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Abstract

In this paper, we propose a phase-field model to partition a curved surface into path-connected segments with
minimal boundary length. Phase-fields offer a powerful tool to represent diffuse interfaces with controlled
width and to optimize them in a variational framework. We demonstrate how the multiplicative combination
of phase-field functions can be used to effectively compute a hierarchical partition of unity. This induces an
associated hierarchy of atlases, whose charts naturally overlap and thus are well-suited for applications such
as texture mapping. Furthermore, we obtain distortion minimizing segmentations via a PDE-constraint
optimization approach where the phase-field model allows direct use of Lagrangian calculus. Following
Sharp and Crane (2018), the Yamabe equation, which allows computing the distortion induced by segment
flattening, is considered as the constraint. This way, we obtain end-to-end diffuse formulations of variational
problems in surface segmentation that are straightforward to treat computationally. Various examples
illustrate the flexibility and robustness of this approach.

Keywords: phase-field model, shape optimization, topological constraints, hierarchical segmentation, atlas
generation, yamabe equation

1. Introduction

Partitioning a surface into segments is a ubiquitous task in geometry processing. It is a core component
in many algorithms that are used, for example, in computational design, remeshing, and texture mapping.
These applications lead to different objectives for measuring the quality of a segmentation.

The application we consider in this paper is the generation of atlases, which is closely related to con-
structing surface parametrizations. The probably most famous example of this problem is to find an atlas of
the earth, where different projections either have to distort the shape or size of landmasses. This example
directly shows that there is not a single metric to determine what is a ’good’ atlas. Typically different
properties such as preserving angles, low area distortion, number of charts, and interface length need to be
traded against each other. We can see an example of the trade-off between distortion and interface length
in Figure 1. In computer graphics applications, conformal maps, i.e. preserving angles, have emerged as the
dominating paradigm for generating charts. This raises the problem of constructing such conformal charts
with minimal length and area distortion, which is typically approached by developing algorithms that try
to optimally place the necessary cuts, i.e. dividers between segments, and is a very active area of research.
In our work, we will take a slightly different approach and consider diffuse interfaces instead of sharp cuts.

Most existing algorithms focus on discrete cuts along the edges of a triangle mesh. However, optimal
solutions might require cutting through triangles and thus some also consider such interfaces. A example for
the latter is the work by Sharp and Crane (2018), who start from the continuous perspective and develop
a PDE-constrained shape optimization of the distortion with the Yamabe equation as constraint. To this
end, they construct a level set approach and this served as major inspiration for our work. However, level
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Figure 1: Our approach produces segments with diffuse interfaces, shown here with a red to blue colormap, by solving a
variational problem. By virtue of corresponding constraints, we can ensure that these segments are connected and cover the
same amount of area. We can produce charts with overlapping support from these diffuse segments, shown are their images in
the plane, and use them for mapping textures to the surface. However, when only using the perimeter as objective, as in the
example on the left, the charts exhibit high distortion. Thus, we use the Yamabe equation for the logarithmic conformal factor
as a PDE constraint and an objective involving this factor, which leads to distortion and perimeter minimizing segments as in
the example on the right, where the textured hand is shown from two perspectives.

set approaches require careful handling of the interface in the optimization and are typically not well suited
to deal with topology changes, e.g. promote them when desirable.

We also focus on the continuous perspective and develop a segmentation approach based on phase-fields.
Phase-fields are a model for segments with diffuse interfaces that, in the case of two segments, assign each
point on the surface a value between minus one and one. These endpoints figuratively correspond to two pure
material phases while the range in between models a diffuse transition. Using phase-fields for computing
surface segmentations yields a topologically flexible variational framework. This, however, could entail that
our minimizers are disconnected and to mitigate this we employ the connectedness constraint introduced by
Dondl et al. (2017). Furthermore, we introduce a novel hierarchical approach that multiplicatively combines
multiple phase-fields to describe more than two segments. The resulting diffuse hierarchical segmentation can
then be used to generate atlases with overlapping charts that are well-suited for applications such as texture
mapping that we will show as a proof of concept. To control the distortion of these atlases, we introduce
a diffuse version of the Yamabe equation that sidesteps any need to threshold the diffuse representation or
explicitly cut the mesh. This end-to-end diffuse formulation of surface segmentation leads to variational
problems that are straightforward to treat with conventional algorithms for nonlinear optimization.

Contributions. Our main contributions are:

• We provide a framework for using phase-fields to partition a curved surface into path-connected seg-
ments with minimal boundary length employing a connectedness constraint introduced by Dondl et al.
(2017).

• We develop a novel hierarchical approach for surface segmentation based on multiple nested segments
described via the multiplicative combination of phase-field functions.

• We show how to generate a corresponding hierarchy of atlases and an associated partition of unity,
which are for instance useful for texture mapping as we demonstrate in a proof of concept.

• We pick up recent work by Sharp and Crane (2018) and consider a diffuse version of the Yamabe equa-
tion on phase-field described segments. We optimize these segments in a classical shape optimization
approach with the Yamabe equation as a PDE constraint to minimize the conformal distortion when
flattening the segments.

