
Eur. Phys. J. Special Topics 227, 1757–1778 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2019-800161-5

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Review

Adaptive grid implementation for parallel
continuum mechanics methods in particle
simulations
Miriam Mehla and Michael Lahnert

Institute for Parallel and Distributed Systems, Universitätsstr. 38, 70569 Stuttgart,
Germany

Received 1 October 2018 / Received in final form 1 December 2018
Published online 8 March 2019

Abstract. In this tutorial review paper, we present our minimally in-
vasive approach for integrating dynamically adaptive tree-structured
grids into existing simulation software that has been developed for reg-
ular Cartesian grids. We introduce different physical models that we
target and that span a wide range of typical simulation characteristics
– from grid-based Lattice-Boltzmann, finite volume and finite differ-
ence discretized models to particle-based molecular dynamics models.
We derive the respective typical data access requirements and exten-
sions of the algorithms to adaptively refined grids along with possible
grid adaptivity criteria. In addition, after introducing basics of tree-
structured adaptively refined grids, we present the adaptive grid frame-
work p4est and our enhancement of p4est in order to provide a grid
and partitioning infrastructure that can easily be used in existing sim-
ulation codes. Finally, we explain how such a grid infrastructure can
be integrated into regular grid codes in general in three major steps
and how we integrated p4est in the soft matter simulation package
ESPResSo in particular. A summary of results from previously pub-
lished performance and scalability studies together with new results
for more realistic coupled simulation scenarios shows the efficiency and
validity of the resulting new version of ESPResSo.

1 Introduction

1.1 Motivation

Adaptive mesh refinement (AMR) is a highly efficient tool to extend domain sizes
and time spans that can be tackled in a simulation. Such grids allow covering large
volumes and time intervals while keeping the number of data points and, therewith,
operations at a tolerable level. If the simulated scenario changes over time, the dis-
tribution of local areas of high grid resolutions in the simulation domain has to be
adapted over time. Tree-structured adaptive grids such as octrees feature a clearly
defined refinement structure leading to substantially lower memory requirements
compared to unstructured grids. At the same time, they offer efficient load-balanced

a e-mail: miriam.mehl@ipvs.uni-stuttgart.de

https://epjst.epj.org
https://doi.org/10.1140/epjst/e2019-800161-5
mailto:miriam.mehl@ipvs.uni-stuttgart.de


1758 The European Physical Journal Special Topics

partitioning capabilities and arbitrarily local and dynamic refinement options. In
literature, many approaches to implement adaptive tree-structured grids have been
presented. Usually, the details of the grid implementation are encapsulated within
a library. Grid libraries range from highly optimized approaches in terms of mem-
ory usage that restrict the order for storage and cell access to tree-traversals along
specific space-filling curves (and, thus, do not allow direct neighbor cell access) [1]
to more generic concepts such as those in [2–4] that are based on the Morton curve.
In [5] the Hilbert curve is used for partitioning between different ranks while within
ranks refinement patches are used for locally refining the grid. More than ten years
ago, codes like Dendro [2] or Octor [6] proved that tree-structured grids can scale
to several ten-thousand cores. This was surpassed by codes like waLBerla [7,8] or
p4est [3] that scales to hundred-thousand cores. Moreover, task-based parallelism
has been realized e.g., Uintah [9] and recently, AMR algorithms have been imple-
mented on GPUs [10]. A comparison of more libraries for tree-structured as well as
block-structured grids has been published in [11].

The other side of the coin is that existing large simulation packages have often
been developed for regular grids only, and features that are trivial in regular grids such
as direct neighbor access via (i, j, k)-indices for grid cells are heavily used throughout
the whole code basis. The aim of this paper is to present ways to use tree-structured
adaptive grids in such codes in a minimally invasive way and still exploit their effi-
ciency potential as far as possible. From the efficiency perspective, every simulation
algorithm should follow the tree-structure (in grid traversals and data storage order).
This, however, drastically changes the data access pattern and, therewith, requires
a major (infeasible) re-factoring of existing regular grid codes. As a consequence,
many applications represent tree-structured grids in the same way as unstructured
grids, i.e., storing all connections between grid nodes, edges, faces, and volumes. Our
approach is to avoid the resulting loss of efficiency by using a sophisticated dedicated
adaptive grid framework with efficient interfaces for neighbor cell access.

As today’s and even more future computer architectures require highly efficient
algorithms in terms of memory usage and memory access in combination with an
immense level of parallelism, a particular focus has to be on efficient data-structures
that still allow using standard access patterns in existing simulation codes. Data have
to be accessible based on simple iterators, i.e., loops over grid elements. To make
optimal use of cache-hierarchies, the underlying data structures should in addition
provide high spatial and temporal locality for data access and maintain this property
also after dynamic refinement or coarsening. We demonstrate this approach for the
example of the soft matter simulation package ESPResSo [12,13] and base our grid
implementation on the re-known grid framework p4est [3]. Note that, following the
idea of minimally invasive integration, we do not alter existing modeling and algorith-
mic choices in ESPResSo except for enhancements required to allow for dynamical
grid adaptivity. Our aim is neither to present new physical modeling aspects nor
to achieve the highest possible efficiency for single physical component. Instead, we
provide a feasible way to enhance a simulation software that includes decades of
experience and knowledge carefully such that the whole functionality of all compo-
nents and their coupling is maintained and a good efficiency and parallel scalability
is achieved.

