIR) and the expected variance of a log-likelihood was
shown in [Sou+17]. For a least-square loss function [CP19] gave a framework which
requires a near minimal number of samples. For instance-dependent noise [CJN17]
used a two-stage approach: first they derived an oracle with guarantees based on
the true, unknown underlying statistics and in a second step they approximated this
oracle in an active learning scheme.

15

Chapter 3

Chapter 3

Gaussian Processes

In this chapter we will introduce Gaussian processes (GP), a machine learning model
which is commonly used for regression tasks and popular in active learning appli-
cations and research because of its probabilistic nature. Gaussian processes do not
scale well with larger sizes of data, therefore we will not train them as a model in
this work but rather approximate a GP to smartly select additional points in an
active learning framework which trains a neural network.

In the first section we will to define the notion of a Gaussian process and in the
second section we review the properties which will be utilized later. We assume that
the reader is familiar with the fundamentals of probability theory like distributions
of random variables and probability density functions. For an introduction to this
field we refer to [BB11] and follow the notation from the book Gaussian Processes
for Machine Learning by Rasmussen and Williams ([RW06]).

3.1 Gaussian Processes - Definition

A Gaussian or normal distribution refers to a set of continuous probability dis-
tributions for real-valued random variables which have a particular form of density
function.

Definition 3.1.1. A random variable x is said to follow a (univariate) Gaussian-
distribution if its probability density function takes the form:

f(x|µ, σ2) =
1

σ
√

2π
e−

1
2(x−µσ)

2

(3.1)

When a random variable x follows a Gaussian distribution with parameters µ
and σ2, we write x ∼ N (µ, σ2) or N (x;µ, σ2) for short. The parameters µ and σ2

are the expectation and the variance of the distribution and determine it completely.
The importance of this particular distribution stems from the fact that it naturally
arises as the limit of the mean of samples even if the samples are not drawn from a
normal distribution themselves. In probability theory this can be formalized as the
well known Central Limit Theorem.

Theorem 3.1.2 (Central Limit Theorem (CLT)). Let {X1, . . . , Xk, . . . } be indepen-
dent and identically distributed (i.i.d.) random variables with mean µ and variance
σ2. Then the normalized sample mean X̄k :=

√
k
(
X1+···+Xk

k
− µ

)
converges in dis-

tribution to N (0, σ2) as k approaches infinity.

16

Gaussian Processes - Definition 3.1

We can also generalize the notion of a Gaussian-distribution easily to the multi-
variate case where the random variables are vectors.

Definition 3.1.3. A multivariate random variable X ∈ Rn is called multivariate
Gaussian distributed if every linear combination of its components

∑m
i=1 aiXi, a ∈

Rn has an univariate Gaussian distribution. For such a random vector we write
X ∼ Nn(µ,Σ) where µ is a vector in Rn and Σ a matrix in Rn,n.

We will still call µ the mean of the distribution Nn(µ,Σ), while Σ is its co-
variance matrix which contains the variances on the diagonal and the covariances
off the diagonal. Note that µ and Σ still determine the distribution completely.
Unsurprisingly, the CLT can also be generalized to the multidimensional case.

Theorem 3.1.4 (Multivariate Central Limit Theorem (MCLT)). Let {X1, . . . , Xk, . . . }
be independent and identically distributed random vectors in Rn with common mean
vector E [X1] = µ and covariance matrix Σ. Let the normalized sample mean be

calculated component wise, X̄k := 1√
k

(∑k
i=1Xi − µ

)
. Then X̄k converges in distri-

bution to Nn(0,Σ) as k approaches infinity.

Abstractly speaking, a random vector X = (X1, . . . , Xn) of length n is the collec-
tion of n random variables which are indexed by the set I = {1, . . . , n}. From this
vantage point, the extension to infinite random vectors is easily realized by taking a
collection of random variables {Xi}i∈I together with the index set I = {1, . . . } = N.
The idea of a stochastic process takes this generalization one step even further,
namely to arbitrary index sets.

Definition 3.1.5. A real-valued stochastic process f is a collection of real-valued
random variables, indexed by some set I. It can be written as:

{f(i) : i ∈ I}. (3.2)

Historically, the index set I was often interpreted as time, therefore one might
think of f(i) as a random variable that is observed at a certain point in time. For
our purposes however, we are not interested in processes which evolve over time,
but over the input space of the considered problem. In other words, we will use the
input space X as index set such that the process gives a random variable for each
input point {f(x) : x ∈ X} . This is motivated by the following, explained in more
detail in [RW06].

When talking about supervised learning in chapter 2 we wanted to use a given
training dataset to infer a function f̂ which can be used to make predictions for so
far unseen input values. We can only verify the performance of f̂ at the datapoints
for which we know the correct labels. But not every function which is consistent
with the training data is equally likely to be an useful approximation. For exam-
ple, the function which predicts only the known labels and is zero otherwise is also
perfectly consistent with the training data and completely useless. Therefore, one
might prefer functions which are expected to be a good approximation of the true
underlying function, for example functions which are smoother in some sense.

Such assumptions are often realized by restricting the space of possible functions
f̂ to a certain class of functions, e.g. combinations of basis functions. This has the

17

Chapter 3

advantage of directly reducing the tremendous complexity of the search space (the
space of all functions from input to output space). However, this approach comes
with the burden of finding an appropriate class of functions: If chosen too small the
underlying function can not be modeled well, and choosing it too large may lead to
overfitting.

To avoid this pitfall we will use a stochastic process indexed by the input space,
which gives a distribution over all possible functions. We want to assign higher
probabilities to functions which fit the training data and prior assumptions. Lower
probabilities or even a probability of zero should be assigned to those not fitting well.
Inferring a ”good” stochastic process from the training data might seem computa-
tionally difficult because the space is possible functions is very large. But luckily it
turns out that with the notion of Gaussian processes the necessary operations can be
done on a finite amount of points. We finish this section with the formal definition
of a Gaussian process and will continue in the next section with the practical usage
of them.

Definition 3.1.6 (Gaussian Process). A stochastic process {f(x) : x ∈ X} is called
Gaussian if and only if for every finite set of indices x1, . . . , xk ∈ X , the random
vector (f(x1), . . . , f(xk)) is multivariate Gaussian distributed.

A Gaussian process f is completely determined by its first two moments, i.e. the
mean and the covariance function which is also called the kernel.

m(x) := E [f(x)] (3.3)

k(x, x′) := E [(f(x)− E [f(x)])(f(x′)− E [f(x′)])] (3.4)

= E [(f(x)−m(x))(f(x′)−m(x′))]

Therefore, we will use the notation

f(x) ∼ GP (m, k) (3.5)

and also assume m(x) = 0 for simplicity from here on as the case m(x) 6= 0 can be
derived from the centered case.

Note that for a given covariance function k(.), the existence of the Gaussian
process GP (0, k) is guaranteed by Kolmogorov, since the entries of the covariance
matrix are defined by k(.) and therefore automatically consistent.

3.2 Gaussian Processes - Predictions

Given a Gaussian process GP (0, k), there are perspectives one can consider and
which turn out to be mathematically equivalent. First, we can imagine that for an
input value x ∈ X the Gaussian process at that index f(x) is a distribution over the
possible outputs in the output space. (This is already helpful because a distribution
contains more information than a point estimate.) Moreover, one could go the other
way around, set the input values aside for a moment, and first sample a function f̂
which can then be evaluated deterministically for input points. From this perspec-
tive, the Gaussian process actually specifies a distribution over the function which

18

Gaussian Processes - Predictions 3.2

goes from input to output space.

For applications we typically are interested in a function which evaluates only a
finite subset of the input space, say X∗ ⊆ X , |X∗| < ∞. In this case we can list all
the covariances of X∗ in a matrix K(X∗, X∗) and define a Gaussian process for this
finite set which is also called the prior distribution.

K(X∗, X∗) := [k(xi, xj)]xi,xj∈X∗

f(X∗) ∼ GP (0, K(X∗, X∗)) .
(3.6)

Now f(X∗) is a vector which is Gaussian distributed and depends on the co-
variance function k(.) and X∗. This vector contains one random variable for each
x ∈ X∗ and we could already sample them to make predictions which however would
be of little use, as there is no information about the training data contained so far.
Of course the choice of the particular k(.) is also essential and usually needs to be
optimized as well but we will see later that this does not apply to the way we want
to employ Gaussian processes.

Assume now we have training data D = (X, Y) and new input points X∗ which
we want to make predictions for. Assume also that we have decided for a particular
covariance function k(.). According to k(.), we can write down the joint distribution
of known labels Y and the unknown labels f(X∗) in block vectors and matrices.

[
Y

f(X∗)

]
∼ GP

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(3.7)

But the really interesting distribution appears when we condition f(X∗) on the
known values (X, Y)

f(X∗)|(X, Y) ∼ GP(K(X∗, X)K(X,X)−1Y,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)).
(3.8)

We call this the posteriori distribution and its calculation only needs the evaluation
of the covariance function k(.) and matrix operations. The functions drawn from
the posterior distribution will still depend on the kernel, yet they will be consistent
with the training data. Again taking the other perspective of obtaining distribu-
tions per input: if (x, y) is a training instance then f(x) will be the point estimate
y and if x∗ ∈ X∗ is not known then f(x∗) will be a normal distribution. Ideally,
f(x∗) will be closer to a point distribution if the output can clearly be inferred from
the training data and be flatter with a bigger variance if the correct output seems
unclear. The posterior can still be utilized to make deterministic predictions using
the maximum likelihood principle. Nevertheless, by predicting distributions, much
more expressiveness is obtained compared to non-probabilistic models.

Generally, it is not realistic to assume noise free data as we have done so far. To
go one step further we derive a similar formulation under the assumption of noise
which effects the observed values. With additive independent identically distributed
Gaussian noise with variance σ2 the covariance matrix of the training instances
changes on the diagonal (and only there because of the independence of the noise):

19

Chapter 3

[
y

f(X∗)

]
∼ GP

(
0,

[
K(X,X) + σ2I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(3.9)

and the posterior becomes

f(X∗)|X, y ∼ GP(K(X∗, X)
[
K(X,X) + σ2I

]−1
y,

K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2I

]−1
K(X,X∗)).

(3.10)

As previously mentioned we will not discuss possible kernel choices and parame-
ter optimization which are needed to use this formulation in the context of machine
learning problems. Instead we note a major disadvantage of Gaussian processes
which is the runtime of O(|D|3) for training data D. This stems from the inversion
of the non-sparse covariance matrix K(X,X) and is the reason why this approach
quickly becomes unbearable for large datasets. There are approaches to speed up the
process (often by approximating the covariance matrix like in [MRE16] or [GAS20]),
however we will use a completely different model (neural networks) which is known
to scale well with big data. We will introduce this model in chapter 4 and then see
how it is connected to Gaussian processes in chapter 5.

20

Chapter 4

Bayesian Neural Networks

In this chapter we will introduce the powerful and well known class of machine learn-
ing models called neural networks. Inspired by the neurons in the human brain they
also consist of small information storage units called neurons or perceptrons which
interchange information with each other. Over the last decade neural networks have
proven to be exceptionally powerful tools, advancing the success of machine learning
in previous unexpected areas and magnitudes. They have been utilized to tackle is-
sues from classification to unsupervised learning, almost every problem in the world
of machine learning. We will utilize them in the most classic fashion which is as
function approximation for a regression task.

Neural networks are known to scale well with large data sizes because they can
use powerful graphics processing units (GPUs) to accelerate the training process.
Research in the last years has developed dozens of tools and extensions to optimize
prediction qualities and powerful open-source libraries like TensorFlow ([Mar+15])
and PyTorch ([Pas+19]) enable users to employ neural network models with relative
ease. Yet the strong computational powers of neural networks do not come without
certain drawbacks. One of the biggest challenges when applying neural networks
is the lack of insight on the decision making process of a network. In other words,
one might be fairly certain that a trained neural network archives good or even very
results with regards to the defined errors and losses, however the network does not
express in any way how to get there. In contrast, other classical supervised learning
models do come with a natural interpretation: For example in a decision tree the
user can clearly follow the paths of decisions taken and comprehend how and with
which reasoning the model is arriving at a label. This enables the user to gain a
deeper understanding about the problem on one hand, and on the other - as the
user can judge the complete decision making process - also provides refined control
and intervention options.

One way of getting more useful information out of a neural network is using
them in a Bayesian setting as Bayesian neural network (BNN). Similarly to the
Gaussian processes from chapter 3, we are not interested in predicting only a single
output but a distribution over possible outputs which expresses the beliefs of the
network on how likely they are to be the correct label. With the distribution at hand
we still have the possibility to predict a single value (e.g. the most likely value) yet
it also provides access to other statistical tools. This allows a better assessment of

21

Chapter 4

the output, as the distribution describes the certain or uncertainty of the network.
To exemplify this, imagine two possible extreme cases: If the network predicts a
distribution which has almost no variance, we can be certain that the maximum of
this distribution is the correct label. However, the network could predict a distribu-
tion with the same maximum but with a much higher high variance and maybe even
other local maxima. In the second case we would not trust the network as much
as in the first case but if the network only predicts the maximum, as we would not
be able to distinguish the two cases. This highlights the advantage of predicting a
distribution over a single value.

In the context of active learning the probabilistic information that the BNN
model proves particularly useful. Knowing where the network is comfortable in its
predictions and where it is uncertain we can decide which additional points are
needed to improve its performance. At the end of this chapter we will use this
observation to present an intuitive sampling policy for a Bayesian neural network
which is used as a baseline for the upcoming chapter.

We will proceed in this chapter as follows: After defining the most of the neces-
sary notation along the introduction of the classical neural network in section 4.1 we
will give a short overview on literature about active learning with neural networks
in section 4.2 . Next, in section 4.3, we present how neural networks can be com-
bined with Bayesian inference. Finally, we will see how Bayesian neural networks
can be trained efficiently in section 4.4 and finish the chapter by showing how their
structure can be utilized to build a variance-based sampler for the active learning
framework. We adopt the notation for neural networks from [Lee+17].

4.1 Feed-Forward Neural Networks

In the most basic version a neural network for inputs from Rn and outputs from Rd

consist of L ∈ N hidden layers of neurons. We denote the number of neurons in
layer l ∈ {1, . . . , L} with wl and call it the width of layer l. For simplicity reasons
we also denote w0 = n. For each layer there is a weight matrix W l ∈ Rwl−1×wl and
a bias bl ∈ Rwl and additional ones for the output layer WL+1 ∈ RwL×d, bL+1 ∈ Rd.
For the sake of notation we denote the collection of all trainable parameters of a
neural network, i.e. the weight matrices and biases with a single variable

θ := {W l, bl}l=1,...,L+1. (4.1)

The input x ∈ Rn is passed to the first layer by multiplying it with a weight
matrix W 1 and adding a bias b1. A non-linearity or activation function φ is
applied point-wise before the values are passed to the next layer where they serve
as the input for the next layer of neurons. After the input is fed through all layers,
the values at layer L are multiplied with the final matrix and the final bias is added
to form the output fnn(x; θ) ∈ Rd. Noticeably, for fixed parameters θ the network
model encodes the approximation function fnn(. ; θ). We denote the intermediate
values of the network at layer l with xl(x; θ). Defining the intermediate values as
functions of the input will make it easier to speak about values of the same network
for different inputs. If the particular parameters of the network are not important,

22

Literature Review:
Active Learning for Neural Networks 4.2

we will also drop the θ and simply write fnn(x) and xl(x). Putting this together, a
forward pass through the network can be computed as

x0(x) : = x

xl(x) = φ(bl−1 +W l−1xl−1(x)), for l ∈ {1, . . . , L}
fnn(x) = bL+1 +WL+1xL(x).

(4.2)

The weight matrices W l and biases bl are the degrees of freedom of the network
and have to be determined from the training data . The training utilizes the concept
of stochastic gradient decent as follows. Assume a supervised learning problem
(D,L) as in section 2.1 is given as well a neural network with initial parameters
θ. The parameters are updated iteratively by estimating the gradient of the loss
function

θ′ = θ − ν
∑

(x,y)∈B

∇θL(fnn(x; θ), y) (4.3)

where B ⊂ D is a random subset of the training data and called a (mini-)batch and
ν ≤ 1 is a small constant also referred to as the learning rate. One iteration, or
epoch, typically consists of splitting the complete dataset into batches and applying
the respective update gradients. In the context of neural networks this can be done
very efficiently by backpropagation where the gradients are first calculated w.r.t to
the last layer and then propagated backwards through the network using the chain
rule. As this leads to simple but numerous matrix operations, GPUs and parallel
computing are successfully employed to speed up the learning process.

This is of course only a very fundamental description of a neural network. Sig-
nificant improvements can be made by employing extension (like dropout [Sri+14])
and choosing the correct hyper-parameters which include parameter initialization
strategy, network architecture, learning rate, batch size, activation function and
more. We will specify those when we employ the networks in the experiments in
chapter 6 but for now we want to focus on active learning and give a short literature
survey on active learning with neural networks.

4.2 Literature Review:

Active Learning for Neural Networks

As we have already seen in section 2.3, active learning has been widely studied in
machine learning for many years. Nevertheless, the advances of deep learning and
neural networks in the recent years require the adaptation of old methods or the
design of new algorithms which are tailored towards neural network models. Al-
though neural networks were already considered in early active learning research
like [ACL90], we want to focus on the rather recent advances which were developed
for modern large scale applications.

One of the most popular and commonly discussed active learning use cases is
image classification. Since neural networks and in particular an architecture called
convolutional neural netorks (CNN) are also known for successes in image related
tasks, it only makes sense to try and combine both approaches. Image data is high

23

Chapter 4

dimensional and hence deep learning models require big amounts of labeled data to
be trained successfully. The initial labeling usually has to be done by humans which
is expensive and not easily scalable. Active learning therefore promises to reduce
the amount of data that has to labeled by hand to train networks which afterwards
can support humans. The well known MNIST ([LC10]) and CIFAR-10 ([Kri12])
datasets are usually considered as a benchmark.