The combination of these contributions is, for example, demonstrated in Figure 1.
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Organization. We begin in Section 2 by briefly discussing important previous work related to ours. Then
we introduce our basic framework for segmenting the surface into two connected segments using phase-fields
in Section 3. In Section 4, we introduce our hierarchical approach for computing multiple segments in a
top-down fashion and discuss the application to atlas generation. Afterwards, in Section 5, we show how
to minimize the distortion when flattening segments described by phase-fields. To this end, we introduce a
diffuse version of the Yamabe equation and integrate this as a PDE constraint in the shape optimization
problem for optimal segmentation. Finally, conclusions are drawn in Section 6.

2. Related Work

Many research questions touched in this paper, such as how to compute mesh segments for different
tasks or how to place cuts on a surface such that it can be easily flattened have already be studied in recent
publications.

Mesh Segmentation. Here, let us discuss a few examples that we deem particularly relevant with respect
to our approach. A more extensive review of mesh segmentation approaches can, for example, be found in
Shamir (2008).

Most approaches are concerned with discrete cuts, i.e. splitting or cutting the mesh along its edges.
However, computing exact discrete minimizers for even basic taks such as finding the shortest cuts to obtain
a topological disk (Erickson and Har-Peled, 2004) or a partition into equally-sized convex parts with minimal
interface (Chazelle et al., 1997) are NP-hard. Hence, approximate solutions and algorithms to compute them
are investigated.

With respect to atlas generation and related applications, curvature-based objectives have been used to
compute segmentations. For example, Yamauchi et al. (2005) aim for an even distribution of Gauß curvature
among the segments while Julius et al. (2005) determine how well conics fit the different segments. Both use
their objectives as proxy for developability. In contrast, Lien and Amato (2007) compute decomposition into
approximately convex parts by measuring the distance between them and their convex hull. This approach
is speed-up by Mamou and Ghorbel (2009).

A very popular approach to the hierarchical segmentation of meshes was introduced by Garland et al.
(2001), who hierarchically cluster the faces of a mesh by edge contractions in the dual graph using the
planarity of resulting clusters as primary criterion. Attene et al. (2006) extend this via taking into account
how well clusters are approximated by certain primitives (e.g. planes or cylinders). Furthermore, Katz
and Tal (2003) use a probabilistic formulation and combine this with a top-down approach to recursive
decomposition. Lai et al. (2006) also use such a top-down approach, but add semantic objectives based on
the change in texture and use a Lloyd’s-type clustering algorithm.

Cutting and Flattening. For problems such as texture mapping, parametrizations of the surface with low area
distortion are of great interest. This motivates the study of algorithms to cut and flatten - i.e. parametrize
- surfaces. In fact, many of the curvature-based segmentation methods listed above draw their inspiration
from this problem. Zhou et al. (2004) used nonlinear dimensionality reduction methods based on spectral
analysis as initialization for a nonlinear optimization of the charts. Other approaches focus on placing
special vertices, e.g. cone singularities, and then connecting them with cuts. To reduce the distortion, some
place them via a greedy ansatz (Springborn et al., 2008; Ben-Chen et al., 2008; Zhu et al., 2020). Others
follow a global shape optimization technique (Soliman et al., 2018). Departing from greedy approaches and
other heuristics, Poranne et al. (2017) and Li et al. (2019) compute patches that minimize the associated
distortion. To this end, they explicitly compute the parametrization of different patches and simultaneously
optimize their distortion and boundaries. Going further, Sharp and Crane (2018) use the Yamabe equation
to compute the lowest possible distortion and thus circumvent the need to compute parametrizations during
the optimization. To optimize over surface patches to be flattened, they use a level set approach to describe
the shape of the patches and solve the shape optimization problem of minimal distortion. In particular, they
allow cuts not aligned with triangle edges. To actually compute (approximately) conformal parametrizations
of segments, an important approach was introduced by Lévy et al. (2002), who minimize a least-squares
approximation of the associated Cauchy-Riemann equations.
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Phase-fields on Surfaces. Phase-fields, or comparable diffuse interface models, on surfaces have already been
used, for example, by Hornung et al. (2020) who use phase-fields to diffusely represent hard and soft material
on the surface and optimize their distribution. Zayer et al. (2019) and Stadlbauer et al. (2020) use a diffuse
representation to compute Voronoi-type diagrams by growing segments from a given start points. Even
more general, Bertozzi and Flenner (2012) use diffuse interface models on arbitrary graphs and combine
perimeter minimization with data-based fitting terms to address classification problems.

3. Phase-Field based Surface Segmentation

Let us begin with a presentation of the most important ingredients of our segmentation approach. To this
end, assume (M, g) to be an orientable, two dimensional, compact Riemannian surface embedded in R3. Our
first goal is to compute a segmentationM =M+∪M− with minimal length of the interface ∂ (M+ ∩M−)
on M subject to the constraint that M+ and M− have the same area. To define a suitable approximation
of this segmentation problem, let us at first review a phase-field approach to describe interfacial energies
and investigate the approximation of a connectedness constraint for the segments M+ and M−.