1.2 Tree-structured adaptive grids in a nutshell

Tree-structured grids are usually Cartesian grids1. Thus, they can be interpreted as a
straightforward generalization of regular Cartesian grids. Their construction principle

1 Tree-structured grids based on triangular elements are used, e.g., [14].



Particle Methods in Natural Science and Engineering 1759

Fig. 1. Simple example for a two-dimensional quadtree grid (left) with the corresponding
tree (right) and the discrete iterate of the Morton curve that can be used to linearize the
tree (blue). Hanging corners of the adaptive grid are marked in red.

is based on recursive refinement of grid cells of fixed shape into a fixed number of
children with equal shape. Thus, each grid corresponds to a tree as displayed in
Figure 1 for a simple two-dimensional quadtree grid. Though the shape of the grid
cells is the same as in regular grids, the following fundamental differences require
numerical and technical enhancements if a regular grid simulation is to be enhanced
to adaptive grids:

(1) Transitions between different refinement regions require modified discretization
approaches. The main difficulty is the handling of hanging entities, i.e., corners
(and edges in 3D) of finer grid cells that are not part of a corner (or edge) of a
coarser neighbor cell. Hanging corners are marked in red in Figure 1 to illustrate
this.

(2) Data stored on the grid such as physical variables need to be stored and accessed
in a defined order. Due to the non-regular refinement, the respective grid cell
ordering has to be different from the usual lexicographic (i, j, k)-indexing used for
regular grids. Space-filing curves [15] are a widely used approach to tackle this
challenge.

(3) The neighborhood of grid cells is less regular in adaptive grids, which not only
requires new discretization methods as mentioned above, but also new functions
that allow accessing arbitrary neighbors from each grid cell. To avoid recursions
with undefined depth in the respective neighbor search, we restrict our adaptive
grids to so-called 2:1 balanced grids. In such a grid, the level difference between
a grid cell and all its neighbors is bounded to at most one.

(4) Due to the inhomogeneous refinement structure of the adaptive grid, simple rect-
angular domain partitioning does no longer lead to load-balanced parallelization.
Partitioning the linearized list of grid cells provided by a space-filling curve order-
ing into equal pieces is a simple and quasi-optimal solution for this aspect [2–4].

We discuss our solutions to all these aspects for the physical model components of
ESPResSo throughout this paper.

1.3 Contributions

In this paper, we present the integration of the grid framework p4estwith ESPResSo.
To this end, we

(1) develop requirements for direct data access derived from various simulation com-
ponents in ESPResSo comprising a Lattice-Boltzmann method, a finite volume
discretization of electrokinetic equations, a finite difference discretization for long-
range electrostatics, and various short-range particle interactions; this includes the
derivat ion of generalizations of all these components to adaptive grids;



1760 The European Physical Journal Special Topics

(2) present extensions of p4est that have been developed and implemented to fulfill
these requirements;

(3) integrate the respective grids in the mentioned components of ESPResSo, includ-
ing the exchange of (i, j, k)-based neighbor access, mesh partitioning and ghost
layer communication by p4est functions; in addition, we describe the dynamic
refinement/coarsening implementation;

(4) showcase physical results together with a performance and scalability analysis in
the results section.

The remainder of the paper is structured as follows: We present the physical model
components in ESPResSo that we target for simulation on adaptive grids in Section 2.
Section 3 introduces the grid framework p4est and presents the enhancements that
were required for a grid implementation that can be integrated in
ESPResSo in a minimally invasive and efficient way. The integration of the adaptive
grids in ESPResSo itself is presented in Section 4. Finally, we present a summary of
previous efficiency and scalability studies as well as results for two new real-world
scenarios in Section 5.

2 Modeling and discretization in space and time on adaptive grids

In this section, we give an overview of the target application, i.e., various model
components and their solvers as implemented in the soft matter simulation package
ESPResSo. We give a very short overview of the software package ESPResSo, describe
the model components and their discretization and algorithmic choices as used in
ESPResSo in the regular grid version. In addition, we derive required extensions for
dynamically adaptive grids.

2.1 ESPResSo in a nutshell

ESPResSo [12,13] is a large-scale extensible simulation package for coarse grained soft
matter simulation. It implements electrostatics, electrokinetics, short-range molecu-
lar dynamics, and hydrodynamics (Lattice-Boltzmann), both for periodic and non-
periodic systems. All models can be flexibly combined with each other yielding com-
plex coupled simulations. Applications range from engineering problems such as soot
aggregation [16], hydrogels [17], biological membranes [18], DNA like-charge attrac-
tion [19] and translocation [20], to ionic liquids [21,22].

ESPResSo is a free, open-source software published under the GNU General Pub-
lic License (GPL3). To achieve computational efficiency, ESPResSo has been imple-
mented in C and C++. A Python scripting interface provides an easy-to-use way to
configure arbitrarily complex coupled simulations and modify parameters. The paral-
lelization is based on MPI. GPU acceleration can be employed for Lattice-Boltzmann,
electrostatics, and electrokinetics calculations using a single GPU. In the version
before this work, ESPResSo was based on regular Cartesian grids and Linked-Cell
systems. For many applications, the simple regular spatial discretization prevented
simulating larger time and length scales that are, however, required to achieve new
insights in the analyzed physical systems.