A first mayor contribution was introduced by [Hou+11] in 2011. Originally not
intended for neural networks, they derived Bayesian Active Leaning by Disagree-
ment (short BALD) for Gaussian Processes. BALD follows the paradigm of greedy
point selection as described in section 2.2 and defines an acquisition function which
consists of the current and the posteriori expectation of the entropy of the model
prediction. In that sense it is a hybrid of the uncertainty and variance reduction
sampling strategies discussed in section 2.3.2. It was successfully used on image
data with Bayesian convolutional neural network by [Gal16] compared with other
acquisition functions in [GIG17] and since then is often used as a baseline for further
research.

As BALD was originally designed to sample singletons from a pool, it is not
optimized to sample multiple points at once (a problem that we will also encounter
by the end of this chapter). The intuitive approach of choosing the top k points
with the highest BALD values fails because this typically returns many points which
similar characteristics and therefore little information. Last year an improved ver-
sion called BatchBALD was published by Kirsch et al. in [KAG19] which addresses
the problem by defining an acquisition function not for single points x ∈ X but for
subsets X ⊂ X . Since there is an exponential amount of subsets to chose from,
they also showed how to efficiently find an approximately optimal set. The same
problem was addressed by [SS17] where they formulated the active learning problem
as a set cover problem which they approximate using combinatorial optimization.
A two step solution approach was proposed by [Zhd19]: First, a bigger set of points
with high acquisition values gets selected and then clustered with K-means to finally
obtain divers points.

Earlier work was done in [GE17] where they showed on the MNIST and CIFAR-
10/100 datasets that active learning indeed reduces the amount of required labels
significantly compared to passive learning and random sampling. Ensemble-based
approaches came from [Bel+18] and [PF18]. They trained groups of identical net-
works which were initialized with different parameters and then used in a query-by-
committee framework (see section 2.3.2). Although this proved successful, training
multiple neural networks instead of a single model is computationally quite expen-
sive. The work [YK19] outlines another idea which only requires two networks to be
trained. They trained one network to predict the target function and an additional
one to predict the loss function. The second network was then used to assess, if the
first network is likely to produce wrong predictions and can therefore suggest which
points in the pool should be selected.

Outside the classical image classification active learning for neural networks has
been used in various settings. Reinforcement learning in the stream-based active

24

Bayesian Neural Networks 4.3

learning setting (see section 2.3.1) was discussed by [WF17]. Here, an action-value
function is learned and decides at runtime which images should be labeled. Moti-
vated by the task of pedestrian detection for autonomous vehicles, [Agh+19] pro-
posed a framework for active learning for detection networks. [Wan+19] applied
active learning for global recurrent neural networks to classify ECG beats. Graphi-
cally structured data was considered by [Wu+19]. Recurrent neural networks were
discussed in [BT19]. Recently, active learning was also used for generative neural
networks in [CG20] where they train a network to identify promising candidates in
material design.

Active learning for regression neural networks has not gained much attention
so far. This might be due to the fact that the variance of networks in a Bayesian
setting is naturally available and an appealing choice for an acquisition function.
Nevertheless, there have been some recent advances like the motivational paper for
this work [Tsy+19] and their earlier work [TPS18]. Hafner et al. [Haf+20] examined
how priors of Bayesian neural networks effect the uncertainty estimates of out of
distribution data. They developed noise contrastive priors which prevent networks
from overfitting outside of the training distribution and verified their results in an
active learning setting. Another application in the context of PDEs comes from
[NGK19a] and will be presented in more detail in chapter 6. The remainder of this
chapter is motivated by the ideas presented in [TPS18] and develops an intuitive
sampling strategy for the regression case based on Bayesian neural network.

4.3 Bayesian Neural Networks

When training a classical neural network we aim to use the available training data
to calculate a set of parameters θ̂ which corresponds in some sense to a good ap-
proximation of the underlying function. Given a fixed input x∗ we can use a fixed
set of parameters θ̂ to compute an output for that point via a forward pass through
the network fnn(x∗; θ̂).

In the Bayesian setting, we are not interested in calculating point estimates but
rather distributions over possible output values. To this end, we will use the training
data D = (X, Y) to estimate a distribution p(θ|D) over the possible parameters θ
which is called the posterior (the next section is dedicated to finding this distri-
bution). Since every fixed set of parameters θ corresponds to a neural network and
therefore to a function fnn(., θ) : X → R, the posterior is also a distribution over
evaluation functions. In the classical setting one would try to find a set of parameters
θMLE which maximize the likelihood of the training data θMLE = arg maxθ p(Y |X, θ)
where p(Y |X, θ) is the probability of observing Y given input X and parameters θ.
Note that this value depends on the noise assumption: If we for example assume
that there is no noise at all this probability would be 1 if the predictions fnn(X; θ)
match Y exactly and 0 otherwise and for an independent additive normal noise
with variance γ, p(Y |X, θ) would be

∏
(yi,xi)∈DN (yi; fnn(xi, θ), γ). Typically, the

likelihood can be calculated rather easily, because we only needs to compare the
deterministic forward pass fnn(X; θ) with the observed labels Y .

Assuming now that we have the posterior distribution p(θ|D) already at hand, we

25

Chapter 4

can answer queries for a new input x∗ by taking the expectation over the posterior
of the parameters. The probability of a label y∗ in the output space then becomes

p(y∗|x∗) = Ep(θ|D) [p(y∗|x∗, θ)] . (4.4)

For classification tasks this distribution would assign a probability to each label.
For regression tasks a continuous distribution is obtained. One can imagine this as
if every possible neural network configuration would vote on the output for x∗ and
the votes were weighted by the likelihood of the respective network (the more likely
a particular network configuration is, the more its output is taken into account).
This distribution offers deeper insight compared to the single value we get in the
classical setting. But we can also derive a deterministic function from the distribu-
tion p(y∗|x∗) by taking the average (which makes particularly sense when we know
that the average is also the maximum):

f̂(x∗) = Ep(y∗|x∗) [y∗] =

∫ (∫
p(y∗|x∗, θ)p(θ|D)dθ

)
y∗dy∗ (4.5)

Typically, the posterior distribution cannot be calculated in a closed form. But
if we assume that we can sample from it we can approximate the mean (and also
its variance, as we will see in section 4.5) with say S many Monte Carlo Samples
θi ∼ p(θ|D)

f̂(x∗) ≈
1

S

S∑
i=1

fnn(x∗, θi). (4.6)

Finally, the Bayesian setting also allows to define a prior for the parameters p(θ)
which is independent of the training data. Usually, the prior can be used to incorpo-
rate knowledge - for example from domain experts or earlier experiments - about the
parameters but for neural networks where the parameters do not have a clear inter-
pretation, it is rather a regularization term which prevents the network from overfit-
ting. If a prior is used the point estimate in the classical setting is called maximum
a postiori estimator and takes the form θMAP = arg maxθ log p(Y |X, θ) + log p(θ).
Placing a Gaussian prior is most common which corresponds to L2 regularization.
In the next section we will discuss how to derive the posterior from the training data.

4.4 Training Bayesian Neural Networks

After having seen how a Bayesian neural network (BNN) works if we have the poste-
rior available, this section is devoted to the training process of BNNs which consists
of deriving the posterior p(θ|D) from the training data.

If we again denote the set of training points as D = (X, Y), we can infer prop-
erties of the posterior using Bayes theorem:

p(θ|D) =
p(Y |X, θ)p(θ)

p(Y |X)
. (4.7)

26

Training Bayesian Neural Networks 4.4

The marginal likelihood p(Y |X) =
∫
p(Y |X, θ)p(θ)dθ is independent of θ and

a normalization term which we do not have to consider yet. Therefore, we can
simplify to

p(θ|D) =
p(Y |X, θ)p(θ)

p(Y |X)
∝ p(Y |X, θ)p(θ). (4.8)

As already seen, the likelihood of the training data p(Y |X, θ) can be computed
by a forward pass through the network and the prior p(θ) is specified by the user.
Accordingly, p(Y |X, θ)p(θ) can easily be calculated but only for fixed parameters
θ. This means for given parameters we can calculate their relative (simplification
above) posterior probability, yet computing the complete distribution p(θ|D) is more
difficult. To exemplify this consider again the case of independent additive normal
noise (p(Y |X, θ) =

∏
(yi,xi)∈DN (yi; fnn(xi, θ), γ)) and assume a centered Gaussian

as prior p(θ) = N (θ; 0, αI), α > 0. Putting them together, the posterior becomes

p(θ|D) ∝ N (θ; 0, αI)
∏

(yi,xi)∈D

N (yi; fnn(xi, θ), γ). (4.9)

Assuming such distributions for prior and noise is already a simplification, yet we
can not calculate the posterior analytically because of the complicated dependence
of fnn(x, θ) on θ. There are two fundamentally different approaches to deal with this
problem: The first approach exploits the fact that we can calculate the posterior
for fixed parameters. Markov Chain Monte Carlo (MCMC) algorithms construct a
series of samples by moving in the sample space in small steps. By exploiting the
fact that the real posterior can be calculated for fixed values they ensure that the
derived samples behave similar to samples from the real posterior when the number
of samples is sufficiently large. However, as BNNs are non-linear hierarchical model
with thousands of parameters those techniques can only be applied to relatively
small networks.

The second approach is to approximate the posterior with a simpler distribution
as is was proposed by Blundell et al. in 2015. In [Blu+15] they develop a train-
ing scheme for BNNs called Bayes by Backprop which contains elements from the
stochastic gradient decent and backpropagation used for classical neural networks.
In comparing the two approaches consider the work [G M+18] which we will get to
know in more detail in the next chapter. They were only able to use a BNN with
three layers of 50 neurons because - as the authors state: ”For larger networks the
MCMC approach would prohibitively slow”. In contrast, [Blu+15] already trained
networks with up to 1,200 neurons in two layers which have more than ten times
the amount of parameters.

4.4.1 Bayes by Backprop

The key idea of Bayes by Backprop is to do a Variational Inference on the parameter
distribution which gets optimized in a backpropagation like fashion. First presented
in [Blu+15], it is based on ideas developed in [KW13] and was added to TensorFlow
Probability last year [Tra+19].

Variational inference means that we approximate the real posterior p(θ|D) by a
simpler - so called variational - distribution q(θ|η) which is controlled by parameters

27

Chapter 4

η. For example, if q is chosen to be a Gaussian, η would include the mean and the
standard deviation. The goal will be to determine a set of variational parameters
η∗, such that q is a good approximation of the real posterior (q(θ|η∗) ≈ p(θ|D)))
because then we can use q instead of the real posterior for estimating mean, variance
and other statistics of the network output.

To derive the optimal parameters η∗, the difference between the variational dis-
tribution and the real posterior is defined and minimized. The difference between
two distributions can be measured by the Kullback–Leibler [KL] divergence ([KL51])
which for the two continuous distributions q(θ|η), p(θ|D) is defined as

KL[q(θ|η)||p(θ|D)] :=

∫
q(θ|η) log

(
q(θ|η)

p(θ|D)

)
. (4.10)

Then, the optimal parameter η∗ becomes

η∗ = arg min
η

KL[q(θ|η)||p(θ|D)]

(1)
= arg min

η

∫
q(θ|η) log

(
q(θ|η)

p(θ)p(Y |X, θ)

)
= arg min

η

∫
q(θ|η)

(
log

(
q(θ|η)

p(θ)

)
− log (p(Y |X, θ))

)
= arg min

η

(
KL[q(θ|η)||p(θ)]− Eq(θ|η) [log p(Y |X, θ)]

)︸ ︷︷ ︸
=:F(D,η)

= arg min
η
F(D, η)

(4.11)

where in (1) Bayes theorem (4.7) was used and the of η independent term log(P (D))
was dropped. Instead of minimizing the KL-divergence directly, the introduced
shorthand F(D, η) will be minimized. It is a lower bound of KL[q(θ|η)||p(θ|D)] be-
cause the dropped term logP (D) is always positive. The term F(D, η) is also known
evidence lower bound (ELBO) and consists of two terms. Minimizing the first term
(the KL-divergence) brings the variational distribution q closer to the prior, while
the second term (the expectation) incentivizes q to maximize the likelihood of the
training data. In extreme cases the first term would be zero, if q would be chosen
as the prior and minimizing only the second term yields the maximum likelihood
point estimate for q.

Minimizing F(D, η) with respect to η directly is still computationally expensive
or intractable, hence a stochastic gradient decent similar to the usual backpropaga-
tion is applied. This also has the benefit that no closed form of the costs in 4.11
are required. Instead, the exact costs can be estimated by rewriting F(D, η) as an
expectation over q which we can approximate with say S many Monte Carlo samples
θi ∼ q(θ|η) from the variational posterior

f(θ, η) := (log q(θ|η)− log p(θ)− log p(Y |X, θ))

F(D, η) = Eq(θ|η) [f(θ, η)] ≈ 1

S

S∑
i=1

f(θi, η).
(4.12)

28

Training Bayesian Neural Networks 4.4

Recall that we want to find an η∗ that minimizes F(D, η). So assume we have
some η and want to improve it. We can use the estimate from above to get an idea
about the costs F(D, η), yet to apply SGD we have to calculate or estimate the
gradient of this costs with respect to the variational parameters ∇ηF(D, η).

If q would not depend in η, we would have ∇ηEq(θ) [f(θ, η)] = Eq(θ) [∇ηf(θ, η)],
which would allow us to do Monte Carlo sampling for the gradient as well. But
q(θ|η) does depend on the optimization parameter η, after all that was the whole
point of the variational distribution q. This problem is circumvented with a gener-
alization of the Gaussian reparameterization trick (proposition 1 in [Blu+15]). We
externalize the randomness of θ by sampling first from a distribution which is inde-
pendent of η and then transform this sample into a sample of q. This transforms the
derivation of this expectation to an expectation of derivatives which we can estimate
more easily.

Assume we can transform θ = g(η, ε) with ε ∼ q(ε) independent of η and g(., .) a
differentiable deterministic function and furthermore that the marginal distribution
coincides q(ε)dε = q(θ|η)dθ. Then we see that we can move the gradient into the
expectation which we can then approximate with Monte Carlo samples εi from the
distribution q(ε):

∇ηEq(θ|η) [f(θ, η)] = ∇η

∫
q(θ|η)f(θ, η)dθ

=

∫
q(ε)∇ηf(g(η, ε), η)dε

= Eq(ε) [∇ηf(g(η, ε), η)]

≈ 1

S

S∑
i=1

∇ηf(g(η, εi), η).

(4.13)

Note that ∇ηf(g(η, εi), η) can be computed via the chain rule as long as g is differ-
ential with respect to η.

To make this more clear, consider the commonly used example of a variational
posterior which is a diagonal Gaussian distribution q(θ|η) = N (θ;µ, σI). We pa-
rameterize the posterior with η = (µ, ρ) and σ = log (1 + exp(ρ)) (this ensures that
σ is always positive). Now we can sample ε from a standard Gaussian and transform
it to be a sample from the posterior

ε ∼ N (0, I)

θ := g(η, ε) = µ+ log (1 + exp(ρ)) ◦ ε
=⇒ θ ∼ q(θ|η)

(4.14)

where ◦ denotes pointwise multiplication. Using those as Monte Carlo sample, the
gradients w.r.t. η = (µ, ρ) can easily be estimated as g(η, ε) is clearly differentiable
w.r.t µ and ρ.

∇ηf(θ = g(η, ε), η) = ∇θf(θ, η)
d

dη
g(η, ε) +∇η′f(θ, η′) (4.15)

29

Chapter 4

In conclusion, estimating ∇ηEq(θ|η) [f(θ, η)] with samples εi allows us to optimize
η with respect to F(D, η) via gradient decent with a learning rate of ν > 0

η′ = η − ν 1

S

S∑
i=1

∇ηf(g(η, εi), η),

where f(θ, η) = log q(θ|η)− log p(θ)− log p(Y |X, θ).
(4.16)

By repeating this updating procedure a - hopefully - close to optimum η∗ can be
found and therefore also a good variational distribution q(θ|η∗) which then can be
used instead of the real posterior. Note that the optimization of η also optimizes the
network to fit the data, as equation 4.16 includes in particular−∇η log p(Y |X, g(η, εi)).
It is also worth mentioning that the authors extended this idea to minibatches which
are often used in practice to speed up the training process.

4.5 BNN and Active Learning

Knowing how to train or at least approximate Bayesian neural networks, we are
now ready to apply them in the Active Learning framework from chapter 2. Recall
that our intention for considering the neural network in a Bayesian setting was to
derive a model which predicts distributions. The additional information contained
in the output can be used for active learning in a very intuitive manner which was
developed [TPS18] with the difference that they used classical neural network with
dropout as a source of randomness while we directly consider a probabilistic model.
It works as follows and considers the pool-based active learning version from chap-
ter 2.

Recall that we have a pool of points available and want to decide which of them
are most important to label. We start by feeding all the points in the pool through
the trained BNN. If the network now predicts a distribution with a low variance for
a point in the pool, this means that there is little uncertainty about the correct label
and there is no reason the request the label for such a point because the network
itself can already predict the label well. However, if the variance is very high, the
network does not really know which label is correct. We expect that the addition
of high variance points is beneficial to the training process, as knowing the label to
this point should greatly reduce the uncertainty around it. Accordingly we follow
the principle of highest uncertainty as presented in section 2.3.2.