In this approach, the two segments will be described by a smooth function u which varies between −1
and 1 with a smooth and steep transition. Intuitively, one can think of this function describing the mixture
of two materials on the surface where −1, 1 indicate the pure material phases. By postulating that these
materials mix smoothly and have a desire to be as pure as possible, Modica and Mortola (Modica and
Mortola, 1977) derived a functional Pε[u] describing their behavior. Minimizers of this functional describe
stable material distributions that consists of large pure phases and narrow transition zones between them.
Here, ε describes a trade-off between smooth mixing and purity of phases that corresponds to the width of
these transition zones. In fact, it turns out that the value of the Modica-Mortola functional approximates
the length of the interface of the two segments and, when working on Euclidean domains, it is known to
converge for decreasing interface width to the perimeter of a segment with sharp interfaces. This also justifies
using phase-fields for the smooth approximation of segments on surfaces.

In what follows, we want to control and optimize multiple properties of segments described this way
with the area being the easiest example. To describe these properties, we first introduce a smooth indicator
function χ(u), which will be approximately 1 in the positive phase and drop to 0 when passing through the
transition zone into the negative phase. By integrating this indicator function, we will obtain the approxi-
mate area A[u] of the positive phase. Furthermore, we want to ensure that our segments are connected. For
this, we will use a functional C[u] adapting a corresponding functional for Euclidean domains Dondl et al.
(2017) that essentially measures the lengths of shortest paths connecting different connected components
of one phase and hence is zero when the phases are connected. These functionals will be discretized on a
triangle mesh using affine finite elements.

For Euclidean domains, approaches based on phase-fields have been widely studied in the mathematical
imaging community. Here, we will demonstrate that translating these approaches to surfaces is effortless
and thus phase-fields can also be a powerful tool in geometry processing. In Section 4, we will consider the
hierarchical segmentation of surfaces and, in Section 5, a diffuse approximation of the Yamabe equation for
the conformal factor. Together, this can also be considered as a proof of concept for the use of phase-field
models on surfaces.

Phase-fields on surfaces. We represent the segments using an approximating phase-field, i.e. via a phase-
field function u : M→ R. This yields a convenient representation of the segments that allows for a simple
approximation of the length of their interface by virtue of the Modica-Mortola functional (Modica and
Mortola, 1977). Intuitively u describes two materials on the surface mixing at a diffuse interface layer. To
this end, one considers a local chemical potential Ψ: R→ R with two global minima at ±1 representing the
pure material phases M+ = {x ∈ M : u ≥ 0} and M− = {x ∈ M : u < 0}, respectively. The resulting
total bulk energy of the phase-field is given by

∫
MΨ(u) dH2. To achieve smooth transitions between the

phases, one adds an additional Dirichlet interface energy
∫
M|∇u|

2 ds. With the proper scaling, we obtain
the Modica-Mortola functional

Pε[u] =

∫
M

ε

2
|∇u|2 +

1

ε
Ψ(u) dH2, (1)
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Figure 2: Results of the phase-field segmentation (6). Left: Interface minimization results for different values of ε yielding
different interface widths. Right: Adding the connectedness constraint to the variational problem leads to a gradient descent
flow (from which different time steps are shown) that connects phases while minimizing the interface perimeter.

where the parameter ε > 0 describes the width of the diffuse interface between the phases, as is shown in
Figure 2 on the left. For ε → 0, minimizing Pε forces the phase-field towards the pure phases, and for a
suitable choice of Ψ, the Modical-Mortola functional converges to the total interface length. More precisely,
for Ψ ∈ C1(R) one obtains

Γ – lim
ε→0
Pε = cΨP

with respect to the L1(M)-topology on Euclidean domains, where cΨ =
∫ 1

−1

√
Ψ dH2, and, at least un-

der smoothness requirements, this transfers to curved surfaces. Here P[u] := H1 (∂{x ∈M : u(x) = 1}) if
u(M) ⊂ {−1, 1} almost everywhere and P[u] := ∞ else. In this case, ∂ denotes the measure-theoretic
essential boundary.

The above result shows that for the particular choice Ψ(u) = 9
16 (u2 − 1)2, the constant cΨ is equal to

one and the Modica-Mortola functional Γ-converges to the unscaled perimeter functional. From a practical
point of view, this means that minimizers of the diffuse perimeter Pε converge to minimizers of the regular
perimeter for ε→ 0. Thus, it lends itself well as a functional representing the interface length of a phase-field
described segmentation.

To define the area of the different phases, we need approximations of the indicator functions of the two
phases. For this, we choose

χ(u) :=
1

4(1− δ)3
(u+ 1− δ)2(2(1− δ)− u)

for −1 + δ ≤ u ≤ 1− δ, χ(u) := 0 for u ≤ −1 + δ, and χ(u) := 1 for u ≥ 1− δ as a diffuse indicator for the
positive phaseM+. Here, δ is a small parameter with 0 < δ � ε. This way, χ◦u ensures a localization of the
transition region {x ∈ M : χ(u) ∈ (0, 1)} taking into account that the optimal profiles for the phase-field u
in (1) are of tanh-type (cf. (Modica and Mortola, 1977)). χ is C1 smooth on R, which is advantageous for the
numerical minimization of functionals involving χ. Furthermore, the symmetry χ(−u) = 1 − χ(u) ensures
that χ(−u) is a proper approximation of a indicator function of the phase M− and allows the definition of
a partition of M based on χ. With χ at hand, the surface area of the phase M+ can be approximated via
its integration, i.e

A[u] :=

∫
M
χ(u) dH2 , (2)

where A[−u] = H2(M)−A[u].