2.2 Lattice-Boltzmann

The Lattice-Boltzmann method (LBM) [23–25] is a well-established alternative to the
numerical solution of the Navier–Stokes equations. The Lattice-Boltzmann equation



Particle Methods in Natural Science and Engineering 1761

fi(x + cit, t+∆t) = fi(x, t) +
∑
k

Lik{f eq
k − fk(x, t)}+ Ψi, (1)

is derived from the Boltzmann equation via discretization of the velocity space with
a chosen set of distinct velocities ci (see Fig. 2 (left)). fi denote probability densities
(called moments or populations), Ψi external forces.

In each LBM time step, two main steps are executed: (1) a collision step defined
by the operator Lik relaxing cell-local probabilities towards the equilibrium f eq

k and
(2) the streaming step transporting densities to neighbor cells according to their flow
direction.

There are multiple relaxation-type models for the collision step with constant [26–
30] or variable [31,32] relaxation rates. In these schemes, the populations are relaxed
towards a local equilibrium derived from the Maxwell–Boltzmann distribution. These
classical schemes have certain short-comings, especially when it comes to turbulent
flows which can be mitigated by more elaborate collision models: Systematically
deriving a higher order equilibrium function [33] leads to a more stable scheme at
larger velocities [34]. Galilean invariance is not retained if physical moments are
relaxed at different rates within a static frame. In cascaded LBM [35,36], distributions
are transformed to so-called central moments. This fixes instabilities at very low
viscosities (zero viscosity limit). Cumulant LBM [37,38] increases the stability of
the LBM algorithm further by relaxing cumulants instead of moments. This solves
any issues with Galilean invariance, which is particularly relevant in turbulent flow
scenarios [39,40]. In terms of important properties for our grid infrastructure, the
algorithmic characteristic is always that of a cell-local interaction between densities
fi of a single cell, in spite of different physical properties.

The streaming step propagates the result of the collision step to the respective
neighbor cells. We use a double buffering scheme to realize this step, i.e., first prop-
agate densities fi to auxiliary variables f̃i of the neighbor cells and, in a second grid
traversal, swap f̃i and fi in each grid cell2. Boundary conditions at outer walls and
for complex obstacles are realized based on a first order accurate bounce-back scheme
in ESPResSo [43]. More accurate boundary conditions, e.g. for curved boundaries or
partial slip, are presented in [44,45].

2.2.1 Lattice-Boltzmann methods on adaptive grids

In the Lattice-Boltzmann method on regular grids, the time-step ∆t is chosen such
that particle densities reach the next neighbor in the direction of their velocity ci
in one time step. One way to generalize the algorithm to adaptive grids is to use
the same time step but a different Courant–Friedrichs–Lewy (CFL) number on all
grid levels [46,47]. Another way is to keep the relation between mesh width and
time step, thus introducing space-time adaptivity (so-called acoustic scaling). There
are two main models using multi-variate time-stepping: Temporal interpolation tech-
niques [48–50] impose boundary conditions in an overlap region and require scaling
the non-equilibrium part of the distributions. Compact interpolation allows obtaining
a small overlap region and interpolation of quadratic order using second-order bubble
functions [51]. Volumetric formulations [52–54] use an overlap region of the size of

2 This yields a simple way to avoid overwriting of data independent of particular properties
of the grid traversal. More sophisticated streaming schemes have been published that avoid
double buffering, e.g., [41,42]. We stick to the double buffering scheme following our idea of
minimally-invasive integration and consistency with regular grid and GPU code versions of
ESPResSo that both use the double-buffering scheme.



1762 The European Physical Journal Special Topics

Fig. 2. Left: The D3Q19 stencil consists of a resting velocity (black), six velocities parallel
to the coordinate axes (blue) and twelve velocities pointing to the twelve edges of the
cell (red, olive, and violet). Right: algorithmic steps of the LBM time stepping scheme for
a simple two-level 1D adaptive grid. Reading from bottom up: (i) collision in real cells on
both levels; (ii) interpolation to virtual fine cells; (iii) streaming in fine real and virtual cells;
(iv) collision (in real cells only) and streaming (in real and virtual cells) on the fine level;
(v) restriction to coarse real cells; (vi) streaming in coarse cells. This scheme is recursively
expanded to larger level differences.

the coarse cell at the refinement boundary to conserve mass, momentum, and viscous
stresses [55]3.

We use the volumetric scheme proposed by Rohde et al. [54]. Accordingly, we
have to define an execution order of collision and streaming with different time steps
on different levels and modify the streaming step when cells have direct neighbors of
different size. The scheme proposes adding virtual children within each real grid cell
with finer neighbor cells4. We adopt this idea and, thus, in the streaming step, data
are only exchanged between cells, real or virtual, of the same refinement level. The
respective steps of a coarse grid time step at a refinement boundary are illustrated
for a 1D case in Figure 2 (right).

Refinement or coarsening of the adaptive grid can be triggered based on the
evaluation of geometric criteria (close to boundaries or around submerged particles)
or physical properties such as flow velocities or vorticity.