Now assume we are given a pool Xpool and that we have a BNN with parameters
θ trained on data D = (X, Y) and can sample from its posterior or a napproximation
p(θ|D) (for example with the methods described in the last section). We want to
replace line 3 in the active learning framework 1 which means we have to decide
which points from the pool are selected for labeling. Again we can use S Monte
Carlo samples θi ∼ p(θ|D) to estimate the mean m and variance σ2 of the output

30

BNN and Active Learning 4.5

for a new input x∗ ∈ Xpool

m(x∗) := Ep(θ|D) [fnn(x∗, θ)] ≈ 1

S

S∑
i=1

fnn(x∗, θi)

σ2(x∗) := Ep(θ|D) [fnn(x∗, θ)−m(x∗)]

≈ 1

S − 1

S∑
i=1

(
fnn(x∗, θi)− 1

S

S∑
j=1

fnn(x∗, θj)

)
.

(4.17)

Note that fnn(x∗, θi) is a simple forward pass through the network with fixed
parameters θi, while fnn(x∗, θ) is a random function which depends on the posterior
distribution of the parameters. We estimate the variances for all x∗ ∈ Xpool and
request the labels for those with the highest variances as shown in algorithm 2
to define a sampling strategy for BNNs which can be used to complete the active
learning framework from chapter 2.

Algorithm 2: Variance Sampler for Bayesian Neural Networks

Data: number of samples N , pool Xpool, neural network model fnn and
posterior p(θ|D), number of Monte Carlo samples S

Result: set of points Xsample ⊂ Xpool, with |Xsample| = N
1 for i = 1, . . . , S do
2 sample θi ∼ p(θ|D);
3 end
4 for xj ∈ Xpool do
5 for i = 1, . . . , S do
6 yj,i = fnn(xj, θ

i);
7 end

8 calculate mean: ȳj = 1
S

∑S
i=1 yj,i;

9 calculate variance:

σ2
j =

1

S − 1

S∑
i=1

(yj,i − ȳj)2

10 end
11 return: return N points from Xpool with highest variances σ2

j

While this Variance Sampler is satisfying to a certain degree, its design runs
into problems when multiple points are requested at once (this is often necessary
to reduce runtime). As the variance of close points is typically pretty similar, it
is likely, that the instances with the highest variances are instances from the same
region of the input space. Therefore the sampler would return many points which
actually contain very similar information, a waste of resources.

To circumvent this, one could either retrain the network after each addition of
a point or introduce spacing heuristics which keep the sampled points apart. But
retraining the network is computationally expensive and heuristics require precise
hyperparameter optimization. A more elegant solution was found by [Tsy+19] and
is presented in the next chapter: It is known that random neural networks converge

31

Chapter 4

in distribution to Gaussian processes (see section 3.1). This connection is used to
approximate the trained BNN with a Gaussian process which also allows variance-
based sampling while providing a quick updating procedure for sampling divers
points.

32

Chapter 5

Connection between Neural
Networks and Gaussian Processes

In this chapter a connection between neural network which we introduced in the
last chapter and the Gaussian process from section 3.1 is established. Although the
theory considered in the first two sections is derived for the limits of randomly dis-
tributed neural networks, it is known that already finite Bayesian neural networks
behave similar to Gaussian processes (e.g. chapter 5 in [G M+18]). After building
an intuition with the simple case of a single-layer network in section 5.1, we will
proceed to general multi-layer networks in section 5.2 and show how the networks
converge towards Gaussian processes. In section 5.3 the work of [Tsy+19] is followed
to develop a sampler for the active learning setting which combines variance-based
decision making with a quick updating procedure as suggested. Finally, in sec-
tion 5.4 their work is improved by extending the suggested updating procedure to
batches of points.

5.1 Single-Layer Neural Networks

The connection for single-layer neural networks was first discovered by [Nea96]. Yet
we will use the notation of [Lee+17] here because they extend the proof also to
multi-layer networks.

Consider a standard neural network with one hidden layer of width w and a
single output. Recall the notation introduced in section 4.1: We denote the weights
and biases before the hidden layer with W 1 and b1 and the weights and biases after
the hidden layer with W 2 and b2. Given an input x ∈ X ⊂ Rn, we compute the
forward pass via

fnn(x) = b2 +
w∑
i=1

W 2
i x

1
i (x) ; x1i (x) = φ(b1i +

n∑
j=1

W 1
jixj). (5.1)

Now imagine we would not infer the parameters from the training data but draw
them randomly and independently from distributions with zero mean and a vari-
ance of σ2

W/w and σ2
b respectively. We note that drawing the weights and biases

i.i.d implies that the entries of the vector x1(x) are also independent and identically

33

Chapter 5

distributed. Thus, fnn(x) is the sum of i.i.d. terms and applying the Central Limit
Theorem 3.1.2 we conclude that the output fnn(x) will follow a Gaussian distribution
for w → ∞, i.e. when the width of the network becomes infinitely big. Moreover,
as W 2 and b2 are centered, the fnn(x) will also have zero mean.

If we fix a collection of inputs {xa1 , . . . , xai}, we can see that in the limit w →∞
the corresponding outputs {fnn(xa1), . . . , fnn(xai)} follow a multivariate Gaussian
distribution by the multivariate central limit theorem 3.1.4. This is precisely the
requirement we made in the definition of a Gaussian Process (3.1.6) indexed by the
input space {f(x) : x ∈ X}. Therefore, the network actually converges to a centered
Gaussian process with w → ∞. Taking a closer look at equation 5.1, we can see
that the defining covariance can be written as

k(x, x′) = Ex,x′ [fnn(x)fnn(x′)]

= σ2
b + σ2

WEx,x′
[
x1i (x)x1i (x

′)
] (5.2)

and therefore conclude

fnn(x)
dist.−→ GP(0, k) with w −→∞. (5.3)

5.2 Multi-Layer Neural Networks

The convergence result from the previous section is now extended to the case of
multi-layer networks which can be done in a few different ways. The arguably
strongest result was proven by [G M+18]. They consider a network whose layer
widths are taken to infinity simultaneously (different rates are allowed). This poses
a challenge because of the recursive structure of neural networks: If an intermediate
layer has not converged (yet) and is therefore not a multivariate normal, its influ-
ence on the other layers make the analysis of their convergence more difficult. Under
some weak assumptions they give a rigorous proof of the convergence in distribution
and compare empirically Gaussian processes with small Bayesian neural networks
which they infer using a MCMC approach (refer to the paragraph right before 4.4.1).

While the recursive structure poses a challenge when taking the layer widths to
infinity simultaneously, it can also be exploited to give an intuitive proof of conver-
gence for the case where the layer widths go to infinity one after another. This line
of argument as proposed in [Lee+17] is now presented.

Again consider a neural network as described in section 4.1, this time with L
layers and widths wl which takes inputs of dimension n and returns a single value.
The weights matrices and biases are denoted with W l and bl respectively and we
assume them to be drawn i.i.d from distributions with zero mean and a variance of
σ2
W/wl and σ2

b , respectively.

We proceed by induction in the sense that we take the layer widths to infinity
successively (w1 −→ ∞, w2 −→ ∞, . . .). In the last section, we already established
the basis for the induction and know that the values computed at the first hidden
layer x1(x) are i.i.d. as well. Now, for the induction step, assume that at layer l− 1

34

GPA Sampler 5.3

the i.i.d. values xl−1(x) are already computed. The values at the next layer are
computed via

xli(x) = φ(yli(x)), yli(x) := bli +

wl−1∑
j=1

W l
ijx

l−1
j (x). (5.4)

Again, yi(x) is the sum of i.i.d term random terms, thus we can apply the multi-
variate central limit theorem 3.1.4 to conclude that for any finite set of input values
{xa1 , . . . , xai} the values {yi(xa1), . . . , yi(xai)} will be centered and jointly Gaussian
distributed yli(x) ∼ GP(0, K l) if wl−1 →∞. To complete the induction step, observe
that under application of the activation function φ, the intermediate values remain
i.i.d. Note that the non-linearity φ is not applied before the output layer and the
final value is therefore Gaussian distributed.

The covariance K l can be computed as in the previous section, leading to a
recursive formula which only depends on φ and the covariance of the previous layer
K l−1:

K l(x, x′) = Ex,x′
[
yli(x)yli(x

′)
]

= σ2
b + σ2

wEyl−1∼GP(0,Kl−1)

[
xli(x), xli(x

′)
]

= σ2
b + σ2

wEyl−1∼GP(0,Kl−1)

[
φ(yli(x)), φ(yli(x

′))
]
.

(5.5)

It should be noted that this covariance can be computed analytically in some
cases (e.g. in the case of a ReLU activation function [CS09]) and efficiently approx-
imated in other cases, as described in section 2.5 of [Lee+17]. Research has been
conducted to extract promising kernels from infinite-width networks for example in
[HJ15] and [JGH18]. The latter derived the Neural Tangent Kernel (NTK) from the
limit of neural networks which allowed them to consider the approximation func-
tion fnn directly in the function space during training and recently. Furthermore,
convolutional NTK has been developed in [Aro+19]. However, infinite wide random
networks are not of interest for this work but rather the attempt to extract the
kernels of finite Bayesian neural networks to construct a sampling policy in the next
section.

5.3 GPA Sampler

Why is this connection now interesting for the active learning problem? It tells
us that neural networks and Gaussian processes exhibit - at least in the limit - a
similar behavior. In fact, the experiments in [G M+18] show that already finite
Bayesian neural networks of relatively small size (three layers with 50 hidden units)
behave very similar to Gaussian processes. This connection can be used in the active
learning setting to utilize the advantages of both models while circumventing their
downsides.

Recall that the variance-based sampler proposed in the last section (algorithm 2)
was not satisfactory because it is not optimized for sampling multiple points at once
and might therefore return many similar points which contain the same information.
But as we employ neural network in the active learning framework we really do want
to sample multiple points because retraining the network after every single acquired

35

Chapter 5

point would be computationally too expensive. Therefore, the trained BNN will
be approximated with a Gaussian process which is only used in the active learning
iteration for selecting points from the pool. The actual training will be done on the
BNN which scales much better with bigger data than the Gaussian process while the
Gaussian process approximation allows for an elegant way of sampling divers points.
In the following, the idea from [Tsy+19] is presented with the slight modification of
extending their updating rule from the posterior variance to the complete covariance
matrix (equation 5.11).

Again, let us consider a Bayesian neural network model fnn together with its
posterior distribution p(θ|D). We have already seen in section 4.3 that for a fixed
input x, the network output fnn(x, θ) is a random function (depending on θ ∼
p(θ|D)) and how to estimate its mean and variance (equation 4.17). We can also
estimate its covariance for two input points x, x′ with S Monte Carlo samples θi from
p(θ|D) in a similar fashion. Note that we only need the abilities to sample from the
posterior and to compute forward passes through the network with fixed parameters
to compute an estimates for the mean m̂ and the covariance k̂. Accordingly, we can
calculate them even if the label of a point is not known

m(x) = Ep(θ|D) [fnn(x, θ)]

≈ 1

S

S∑
i=1

fnn(x, θi) =: m̂(x)

k(x, x′) = Ep(θ|D) [(fnn(x, θ)−m(x)) (fnn(x′, θ)−m(x′))]

≈ 1

S − 1

S∑
i=1

((
fnn(x, θi)− m̂(x)

) (
fnn(x′, θi)− m̂(x′)

))
.

=: k̂(x, x′).

(5.6)

If we consider fnn(x, θ) as a random function indexed by the input point x, we
see that it fulfills precisely the definition 3.1.5 of a stochastic process over the input
space X . Furthermore, as Gaussian processes are stochastic processes which are
completely defined by their first two moments, this implies that we can approximate
the stochastic process fnn(x, θ) with a Gaussian process g(x|fnn) which is defined
by the estimates in equation 5.6:

g(x|fnn) ∼ GP(m̂, k̂). (5.7)

So far this new process does not contain any more information than the network.
Yet, as already stated, we can calculate m̂ and k̂ not only for the training instances
but also for those in the pool. This way we can use our knowledge about Gaussian
processes (see section 3.2) to calculate also the posteriori variance of g(x|fnn) given
the training data. To this end, let the set of training points X and the set of pool
points Xpool be given. Estimating the covariances for all x1, x2 ∈ X∪Xpool according
to equation 5.6 allows the computation of the posteriori variance for any x ∈ Xpool

using equation 3.8 as

σ2
post(x|fnn, X) = k̂(x, x)− k̂T(x)K̂(X,X)−1k̂(x) (5.8)

36

GPA Sampler 5.3

where K̂(X,X) denotes the covariance matrix estimate for the training points and
k̂(x) is the vector containing the covariance estimates of x and the training points

K̂(X,X) =
[
k̂(xi, xj)

]
xi,xj∈X

k̂(x) =
(
k̂(x1, x), . . . , k̂(x|X|, x)

)T
.

(5.9)

The advantage of this formulation compared to using the plain variance of the
network is that the posterior variance in equation 5.8 only depends on the covariance
estimates and not on the labels. Therefore, it allows us to update the Gaussian pro-
cess approximation even before we actually request the labels. Assume we decide to
sample a point in the pool x∗ ∈ Xpool, remove it from the pool X ′pool = Xpool \ {x∗}
and add it to the training set X ′ = X ∪ {x∗}. When using the variance of the
network we would now have to request the label for x∗ and retrain the network
on the new training data to get an updated variance. With the Gaussian process
approximation and the covariance estimates k̂(xi, xj) already at hand we see that
we can simply use equation 5.8 again with the updated pool and training data to
get a new variance estimate which takes the sampled point x∗ into account.

Apart from only taking a single point with the highest variance, also a batch of
multiple points with high variances can be selected. This motivates the Batch Gaus-
sian process approximation (BGPA) Sampler (algorithm 3) which computes a total
number of N points from the pool to be labeled. Lines 1-10 describe the estimation
of the covariances, as detailed in equation 5.6. Then, the algorithm continues to
sample a batch of M points per iteration of the while loop (line 12) by calculating
the posterior variance (line 13-15) and then updating the training and pool datasets
(line 16-18).

To improve the numerical stability we can add a small unit matrix to K̂(X,X)
in line 14, before inverting it. This corresponds to assuming a certain observed noise
for the Gaussian process (refer equation 3.10). The posterior variance becomes

σ2
post(x|fnn, X) = k̂(x, x)− k̂T(x)

(
K̂(X,X) + λI

)−1
k̂(x), (5.10)

where λ > 0 is a small parameter the influence of which we will investigate empiri-
cally in chapter 6.

37

Chapter 5

Algorithm 3: Batch GPA Sampler for Bayesian Neural Networks

Data: number of samples N , number samples per iteration M , training
points X, pool Xpool, neural network model fnn and posterior p(θ|D),
number of Monte Carlo samples S, regularization parameter λ

Result: set of points Xsamples ⊂ Xpool, with |Xsamples| = N

1 define X̄ := X ∪Xpool;
2 for i = 1, . . . , S do
3 sample θi ∼ p(θ|D);
4 for xj ∈ X̄ do
5 yj,i = fnn(xj, θ

i) ;
6 end

7 end
8 for xa, xb ∈ X̄ do
9 calculate covariances:

k̂(xa, xb) =
1

S − 1

S∑
i=1

(ya,i − ȳa)(yb,i − ȳb), with ȳj =
1

S

S∑
i=1

yj,i

10 end
11 X ′ ←− X;
12 while |X ′ \X| < N do
13 for xj ∈ Xpool do
14 calculate posterior variance:

σ2
post(xj|fnn, X ′) = k̂(xj, xj)− k̂T(xj)

(
K̂(X ′, X ′) + λI

)−1
k̂(xj)

15 end
16 Xnew ←− M points in Xpool with highest posterior variance;
17 X ′ ←− X ′ ∪Xnew;
18 Xpool ←− Xpool \Xnew;

19 end
20 return: Xsamples = X ′ \X

The major drawback of this sampling policy can be found in line 14. Because
we want to sample points according to the updated posterior variance of the Gaus-
sian process approximation, we have to invert K̂(X ′, X ′) in each iteration which
contributes a runtime of O(|X|3) per iteration with N/M iterations total. This can
quickly become too much for large applications even if we compromise quality and
decide to increase M and to sample a bigger number of points per iteration. To
improve upon that, [Tsy+19] suggested a faster updating procedure. The notation
is now changed to formulate the posterior estimate in vectors. This allows an up-
dating procedure for the complete posterior covariance matrix of g(x|fnn, X) and
not only for the variance, as shown in the paper. As a direct consequence the same
updating procedure can be used multiple times in succession.

38

GPA Sampler 5.3

First, we reformulate equation 5.8 in terms of matrices. The addition of the
regularization matrix λI is skipped from here on to simplify the notation. It is
added again in the pseudocode to make the description complete.

K̂(Xpool, X) :=
[
k̂(xi, xj)

]
xi∈Xpool,xj∈X

K̂(Xpool, Xpool) :=
[
k̂(xi, xj)

]
xi,xj∈Xpool

K̂(Xpool|fnn, X) = K̂(Xpool, Xpool)− K̂(Xpool, X)K̂(X,X)−1K̂(X,Xpool)

(5.11)

Observe that the posterior variance the diagonal of K̂(Xpool|fnn, X). Again, we

are interested in calculating the updated version K̂(X ′pool|fnn, X ′) after adding point
x∗. As it turns out, there is a way of defining an updating procedure which we can
apply to the old covariance matrix and transform it to the covariance matrix of for
the updated training and pool sets.

K̂(X ′pool|fnn, X ′) = K̂(X ′pool, X
′
pool)− K̂(X ′pool, X

′)K̂(X ′, X ′)−1K̂(X ′, X ′pool)

(1)
= K̂(Xpool|fnn, X)− k̂(Xpool, x

∗)T k̂(Xpool, x
∗)

σ̂2(x∗|fnn, X)

(5.12)

The proof of (1) is not given here, as it directly follows from the more general
result in the next chapter. This update only requires the product of two vectors,
rescaling of the resulting matrix and a subtraction from the old covariance matrix
and is therefore computationally much cheaper than the recalculation. Note that the
vector k̂(Xpool, x

∗) is a row and σ̂2(x∗|fnn, X) a diagonal entry of the old covariance
matrix and that the row and column of the new covariance matrix are precisely 0 af-
ter the update. Even though the K̂(X ′pool|fnn, X ′) matrix calculated by the previous
equation is of size |Xpool| × |Xpool|, it does not contain any entries for the point x∗

and is actually precisely the (|Xpool| − 1)×(|Xpool| − 1) size matrix one would expect.