Connectedness Constraint. Describing the segmentation using phase-fields offers a great deal of topological
flexibility. However, in some of our targeted applications, we want to have some control over the topology
of the segments. More concretely, the segmentation induced by a phase-field locally minimizing the Modica-
Mortola functional might not be connected. To mitigate this, we pursue the method proposed by Dondl et al.
(2017) for the Euclidean case. For a phase-field u ∈ H1(M), they suggest a method to enforce connectedness
of the preimage U = u−1([α, β]) by introducing a differentiable penalty term. Let F ∈ C1(R) be a smooth
function such that F (u) = 0 for all u ∈ [α, β] and F > 0 otherwise. Given two points x, y ∈ U , we can
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define the weighted geodesic distance function dF (u)(x, y) = inf
{∫

γ
F (u) dH1 : γ curve from x to y

}
. This

distance is zero for two points in the same connected component of U and positive for ones in different
connected components. Hence, if u is continuous, then U is closed and dF (u)(x, y) = 0 for all x, y ∈ U if
and only if U is path connected. From this follows that a quantitative measure for the path connectedness
of U is given by

∫
U×U d

F (u)(x, y) dxdy. However, this depends on u in a non-differentiable fashion. This

problem can be circumvented by introducing a smooth bump function H ∈ C1(R) such that H > 0 on (α, β)
and H = 0 on R \ (α, β). Hence, one obtains the functional

C[u] =

∫
M×M

H(x)H(y)dF (u)(x, y) dx dy, (3)

which indeed is differentiable w.r.t. the phase-field parameter u.
In Figure 2, we see that combining the Modica-Mortola functional (1) and the connectedness term (3)

in a variational problem leads to connected phases minimizing the interface perimeter. Indeed, Dondl et al.
(2019) prove, in the Euclidean case, a Γ-convergence result for this combination to the usual perimeter
functional P under a connectedness constraint in the sharp interface limit.

In detail, we choose the interval [1−
√
ε, 1] for the positive phase with corresponding functions

F (u) =

{
(u− 1 +

√
ε)2 u ≤ 1−

√
ε

0 u ≥ 1−
√
ε
, H(u) =

{
0 u ≤ 1− 2

√
ε

1 u ≥ 1−
√
ε

,

where H is smoothly interpolated between the given values using a cubic polynomial. For the negative
phase, we mirror this at zero, i.e. we use C[−u].

Segmentation. Based on the phase-field approach and the corresponding connectedness constraint, we are in
the position to formulate our basic segmentation problem. We ask for a solution of the following variational
problem

minimize
u∈H1(M)

Pε[u] + ε−κ (C[u] + C[−u])

subject to A[u] =
1

2
H2(M),

(4)

for H1(M) being the Sobolev space of functions with square integrable weak derivatives of order one on
M and for some κ > 0 which is typically chosen to be one in experiments. Figure 2 shows solutions of
this problem for two examples. If we do not require exactly matching areas but rather want to regularize
our segmentation, then the area constraint A[u] = 1

2H
2(M) can also be relaxed using a properly scaled

quadratic penalty (A[u] − 1
2H

2(M))2. Furthermore, other constraints such as mechanical energies of the
phases could be adapted from phase-fields on Euclidean domains or developed based on surface geometry
and we only consider the area as a simple example for this.

Discretization. We employ simple affine finite elements to discretize problem (4). To this end, we will use
a manifold triangle meshMh = (V, E ,F) with vertices V ⊂ R3, edges E ⊂ V ×V, and faces F ⊂ V ×V ×V.
Here, the subscript h indicates the grid size. Let us first recall the definition of the mass and stiffness matrix.
Let θ1, . . . , θ|V| be the nodal hat basis function and assume that the finite element approximation of u is in

span of these functions with coefficient vector u ∈ R|V|. The double well potential of the phase-field Ψ(u) is
nonlinear and therefore not an element of the vector space spanned by the FEM basis functions, even if u
is. Projecting it onto this vector space yields the coefficient vector Ψh(u) ∈ R|V|, Ψh(u)i = Ψ(ui), i.e. the
piecewise linear interpolation of its nodal values.

The stiffness matrix S ∈ R|V|×|V| is the discretization of the symmetric, positive definite quadratic form∫
M∇f · ∇g dH2 and thus its entries are given by Sij :=

∫
M∇θi · ∇θj dH2. This yields the well-known

cotan entries (Dziuk, 1988). Hence, the Dirichlet energy of the phase-field u is discretized by uTSu. The
mass matrix M ∈ R|V|×|V| discretizes the quadratic form

∫
M fg dH2. We choose a diagonal mass matrix,

sometimes also called lumped mass matrix. The lumped masses m ∈ R|V| are given by mv = 1
3

∑
f∈F :v∈f af
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with af being the area of the triangle f and the corresponding mass matrix is then the diagonal matrix
M := diag(m). Using the lumped mass matrix, the integral of Ψh(u) over the surface of Mh can be
approximated by a simple dot product mTΨh(u), yielding

Pε[u] =
ε

2
uTSu +

1

ε
mTΨh(w) (5)

as the discretization of (1). Similarly the quantity A(u) can be approximated by mTχh(u) with χh(u) ∈ R|V|
defined via χh(u)i = χ(ui),