Neighbor access requirements. An important conclusion drawn from the algorithm
described above are neighbor access requirements of grid cells as a basis for the
streaming step. We have described these requirements for real and virtual cells in
detail in [58]. In this paper, we summarize the most important results: Streaming
between real cells of a given level requires detecting all neighbors that are defined
as relevant by the used stencil. In addition, streaming is required in all directions of
the stencil also between real cells and virtual neighbors. For the streaming between
virtual cell, more complex cases have to be distinguished. Basically, streaming is not
required if the respective densities don’t move towards or come from neighboring
fine grids cells. As this causes complex cases in the respective code, we propose an
alternative approach in [58] that detects neighbor relations between virtual cells at
the same refinement level in all directions and also executes the respective streaming
step. One can show that, due to our particular time stepping algorithm and the double

3 When changing the (local) grid resolution, further variables have to be re-scaled accord-
ingly. This re-scaling, however, does not affect the requirements for our grid infrastructure,
see Rohde et al. [54] and Lahnert et al. [56] for details.

4 This has been implemented, e.g., PEANO [57] or waLBerla [7,8].



Particle Methods in Natural Science and Engineering 1763

buffering approach, the respective steaming steps that would not have been strictly
required are overwritten by the subsequent coarse grid streaming. At outer domain
boundaries, we can show that also the implementation of bounce-back boundary
conditions is correct if implemented analogously.

A different situation occurs at boundaries between two partitions in the dis-
tributed memory parallelization: Here, a process only needs to detect virtual cells in
the real cells of its ghost layer if they are required due to finer cell in its own partition.
This insight substantially reduces communication requirements between partitions in
the generation step for ghost layers including virtual cells.

2.3 Electrokinetics

The electrokinetic model which was first introduced in [59] is a continuous represen-
tation for ion transport in a low Reynolds number flow. We base our notation on [60].
It consists of three main components: (1) ionic flux, (2) electrostatic interactions, and
(3) hydrodynamics. In this section, we focus only on the ionic flux calculation. The
flow is calculated with the Lattice-Boltzmann method described above, whereas the
solver for electrostatic interactions is presented in the following subsection. For two
ionic species, a positive ionic species with density c+ and ionic flux j+ and a negative
species with density c− and ionic flux j−, the ionic flux equations read:

∂tc± = −∇ · j± (2)
j± = −D±∇c± − µ±z±ec±∇Φ︸ ︷︷ ︸

jdiff
±

+ c±u︸︷︷︸
jadv
±

(3)

where (2) is the continuity equation for the species density fields c± and their ionic
flux j±. Equation (3) is a diffusion-advection equation for the total ionic flux, e
denotes the elementary charge, z± the species valencies, µ± the species mobility, D±
the diffusion coefficients, Φ the electrostatic potential (calculated in the electrostatics
solver), and u the fluid field (calculated in the Lattice-Boltzmann flow solver)5.

The electrokinetic equations are solved in ESPResSo based on a finite volume
discretization and explicit time stepping. As fluxes are propagated according to the
finite volume representation of the continuity equation, we ensure density conserva-
tion down to arithmetic machine precision. To cope with different refinement levels,
virtual cells are embedded at refinement boundaries. As physical criteria for grid
adaptivity, gradients of the densities or of the potential can be used.

2.3.1 Neighbor access requirements

Diffusion is calculated on a D3Q18 lattice while advection uses a D3Q27 lattice.
Therefore, diffusion uses the same stencil as the LBM (albeit diffusion does not have
a (0, 0, 0) vector) while advection also needs neighbor access across corners.

2.4 Electrostatics

The model for electrostatics is based on the Coulomb potential, i.e., described by
long-range molecular dynamics. In the original implementation on regular Cartesian

5 In non-equilibrium conditions, the model needs to be extended by additional force den-
sity terms as proposed by Rempfer et al. to avoid spurious flow. We do not detail this aspect
in the paper, but refer to literature.



1764 The European Physical Journal Special Topics

grids, the respective potential field Φ is calculated by Ewald summation [61,62], the
forces on particles are computed by numerical differentiation. This implementation
has been improved in [64] to a grid-based version that allows approximating Φ with
efficient discrete fast Fourier transformation (P3M, [65,66]). Using FFT, however,
enforces setting globally homogeneous permittivity. The multitude of implemented
algorithms in ESPResSo has been compared in [67].

To generalize this approach to adaptive grids, the FFT-based potential solver has
been substituted by a successive over-relaxation (SOR) scheme for the corresponding
Poisson equation

∇ · (εs∇Φ) =
∑
±
z±ec± (4)

where εs describes the permittivity. To avoid interpolation errors, equation (4) is
discretized on the same grid as the finite volume scheme for electrokinetics.

2.4.1 Neighbor access requirements

Equation (4) is discretized with a seven-point finite difference stencil. Analogous to
LBM and electrokinetics, different levels of refinement are treated by embedding vir-
tual cells in coarse quadrants at refinement boundaries. Thus, there are no additional
requirements regarding neighbor access compared to LBM or electrokinetics.