In addition, this formulation reveals another interesting advantage of the method.
After point x∗ is selected and the new covariance matrix is calculated according
to equation 5.12, points x′ which contain information similar to x∗ will have a low
variance. This is the case because such a point x′ has a high covariance k̂(x∗, x′) with
x∗ and the updated posterior variance of x′ is reduced by k̂(x∗, x′)2/σ̂2(x∗|fnn, X).
Therefore, the updating procedure ensures that selecting a single point reduces the
incentive to sample similar points which in turn implies that the algorithm is likely
to sample diverse points.

39

Chapter 5

Putting this together, we can formulate a new sampling algorithm which we call
Fast because it avoids the repeated inverse calculations. Up to line 8 this sampler
actually does the same as the Batch GPA Sampler (algorithm 3). The main differ-
ence appears in line 13 where the fast updating procedure replaces the recalculation
of the Gaussian process approximation from earlier.

Algorithm 4: Fast GPA Sampler for Bayesian Neural Networks

Data: number of samples N , training points X, pool Xpool, neural network
model fnn and posterior p(θ|D), number of Monte Carlo samples S,
regularization parameter λ

Result: set of points Xsample ⊂ Xpool, with |Xsample| = N

1 define X̄ := X ∪Xpool;
2 for i = 1, . . . , S do
3 sample θi ∼ p(θ|D);
4 yi = fnn(X̄, θi)

5 end
6 calculate covariance matrix:

K̂(X̄, X̄) =
1

S − 1

S∑
i=1

(
(yi − ȳ)T · (yi − ȳ)

)
, with ȳ =

1

S

S∑
i=1

yi

7 calculate first posterior covariance matrix:

K̂ = K̂(Xpool, Xpool)− K̂(Xpool, X)
(
K̂(X,X) + λI

)−1
K̂(X,Xpool)

8 Xsamples ←− ∅;
9 while |Xsamples| < N do

10 get posterior variance σ2
post(Xpool|fnn, X ∪Xsamples) = diagonal(K̂);

11 x∗ ←− arg maxx∈Xpool σ
2
post(x) ;

12 Xsamples ←− Xsamples ∪ {x∗};
13 update posterior covariance matrix:

K̂ = K̂ − K̂[:, x∗] · K̂[x∗, :](
K̂[x∗, x∗] + λ

)
Xpool ←− Xpool \ {x∗};

14 end
15 return: Xsamples

40

Fast Batch GPA Sampler 5.4

5.4 Fast Batch GPA Sampler

The presented fast updating procedure seems to give a big runtime advantage to al-
gorithm 4 (Fast GPA Sampler) compared to the algorithm 3 (Batch GPA Sampler)
which has to calculate the posterior variance of the Gaussian process approximation
in every iteration. In practice it turns out that the ability to sample batches per
iteration is often just as important because sampling M points per iteration reduces
the runtime roughly by a factor of M . Therefore, both presented versions have
their advantages and drawbacks. The Batch GPA Sampler can sample one batch
per iteration, yet requires the costly calculation of K̂(X ′, X ′)−1 every iteration. In
contrast, the Fast GPA Sampler avoids this inversion by a quick updating procedure
but can only sample one point per iteration which result in slow runtimes as well.

In this section the updating formula 5.12 is generalized to the case where sample
multiple points are sampled. This will lead to a sampling policy which combines the
advantages of the two approaches presented in the last section. In particular, the
combined policy will be able to sample batches per iteration and reduces the size of
the inverted matrix significantly from the size of the training data to the size of the
batch. As the calculation of the inverse is the most costly operation, this results in
a big runtime advantage as will be shown empirically in section 6.3.

Again, assume that training data D = (X, Y) and a pool Xpool are given and that
a set of points X∗ ⊂ Xpool has been requested based on the covariance estimates in
equation 5.11. We are now interested in calculating the updated covariance matrix
for X ′pool = Xpool \ X∗ and X ′ = X ∪ X∗ which is K̂(X ′pool|fnn, X ′). To make the
calculations more clear, the covariances are written in block matrix notation:

K̂(X ′pool, X
′
pool) K̂(X ′pool, X∗) K̂(X ′pool, X)

K̂(X∗, X
′
pool) K̂(X∗, X∗) K̂(X∗, X)

K̂(X,X ′pool) K̂(X,X∗) K̂(X,X)

 =:

 P A B
AT R C
BT CT T

 . (5.13)

In other words, P contains the covariances of the pool without the new samples, R
the covariances of the new samples and T the covariances of the training data. The
matrices A,B and C contain the respective covariances between these sets of points.

Calculating the posterior covariance matrix before adding any points, i.e. with
pool Xpool = X ′pool ∪X∗ and training data X in block matrix notation corresponds
to calculating

K̂(Xpool|fnn, X) =

(
P A
AT R

)
−
(
B
C

)
T−1

(
BT CT

)
=

(
P −BT−1BT A−BT−1CT

AT − CT−1CT R− CT−1CT

)
.

(5.14)

The posterior covariance matrix after adding the points X∗, i.e. with pool X ′pool =
Xpool \X∗ and training data X ′ = X ∪X∗ is calculated with

K̂(X ′pool|fnn, X ′) = P −
(
A B

)(R C
CT T

)−1(
AT

BT

)
. (5.15)

41

Chapter 5

In line 14 of the Batch GPA Sampler we use in fact precisely this equation to
calculate the covariance matrix for the next iteration. We will now see how we can
improve this by making use of already calculated values and avoiding to calculate
the inversion directly. To this end, first consider the inversion of the inner matrix
in block form:

(
R C
CT T

)−1
=

(
(R− CT−1CT)−1 −(R− CT−1CT)−1CT−1

−T−1CT (R− CT−1CT)−1 T−1 + T−1CT (R− CT−1CT)−1CT−1

)
=

(
M−1 −M−1CT−1

−T−1CTM−1 T−1 + T−1CTM−1CT−1

)
,

with M : = (R− CT−1CT).
(5.16)

Observe that the defined matrix M is precisely the lower right corner of the al-
ready calculated matrix from equation 5.14. Plugging this into equation 5.15, a new
representation of K̂(X ′pool|fnn, X ′) is derived:

K̂(X ′pool|fnn, X ′)

= P −
(
A B

)(M−1 −M−1CT−1

−T−1CTM−1 T−1 + T−1CTM−1CT−1

)(
AT

BT

)
= P − AM−1AT +BT−1CTM−1AT+

AM−1CT−1BT −BM−1BT −BT−1CTM−1CT−1BT

= P −BM−1BT − (A−BT−1CT)M−1(AT − CT−1BT).

(5.17)

Comparing this formulation with the already calculated values of K̂(Xpool|fnn, X) in
equation 5.14 we see that P−BM−1BT is the old posterior variance of the remaining
pool points while (A−BT−1CT) = (AT − CT−1BT)T are the posterior covariances
which we have calculated as well! The only thing that remains to be done is the
inversion of M , the lower bottom block of K̂(Xpool|fnn, X). Reverting the block
matrix notation yields a new updating procedure:

K̂update := K̂(X ′pool, X∗|fnn, X)K̂(X∗, X∗|fnn, X)−1K̂(X ′pool, X∗|fnn, X)T

K̂(X ′pool|fnn, X ′) = K̂(X ′pool|fnn, X)− K̂update.
(5.18)

The naive way of calculating the new posterior (eq. 5.15) required the inversion of a
matrix of size |X∗|+ |X|. With the new updating strategy we only invert a matrix
of size |X∗|. This is beneficial, as the size of the training data |X| is typically big
in comparison to the number of requested samples per iteration |X∗|. Furthermore,
|X| increases every iteration by |X∗| because additional points are added to the
training set, while the size of |X∗| does not increase. This result holds as well for
the case where only one point is sampled per iteration. Therefore, the updating
rule described in the previous section and in particular equation 5.8 follow from
here. A similar formula including the regularization term λI can be derived with
the same steps (replace T and R by (T +λI) and (T +λI) in equation 5.15, respec-
tively). Now, we formulate the Fast Batch GPA Sampler before continuing with

42

Fast Batch GPA Sampler 5.4

implementation details and experimental results in the next chapter. The pseu-
docode is very similar to the Batch GPA Sampler (3) and in fact calculates precisely
the same variances and sample points. The core difference is the installation of the
fast updating procedure in line 13 which reduces the total runtime from roughly
O((|X|+N)3(N/M)) = O((N |X|3 +N4)/M) to O(|X|3 +NM2). For most appli-
cations, M � N � |X| holds.

Algorithm 5: Fast Batch GPA Sampler for Bayesian Neural Networks

Data: number of samples N , number of samples per iteration M , training
points X, pool Xpool, neural network model fnn and posterior p(θ|D),
number of Monte Carlo samples S, regularization parameter λ

Result: set of points Xsample ⊂ Xpool, with |Xsample| = N

1 define X̄ := X ∪Xpool;
2 for i = 1, . . . , S do
3 sample θi ∼ p(θ|D);
4 yi = fnn(X̄, θi)

5 end
6 calculate covariance matrix:

K̂(X̄, X̄) =
1

S − 1

S∑
i=1

(
(yi − ȳ)T · (yi − ȳ)

)
, with ȳ =

1

S

S∑
i=1

yi

7 calculate first posterior covariance matrix:

K̂ = K̂(Xpool, Xpool)− K̂(Xpool, X)
(
K̂(X,X) + λI

)−1
K̂(X,Xpool)

8 Xsamples ←− ∅;
9 while |Xsamples| < N do

10 get posterior variance σ2
post(Xpool|fnn, X ∪Xsamples) = diagonal(K̂);

11 Xnew ←− top M points in Xposol according to σ2
post ;

12 Xsamples ←− Xsamples ∪Xnew;
13 update posterior covariance matrix:

K̂ = K̂ − K̂(X̄,Xnew)
(
K̂(Xnew, Xnew) + λI

)−1
K̂(Xnew, X̄)

14 Xpool ←− Xpool \ {x∗};
15 end
16 return: Xsamples

43

Chapter 6

Chapter 6

Experimental Results

In this chapter the Bayesian neural network from chapter 4 is combined with the
active learning approaches from chapter 5. We want to investigate whether the pre-
sented active learning sampling policies can keep their promise and in fact do reduce
the number of labeled data which is required to achieve an specific error rate. The
GPA sampling policies from the last chapter are compared against each other and
against other sampling strategies, such as the Variance Sampler (algorithm 2) and
the approach presented in [Haf+20].

Before the actual analysis, a short overview over implementation details for the
network models and the sampling strategies is given in section 6.1 and two stan-
dard regression datasets are introduced in section 6.2. The analysis starts by taking
a detailed look at the (Fast) GPA Samplers in section 6.3, reporting convergence
results for the Monte Carlo estimates of the covariances as well as empirical run-
times and an analysis of various aspects of the sampling behavior. In section 6.4
different sampling strategies are compared in a typical regression setting, before in
sections 6.5 and 6.6 two applications are investigated which fit well into the active
learning problem.

6.1 Implementation Details

Overview of technologies: Unless noted otherwise, the models used within this
chapter have been implemented in Python ([VD09]) with TensorFlow (tf) [Mar+15]
and/or TensorFlow-Probability (tfp) [Dil+17]. The implementation of the Bayesian
neural network with noise contrastive priors uses parts of the code from the corre-
sponding paper [Haf+20]. For the experiments in section 6.5, code was modified from
the SchNetPack [Sch+18] which is an open-source implementation of the model de-
veloped by them in [Sch+17]. For the experiments in section 6.6, provided models
from the respective paper [NGK19b] in PyTorch [Pas+19] are used. The quasi-
Monte Carlo methods utilized in the same section stem from the ”Magic Point Shop”
[KN16]. The implemented models and sampling strategies are presented shortly.

DET: The first network is a feed-forward neural network as described in section 4.1.
In contrast to the Bayesian models, the deterministic network does not learn any
uncertainty estimations but is trained with respect to the root mean squared error

44

Implementation Details 6.1

(RMSE) by the usual backpropagation algorithm. This model was implemented to
collect empirical evidence that the presented approaches can also be used outside
of the probabilistic setting of BNNs. To do so, an observation made by Gal and
Ghahramani in [GG15] is used: They showed that using dropout while training a
normal network is actually mathematically equivalent to Bayesian inference with a
certain type of Bayesian network. When estimating the (co)variance of the DET
network, therefore, the dropout is sampled instead of the posterior of a BNN. This
approach also has the big advantage that it can be used with any already imple-
mented deterministic neural network. As we will see in section 6.5 and 6.6, only
dropout needs to be added to existing deterministic network architectures to apply
the samplers which were originally developed for Bayesian networks. A word of cau-
tion: When estimating the covariance in the first lines of the GPA Samplers, it is
important to have the same dropout for all forward passes of the network in one it-
eration. In other words, one Monte Carlo sample should only consist of one dropout
configuration. The standard dropout layers in TensorFlow (like tf.nn.dropout)
and PyTorch use a different dropout for each forward pass, so that extra effort is
needed at this part of the code.

BNN: This is the implementation of the Bayesian neural network that was intro-
duced in section 4.3. An independent centralized normal distributions is used as
prior for the weights and the weight posterior is approximated with independent
normal distributions. In TensorFlowProbability (tfp) the distributions module
(tfd) can be used to define this distributions via tfd.Independent(tfd.Normal()).
The layers themselves are described and connected by tf.layers.dense. Then, the
variational inference on the posterior is added by first defining the prior and vari-
ational distributions and then passing them to tfp.DenseReparameterization().
This layer uses the representation estimator [KW13] to sample from the posterior
and in that sense implements a stochastic forward pass similar to equation 4.13. The
output is collected to compute the loss as tfp.kl divergence between variational
distribution and prior in addition to the negative log-likelihood. This is precisely
the optimization objective given in Bayes by Backprop (refer equation 4.11). Fi-
nally, the losses are passed to an Adam optimizer which computes the respective
gradients. Following [Tsy+19], the learning rate of the optimizer is reset after each
active learning iteration to overcome local minima.

BNN NCP: This network was suggested in [Haf+20] and also used in [Tsy+19].
Normal distributions - which are commonly used as priors for BNNs - only re-
strict the posterior very weakly, as an alternative they propose noise contrastive
priors (NCP). To improve the uncertainty estimates of the network for datapoints
which are further away from the training instances, they artificially add out-of-
distribution points with high noise to the training process encouraging the net-
work to predict a higher uncertainty for points outside of the training distribu-
tion. Parts from their open-source implementation which is available at https:

//github.com/brain-research/ncp (accessed October 12, 2020) were utilized.
The implementation is very similar to the BNN above, yet adds another loss term
for the out-of-distribution points.

GPA Sampler: The implementation of the different GPA Sampler is rather straight-

45

https://github.com/brain-research/ncp
https://github.com/brain-research/ncp

Chapter 6

forward and based on matrix operations from the NumPy library [Har+20]. In the
implementation of the Fast GPA Sampler it is ensured that the rows and columns of
already sampled points are really zeroed and that the symmetry of covariance ma-
trices is asserted. Originally, also the recalculation of the covariance estimates was
proposed when the posterior variance got too small. However, after the numerical
stability was improved this was not longer necessary.

Infogain Policy: Another active learning policy based on the expected information
gain was suggested in [Haf+20]. For a network with posterior p(θ|D) and a point in
the pool x∗ ∈ Xpool recall that the distribution over possible labels is given by the
network as p(y∗|x∗) =

∫
fnn(x∗; θ)p(θ|D)dθ (refer equation 4.4). The information

gain measures how much new information the addition of the labeled instance (x∗, y∗)
would add to the posterior. Since the correct label y∗ is unknown, the expected
information gain has to be derived by using the distribution given by the network.
The resulting acquisition function is:

A(x|D, p(θ|D)) = Ep(y∗|x∗) [KL[p(θ|D ∪ {(x∗, y∗)})||p(θ|D)]] . (6.1)

To improve diversity, they pass the information gain through a softmax and sample
from the resulting distribution.

6.2 Housing and Airline Datasets

The two standard regression dataset which will be used for analysis in the upcoming
sections are shortly outlined in this section.

The California Housing dataset was first examined in [KB97]. The dataset is
well known and included in the sklearn.dataset([Ped+11]) in an already cleaned
version. It contains 20,640 instances - each representing a block of 600 to 3,000
people - from the official 1990 U.S. census. The five numerical features {”median
income”, ”house age”, ”average number of rooms”, ”block population”, ”average
house occupancy”} are used to predict the average housing price. The standard
70%-30% training-validation split results in 14,448 pool and 6,192 validation in-
stances.

The Airline or Flight Delay dataset was first used by [HFL13] to analyze the
performance of Gaussian processes on big data. It was also used in [Haf+20] and
[Tsy+19] and can be downloaded directly from the U.S. Department of Transporta-
tion’s (DOT) Bureau of Transportation Statistics (BTS) (website accessed Septem-
ber 28, 2020). As training data, the first four months of the year 2008 are used
and as test data the fifth month. From the about 3,000,000 instances, a subsample
of 500,000 points for training and another 500,000 for testing was obtained which
do not have any missing information. The seven features { ”Distance”, ”Month”,
”DayofMonth”, ”DayOfWeek”, ”CRSDepTime”, ”CRSArrTime”, ”AirTime”} are
used to predict the total delay (i.e. the sum of ”ArrDelay” and ”DepDelay”).

46

https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp

Behavior of the GPA Samplers 6.3

6.3 Behavior of the GPA Samplers

In this section some interesting properties of the presented GPA sampling approaches
are investigated. The regression datasets introduced in the last section and the
Bayesian neural network implementations as described above are utilized. Unless
noted otherwise, a BNN with two layer of 100 neurons each, a training batch size of
16 and a learning rate of 10−3 are used. If the runtime is of no importance to the
particular experiment, no difference is made between Fast GPA Sampler and GPA
Sampler.