A convenient discretization of the connectedness constraint was introduced in Dondl and Wojtowytsch
(2018), which is based on shortest-path searches in the dual graph of the triangle mesh. First, one computes
for every triangle f the average uf of the discrete phase-field u. Then every edge in the dual graph, i.e.
every interior edge of the mesh, is equipped with a weight that is given by the product of the average value
of F (uf ) of the two adjacent triangles and the average of their diameters. This way distances on the dual
graph approximate distances given by dF (u). Thus, to discretize the double integral C[u], components of the
dual graph consisting of triangles with zero distance to each other are computed, as well as the distances
and shortest paths between these components. Then the discretization C[u] is given by the sum of pairwise
products of integrated values of H(u) for every pair of distinct components weighted by their distance. From
this, also a discrete gradient can be computed, which is supported along the aforementioned shortest paths.
For details on this discretization, we refer the reader to Dondl and Wojtowytsch (2018).

Overall, this leads to the finite-dimensional nonlinear optimization problem

minimize
u∈R|V|

Pε[u] + ε−κ (C[u] + C[−u])

subject to mTχh(u) =
1

2
a.

(6)

with the total surface area of Mh given by a = trM.
As (6) is a nonlinear optimization problem, we will compute local minimizers that depend on the ini-

tialization of u. To this end, we opted for the simple approach of initializing with random values in [−1, 1].
However, to reduce the number of necessary iterations, one could also use fast heuristics, such as clustering
of normal directions, or input from users to generate the initialization.

Implementation. We have implemented our method in C++ and provide the source code under https:

//github.com/Janos95/Phasefields. We use the Eigen library (Guennebaud et al., 2010) for numerical
linear algebra and CHOLMOD (Chen et al., 2008) and UMFPACK (Davis, 2004) from the SuiteSparse
collection as direct linear solvers. For unconstrained optimization problems, i.e. when using a quadratic
penalty for the area constraint, we use libLBFGS, a limited memory BFGS implementation based on the
work of Nocedal (1980). For constrained optimization problems, we use the open-source software package
Ipopt (Wächter and Biegler, 2006) implementing an interior point method.

Phase-field Parameter. For the phase-fields, we have to choose the parameter ε governing the interface width.
To achieve maximal detail, it should be chosen such that the interface covers two to three triangles in width.
However, choosing ε too small can impede the numerical optimization, for example when it prevents the
formation of paths connecting different components of a phase to fulfill the connectedness constraint. Hence,
this is usually a difficult choice for strongly anisotropic meshes. To this end, we remeshed our examples
isotropically using the method described by Botsch and Kobbelt (2004). This yields an approximately
constant triangle diameter h and we can set ε ≈ 2h. Wider interfaces are of course also possible, see e.g.
Figure 5, and can facilitate the numerical optimization, which can be used to initialize computations with
narrow interfaces.
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Figure 3: Hierarchical segmentation of the sphere: on the left the binary tree with nodes representing the α ∈ {−1,+1}K with
K = 1, 2, 3. The nodes are identically color coded as the corresponding segments on the right.

4. Hierarchical Segmentation

In this section, we will discuss a hierarchical generalization of the above segmentation approach. Thereby,
we recursively perform a segmentation on previously already computed segments. To this end, we use
additional phase-field functions for the next subdivision step and diffuse indicator functions identifying
the segment to be further subdivided. Such a hierarchical segmentation is a flexible and useful tool. For
example, with an increasing number of segments the geometric complexity of each segment decreases, which
is advantageous for applications like fabrication. Furthermore, the segmentation hierarchy can be used for
multi-resolution feature representations. For example, it can be used to generate the cluster tree for Tausch-
White wavelets (Tausch and White, 2003) on triangle meshes, which require the segments to be connected
and approximately equally sized to yield well-conditioned problems.

Phase-field model. To define a hierarchical segmentation, we construct a binary tree of labels as illustrated
in Figure 3. Every node on level K of this tree represents a segment with diffuse indicator function χα

with label α ∈ {−1,+1}K describing the subsequent left-right choices in the tree. Hence, χα is recursively
defined as the product of single level segmentation functions, i.e.

χα :=

k∏
j=1

χ(αju
αj−

) ,

where αj− = (α1, . . . , αj−1) and uαj− is the single level phase-field function describing the segmentation

of the sub domain with diffuse indicator function χα
j−

. Hereby, u = uα1− denotes the phase-field for the
initial segmentation of M as described in Section 3. The properties of χ ensure that {χα}α∈{−1,+1}K is a
partition of unity on M for every K, i.e. ∑

α∈{−1,+1}K
χα(x) = 1

for all x ∈M.
The variational description of uα is as follows. We consider a relaxed indicator function χαη = χα + η for

0 < η � 1 and define a regularized diffuse interface length adapting the Modica-Mortola functional

Pε,η,α[u] :=

∫
M

ε

2
χαη |∇u|2 +

1

ε
χαηΨ(u) dH2 +

1

σ

∫
M

(1− χα)u2 dH2 (7)

as well as a weighted approximate of the surface area functional

Aα[u] := A[χαu] =

∫
M
χαχ(u) dH2.
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Figure 4: Hierarchical segmentation on a torus. Left: the segmentation of a torus might quickly lead to disconnected local
minima (top). Adding the connectedness constraint to the objective prevents this (bottom). Right: Different time steps of a
gradient descent scheme for the variational problem (10) with connectedness constraint on level K = 2 and the segmentation
of the associated left half of the torus starting from a random initialization.