2.5 Short-range molecular dynamics

As a standard example for short-range molecular dynamics, we consider the Lennard-
Jones potential [68,69]

VLJ = 4ε
((σ

r

)12

−
(σ
r

)6
)
, (5)

which consists of two major physical aspects: Pauli repulsion, modeled by
(
σ
r

)12 and
van der Waals attraction, modeled by

(
σ
r

)6. ε describes the minimum of the potential
and σ models the distance where the potential vanishes. Due to the fast decay of the
potential, the influence of the interaction is neglected at a certain distance, the so-
called cut-off radius rc. The Linked-Cell method provides an efficient implementation
of this cut-off approach. The domain is discretized with a regular Cartesian grid, in
the classical methods with grid spacing rc, into which the molecules are inserted
according to their position6. This guarantees that all interaction partners of each
molecule can be found in the adjoining cells. As we have not ported the Linked-Cell
algorithm itself but provide a way to populate ESPResSo’s internal interaction lists,
the discretization remains regular.

2.5.1 Neighbor access requirements

Similar to the electrokinetics algorithm, direct access to neighbor cells is required
across all entities (faces, edges, and corners). Here, however, only regular cells have
to be considered.

6 Adaptive Linked Cell grids have been shown to not be superior to regular Linked cells
with mesh width rc, see for example [70].



Particle Methods in Natural Science and Engineering 1765

2.6 Coupling

To integrate all the above described physical components with each other ESPResSo
offers a bidirectional force-coupling. Grid-based algorithms (LBM, electrokinetics,
electrostatics) may choose a larger time step than the particle simulation. However,
as all time steps are explicit, no interpolation in time is required. All time steps in
all components have a fixed size that is chosen a-priori.

If all physical components are involved the ordering within a timestep looks as
follows: (1) Short-range MD, (2) diffusive flux (EK), (3) advective flux (EK), (4)
electrostatic potential (ES), and (5) fluid (LBM). All these components interact by
a frictional, bi-directional force-coupling.

fpot,fl = %E = −
∑
±
z±ec±∇Φ (6)

ffl,i = −ζ (vi − u(xi, t)) + fst,i. (7)

Equation (6) describes the force that is applied on the fluid by a charge density % and
electric field E = −∇Φ. The fluid force acting on a particle is given by equation (7).
The difference of the particle’s velocity vi and the interpolated fluid velocity at the
particle’s position u yields a force which is scaled by the friction coefficient ζ. In
addition, a stochastic force-term fst,i is added to account for Brownian motion.

3 Extensions of the grid framework p4est

3.1 p4est in a nutshell

For the work presented in this paper, we use the adaptive grid framework p4est [3]
as a basis. p4est is free and open-source software (licensed under the GNU Public
License version 2), written in C, and provides data structures and scalable parallel
algorithms for adaptive mesh-refinement. p4est allows performing simulations based
on grids that are composed of several octrees – so-called forests of octrees. The
root of each octree is a hypercube and every cell has a unique index in the tree.
The composition of several octrees allows handling non-cubic domains. p4est can
enforce 2:1 balancing within each tree as well as across tree boundaries, such that
two adjacent cells are never more than one level apart. Dynamic grid adaptivity
(refinement and coarsening) is executed based on user-defined decisions for each
cell. While p4est is capable of recursive refinement/coarsening, we restrict ourselves
to changing the size of a cell by at most one level when we perform an adaptive
step. After adapting the grid, we have to re-establish 2:1 balance by having p4est
automatically refine the respective cells.

p4est stores octrees in a linear leaf-only structure, i.e., storing of parent tree-
nodes is omitted. All leafs are stored in Morton order. Simulation data can either
be stored as a struct inside the p4est data-structure or in separate user defined
data structures. In the latter case, the numerical payload is transparent to p4est .
That means the user is responsible for data to be allocated, moved, transferred,
freed, . . . after each grid operation. p4est provides helper functions for these tasks,
that, however, have to be called manually. For parallelization, p4est uses Morton
order based domain partitioning. The provided partitioning functionality includes
the automatic generation of ghost layers (one layer of adjacent cells around each
partition) and MPI communication routines between partitions.

An important aspect for the work presented in this paper is the access of neighbor
data. Per se, the linear leaf-only storage does not provide direct access to neighbors of



1766 The European Physical Journal Special Topics

cells. If memory is a limiting factor, neighbors will be constructed by first computing
their tentative Morton index and performing a binary search for this index in all
cells of the respective partition (including ghost cells). In p4est , this search has been
optimized by traversing all interfaces between face-, edge-, and corner-adjacent cells
exactly once in p4est iterate [71]. If memory is not extremely limited,O(1) lookups
of cells are, however, the fastest option. Respective lookup tables can be generated in
p4est with p4est mesh for 2:1 balanced trees. The tables contain indices, relative
size, orientation, and owner process of all neighbors of a partition’s local cells. In
the work presented here, the lookup data have been completed to include neighbor
relations between all face, edge, and corner neighbors for real and virtual cells in 2:1
balanced meshes [56,72]. We give more details below.