6.3.1 Number of Monte Carlo Samples

The first question to answer is how many samples are needed from the posterior of
the network to get a good approximation of the covariance of the network. These
estimations are essential to calculate the posterior variance of the Gaussian process
approximation. We report how this variance changes, as we increase the number of
Monte Carlo samples from the network posterior. We limit the number of instances
to 5,000, as more samples do not lead to significant changes. The posterior vari-
ance calculated on a fraction of the 5,000 samples is compared against the posterior
variance based on all the samples. For both datasets, a BNN on 2,500 instances is
trained for 2,000 epochs and the posterior variance on 10,000 pool points is calcu-
lated.

samples rel. abs. corrcoeff

3 0.962 0.38
5 0.931 0.519
10 0.864 0.687
25 0.692 0.883
50 0.488 0.952
100 0.297 0.982
250 0.129 0.995
500 0.064 0.998
750 0.042 0.999
1000 0.03 0.999
2500 0.01 1.0

(a) Housing dataset

samples rel. abs. corrcoeff

3 0.981 0.337
5 0.962 0.453
10 0.916 0.625
25 0.786 0.807
50 0.611 0.907
100 0.399 0.96
250 0.183 0.988
500 0.092 0.995
750 0.059 0.997
1000 0.041 0.998
2500 0.012 0.999

(b) Airline dataset

Table 6.1: The average convergence of the posterior variance with number of Monte-
Carlo samples over ten random seeds. The number of samples, the relative absolute
error with respect to the final variance and the Pearson correlation coefficient are
shown. For the latter we only consider the central 90% of the variances to avoid
having the coefficient dominated by a single large value.

Table 6.1 shows the results over several random seeds. There is no major dif-
ference between the two datasets, yet the convergence appears to be faster on the
Housing dataset. In general, 100 Monte Carlo samples from the network posterior
already suffice to approximate the posterior variance very well and a multiple has

47

Chapter 6

to be added to improve the convergence further. Therefore, 100 samples are used in
the following experiments.

6.3.2 Empirical Runtimes of the GPA Samplers

To analyze the actual runtime of the different GPA samplers, several experiments
on a local machine with an Intel Core i7-10510U processor (8 threads, 4.90 GHz
max frequency) are conducted. In the first two experiments different numbers of
requested samples are compared while the number of instances in the pool and train-
ing set varies in the third and fourth experiment.

To start, the Fast GPA Sampler (batch size = 1, algorithm 4) is compared
with the Batch GPA Sampler (batch size = 1 and batch size 10, algorithm 3) and
a ”real” Gaussian process as a baseline, namely the GaussianProcessRegressor

(GPR) from sklearn [Ped+11]. As this experiment only considers runtime, the GPR
is allowed to read the true labels of the selected points. This allows for re-fitting in
each iteration on the updated training data, before the posterior variance of the re-
maining pool points is predicted as acquisition function. In the second experiment,
the Batch GPA Sampler and the Fast Batch GPA Sampler with a batch size of 25
are compared.

In figures 6.1 and 6.2 the results for the Housing data are reported. Similar plots
for the Airline dataset can be found in the appendix (section A.1). Taking a look
at the first figure, we note that - as expected - the Fast GPA Sampler performs
magnitudes faster compared to the other two. For 100 samples, its average runtime
is only 0.7 seconds which is more than 25 times faster than the GPA Sampler and
the Gaussian Process and also faster than the Batch GPA Sampler with a batch
size of 10. This can most likely be traced back to the fact that the Fast version
only computes one matrix inverse at the beginning while the other calculates it
every iteration. Therefore, we can conclude that the name Fast is justified and the
presented approach of Fast GPA is indeed superior to the Batch GPA.

Larger batch sizes are compared in figure 6.2. Observe that the difference of
batch sizes (1, 10 or 25) directly reflects in the runtime of the respective sampler.
The Fast GPA Sampler which re-evaluates every iteration has a similar runtime as
the Batch GPA Sampler with a batch size of 10, yet the newly introduced Fast Batch
GPA Sampler outperforms both by a large margin. Note as well that the runtime
of all approaches scales linearly with the number of requested samples. This would
be expected as mainly the number of iterations increases, however not the effort per
iteration.

For comparison, consider figures 6.3 and 6.4 which show the scaling behavior
of the runtime relative to the size of the pool and training data. It can be seen
that the runtime scales worse than linear. This is not surprising, as bigger training
and pool sizes result in a bigger covariance matrix slowing down all the necessary
matrix operations. Comparing the runtime of the Batch GPA Sampler (in orange)
in two figures, it appears to scale even worse with the training size than with the
pool size. This stems from the fact that a matrix of roughly the training size has to

48

Behavior of the GPA Samplers 6.3

be inverted in each iteration and therefore cubic scaling can be expected. The fast
updating procedure (in blue) is able to flatten this curve. It scales worse than linear,
as an initial matrix inversion and ongoing matrix arithmetic remain necessary.

Figure 6.1: Runtime in seconds of Fast GPA Sampler, Batch GPA Sampler (batch
size = 1 and batch size = 10) and the policy based on a Gaussian process for
different numbers of requested samples on the Housing dataset. We report the
average runtime over ten random seeds, for which we also repeat the initial data
selection and network initialization. In this first experiment the network is trained
for 1,000 epochs on an initial set of 250 points and a maximal amount of 100 points
is requested from the policies.

Figure 6.2: Runtime in seconds of Fast Batch GPA Sampler and Batch GPA Sampler
for different numbers of requested samples on the Housing dataset. Again, the
runtime is averaged over ten seeds. In this experiment, we train for 2,000 epochs on
1,000 training instances, before we request up to a maximum of 500 points from the
policies.

49

Chapter 6

Figure 6.3: Runtime in seconds for Fast Batch GPA Sampler and Batch GPA Sam-
pler with batch size 25 for different pool sizes (average over ten seeds). The training
size is fixed at 1,000 instances and the network is trained for 1,000 epochs before
requesting 250 samples from the pool.

Figure 6.4: Runtime in seconds for Fast Batch GPA Sampler and Batch GPA Sam-
pler with batch size 25 for different train sizes (average over ten seeds). The pool
size is fixed at 2,500 instances and the network is trained for 1,000 epochs before
requesting 250 samples from the pool.

6.3.3 Influence of the Regularization Parameter λ

Another variable for all GPA Sampler is the regularization parameter λ. Recall that
this parameter was introduced in equation 5.10 to increase numerical stability and
that it was derived from the formula for the posterior variance of a Gaussian process
with the additive noise assumption (refer to equation 3.10). The posterior variance
calculated by the Fast GPA Sampler with different choices of λ is compared to the
sample variance. The setup of the active learning framework includes 5,000 pool

50

Behavior of the GPA Samplers 6.3

points and 500 training points which are increased by 250 instances over four active
learning iteration to 1,500 training points total. In each iteration the network is
trained for 1,000 epochs and the samples are selected based on the Fast GPA sam-
pler with a batch size of 1 and a λ of 0.1.

samples/λ 0.0001 0.001 0.01 0.05 0.1 0.5 1 5 10

500 0.38 0.44 0.54 0.64 0.68 0.79 0.85 0.96 0.98
750 0.15 0.21 0.35 0.47 0.52 0.68 0.76 0.9 0.94
1000 0.04 0.09 0.23 0.37 0.44 0.62 0.71 0.89 0.93
1250 -0.04 0.0 0.15 0.31 0.38 0.56 0.65 0.86 0.91
1500 -0.12 -0.08 0.07 0.25 0.34 0.55 0.65 0.86 0.91

Table 6.2: Correlation coefficient of posterior variance by Fast GPA Sampler and
sample variance of the BNN on the Housing dataset. Average over ten random
seeds.

samples/λ 0.0001 0.001 0.01 0.05 0.1 0.5 1 5 10

500 0.63 0.72 0.83 0.9 0.93 0.98 0.99 1.0 1.0
750 0.45 0.52 0.66 0.79 0.84 0.94 0.97 1.0 1.0
1000 0.25 0.3 0.44 0.6 0.68 0.87 0.93 0.99 1.0
1250 0.19 0.24 0.4 0.58 0.66 0.86 0.92 0.99 1.0
1500 0.1 0.15 0.32 0.52 0.62 0.83 0.9 0.99 0.99

Table 6.3: Correlation coefficient of posterior variance by Fast GPA Sampler and
sample variance of the BNN on the Airline dataset. Average over ten random seeds.

Reported in tables 6.2 and 6.3 are correlation coefficients between the posterior
variance and the sample variance for different choices of λ after the initial training
and over a period of four active learning iterations. Observe that the correlation
coefficient grows (i.e. the distributions become more similar) with the larger sizes
of λ and decreases with the number of active learning iterations. To understand
the first correlation, recall that the difference between the posterior and the sample
variance includes the inverse of K̂(X,X)+λI. For large λ this term is dominated by
λI. The inverse will be roughly 1/λI which results in a low difference and therefore
in a high similarity between the posterior and the sample variance. However, when
the number of training samples is increased during the active learning iterations the
number of covariances on which the posterior is conditioned on increases accord-
ingly. This moves the posterior further away from the sample variance. Comparing
the two datasets we can see that the correlation is generally stronger on the Airline
dataset. This might result from the fact that the BNN predicts a higher uncertainty
for the instances from the Housing dataset (maximum value about 2) compared to
the Airline dataset (maximum value about 0.2) and therefore the influence of λ is
smaller. Relative to the size of the variance, the columns are more similar. Compare
for example columns λ = 0.1 Housing and λ = 0.01 Airline.

The formulation of the updating procedure of the Fast GPA Sampler in [Tsy+19]
section 2.4 does not take the regularization by λ into account. If the updating for-
mula is implemented by dividing the update matrix only by σ̂2(x ∗ |fnn, X) instead

51

Chapter 6

of σ̂2(x∗|fnn, X) +λ, this can lead to a degeneration of the updated covariances. As
an example for this behavior, consider figure 6.5 where we compare the updating
rule with and without taking λ into account in the updating step.

Again, a network is trained for 1,000 epochs on 1,000 initial points before 1,000
samples are requested from a pool of size 5,000. The correct posterior variance is
calculated in each iteration directly (i.e. by using equation 5.8) and compared with
the updating rule neglecting λ (upper plots) as well as the updating rule taking λ
into account (lower plots). Evidently, the lower plots show that the updating rule
with λ calculates precisely the correct values even after 1,000 iterations (up to five
digits after the comma). The naive updating rule demonstrates the dangerous be-
havior without proper regularization: Already after around 100 iterations the fast
updating results in a posterior significantly smaller than the true posterior (note
the logarithmic scale on the y-axis of the right hand side plots). After around 200
iterations the posterior becomes effectively useless: its maximum drops to nearly
zero and it contains no useful information. This can be seen by the oscillations of
the correlation coefficient around zero on the left-hand side.

Figure 6.5: Upper plots: comparison of the posterior variance from the Fast GPA
Sampler without λ in the updating step to the directly calculated value for λ = 0.1.
Lower plots: fast updating step with λ = 0.1. Left side: correlation coefficient and
absolute error of the fast version compared to the directly calculated value. Right
side: maximum variance of the true and the fast posterior in each iteration. Note
the logarithmic y-scale.

52

Behavior of the GPA Samplers 6.3

6.3.4 GPA Sampler and Gaussian Processes

The GPA Sampler was motivated by the connection between Gaussian processes
and neural networks. Recall that the posterior variance of a Gaussian process is
calculated in the GPA Sampler and that this GP is defined by Monte Carlo esti-
mates from the trained BNN. This means that the GP is never trained on the data
directly but indirectly via the network. In theory, the network should transfer its
knowledge and the GP should fit the data reasonably well. We want to see how
close this Gaussian process is to a Gaussian process which is trained on the data
directly.

Once again the GaussianProcessRegressor from sklearn is used with an RBF
kernel and fit on the training data. Because the GPA Sampler computes no pre-
dictions, we can only compare the posterior variances. Table 6.4 shows the correla-
tion coefficient between the posterior variance of the Gaussian Process fitted on the
training data and the posterior variance calculated by the GPA Sampler for different
numbers of Monte Carlo samples and λ. We observe that the correlation increases
with the number of samples and reaches its peak for λ = 0.1. It is interesting how-
ever that for the selected values of 100 samples and λ ∈ [0.01, 0.1] the correlation
coefficient is very high with 0.75. This means that the approach used in the GPA
Sampler - which never considers a Gaussian process directly - indeed calculates a
posterior variance similar to an actual Gaussian process. To compare, the sample
variance of the BNN only has a correlation coefficient of 0.47.

samples/ λ 0.0001 0.001 0.01 0.1 1 5

3 0.35 0.4 0.35 0.4 0.32 0.34
5 0.46 0.42 0.44 0.39 0.4 0.45
10 0.57 0.56 0.54 0.58 0.53 0.53
50 0.74 0.73 0.73 0.73 0.68 0.61
100 0.73 0.73 0.74 0.75 0.7 0.62
250 0.7 0.71 0.75 0.75 0.7 0.64
500 0.67 0.7 0.75 0.76 0.71 0.63

Table 6.4: Correlation coefficient of GaussianProcessRegressor and GPA Sampler
posterior variance for Housing dataset. Average over ten random seeds. The BNN
is trained for 2,000 epochs on 1,000 train points. The pool consists of 5,000 instances.

6.3.5 Diversity of Sampled Points

The development of the GPA Sampler was mainly motivated by the concern that
the Variance Sampler (algorithm 2) would select to many similar points if multiple
points per iteration are requested. Recall that the this sampler simply selects the
points with the highest variance estimation. We compare the Variance Sampler
with the GPA Sampler, with randomly selected points and also with points selected
by a Gaussian process which is re-fit after the addition of each point. A Bayesian
neural network is trained on 500 points for 2,000 epochs and 50 points are requested
from a pool of 5,000 points. A t-distributed stochastic neighborhood embedding
(t-SNE) from [MH08] with default parameters from sklearn is used to visualize the
five-dimensional instances from the Housing dataset.

53

Chapter 6

Figure 6.6: The 5,000 pool instances are represented by transparent gray circles.
Blue crosses indicate the 50 instances selected by the different Samplers.

Figure 6.7: Top left: first 10 selected points by the Variance Sampler. Remaining
plots: first 8 points selected by the GPA Sampler. All plots: top 500 points from
the pool with the highest acquisition function. Colors indicate the value of the
acquisition function (0 = blue < green < red = highest acquisition value).

Considering the top right plot in figure 6.6 we see that the Variance Sampler
indeed selects very similar points: Out of 50 points, only three (one in the bottom,
two on the right) are not contained in two big clusters. This is suboptimal as a much
smaller number of points might suffice to get the same information from labeling. In
comparison, the GPA Sampler and the Gaussian process are very similar and both
select more diverse points. Both decide to sample points from the three apparently

54

Behavior of the GPA Samplers 6.3

interesting/difficult areas on the top but they also spend resources outside of them.
The GPA Sampler selects even more diverse points and in fact covers all the points
the Gaussian process selected in the lower half of the plot. Taking a look at the
randomly selected points we observe that this sampling method completely misses
the areas on the top which appear to be important to the other samplers. Keeping
in mind that this example might not be representative we conclude that the GPA
Sampler appears to find a sweet spot between selecting points with a high variance
while maintaining diversity over the complete sample.

Figure 6.7 is intended to give an intuition how this is possible by showing the se-
lection process for the first points of the Variance and GPA Sampler. Consider first
the plot on the top left. The 500 pool points with the highest sample variance are
shown. Their color indicates the respective variance (blue=small, red=high). The
squares indicate the ten points with the highest variance that are therefore selected
by the Variance Sampler. We observe that the points only stem from three regions
and as we know from the figure above, the next 40 points are located in two clusters
on the top-left.

The remaining plots show the decision process of the GPA Sampler. After select-
ing the points with the highest posterior variance, the updated variance is calculated
and another point is sampled. Here, two close points are rarely selected consecu-
tively. Also note the change of color: in the first iteration, it is very clear which point
has the highest posterior variance (only one is red). After the addition of more points
however, the variances become more similar (more green and red points). This is
caused by the largest variances becoming smaller letting the other variances appear
larger. Concluding we can say that, at least in this particular example, the GPA
Sampler acts precisely in the way it is intended to work leading to the selection of
interesting but also diverse points.

55

Chapter 6

6.4 Complete Active Learning Framework

In this section the performance of different sampling policies is compared in the
active learning framework that was presented in section 2.2. To mimic a real active
learning application with the Housing and the Airline dataset, we define a set of
points for initial training and a set of unlabeled pool instances. Multiple active
learning iterations are performed in which the labels to the selected points is pro-
vided for further training. The first two experiment compare sampling strategies,
while the third and fourth apply fine-tuning and different network models.

The first setup uses the Airline dataset and is similar to section 5.2 in [Haf+20]
and section 3.1 in [Tsy+19]. The BNN NCP from [Haf+20] is trained initially on
50 points. Afterwards, ten active learning iterations are performed adding 50 points
from a pool of 25,000 instances each and continuing the training for 1,000 epochs.
Sampling based on the Fast Batch GPA Sampler (batch size 5), the Variance Sam-
pler and the Infogain policy are compared to random selection. The errors computed
on a validation set of 10,000 points are shown in figure 6.8. After the 1,000 epochs
of initial training, the Fast GPA and the Variance Sampler seem to reduce the error
faster in the first active learning iterations. However, after around five iterations
and a total of 6,000 training epochs the error becomes very similar. In the final
iterations the errors are indistinguishable.