Then, uα is the solution of
minimize
u∈H1(M)

Pε,η,α[u]

subject to Aα[u] =
1

2

∫
M
χαdH2.

(8)

As before in the single level segmentation problem, the constraint forces a splitting of the segment with
indicator function χα into two equally sized segments with indicator functions χαχ(u) and χαχ(−u). The
relaxation of χα in the definition of the diffuse perimeter functional Pε,η,α is required to ensure well-posedness
of the above variational problem. In fact, u is still a function on the whole surface M and the first term
of the perimeter functional is strictly coercive but the impact of values outside the current segment to be
subdivided is strongly damped by η. Furthermore, the last term, with 0 < σ � 1, acts as a penalty term
forcing u to be close to zero outside the current segment.

This top-down approach allows to efficiently compute hierarchical segmentations where the interfaces
between segments can flexible relax on each level of the hierarchy. However, this type of approach has the
general limitation that the quality of lower level segmentations is limited by the already fixed higher level
segmentations. In our experiments, we did not observe this to be a problem. However, our phase-field model
would also allow to optimize all levels simultaneously by integrating the Pε,η,α-terms into a single objective
or by using methods from multi-objective optimization.

Discretization. Let u ∈ R|V| be the FEM basis coefficients of the discrete counterpart of the phase-field u as
before. To discretize the functionals defined above, we need to discretize the functions χα. Here, we simply
approximate χα by a piecewise linear interpolation of its nodal values. To this end, we denote the vector of
nodal values of χα by wα, i.e. wα

j = χα(vj) for vj ∈ V . Furthermore, we use the componentwise product �
of vectors. Then, the discrete counterpart to the adapted Modica-Mortola functional from (7) is given by

Pε,η,α[u] =
ε

2
uTSαu +

1

ε
mT (wα �Ψ(u)) +

1

σ
mT ((1−wα)� u� u), (9)

where Sαij :=
∫
M χαη∇θi · ∇θj dH2, for which we use a simple midpoint quadrature to compute the entries,

and m is the lumped masses as before. The discrete version of the hierarchical area functional is simply

9



given by mT (wα � χ(u)). Thus, our discrete optimization problem becomes

minimize
u∈R|V|

Pε,η,α[u]

subject to mT (wα � χ(u)) =
1

2
mTwα.

(10)

In fact, in the spatially discrete model, the η-regularization of the perimeter functional turned out to be no
longer necessary because of the regularizing effect of the finite element discretization. An example for this
optimization can be seen in Figure 4.

Atlas Generation. To generate atlases from our hierarchical segmentation, we pick up the partition of unity
{χα}α∈{−1,+1}K on level K of the hierarchy and consider Uα := {x ∈ M : χα(x) 6= 0} as chart domains
forming a cover of M. To compute the actual chart maps ϕα : Uα → R2, one can use any state-of-the-art
algorithm, for which we chose LSCM (Lévy et al., 2002), while other, nonlinear algorithms such as CETM
(Springborn et al., 2008) would also be possible. In Figure 5, atlases for different K are shown. Using the
chart maps, any function f defined in R2 can be lifted to the surface by fα := f ◦ ϕα to obtain multiple
functions defined on the surface. These functions can then be smoothly blended via

fM :=
∑
α

χαfα

using the χα as weighting functions. This blending and the underlying atlas can be useful for different
applications requiring a domain decomposition, such as partition of unity methods for finite element simu-
lations and ODE solvers on surfaces. The hierarchical nature of our segmentation could be used to devise
multi-resolution approaches for these applications. As a simple proof of concept, here, we only demonstrate
its use for an improved texture blending that can outperform conventional thresholding based approaches
which segment the mesh into disjoint patches with sharp transitions between them. Concretely, we consider
maps f : R2 → Rc with Rc being some color space as demonstrated in Figure 5 (cf. Piponi and Borshukov
(2000) for a similar seamless blending of textures on surfaces using subdivision methodology).

5. Distortion Optimal Segmentation

In this section, we will show how to reduce the distortion of chart mappings via an optimization of the
underlying surface segmentation. To this end, we will first discuss the Yamabe equation on subsets U ofM
using a sharp interface formulation and then introduce a diffuse version based on our phase-field approach.

Yamabe Equation. Consider a flattening of an open set U of a surface M, i.e. a differentiable map ϕ : U →
R2. It induces a new metric on U (differing from the metric due to the embedding) by g̃x(u, v) = dxϕ(u) ·
dxϕ(v) and ϕ is called conformal if g̃ = e2sg for some smooth function s : U → R and the two metrics are
called conformally equivalent. By the Riemann mapping theorem, such a conformal map exists for all U
with disk-like topology. The conformal factor e2s (or equivalently the log conformal factor s) quantifies the
length and area distortion induced by ϕ.