3.2 New components and functions

To leave application algorithms (almost) untouched, we have to provide random-
access to any neighboring cells. Accordingly, we completed the neighbor lookup in
p4est mesh for three-dimensional grids to also provide direct access to edge and
corner neighbors. To cope with the challenges from spatial adaptivity, in particular
hanging nodes, virtual cell have to be introduced as described in Section 2. We
realized this by p4est virtual , a light-weight extension for p4est mesh . We keep
virtual cells transparent to p4est , i.e., we do not store them in the tree as real
quadrants. Instead, we just tag any quadrant that has virtual children. This has the
advantages that 1. by design all virtual quadrants have to reside on the same process
as their host and 2. dynamic grid adaptivity is not affected by virtual cells7.

Summing up, p4est virtual performs three important tasks: (1) It marks all
coarse cells at refinement boundaries hosting virtual quadrants and allows mapping
user-managed (virtual cell) payload to real cells’ ids. (2) It includes virtual cells in
the ghost exchange and stores the respective data in a separate data-structure called
p4est virtual ghost . As described in Section 2, the decision to generate virtual
children for real ghost layer cells is taken locally without additional communication.
(3) It offers a neighbor-lookup function to find virtual cells as neighbors and to
find neighbors of virtual cells by an extension of the neighbor-lookup provided by
p4est mesh .

To abstract the additional complexity of traversing specific regions of the grid
(like quadrants adjacent to the process boundary or quadrants of a specific level)
and random-access, we implemented an iterator based on p4est mesh and
p4est virtual .

4 Minimally invasive integration of p4est grids in ESPResSo

4.1 Integration of adaptive p4est grids

Adaptive p4est grids have been integrated in all four components of ESPResSo
described in Section 2: Lattice-Boltzmann, electrostatics, electrokinetics, and short-
range molecular dynamics, partly in cooperation with other groups. In general, to
integrate p4est in a minimally invasive way into existing applications, we propose a
three-step process [56].

7 In particular, this is important for coarsening, where children of the same father cell can
only be coarsened if all cells are local quadrants on the same MPI rank. This property can
be enforced for one level above leaf level only. Thus, we have to enforce it for the hosts of
virtual cells.



Particle Methods in Natural Science and Engineering 1767

(1) First, the regular grid needs to be substituted by a p4est based grid. It allows
performing simulations on regularly discretized p4est grids which may already
contain dynamic load balancing if there are different loads for each cell. This first
step comprises the following substeps:
(a) The (i, j, k) loops over regular grids have to be replaced by p4est iterators.

Neighbor access changes from simply incrementing the regular grid indices
i, j, or k to lookups using p4est mesh . The physical kernel functionalities
such as LBM collision, streaming, stencil evaluations, or particle interactions,
however, remain unchanged.

(b) Morton curve-based partitioning provided by p4est substitutes the original
(rectangular) domain partitioning in ESPResSo. This comprises the automatic
generation of ghost layers by p4est and replacing all ESPResSo inter-partition
communication steps by calls of p4est communication routines.

(2) Second, the algorithms are extended to actually use an adaptive grid. Additional
functions have been added for new numerical steps required at refinement bound-
aries (in particular interpolation and restriction to and from virtual cells8). As a
basis for all these steps, data structures for virtual cell payload have to be pro-
vided. Dynamic grid adaptivity is triggered by new adaptivity criteria that have
to be implemented in the respective components. The generation of the adapted
grid follows the ideas in [73]. We generate a new p4est -instance which we refine,
coarsen, and balance. Subsequently, we map the user data (payload) from the old
to the new grid. In refinement or coarsening regions, this requires interpolation
or restriction, respectively. If virtual cells are needed, their generation requires
additional grid traversals.

(3) Third, the implementation of the application needs to be optimized, e.g., by
implementing communication hiding or by modifying data-access patterns.

In the following paragraphs, we briefly describe the component-specific changes and
enhancements of simulation modules in ESPResSo that go beyond or specify the
steps of this three-step integration. More details are given in our paper [58] focusing
particularly on technical aspects and parallel scalability.

4.1.1 Lattice-Boltzmann on adaptive grids

On top of the steps described above, we implemented communication hiding in our
ported version of ESPResSo’s LBM solver for dynamically adaptive grids [56,58,72].
We overlap communication in the main loop after streaming with collision in local
cells of a partition. The communication has to be finished before redundantly colliding
in ghost cells. Another overlapping has been realized during grid adaptation. After
repartitioning, we overlap transferring the numerical payload to their new owners
with rebuilding p4est meta structures (p4est ghost , p4est mesh , p4est virtual ,
and p4est virtual ghost ). We use global instead of level-wise domain partitioning
which yields good scalability9 for our showcases but is meant to be replaced by level-
wise partitioning in future work.

4.1.2 Electrokinetics and electrostatics on adaptive grids

The algorithms for charged systems have been implemented in [74]. To avoid inter-
polation errors for coupling subsystems and to reduce the number of different grid to

8 Mass-based quantities are evenly distributed among the virtual cells and added up.
Numeric quantities are mirrored on each virtual sub-cell and averaged.

9 Presumably due to the fact that we avoid global synchronization within coarse grid time
steps.



1768 The European Physical Journal Special Topics

be considered for joint partitioning, we decided to use the same p4est instance as for
the adaptive LBM. To cope with hanging nodes we embed virtual cells at refinement
boundaries in electrokinetics. For electrostatics, we directly adapt the stencil based
on the discretization level of the neighbors.