A larger scale experiment was performed on the Housing dataset. This time, a
BNN with two layers of 100 neurons is trained on an initial set of 500 points and
250 points are selected in each active learning iteration. Results are presented in
figure 6.9. Here, the validation error drops significantly after the first addition of
points for all sampling strategies with the exception of random sampling. The Fast
GPA Sampler enables the network the achieve a validation RMSE of about 0.6 which
can not be reached with the other methods. In fact, the instances selected by the
Variance Sampler increase the error after active learning iteration two. We suspect
that this is caused by overfitting the training data, as the results are an average over
multiple random seeds.

An idea called fine-tuning suggests that, after new instances are selected, the
network should be trained on them for habituation. The intuition behind is that
the network is already used to the old training data, while the added data contains
new information which thus should be presented more directly. We performed the
experiment on the Housing dataset again with the Fast GPA Sampler to investigate
if fine-tuning leads to faster or better convergence. In each active learning itera-
tion and after additional data was sampled, the network is first trained on the new
instances for 200 epochs before the training continues on all the available training
data for 800 epochs.

This approach is compared against 1,000 epochs of training on the complete
training data in figure 6.10. Although the idea is intuitive, the conducted experi-
ment contributes no evidence that fine-tuning can improve upon standard training.
The 200 epochs trained on the newly sampled data can be clearly observed as the
peaks of the orange line. They seem to increase the validation error and further

56

Complete Active Learning Framework 6.4

training on the complete dataset has to decrease it again to the previous level. Nev-
ertheless, fine-tuning might have potential when the training process is stuck in a
local minimum or when the validation error can be reduced further.

Figure 6.8: Active learning on the Airline dataset. BNN NCP with two layers of
50 neurons, initial training on 50 points, then ten active learning iterations adding
50 points each. Training consists of 1,000 epochs in both cases. Average over five
random seeds.

Figure 6.9: Active learning on the Housing dataset. BNN with two layers of 100
neurons, initial training on 500 points, then ten active learning iterations adding
250 points each. Average over five random seeds.

To showcase that the GPA Sampler can also work well together with non-
Bayesian neural network a fourth experiment is performed. Again, the setup is
similar to the second experiment and uses the Fast GPA Sampler implementation
yet the number of initial training instances as well as the number of added instances
per iteration are changed to 50. Because the DET network is deterministic, Monte
Carlo samples of the dropout are used to estimate the covariance for the GPA Sam-
pler.

57

Chapter 6

The results in figure 6.11 clearly indicate that the active learning framework
works well for all three network models. Comparing with figure 6.9, the valida-
tion error decreases steadily. An exception is the initial training of the DET net-
work which shows a significant overfitting which, however, is overcome in the active
learning iterations. This motivates the usage of the GPA Sampler in the next two
chapters where is will be employed in combination with existing and deterministic
network architectures.

Figure 6.10: Setup as in figure 6.9. The blue line shows the validation error when
training the BNN for 1,000 epochs on the complete training data. In orange, the
network is first trained 200 epochs on the newly selected data before training for
800 epochs on the complete training data. Average over five random seeds.

Figure 6.11: The three models presented in section 6.1 are compared in the setup
from figure 6.9. The number of initial training points as well as the number of added
points are changed to 50. Average over five random seeds.

58

QM9 Dataset and SchNet 6.5

6.5 QM9 Dataset and SchNet

In this section the effectiveness of active learning is analyzed in an application from
the field of quantum chemistry also considered by [Tsy+19]. A state-of-art network
called SchNet from [Sch+17] is applied to predict the internal energy of different
molecules from the QM9 dataset ([Rud+12] and [Ram+14]). We use the implemen-
tation available from SchNetPack ([Sch+18]) and modify it to fit into the framework
we developed. Active learning is of interest for this application because the training
process of a large network like SchNet is computationally expensive so that a faster
convergence with fewer training instances can lead to significant time savings.

6.5.1 Setup

The QM9 dataset contains detailed information about 134,000 organic molecules
and is available at http://quantum-machine.org/ (accessed September 28, 2020).
It is a widely used benchmark for predicting molecular properties. The contained
molecules are in equilibrium which means that their atoms are arranged in such a
way that the internal energy lies in a local minimum. The aim is to predict the
amount of internal energy based on molecule information like the compounds, nu-
clear charges and atomic position.

The SchNet processes this information by employing different types of layers.
First, an embedding layer is applied which maps the molecule information to a fea-
ture space. From there, interaction blocks are applied which model the interactions
between the atoms of the molecule. These blocks contain so called cfconv layers
which are convolutional layers that are applied atom-wise to the molecule informa-
tion and which consist of radial basis and other layers. The training loss includes
energy and forces of the molecule and an activation function is chosen in such a way
that gradient descent can be used for training. For more details refer to [Sch+17].

As the architecture is rather complex, the SchNet implementation available
within the SchNetPack and the default parameters are used. The implementation
is based on PyTorch ([Pas+19]) and GPU training over several hours is necessary
to allow for meaningful training. The SchNet itself is not a Bayesian neural network
but it contains dense layers within the interaction blocks to which dropout can be
applied to make the output probabilistic. As noted by [GG15], using dropout at the
inference stage is equivalent to the inference on a certain BNN. As described before,
the dropout is kept constant for a complete forward pass of all molecules in the pool
in order to estimate the intended covariances (refer to lines 2-5 in algorithm 5).

6.5.2 Results

As stated, the implementation from the SchNetPack with default parameters is used
as a model. The added dropout of 30% is only used for the estimations in the GPA
Sampler (dropout during training increases the error rates). 5,000 points are used
for validation, 15,000 as pool and the training was performed over 200 epochs on an
initial set of 1,000 points. Then, six active learning iterations are performed, each
consisting of the addition of 1,000 points and 200 epochs of training. Due to limited

59

http://quantum-machine.org/datasets/

Chapter 6

computational resources, the Fast Batch GPA Sampler is only compared to random
sampling and not with other sampling strategies. The Fast Batch GPA Sampler uses
a batch size of 10, regularization parameter λ = 0.1 and 25 Monte Carlo samples as
calculating a single forward pass for the complete pool can already take minutes.

Figure 6.12: Active learning of a SchNet with random sampling (orange) and Fast
GPA Sampler (blue, batch size = 10, λ = 0.1, 25 MC samples). 15,000 points in
pool, 1,000 initial training, six active learning iterations with 1,000 points and 200
epochs training. (Plots were smoothed with a rolling average of 50 epochs, therefore
their peaks appear earlier and plots do not reach to the very end.)

The results are shown in figure 6.12. The lower plot shows the training and val-
idation errors of both approaches. After 200 epochs the addition of the first points
from the pool increases the training error of the SchNet with GPA Sampler. This
could be interpreted as the GPA Sampler adding molecules to the training data
for which it is particularly hard to predict the correct values. Indeed, this peaking
behavior repeats in every active learning iteration and is much less pronounced with
the random points. We can also observe that the SchNet training error on the ran-
dom points quickly converges towards zero while the validation error is magnitudes
larger, indicating overfitting. In fact, the final training error for the random points
is more than 12 times smaller than the validation error (0.002 vs 0.025). For the
GPA sampled points, the SchNet does not overfit so heavily and the final errors are
more similar (0.005 vs 0.013).

Besides reducing the validation error after having trained on the same number of
points for the same number of epochs by 48%, we can see in the upper plot that the
GPA Sampler helps the SchNet to make better predictions for the amount of internal
energy. After around 800 epochs the SchNet with GPA sampler surpasses the SchNet
with randomly sampled points. The final evaluation shows an improvement of about
15% (1.91 kcal/mol to 1.63 kcal/mol) and the form of the curve suggests that even
more improvements could be made with further training.

60

HJB Equations 6.6

6.6 HJB Equations

Another interesting opportunity for active learning occurs when additional data can
be obtained from computer simulations at runtime, as in the setting presented by
[NGK19a]. They take advantage of a neural network as part of the solution process
of an optimal control problem (OCP) and employ an active learning framework to
pick train points this network. Their published code was used in combination with
our implementation of the GPA sampler. The modifications we made include: 1.
adding dropout to the network (only for the point selection with the GPA Sampler),
2. increasing the number of initial random points, 3. addition of the option to
sample points based on quasi-Monte Carlo techniques from [KN16].

6.6.1 Setup

In their work the authors consider a general optimal control problem: Depending on
a state x and a time t ∈ [0, tmax], a control vector field u∗(x, t) has to be computed
which minimizes a cost functional J [u(.)] subject to initial conditions and state
dynamics. For solving the OCP it can be shown that the optimal control can be
obtained from minimizing a Hamiltonial-Jacob-Bellman (HJB) equation if the gra-
dient of the optimal cost function V (t, x) = J [u∗(.)] with respect to the state Vx(.)
is available. Under certain (and assumed) conditions and for a fixed initial state,
this can be done by solving a two point boundary value problem (BVP). Therefore,
a global solution can be approximated by either solving the BVP on a large grid
and interpolation, or by solving the BVP online. Although the BVP can be solved
reasonably fast by using the time-marching trick, the number of points required for
a good interpolation becomes very large if the state space is high dimensional.

Because neural networks generally deal well with high dimensional data, they
suggest an improvement by using a neural network for calculating the value function
V and the gradient Vx . To obtain labeled training data (i.e. pairs (x; (V (x), Vx(x)))
for a fixed state) the BVP can be solved and after the network is trained, optimal
controls can be obtained almost in real time. They train the network with respect
to a loss function which consists of the squared loss of the value function and the
squared loss of the gradient as well. The gradient is not predicted as a value or
based on finite differences but by automatic differentiation which is the calculation
as derivative of the arithmetic operations which the computer program executes.

This setup fits perfectly in an active learning framework: for any point in the
state space the corresponding BVP can be solved to obtain its label and thereby
increase the number of instances for the network training. However, this calculation
requires the investment of computational resources and the state space is poten-
tially very large. Therefore, a successful active learner can improve the network
performance with much fewer samples (compared to random sampling or a grid ap-
proximation) by only choosing states which are useful for the training process. As
the state space is continuous, the authors suggest to first sample a bigger initial set
of states randomly and then select states from that finite set of points. In that sense
their approach is a reduction from the query-based active learning to the pool-based
version (refer section 2.3.2).

61

Chapter 6

In the presented work they used the norm of the predicted gradient as an ac-
quisition function with the motivation that points with a large gradient should lie
in areas which are difficult to approximate and obtaining their labels should there-
fore contribute well to the training process of the neural network. They test this
approach on an OCP which stems from a rigid body model of a satellite. It was orig-
inally studied by [KW16] who used a sparse grid method to approximate the value
function. A detailed description of the cost functional and the problem dynamics is
given in section 5 of [NGK19b]. The OCP has three positional and three velocity
related states which are controlled by a three-dimensional torque. Furthermore, it is
time independent and the corresponding BVP is solved with a three-stage Lobatto
IIIa algorithm ([KS01]).

The authors compared their active learning approach to the sparse grid solution
from [KW16]. Another baseline can be established by comparing with random
sampling. The framework presented by [NGK19b] is slightly different from what we
have seen so far. When N points from the pool are requested, they sample N sets
of C points and select one point from each set based on the gradient norm. In their
work, they used C = 2 yet we increase this value to C = 10 to clearly distinguish
their approach from random sampling. As the GPA Sampler needs a consistent set
of points the framework is slightly changes when using it to sampling all CN points
in advance and then selecting points from this bigger set. It is not clear if this poses
an advantage or disadvantage: on the one hand, knowing all the points in advance
gives more flexibility and a better overview, on the other hand, being able to select
one point per iteration already ensures a certain amount of diversity by design.

6.6.2 Results

The first experiment is closer to the framework which was developed by the au-
thors. In particular, the number of points requested in each active learning iteration
is decided at runtime. For more details refer to section 4.1 in [NGK19b]. Thus, the
number of total training instances varies between each run and random seed. The
number of training iterations varies as well because the second order method which
is used for training the network (L-BFGS, [Byr+95]) tends to converge before the
maximum number of iterations is reached. For validation, 5,000 additional points
are generated.

Results for the first experiment are shown in table 6.5 and figure 6.13. After five
active learning iterations, the final validation errors are, on average, below the 0.0037
reported by [KW16]. This is especially remarkable because the sparse grid approach
used about 45,000 points while for the network fewer than 1,000 suffice to achieve a
similar error rate. We observe that the validation errors (crosses) of all approaches
decrease nicely, even on a logarithmic scale. This can most likely be traced back
to the fact that the number of training points increases roughly exponentially as
well: After initial training on 64 points, the number of training instances increases
on average by a factor between 1.7 and 1.9. This factor is closer to 1.7 for the
randomly selected points and closer to 1.9 for the GPA Sampler. Therefore, the
number of training instances after five active learning iterations differs significantly

62

HJB Equations 6.6

(577 vs 989). As the GPA Sampler does not lead to the same amount of overfitting,
as the other methods, we suspect that presenting more difficult training instances
to the network causes the framework to add more points. The larger amount of
training points increases the number of training iteration but also reduces the final
validation error significantly by almost 30% (from 0.0024 random to 0.0036 GPA).
However, the approach from the paper does train on more points compared to the
random approach yet achieves a worse final error.

sample mode train error validation error training iterations number points total

GPA 0.002 0.0024 54569 989
random 0.002 0.0034 45610 577
paper 0.0017 0.0036 52802 726

Table 6.5: Final statistics in figure 6.13, average over five random seeds.

Figure 6.13: Training and validation error of the neural network when choosing
points randomly (red), as suggested in the paper (green) and by the GPA Sampler
(blue) in five active learning iterations. Validation error (crosses, on 5,000 points
solved by BVP) and training error (transparent lines) of five random seeds are shown
in logarithmic scale. For comparison, the validation error of the sparse grid method
is shown, as reported by [NGK19b].

For a better comparison of the three methods, we performed a second experi-
ment with a similar setup where the number of additionally requested points in each
active learning iteration is fixed to a factor of 1.75. Starting from 64 initial training
points, this leads to five network trainings on 64, 112, 196, 343 and 600 labeled
instances respectively over the period of four active learning iterations.

The results are presented in table 6.6 and figure 6.14. As the schedule is now
fixed, all approaches terminate with 600 points. Compared to the first experiment,
this is a bit more for the random method and almost one third less for the GPA.
As a result, while the validation error for the GPA Sampler increases a bit, the
validation error for the random approach decreases by a disproportional amount
(points: 577 → 600 = −4%, error: 0.0034 → 0.0029 = −15%). The approach
from the paper performs even worse with fewer training instances. We also note

63

Chapter 6

that the reduction in validation error from random sampling to the GPA Sampler
is insignificant while also leading to a slower convergence of the network training.
However, at least the points chosen by the GPA Sampler lead to a more realistic
training error.

sample mode train error validation error training iterations number points total

GPA 0.0027 0.0028 46190 600
random 0.0017 0.0029 40123 600
paper 0.0019 0.0043 41682 600

Table 6.6: Final statistics in figure 6.14, average over five random seeds.

Figure 6.14: As above: validation error (crosses) and training error (lines) of the
three approaches over five random seeds. This time, four active learning iterations
and the number of selected points in each iteration is fixed to a schedule.

6.6.3 Further Analysis

We tried to improve the performance by replacing the random samples in the state
space by quasi-Monte Carlo (QMC) sampled points. When selecting points ran-
domly in the active learning iteration, this means that all points directly stem from
the QMC method. For the approach from [NGK19b] and the GPA Sampler, the
points to choose from are derived from a QMC method. We used the code pub-
lished by [KN16] which is available at Magic Point Shop (accessed October 19,
2020). Points generated by a lattice and by a Sobol sequences were tested and a
random shift was applied to them to compare across different random seeds.

As the results do not differ significantly from the previous experiments, we report
them in the appendix (A.2) and intend now to investigate the sampling behavior
of the three different approaches. To this end, we reran the second experiment and
tracked various parameters. In table 6.7, average statistics for the sampled points
are shown (the statistics per iteration are similar). First, we can observe that the
approach from the paper indeed selects the points with the highest gradient norm
yet the points selected by the GPA Sampler also have a clearly higher gradient norm
than the randomly selected points.

64

https://bitbucket.org/dnuyens/qmc-generators/src/master/

HJB Equations 6.6

sample mode gradient norm norm V1 norm V2 norm V3

GPA 10.4 0.29 0.30 0.30
random 7.8 0.21 0.19 0.19
paper 12.1 0.23 0.25 0.36

Table 6.7: Statistics from re-running the second experiment. Average over five
random seeds and the 536 points which were sampled in total. Gradient norm at
the time of sampling and the squared values of the three velocity states are shown.

Taking a closer look at the velocities in table 6.7, we notice that points chosen by
GPA Sampler and the paper approach have higher velocity compared to the random
sampling. For the paper approach, the third velocity (V3) is particularly high,
especially in comparison with the other velocities. This motivated the visualization
given in figure 6.15. First, consider the plots without the colors. In the columns,
we compare the three sampling methods, in the rows random points with the lattice
and Sobol sequences. The two-dimensional embedding shows the three location
states of the sampled points. The points are relatively well distributed in space,
with exception of the lattice sequence which directly is directly selected in the first
column.

Figure 6.15: 343 points selected in the last active learning iteration of the second
experiment. Different samplers and (quasi-)Monte Carlo random points are com-
pared. The three location states are embedded with a principal component analysis
on the points of a row. The color indicates the relative value of the third velocity
state (from red = highest positive value, to blue = highest negative value).

Colors indicate the value of the third velocity of the selected points. They are
normalized in each row, accordingly the red points show points with a (close to)
highest positive velocity from the initial points and the blue crosses are (close to)
a highest negative velocity. In general, the GPA Sampler tends to choose points
with a higher absolute velocity compared to random sampling whose points range
over the whole spectrum. In the third column, a distinct behavior is observed: By
selecting points with the highest gradients, only those instances are selected which
have a certain correlation between location states (location of the cross in plot) and
third velocity (color of the plot). More precisely, on one side of the location space,

65

Chapter 6

only points with high positive velocity are selected while the points on the other side
have a high negative velocity. This indicates a lack of diversity which we suspect to
have caused the lower training successes with the method proposed in [NGK19b].