As we want to optimize a segmentation ofM that minimizes this distortion on the segments, let us recall
next how to compute s without needing to explicitly compute ϕ. To this end, let ν : M→ S2 be the outward
pointing unit normal of M, also known as Gauß map. The shape operator S is defined as the Jacobian
of the Gauß map, i.e. for x ∈ M, S(x) := Dν(x). The Gauß curvature is defined as K = κ1κ2 = detS,
where κ1, κ2 are the eigenvalues of S, called principal curvatures. A classical result (see e.g. Schoen and Yau
(1994)) states that given a conformally equivalent metric g̃, the Gauß curvature K̃ induced by it is related
to the original Gauß curvature via e2sK̃ = K + ∆Ms. From this Springborn et al. (2008) derived, that if
g̃ is a flat (K̃ = 0) conformally equivalent metric then its log conformal factor s minimizes the Dirichlet
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Figure 5: Hierarchical segmentation and atlas generation for K = 2, 3 and 4. The scalar functions χα are multiplied with
different RGB color values identifying the different segments. Thereby, the diffuse glueing of the different chart domains is
visible via the color blending close to the boundary of the chart domains Uα and their flattened counderparts ϕα(Uα). On
the lower right, texturing using the smooth phase-field based blending is compared with a conventional thresholding approach
by zooming in on a textured surface. Note that, in the texturing application, we deliberately used a wider interface width ε to
generate smoother transitions between the segments. On the bottom, we show different time steps of the descent scheme for
one of the hierarchical segmentation steps on level K = 4.

energy among all flat conformal factors if s solves

∆Ms = −K, U,

s = 0, ∂U,
(11)

where the boundary condition reflects the assumption that the metric does not change on the boundary.
This PDE is also called the Yamabe equation (Aubin, 1998). The solution of this equation, in explicit its
squared L2-norm

∫
M s2 dH2, called Hencky loss, is a measure of the required distortion to flatten the domain

U . Hence, we will consider this equation as a constraint and minimize the sum of the squared L2-norms of
the solutions for the segmentation of M.

Diffuse Yamabe Equation. To this end, we make use of the variational formulation of the Yamabe equation

min
s∈H1

0 (U)

∫
U

1

2
|∇s|2 −Ks dH2.

For u being a fixed phase-field segmentation ofM as introduced in Section 3, we solve the Yamabe equation
for both diffuse segments identified by χ(u) and χ(−u), respectively. In explicit, we seek functions s = s[±u]
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Figure 6: Solutions of (6) with distortion objective JYam on a sphere with approximately 40’000 vertices for different weights of
the objective. The three spheres on the left show results without the connectedness constraint leading to disconnected phases
with small ’islands’, while the three spheres on the right show results using the connectedness constraint. In both cases, the
interface parameter was ε = 0.023 and the weights were (from left to right) ω = 5, 10, 15 respectively.

which minimize

Y[u, s] =

∫
M

1

2
(χ(u) + η)|∇s|2 − χ(u)sK +

1

ε
· (1− χ(u))s2 dH2. (12)

for given ±u. Here, the factor χ(±u) localizes the minimization problem to one of the phases. The Dirichlet
boundary condition is taken care of by a quadratic penalty term on the complementary phase forcing s to
zero, which is akin to Nitsche’s method for boundary conditions, and the η-damping ensures global regularity.
The ε−1 scaling of the penalty in (12) ensures an increasing adherence of the boundary conditions for ε→∞.

The diffuse Yamabe equation is a quadratic problem in s, which means its solution can be computed
by solving a linear problem. Furthermore, due to the uniform coercivity of the weighted Dirichlet energy
and the smoothness of all coefficient functions s[u] depends smoothly on u. Computing the Euler-Lagrange
equation of (12), for fixed u, in direction θ ∈ H1(M) yields

∂uY[u, s](θ) =

∫
M
χ(u)∇s · ∇θ − χ(u)θK +

1

ε
(1− χ(u))sθ dH2.

Shape Optimization. Now, we define as already announced a new objective functional for our basic segmen-
tation problem (4):

J Yam[u] =

∫
M
s[u]2 dH2 +

∫
M
s[−u]2 dH2,

where each of s[±u] is the unique minimizer of (12) for the phase-fields ±u. Finally, we are led to the PDE
constrained optimization problem

minimize
u∈H1(M)

Pε[u] + ωJ Yam[u] + ε−κ (C[u] + C[−u])

subject to s[±u] minimizing Y[±u, ·], and

A[u] =
1

2
H2(M).

(13)

The factor ω controls the trade-off between interface length and distortion when flattening. Let us remark
that the ε−1 scaling of the penalty in (12) appears to be the appropriate choice. In our experiments, we
observed that for considering a penalty scaled with ε−β with β > 1 the distortion measure is reducing in a
descent scheme at the expense of a growing perimeter of the interface between the segments. Figure 6 shows
a comparison of distortion optimal segmentation without and with connectedness constraint.

Discretization and Implementation. We discretize the conformal factor via piecewise affine functions as we
already did for phase-fields. Let s ∈ R|V| denote the vector of coefficients w.r.t. to the nodal basis θ1, . . . , θn.
Furthermore, we denote by K ∈ R|V| the usual angle-defect discretization (see e.g. Cohen-Steiner and
Morvan (2003)) of the Gauß curvature, i.e. Ki = 1

mi
(2π −

∑
f :vi∈f γf,vi), where γf,v is the interior angle in

facet f at the vertex v. The discrete counter part of the diffuse Yamabe equation (12) is the linear system
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Figure 7: Three different time steps of the distortion minimization on a sinusoidal shaped surface. Interface width is given by
ε = 0.1 and the distortion weight by ω = 10. The result is similar to an analogous example by Sharp and Crane (2018).