4.1.3 Short-range molecular dynamics with p4est linked-cell systems

In contrast to the grid-based algorithms described above, the computational load
does not directly scale with the number of grid cells for short-range MD but with the
number of force pairs. However, porting short-range MD to a p4est -based implemen-
tation using regular grids [75,76] allows performing MD-simulations with dynamic
load-balancing. The main challenge consists of constructing octree grids with mesh
widths as close as possible to the cut-off radius rc. To this end, our implementation
tries to accordingly fit the macro-structure, that is number and size of the individual
trees in the forest of octrees. If an exact fit cannot be achieved, we choose rc as a
lower bound for the actual mesh width. This leads to more particle pairs being con-
sidered in neighboring cells, but ensures that we do not have to search for relevant
particles within rc in more cells than the direct neighbors of the current cell. More-
over, as described below, integrating p4est facilitates coupling short-range MD with
the grid-based algorithms.

4.2 Coupled systems

To couple the individual physical components described in Section 2, ESPResSo
provides a bi-directional force-coupling [77,78]. As we use at least two distinct
p4est instances, that is a regularly discretized p4est for the Linked-Cell
method in short-range MD and a potentially arbitrarily refined, yet 2:1 bal-
anced p4est for the grid-based algorithms, we have to provide a mapping
between both grids. Thus, we have to find a cell covering a given position. We
calculate the position’s (virtual) Morton index based on the maximum refine-
ment level and the maximum domain size. Then, we perform a binary search
on the local cells.

For actually mapping data, we perform tri-linear interpolation. Contrary to
regular grids, neither the number of interpolation points nor the distance
between cells used for interpolation is fixed. In case of 2:1 balanced grids, there
are at most twenty cells involved: (1) the cell containing the position, (2) one
corner neighbor, (3) up to twelve face neighbors, and (4) up to six edge neigh-
bors. Additionally, the refinement pattern of the adaptive grid is not known
beforehand. Thus, it is not sufficient to search one cell and obtain the remain-
ing cells from index calculations, but we have to perform eight distinct binary
searches [75].

To avoid communication and a volume-to-volume mapping-problem, we
ensure that all information required for coupling is guaranteed to be found on
the current processor. We achieve this by calculating a “finest common tree”
(FCT) from all used p4est grid instances. Subsequently, we partition this FCT
based on cell-weights that are derived from estimated cost weights depending
on the involved model components and the depth of local further refinement
of the respective component tree compared to the FCT. Then, we map the
position of the partition boundaries back to each individual components’ trees
[79].



Particle Methods in Natural Science and Engineering 1769

5 Results

5.1 Performance and scalability

We have published several studies on the performance and scalability of simulations
in p4est in previous papers, which we summarize here pointing out the main lessons
learned.

5.1.1 Regularly refined grids

In [56], we compare the p4est based implementation of the Lattice-Boltzmann
method in ESPResSo with the original regular grid implementation for a Poiseuille
flow scenario. All calculations were performed on a shared memory machine with 72
physical cores (Intel Xeon CPU E7-8880 @2.30GHz) and 512 GB RAM. We compared
runtimes of Lattice-Boltzmann steps on regularly refined grids while still executing
all functions required for dynamic grid adaptivity in the p4est variant: (1) evalu-
ation of refinement and coarsening flags and re-generation of a new grid after each
time step, (2) neighbor access via lookup tables in p4est mesh , (3) more complex
Morton curve based partitioning and corresponding ghost layer communication.

Simulations performed on 2–64 cores with one MPI rank per core and grids of
refinement levels four to eight showed that the p4est variant was a factor of two to
four slower than the original regular grid implementation. In additional test, we mea-
sured the pure grid traversal time in p4est with p4est iterate and p4est mesh
and observed that we pay about a factor of two in terms of increased runtime for
direct neighbor access. These results show a significant cost of dynamic grid adaptiv-
ity. However, they have to be interpreted carefully since usually dynamic grid changes
are not executed after every time step and the implementation with p4est was an
un-optimized version, e.g., still lacking communication hiding that was implemented
later. Still, adaptivity always comes at a certain prize that has to be outweighed by
a substantially reduced number of grid cells. Below, we show application examples
where this is the case and total runtimes are dramatically lower than for correspond-
ing regular grids.

5.1.2 Scalability of adaptive grid Lattice-Boltzmann

In [58], we present extensive strong and weak scaling studies on the Cray XC40 Tier
1 supercomputer HazelHen10 at the High Performance Computing Center Stuttgart
(HLRS). We simulate a three-dimensional driven cavity scenario, cf. Figure 3, and
introduce artificial dynamic adaptivity by prescribing higher refinement in a moving
rectangular subdomain. This allows us to control the number of grid cells, which is
essential for weak scaling. Simulations were performed on up to 32 768 cores with one
MPI rank per core.