66

Chapter 7

Conclusion

In this thesis we have seen how Bayesian neural network can be utilized for active
learning and how sampling methods can be tailored towards these models. After we
established a general active learning framework and discussed the training process
of Bayesian neural networks, a first sampling policy based on the sample variance of
the network was presented. To improve the diversity of selected samples, we followed
the work of Tsymbalov et al. [Tsy+19]. To establish an active learning strategy, the
connection between random neural networks and Gaussian processes was utilized
to approximate a posterior variance together with a fast updating procedure. We
extended the proposed updating procedure to batches of points and implemented
the proposed framework to contribute various empirical results which show - among
other things - the runtime savings of the improved updating procedure. For future
work the following open challenges could be taken into consideration:

Intrabatch Diversity
Although the proposed sampling strategy based on the Gaussian process approxi-
mation allows for an update which - in theory - ensures diversity, in section 6.3 we
saw that the recalculation of the complete covariance matrix is still very time con-
suming when performed once per iteration. Sampling multiple points (batches) per
iteration - especially with the proposed fast updating procedure - decreases the run-
time significantly but sacrifices diversity within the batch. It would be interesting
to see if a fast routine (faster than the updating procedure) which reestablishes the
diversity could improve the sampling quality without increasing the runtime again.

Dealing with Large Datasets:
In the pool-based active learning framework (2.2) considered throughout this thesis,
we typically want to calculate the acquisition function for all points in the pool to
decide which point to select. When introducing the GPA Sampler, we discussed and
improved its runtime but did not mention the memory complexity. For storing the
covariances of the pool Xpool a matrix of size |Xpool| × |Xpool| is needed. Quickly,
this can become a problem as matrix arithmetric requires even more memory. For
example, already 10,000 pool points result in a covariance matrix which requires 0.8
GB digital storage (with 64-bit floats). For large datasets it is therefore necessary to
develop strategies circumventing such problems. It could be interesting to represent
the pool data by a representative set or to consider not all the inter-point covariances
but only those above a certain threshold.

67

Chapter 7

Multi-dimensional Predictions
The developed GPA Sampler relies on the posterior variance of a single output value.
The connection between Gaussian processes and random neural networks is not re-
stricted to the case of one dimensional predictions and one could imagine that the
GPA Sampler could also be generalized to multiple dimensional output. An easy
way of doing that would be to estimate uncertainties dimension-wise. Yet, this does
not take the inter-dimensional dependencies into account which is why proper mod-
eling could be superior.

Scheduling of Active Learning Iterations
In most of the experiments we conducted in chapter 6, we increased the number of
training instances in each active learning iteration by a fixed amount. Although the
approach presented in section 6.6 did not seem to improve over a fixed schedule,
this line of research should be continued. For example: when employing the GPA
Sampler, a decrease of the maximum posterior variance over the period of sampling
multiple points can be observed. Therefore, a good number of selected points could
be reached when the decrease gets to a certain percentage.

68

BIBLIOGRAPHY

Bibliography

[Agg+14] Charu C. Aggarwal et al. “Active learning: A survey”. English (US).
In: Data Classification. CRC Press, Jan. 2014, pp. 571–605. doi: 10.
1201/b17320.

[Agh+19] Hamed H. Aghdam et al. Active Learning for Deep Detection Neural
Networks. 2019.

[Ang88] Dana Angluin. “Queries and Concept Learning”. In: Mach. Learn. 2.4
(Apr. 1988), pp. 319–342. doi: 10 . 1023 / A : 1022821128753. url:
https://doi.org/10.1023/A:1022821128753.

[Ang90] Dana Angluin. “Negative Results for Equivalence Queries”. In: Mach.
Learn. 5.2 (July 1990), pp. 121–150. doi: 10.1023/A:1022692615781.
url: https://doi.org/10.1023/A:1022692615781.

[Ang04] Dana Angluin. “Queries revisited”. In: Theoretical Computer Science
313.2 (2004). Algorithmic Learning Theory, pp. 175–194. doi: https:
//doi.org/10.1016/j.tcs.2003.11.004. url: http://www.

sciencedirect.com/science/article/pii/S030439750300608X.

[AAF18] Dana Angluin, Timos Antonopoulos, and Dana Fisman. “Query learn-
ing of derived ω-tree languages in polynomial time”. In: CoRR abs/1802.04739
(2018). url: http://arxiv.org/abs/1802.04739.

[AAF20] Dana Angluin, Timos Antonopoulos, and Dana Fisman. “Strongly Un-
ambiguous Büchi Automata Are Polynomially Predictable With Mem-
bership Queries”. In: 28th EACSL Annual Conference on Computer
Science Logic (CSL 2020). Vol. 152. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2020, 8:1–8:17. doi: 10.4230/LIPIcs.CSL.2020.8.
url: https://drops.dagstuhl.de/opus/volltexte/2020/11651.

[Aro+19] Sanjeev Arora et al. “On Exact Computation with an Infinitely Wide
Neural Net”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8141–
8150. url: http : / / papers . nips . cc / paper / 9025 - on - exact -

computation-with-an-infinitely-wide-neural-net.pdf.

[ACL90] Les E. Atlas, David A. Cohn, and Richard E. Ladner. “Training Con-
nectionist Networks with Queries and Selective Sampling”. In: Advances
in Neural Information Processing Systems 2. Ed. by D. S. Touretzky.
Morgan-Kaufmann, 1990, pp. 566–573. url: http://papers.nips.
cc/paper/261-training-connectionist-networks-with-queries-

and-selective-sampling.pdf.

69

https://doi.org/10.1201/b17320
https://doi.org/10.1201/b17320
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022692615781
https://doi.org/10.1023/A:1022692615781
https://doi.org/https://doi.org/10.1016/j.tcs.2003.11.004
https://doi.org/https://doi.org/10.1016/j.tcs.2003.11.004
http://www.sciencedirect.com/science/article/pii/S030439750300608X
http://www.sciencedirect.com/science/article/pii/S030439750300608X
http://arxiv.org/abs/1802.04739
https://doi.org/10.4230/LIPIcs.CSL.2020.8
https://drops.dagstuhl.de/opus/volltexte/2020/11651
http://papers.nips.cc/paper/9025-on-exact-computation-with-an-infinitely-wide-neural-net.pdf
http://papers.nips.cc/paper/9025-on-exact-computation-with-an-infinitely-wide-neural-net.pdf
http://papers.nips.cc/paper/261-training-connectionist-networks-with-queries-and-selective-sampling.pdf
http://papers.nips.cc/paper/261-training-connectionist-networks-with-queries-and-selective-sampling.pdf
http://papers.nips.cc/paper/261-training-connectionist-networks-with-queries-and-selective-sampling.pdf

BIBLIOGRAPHY

[ABL18] Pranjal Awasthi, Maria Florina Balcan, and Philip M. Long. The Power
of Localization for Efficiently Learning Linear Separators with Noise.
2018.

[BBL09] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. “Agnos-
tic active learning”. In: Journal of Computer and System Sciences 75.1
(2009). Learning Theory 2006, pp. 78–89. doi: https://doi.org/10.
1016/j.jcss.2008.07.003. url: http://www.sciencedirect.com/
science/article/pii/S0022000008000652.

[BHV10] Maria-Florina Balcan, Steve Hanneke, and Jennifer Vaughan. “The true
sample complexity of active learning”. In: Machine Learning 80 (Sept.
2010), pp. 111–139. doi: 10.1007/s10994-010-5174-y.

[BU16] Maria-Florina Balcan and Ruth Urner. “Active Learning – Modern
Learning Theory”. In: Encyclopedia of Algorithms. Ed. by Ming-Yang
Kao. New York, NY: Springer New York, 2016, pp. 8–13. doi: 10.1007/
978-1-4939-2864-4_769. url: https://doi.org/10.1007/978-1-
4939-2864-4_769.

[BB11] Heinz Bauer and Robert B. Burckel. Probability Theory. Berlin, Boston:
De Gruyter, 3May. 2011. doi: https://doi.org/10.1515/9783110814668.
url: https://www.degruyter.com/view/title/3786.

[BT19] Jatin Bedi and Durga Toshniwal. “Deep learning framework to fore-
cast electricity demand”. In: Applied Energy 238 (2019), pp. 1312–
1326. doi: https://doi.org/10.1016/j.apenergy.2019.01.113.
url: http : / / www . sciencedirect . com / science / article / pii /

S0306261919301217.

[Bel+18] William H. Beluch et al. “The Power of Ensembles for Active Learning
in Image Classification”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2018.

[Blu+15] Charles Blundell et al. Weight Uncertainty in Neural Networks. 2015.

[BBB13] M. Bouguelia, Y. Beläıd, and A. Beläıd. “A Stream-Based Semi-supervised
Active Learning Approach for Document Classification”. In: 2013 12th
International Conference on Document Analysis and Recognition. 2013,
pp. 611–615.

[Byr+95] Richard H. Byrd et al. “A Limited Memory Algorithm for Bound Con-
strained Optimization”. In: SIAM Journal on Scientific Computing 16.5
(1995), pp. 1190–1208. doi: 10.1137/0916069. url: https://doi.
org/10.1137/0916069.

[CJN17] Kamalika Chaudhuri, Prateek Jain, and Nagarajan Natarajan. “Active
Heteroscedastic Regression”. In: ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. International
Convention Centre, Sydney, Australia: PMLR, June 2017, pp. 694–702.
url: http://proceedings.mlr.press/v70/chaudhuri17a.html.

[Cha+15] Kamalika Chaudhuri et al. Convergence Rates of Active Learning for
Maximum Likelihood Estimation. 2015.

70

https://doi.org/https://doi.org/10.1016/j.jcss.2008.07.003
https://doi.org/https://doi.org/10.1016/j.jcss.2008.07.003
http://www.sciencedirect.com/science/article/pii/S0022000008000652
http://www.sciencedirect.com/science/article/pii/S0022000008000652
https://doi.org/10.1007/s10994-010-5174-y
https://doi.org/10.1007/978-1-4939-2864-4_769
https://doi.org/10.1007/978-1-4939-2864-4_769
https://doi.org/10.1007/978-1-4939-2864-4_769
https://doi.org/10.1007/978-1-4939-2864-4_769
https://doi.org/https://doi.org/10.1515/9783110814668
https://www.degruyter.com/view/title/3786
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.01.113
http://www.sciencedirect.com/science/article/pii/S0306261919301217
http://www.sciencedirect.com/science/article/pii/S0306261919301217
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
http://proceedings.mlr.press/v70/chaudhuri17a.html

BIBLIOGRAPHY

[CG20] Chun-Teh Chen and Grace X. Gu. “Generative Deep Neural Networks
for Inverse Materials Design Using Backpropagation and Active Learn-
ing”. In: Advanced Science 7.5 (2020), p. 1902607. doi: 10.1002/advs.
201902607. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/advs.201902607.

[CP19] Xue Chen and Eric Price. “Active Regression via Linear-Sample Spar-
sification”. In: ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99. Pro-
ceedings of Machine Learning Research. Phoenix, USA: PMLR, 25–28
Jun 2019, pp. 663–695. url: http://proceedings.mlr.press/v99/
chen19a.html.

[CS09] Youngmin Cho and Lawrence K. Saul. “Kernel Methods for Deep Learn-
ing”. In: Advances in Neural Information Processing Systems 22. Ed.
by Y. Bengio et al. Curran Associates, Inc., 2009, pp. 342–350. url:
http://papers.nips.cc/paper/3628-kernel-methods-for-deep-

learning.pdf.

[CAL94] David Cohn, Les Atlas, and Richard Ladner. “Improving Generaliza-
tion with Active Learning”. In: 15.2 (May 1994), pp. 201–221. doi:
10.1023/A:1022673506211. url: https://doi.org/10.1023/A:
1022673506211.

[DE95] Ido Dagan and Sean P. Engelson. “Committee-Based Sampling For
Training Probabilistic Classifiers”. In: Machine Learning Proceedings
1995. Ed. by Armand Prieditis and Stuart Russell. San Francisco (CA):
Morgan Kaufmann, 1995, pp. 150–157. doi: https://doi.org/10.
1016/B978-1-55860-377-6.50027-X. url: http://www.sciencedirect.
com/science/article/pii/B978155860377650027X.

[Das05] Sanjoy Dasgupta. “Analysis of a greedy active learning strategy”. In:
Advances in Neural Information Processing Systems 17. Ed. by L. K.
Saul, Y. Weiss, and L. Bottou. MIT Press, 2005, pp. 337–344. url:
http://papers.nips.cc/paper/2636-analysis-of-a-greedy-

active-learning-strategy.pdf.

[DHM08] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. “A general ag-
nostic active learning algorithm”. In: Advances in Neural Information
Processing Systems 20. Ed. by J. C. Platt et al. Curran Associates, Inc.,
2008, pp. 353–360. url: http://papers.nips.cc/paper/3325-a-
general-agnostic-active-learning-algorithm.pdf.

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. “Anal-
ysis of Perceptron-Based Active Learning”. In: Learning Theory. Ed. by
Peter Auer and Ron Meir. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 249–263.

[Den+19] Cheng Deng et al. “Active Transfer Learning Network: A Unified Deep
Joint Spectral–Spatial Feature Learning Model for Hyperspectral Im-
age Classification”. In: IEEE Transactions on Geoscience and Remote
Sensing 57.3 (Mar. 2019), pp. 1741–1754. doi: 10.1109/tgrs.2018.
2868851. url: http://dx.doi.org/10.1109/TGRS.2018.2868851.

[Dil+17] Joshua V. Dillon et al. TensorFlow Distributions. 2017.

71

https://doi.org/10.1002/advs.201902607
https://doi.org/10.1002/advs.201902607
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201902607
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201902607
http://proceedings.mlr.press/v99/chen19a.html
http://proceedings.mlr.press/v99/chen19a.html
http://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning.pdf
http://papers.nips.cc/paper/3628-kernel-methods-for-deep-learning.pdf
https://doi.org/10.1023/A:1022673506211
https://doi.org/10.1023/A:1022673506211
https://doi.org/10.1023/A:1022673506211
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50027-X
https://doi.org/https://doi.org/10.1016/B978-1-55860-377-6.50027-X
http://www.sciencedirect.com/science/article/pii/B978155860377650027X
http://www.sciencedirect.com/science/article/pii/B978155860377650027X
http://papers.nips.cc/paper/2636-analysis-of-a-greedy-active-learning-strategy.pdf
http://papers.nips.cc/paper/2636-analysis-of-a-greedy-active-learning-strategy.pdf
http://papers.nips.cc/paper/3325-a-general-agnostic-active-learning-algorithm.pdf
http://papers.nips.cc/paper/3325-a-general-agnostic-active-learning-algorithm.pdf
https://doi.org/10.1109/tgrs.2018.2868851
https://doi.org/10.1109/tgrs.2018.2868851
http://dx.doi.org/10.1109/TGRS.2018.2868851

BIBLIOGRAPHY

[ER90] Bonnie Eisenberg and Ronald L. Rivest. “On the Sample Complexity of
Pac-Learning Using Random and Chosen Examples”. In: Proceedings of
the Third Annual Workshop on Computational Learning Theory. COLT
’90. Rochester, New York, USA: Morgan Kaufmann Publishers Inc.,
1990, pp. 154–162.

[EVD08] Arkady Epshteyn, Adam Vogel, and Gerald DeJong. “Active reinforce-
ment learning”. In: Jan. 2008. doi: 10.1145/1390156.1390194.

[FLC17] Meng Fang, Yuan Li, and Trevor Cohn. “Learning how to Active Learn:
A Deep Reinforcement Learning Approach”. In: CoRR abs/1708.02383
(2017). url: http://arxiv.org/abs/1708.02383.

[Fre+97] Yoav Freund et al. “Selective Sampling Using the Query by Committee
Algorithm”. In: Mach. Learn. 28.2–3 (Sept. 1997), pp. 133–168. doi:
10.1023/A:1007330508534. url: https://doi.org/10.1023/A:
1007330508534.

[FK16] Kaito Fujii and Hisashi Kashima. “Budgeted stream-based active learn-
ing via adaptive submodular maximization”. In: Advances in Neural In-
formation Processing Systems 29. Ed. by D. D. Lee et al. Curran Asso-
ciates, Inc., 2016, pp. 514–522. url: http://papers.nips.cc/paper/
6038-budgeted-stream-based-active-learning-via-adaptive-

submodular-maximization.pdf.

[G M+18] Alexander G. de G. Matthews et al. Gaussian Process Behaviour in
Wide Deep Neural Networks. 2018.

[Gal16] Yarin Gal. “Uncertainty in Deep Learning”. PhD thesis. University of
Cambridge, 2016.

[GG15] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approxima-
tion: Representing Model Uncertainty in Deep Learning. 2015.

[GIG17] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian Ac-
tive Learning with Image Data. 2017.

[GE17] Yonatan Geifman and Ran El-Yaniv. Deep Active Learning over the
Long Tail. 2017.

[GAS20] Christopher J. Geoga, Mihai Anitescu, and Michael L. Stein. “Scalable
Gaussian Process Computations Using Hierarchical Matrices”. In: Jour-
nal of Computational and Graphical Statistics 29.2 (2020), pp. 227–237.
doi: 10.1080/10618600.2019.1652616. url: https://doi.org/10.
1080/10618600.2019.1652616.

[GG07] Yuhong Guo and Russ Greiner. “Optimistic Active Learning Using Mu-
tual Information”. In: Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence. IJCAI’07. Hyderabad, India: Morgan
Kaufmann Publishers Inc., 2007, pp. 823–829.

[Haf+20] Danijar Hafner et al. Noise Contrastive Priors for Functional Uncer-
tainty. 2018, accessed 28.09.2020. url: https://github.com/brain-
research/ncp.