A[u]s = b[u], where

A[u] := S[u] +
1

ε
diag((1− χh(u))�m), b[u] := m� χh(u)�K,

with Sij [u] :=
∫
M(χ(u) + η)∇θi · ∇θj dH2. The discrete counterpart of JYam is given by

JYam[u] = s[u]
T
Ms[u] + s[−u]

T
Ms[−u].

To minimize the objective JYam[u], we need to compute in particular its derivatives. Here, we follow the
general procedure of shape optimization calculus. Recall, that we have s[u] = A[u]−1b[u], which implies
that the first variation is given by

∂us[u] = A[u]−1 (∂ub[u]− ∂uA[u] s[u]) .

By applying the chain rule and using that A[u] is symmetric, we obtain

∂uJ
Yam[u] =− 2 (∂ub[u]− ∂uA[u] s[u])

T
A[u]−1 (Ms[u])

− 2 (∂ub[−u]− ∂uA[−u] s[−u])
T
A[−u]−1 (Ms[−u]) .

Hence, computing the derivative mainly amounts to solving two linear systems, where the matrices are the
same as for the diffuse scale factors. If we use direct solvers such as a Cholesky decomposition, we can
reuse the factorization and only have to compute additional back substitutions. In Figure 6, the effect of
the factor ω is shown when segmenting a sphere. Depending on the application, one can also only use parts
of (13). For example, in Figure 7, we show steps of a gradient-based flow for the problem without the area
constraint. Following the approach described in Section 4, distortion aware hierarchical segmentation is also
possible. Furthermore, in Figures 1 and 8 the quality of the distortion optimized segmentations is showing
close to conformal texture transfer from associated chart domains onto the surface M. In Figure 9, we see
another example of a distortion minimizing segmentation for a more complex surface, which ´yields segment
boundaries along paths with negative Gauß curvature in this example.

6. Conclusion

We introduced a framework for the numerical segmentation of surfaces using phase-fields as diffuse de-
scription of segments. In the description, we started with a basic optimization problem for segmenting
a surface into two connected components of equal area that combines the Modica-Mortola perimeter ap-
proximation, the connectedness constraint from Dondl et al. (2017), and an area constraint. Generalizing
this, we introduced a hierarchical approach based on the multiplicative combination of diffuse indicator
functions that enables a flexible and nested segmentation of surfaces. Furthermore, we pick up the work
of Sharp and Crane (2018) by introducing a diffuse version of the Yamabe equation that can be directly
incorporated into our phase-field optimization to compute segments that can be conformally flattened with
low area distortions. One common application of such segmentations is the generation of surface atlases
with controlled overlap of the chart domains on the surface. These atlases can have various applications
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Figure 8: Segmenting and flattening a cube with rounded corners. The cube exhibits isolated regions of Gauß curvature at its
rounded corners, which leads to a segmentation with boundaries not following the edges of the cube. Instead, the boundaries are
such that their length in the isolated region is maximized while keeping the total length under control. From left to right: The
discrete Gauß curvature shown as color map with dark blue indicating approximately zero curvature and yellow approximately
3.12 curvature. Solutions of (6) with distortion objective JYam and distortion weight ω = 10. Conformally flattened segments
in the plane with texture applied. Textures mapped to rounded cube, where perpendicular lines show the conformality and
equally sized squares show the low distortion of the charts.

Figure 9: Distortion minimizing segmentation of the ‘fertility’ model (courtesy of the AIM@SHAPE project). Interface width is
given by ε = 0.02 and the distortion weight by ω = 0.1. For this example, minimizing (13) yields segment boundaries following
paths with negative Gauß curvature.

and, as one example, we demonstrated that this approach is particularly suitable for seamlessly combing
unstructured textures.

Limitations and Future Work. There are many ways how our method could be extended. Its main drawback
so far is that we need high-resolution meshes for narrow diffuse interfaces and larger weights of the distor-
tion objective. This leads to significant computational costs in these cases and, furthermore, generating
the mesh requires access to an underlying smooth surface. To address the costs, adaptive refinement and
multi-resolution approaches might be suitable options while intrinsic triangulations (Bobenko and Spring-
born, 2007) could enable the description of narrow transitions already on coarse meshes. Moreover, they
could also allow to generate refined, isotropic meshes while preserving the extrinsic geometry of the mesh.
Theoretical investigations such as the study of existence, uniqueness, and convergence of minimizers of the
diffuse Yamabe equation as well as of the ensuing shape optimization problem are still open. This analysis
could also help to better understand the appropriate scaling of the different terms in the context of refine-
ment. Furthermore, our approach allows to ensure the connectivity of the segments. However, for many
applications, it would be interesting to even guarantee simply-connectedness via a corresponding diffuse
constraint, e.g. to ensure the existence of conformal charts. Lastly, we believe that our framework is also
interesting for other mesh segmentation tasks by using other objectives, e.g. promoting normal consistency
or convexity of segments.
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