[Har+20] Charles R. Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-
2. url: https://doi.org/10.1038/s41586-020-2649-2.

72

https://doi.org/10.1145/1390156.1390194
http://arxiv.org/abs/1708.02383
https://doi.org/10.1023/A:1007330508534
https://doi.org/10.1023/A:1007330508534
https://doi.org/10.1023/A:1007330508534
http://papers.nips.cc/paper/6038-budgeted-stream-based-active-learning-via-adaptive-submodular-maximization.pdf
http://papers.nips.cc/paper/6038-budgeted-stream-based-active-learning-via-adaptive-submodular-maximization.pdf
http://papers.nips.cc/paper/6038-budgeted-stream-based-active-learning-via-adaptive-submodular-maximization.pdf
https://doi.org/10.1080/10618600.2019.1652616
https://doi.org/10.1080/10618600.2019.1652616
https://doi.org/10.1080/10618600.2019.1652616
https://github.com/brain-research/ncp
https://github.com/brain-research/ncp
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

BIBLIOGRAPHY

[HJ15] Tamir Hazan and Tommi Jaakkola. Steps Toward Deep Kernel Methods
from Infinite Neural Networks. 2015.

[HFL13] James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian Processes
for Big Data. 2013.

[Hou+11] Neil Houlsby et al. Bayesian Active Learning for Classification and Pref-
erence Learning. 2011.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent
Kernel: Convergence and Generalization in Neural Networks. 2018.

[KW16] Wei Kang and Lucas C. Wilcox. Mitigating the Curse of Dimensionality:
Sparse Grid Characteristics Method for Optimal Feedback Control and
HJB Equations. 2016.

[KB97] R. Kelley Pace and Ronald Barry. “Sparse spatial autoregressions”. In:
Statistics and Probability Letters 33.3 (1997), pp. 291–297. doi: https:
//doi.org/10.1016/S0167-7152(96)00140-X. url: http://www.
sciencedirect.com/science/article/pii/S016771529600140X.

[KS01] Jacek Kierzenka and Lawrence F. Shampine. “A BVP Solver Based on
Residual Control and the Maltab PSE”. In: ACM Trans. Math. Softw.
27.3 (Sept. 2001), pp. 299–316. doi: 10.1145/502800.502801. url:
https://doi.org/10.1145/502800.502801.

[KW13] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2013.

[KAG19] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. BatchBALD: Ef-
ficient and Diverse Batch Acquisition for Deep Bayesian Active Learn-
ing. 2019.

[Kri12] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Im-
ages”. In: University of Toronto (May 2012).

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:
Ann. Math. Statist. 22.1 (Mar. 1951), pp. 79–86. doi: 10.1214/aoms/
1177729694. url: https://doi.org/10.1214/aoms/1177729694.

[KG20] Punit Kumar and Atul Gupta. “Active Learning Query Strategies for
Classification, Regression, and Clustering: A Survey”. In: Journal of
Computer Science and Technology 35 (July 2020), pp. 913–945. doi:
10.1007/s11390-020-9487-4.

[KN16] Frances Y. Kuo and Dirk Nuyens. Application of quasi-Monte Carlo
methods to elliptic PDEs with random diffusion coefficients - a survey
of analysis and implementation. 2016.

[LB92] K. Lang and E. Baum. “Query learning can work poorly when a human
oracle is used”. In: 1992.

[LC10] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”.
In: (2010). url: http://yann.lecun.com/exdb/mnist/.

[Lee+17] Jaehoon Lee et al. Deep Neural Networks as Gaussian Processes. 2017.

[LG94] David D. Lewis and William A. Gale. “A Sequential Algorithm for
Training Text Classifiers”. In: CoRR abs/cmp-lg/9407020 (1994). url:
http://arxiv.org/abs/cmp-lg/9407020.

73

https://doi.org/https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/https://doi.org/10.1016/S0167-7152(96)00140-X
http://www.sciencedirect.com/science/article/pii/S016771529600140X
http://www.sciencedirect.com/science/article/pii/S016771529600140X
https://doi.org/10.1145/502800.502801
https://doi.org/10.1145/502800.502801
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s11390-020-9487-4
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/cmp-lg/9407020

BIBLIOGRAPHY

[MH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data us-
ing t-SNE”. In: Journal of Machine Learning Research 9.86 (2008),
pp. 2579–2605. url: http://jmlr.org/papers/v9/vandermaaten08a.
html.

[Mac92] D. J. C. MacKay. “Information-Based Objective Functions for Active
Data Selection”. In: Neural Computation 4.4 (1992), pp. 590–604.

[Mar+15] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/.

[MRE16] Mitchell McIntire, Daniel Ratner, and Stefano Ermon. “Sparse Gaussian
Processes for Bayesian Optimization”. In: Proceedings of the Thirty-
Second Conference on Uncertainty in Artificial Intelligence. UAI’16.
Jersey City, New Jersey, USA: AUAI Press, 2016, pp. 517–526.

[Mos+07] Robert Moskovitch et al. “Improving the Detection of Unknown Com-
puter Worms Activity Using Active Learning”. In: Sept. 2007, pp. 489–
493. doi: 10.1007/978-3-540-74565-5_47.

[NGK19a] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive Deep
Learning for High-Dimensional Hamilton-Jacobi-Bellman Equations. 2019.

[NGK19b] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive Deep
Learning for High-Dimensional Hamilton-Jacobi-Bellman Equations. 2019.
url: https://github.com/Tenavi/HJB_NN.

[Nea96] R. Neal. “Priors for Infinite Networks”. In: 1996.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Process-
ing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 8024–8035. url: http : / / papers . neurips . cc / paper / 9015 -

pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[PF18] Remus Pop and Patric Fulop. Deep Ensemble Bayesian Active Learn-
ing : Addressing the Mode Collapse issue in Monte Carlo dropout via
Ensembles. 2018.

[Ram+14] Raghunathan Ramakrishnan et al. “Quantum chemistry structures and
properties of 134 kilo molecules”. In: Scientific Data 1 (Aug. 2014). doi:
10.1038/sdata.2014.22.

[RW06] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. Cambridge,
MA, USA: MIT Press, Jan. 2006, p. 248.

[RKG18] Matthias Rottmann, Karsten Kahl, and Hanno Gottschalk. “Deep Bayesian
Active Semi-Supervised Learning”. In: CoRR abs/1803.01216 (2018).
url: http://arxiv.org/abs/1803.01216.

74

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-540-74565-5_47
https://github.com/Tenavi/HJB_NN
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/sdata.2014.22
http://arxiv.org/abs/1803.01216

BIBLIOGRAPHY

[RM01] Nicholas Roy and Andrew McCallum. “Toward Optimal Active Learn-
ing through Sampling Estimation of Error Reduction”. In: Proceedings
of the Eighteenth International Conference on Machine Learning. ICML
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001,
pp. 441–448.

[Rud+12] Lars Ruddigkeit et al. “Enumeration of 166 Billion Organic Small Molecules
in the Chemical Universe Database GDB-17”. In: Journal of Chemical
Information and Modeling 52.11 (2012). PMID: 23088335, pp. 2864–
2875. doi: 10.1021/ci300415d. url: https://doi.org/10.1021/
ci300415d.

[Rus+14] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: CoRR abs/1409.0575 (2014). url: http : / / arxiv .

org/abs/1409.0575.

[Sch+18] K. T. Schütt et al. “SchNetPack: A Deep Learning Toolbox For Atom-
istic Systems”. In: Journal of Chemical Theory and Computation 15.1
(Nov. 2018), pp. 448–455. doi: 10.1021/acs.jctc.8b00908. url:
http://dx.doi.org/10.1021/acs.jctc.8b00908.

[Sch+17] Kristof T. Schütt et al. SchNet: A continuous-filter convolutional neural
network for modeling quantum interactions. 2017.

[SS17] Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neu-
ral Networks: A Core-Set Approach. 2017.

[Set09] Burr Settles. Active Learning Literature Survey. Computer Sciences
Technical Report 1648. University of Wisconsin–Madison, 2009.

[SC08] Burr Settles and Mark Craven. “An Analysis of Active Learning Strate-
gies for Sequence Labeling Tasks”. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing. EMNLP ’08. Hon-
olulu, Hawaii: Association for Computational Linguistics, 2008, pp. 1070–
1079.

[SCR08] Burr Settles, Mark Craven, and Soumya Ray. “Multiple-Instance Active
Learning”. In: Advances in Neural Information Processing Systems 20.
Ed. by J. C. Platt et al. Curran Associates, Inc., 2008, pp. 1289–1296.
url: http://papers.nips.cc/paper/3252-multiple-instance-
active-learning.pdf.

[SOS92] H. S. Seung, M. Opper, and H. Sompolinsky. “Query by Committee”.
In: Proceedings of the Fifth Annual Workshop on Computational Learn-
ing Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery, 1992, pp. 287–294. doi: 10.1145/130385.
130417. url: https://doi.org/10.1145/130385.130417.

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In: Bell
System Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.
1538-7305.1948.tb01338.x. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x.

75

https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1021/acs.jctc.8b00908
http://dx.doi.org/10.1021/acs.jctc.8b00908
http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf
http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x

BIBLIOGRAPHY

[Sma+14] Jasmina Smailović et al. “Stream-based active learning for sentiment
analysis in the financial domain”. In: Information Sciences 285 (2014).
Processing and Mining Complex Data Streams, pp. 181–203. doi: https:
//doi.org/10.1016/j.ins.2014.04.034. url: http://www.

sciencedirect.com/science/article/pii/S0020025514004885.

[Sou+17] Jamshid Sourati et al. “Asymptotic Analysis of Objectives Based on
Fisher Information in Active Learning”. In: J. Mach. Learn. Res. 18.1
(Jan. 2017), pp. 1123–1163.

[Sri+14] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. url: http://jmlr.org/papers/v15/
srivastava14a.html.

[Sze+16] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning. 2016.

[TH19] Ying-Peng Tang and Sheng-Jun Huang. “Self-Paced Active Learning:
Query the Right Thing at the Right Time”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 33 (July 2019), pp. 5117–5124. doi:
10.1609/aaai.v33i01.33015117.

[TK02] Simon Tong and Daphne Koller. “Support Vector Machine Active Learn-
ing with Applications to Text Classification”. In: J. Mach. Learn. Res.
2 (Mar. 2002), pp. 45–66. doi: 10.1162/153244302760185243. url:
https://doi.org/10.1162/153244302760185243.

[Tra+19] Dustin Tran et al. Bayesian Layers: A Module for Neural Network Un-
certainty. 2019.

[TPS18] Evgenii Tsymbalov, Maxim Panov, and Alexander Shapeev. “Dropout-
Based Active Learning for Regression”. In: Analysis of Images, Social
Networks and Texts (2018), pp. 247–258. doi: 10.1007/978-3-030-
11027-7_24. url: http://dx.doi.org/10.1007/978-3-030-11027-
7_24.

[Tsy+19] Evgenii Tsymbalov et al. “Deeper Connections between Neural Net-
works and Gaussian Processes Speed-up Active Learning”. In: Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (Aug. 2019). doi: 10.24963/ijcai.2019/499. url: http:
//dx.doi.org/10.24963/ijcai.2019/499.

[Val84] L. G. Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11
(Nov. 1984), pp. 1134–1142. doi: 10.1145/1968.1972. url: https:
//doi.org/10.1145/1968.1972.

[VD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009.

[VC71] V. N. Vapnik and A. Ya. Chervonenkis. “On the Uniform Convergence
of Relative Frequencies of Events to Their Probabilities”. In: Theory of
Probability & Its Applications 16.2 (1971), pp. 264–280. doi: 10.1137/
1116025. url: https://doi.org/10.1137/1116025.

76

https://doi.org/https://doi.org/10.1016/j.ins.2014.04.034
https://doi.org/https://doi.org/10.1016/j.ins.2014.04.034
http://www.sciencedirect.com/science/article/pii/S0020025514004885
http://www.sciencedirect.com/science/article/pii/S0020025514004885
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1609/aaai.v33i01.33015117
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1007/978-3-030-11027-7_24
https://doi.org/10.1007/978-3-030-11027-7_24
http://dx.doi.org/10.1007/978-3-030-11027-7_24
http://dx.doi.org/10.1007/978-3-030-11027-7_24
https://doi.org/10.24963/ijcai.2019/499
http://dx.doi.org/10.24963/ijcai.2019/499
http://dx.doi.org/10.24963/ijcai.2019/499
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025

BIBLIOGRAPHY

[Wan+19] Guijin Wang et al. “A global and updatable ECG beat classification
system based on recurrent neural networks and active learning”. In:
Information Sciences 501 (2019), pp. 523–542. doi: https://doi.org/
10.1016/j.ins.2018.06.062. url: http://www.sciencedirect.
com/science/article/pii/S0020025518305115.

[WCC19] Sarah Wassermann, Thibaut Cuvelier, and Pedro Casas. “RAL - Im-
proving Stream-Based Active Learning by Reinforcement Learning”. In:
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD) Workshop on In-
teractive Adaptive Learning (IAL). Würzburg, Germany, Sept. 2019.
url: https://hal.archives-ouvertes.fr/hal-02265426.

[WNC06] Rebecca Willett, Robert Nowak, and Rui M. Castro. “Faster Rates in
Regression via Active Learning”. In: Advances in Neural Information
Processing Systems 18. Ed. by Y. Weiss, B. Schölkopf, and J. C. Platt.
MIT Press, 2006, pp. 179–186. url: http://papers.nips.cc/paper/
2831-faster-rates-in-regression-via-active-learning.pdf.

[WF17] Mark Woodward and Chelsea Finn. Active One-shot Learning. 2017.

[Wu+19] Yuexin Wu et al. Active Learning for Graph Neural Networks via Node
Feature Propagation. 2019.

[YK19] Donggeun Yoo and In So Kweon. Learning Loss for Active Learning.
2019.

[Zhd19] Fedor Zhdanov. Diverse mini-batch Active Learning. 2019.

77

https://doi.org/https://doi.org/10.1016/j.ins.2018.06.062
https://doi.org/https://doi.org/10.1016/j.ins.2018.06.062
http://www.sciencedirect.com/science/article/pii/S0020025518305115
http://www.sciencedirect.com/science/article/pii/S0020025518305115
https://hal.archives-ouvertes.fr/hal-02265426
http://papers.nips.cc/paper/2831-faster-rates-in-regression-via-active-learning.pdf
http://papers.nips.cc/paper/2831-faster-rates-in-regression-via-active-learning.pdf

Chapter A

Appendix A

Appendix

A.1 Runtimes on the Airline Dataset

The figures in this section report the results from performing the experiments from
section 6.3.2 on the airline dataset. They are very similar to figures 6.2, 6.3 and 6.4
and therefore do not reveal any deeper insights.

Figure A.1: Runtime of Batch GPA and Fast Batch Samplers on the airline data by
number of requested samples, compare figure 6.2.

78

Runtimes on the Airline Dataset A.1

Figure A.2: Runtime of Fast Batch GPA Sampler and Batch GPA Sampler for
different numbers of pool instances on the airline data, compare figure 6.3.

Figure A.3: Runtime for Fast Batch GPA Sampler and Batch GPA Sampler for
different numbers of training instances on the airline data, compare figure 6.4.

79

Chapter A

A.2 Results for HJB Equations with QMC Points

The following tables report the results from using the lattice and Sobol sequence
Quasi-Monte-Carlo implementation from [KN16] in the setup from section 6.6. Ta-
bles A.1 and A.2 contain the final statistics when the number of sampled points in
each active learning iteration is chosen at runtime as proposed in the paper. Ta-
bles A.3 and A.4 show the final results when the number of added points is fixed by
a schedule. Compared to tables 6.5 and 6.6 they do not show a significant improve-
ment.

sample mode train error validation error training iterations number points total

GPA 0.0028 0.0031 52860.5 759.0
random 0.0018 0.0028 50841.0 901.5
paper 0.0013 0.0027 54681.5 1007.0

Table A.1: Final statistics with quasi random points from a lattice sequences and
number of samples points chosen at runtime.

sample mode train error validation error training iterations number points total

GPA 0.004 0.0038 51467.0 618.5
random 0.0019 0.0026 51600.5 897.5
paper 0.0018 0.0038 52912.0 807.5

Table A.2: Final statistics with quasi random points from a Sobol sequences and
number of samples points chosen at runtime.

sample mode train error validation error training iterations number points total

GPA 0.0038 0.0038 44318.0 600.0
random 0.002 0.0037 38679.5 600.0
paper 0.0016 0.0041 46844.5 600.0

Table A.3: Final statistics with quasi random points from a lattice sequences and
number of samples points per iteration fixed.

sample mode train error validation error training iterations number points total

GPA 0.0036 0.0037 42424.5 600.0
random 0.0021 0.0034 36949.5 600.0
paper 0.002 0.0038 42527.5 600.0

Table A.4: Final statistics with quasi random points from a lattice sequences and
number of samples points per iteration fixed.

80

	Introduction
	Active Learning
	From Supervised to Active Learning
	A Solution Framework for Active Learning
	Literature Review

	Gaussian Processes
	Gaussian Processes - Definition
	Gaussian Processes - Predictions

	Bayesian Neural Networks
	Feed-Forward Neural Networks
	Literature Review: Active Learning for Neural Networks
	Bayesian Neural Networks
	Training Bayesian Neural Networks
	BNN and Active Learning

	Connection between Neural Networks and Gaussian Processes
	Single-Layer Neural Networks
	Multi-Layer Neural Networks
	GPA Sampler
	Fast Batch GPA Sampler

	Experimental Results
	Implementation Details
	Housing and Airline Datasets
	Behavior of the GPA Samplers
	Complete Active Learning Framework
	QM9 Dataset and SchNet
	HJB Equations

	Conclusion
	Appendix
	Runtimes on the Airline Dataset
	Results for HJB Equations with QMC Points