The results, visualized in Figure 3, experimentally prove the efficiency of the
Morton curve partitioning (with uniform weights for each cell) for the level-wise
iteration of the space-time adaptive Lattice-Boltzmann steps. We show the total
runtime of 10 × 16 integration steps and 10 grid adaptations with communication
hiding in a weak scaling setting. We begin scaling from serial execution (red), single
node execution (blue), and double node execution (black) and occupy each node
with 24 processes. This yields a parallel efficiency above 50%. Communication can
be almost completely hidden behind calculation as described in previous sections,
which substantially speeds up the simulation.
10 www.hlrs.de/systems/cray-xc40-hazel-hen/

www.hlrs.de/systems/cray-xc40-hazel-hen/


1770 The European Physical Journal Special Topics

Fig. 3. A planar cut through the geometric setup of our driven cavity simulations is shown
on the left. The parallel efficiency for pure Lattice-Boltzmann in a weak scaling setting
measured on HazelHen is shown on the right. We use three distinct scaling bases (serial
execution (red, “1 p.”), single node (blue, “1 n.”), and double node (black, “2 n.”)) and
compare four different cases: Two cases for regular grids and two adaptive cases. In the
latter, the hatched box (3 × 3 × 1.5) marks an area of maximum refinement. The area is
fixed in case of static adaptivity. In the dynamically adaptive case the area moves such that
whenever the grid is adapted the area of maximum refinement has moved by one layer on
the finest grid level. The runtimes of the respective base cases are shown in Table 1.

Table 1. Number of cells and total run times of the simulation in seconds for each distinct
base case (serial execution, single compute-node, and two compute-nodes on HazelHen) of
the driven cavity scenario.

Size ncells, reg, s treg, s ncells, reg, l treg, l ncells, adapt tadapt, s tadapt, d

1 65 536 35.66 52.4× 105 309.98 1.48× 105 161.62 161.79
24 5.24× 105 17.32 4.19× 106 137.35 1.07× 106 58.96 62.83
48 65 536 1.12 5.24× 105 8.86 8.12× 106 223.82 234.63

Notes. We perform 160 time steps on the finest level. We show a small and a large regular
setting (“reg, s” and “reg, l”) as well as static and dynamically adaptive versions (“adapt,
s” and “adapt, d”). In case of dynamical adaptivity, we adapt the grid and re-partition the
cells after 16 time steps. The respective upscaling behavior is shown in Figure 3.

5.2 Coupled scenarios

We present new results for two scenarios to show the efficiency and validity of adap-
tive grid simulations in ESPResSo: a particulate flow through a simplified nanopore
(coupling of short-range molecular dynamics and Lattice-Boltzmann) and an ionic
flow in a more realistic pore geometry (coupling electrokinetics, electrostatics, and
Lattice-Boltzmann).

5.2.1 Particulate flow through a nanopore

Following up on our scenario in [79], where we simulated particles in a simple channel
flow, we simulate a three-dimensional pore scenario as illustrated in Figure 4. Initially,
particles are randomly distributed in the left half of the domain, from where they
are accelerated by a Lattice-Boltzmann flow from left to right. Our simulations are
executed on the supercomputer HazelHen at the HLRS in Stuttgart with one MPI
rank per core.

We perform a weak scaling study starting from a single compute-node (24 cores)
to 64 nodes. On a single node, we simulate 24 000 particles. In each scaling step, we



Particle Methods in Natural Science and Engineering 1771

Fig. 4. Two-dimensional cut through the three-dimensional simulation setup of the par-
ticulate flow through a pore scenario. We place a simplified pore (purple) between two
reservoirs and refine the grid around the pore as well as around the particles. Colors indi-
cate the partitioning of computational domains among different ranks in the computational
domain according to the Morton space-filling curve. Note that computational domains for
particles and fluid are congruent to enable local coupling.

increase the minimum and maximum refinement level for the Lattice-Boltzmann flow
solver by one. Accordingly, we increase the number of compute nodes and particles
by a factor of eight, i.e., we simulate 24 000 to 1.5 million particles. The simula-
tion domain is discretized with two connected trees, and we refine the grid around
the boundary as well as around particles. All adaptive grids have a level difference
between minimum and maximum of three. In cases 3–6, we scale from a grid with
minimum and maximum levels three and six to minimum level five and maximum
level eight (27 × 105 to 13.8 million cells), for cases 4–7, we go from levels four to
seven to levels six to nine (1.8 million to 102.3 million cells). For comparison, we
also measure the performance of stock ESPResSo and regular discretizations of our
implementation. It is important to note that the original cpu implementation of the
LBM in ESPResSo can only handle domains of the exact same size. Thus, we have
to use sixteen cores as basis. Additionally, we use a slightly optimized LBM imple-
mentation which combines streaming and bounce back in a single grid traversal. This
halves the costs of searching for neighbors in the LBM.

Results, averaged over three runs, are shown in Figure 5. We plot the total run-
time as well as average runtimes for the main algorithmic substeps, that is LBM
and MD time steps as well as altering the grid. Additionally, we visualize the Fluid-
Lattice Updates per Second per Core (FLUPSC) and the imbalance in the LBM
as maximum runtime over average runtime. For cases 3–6, we obtain a parallel effi-
ciency of 50 % while we reach a parallel efficiency of over 90 % in the larger cases 4–7.
ESPResSo’s original LBM implementation reaches 1.7 MFLUPSC while our imple-
mentation reaches on average 0.2 MFLUPSC with merging of streaming and bounce
back11.

Moreover, we observe that load-balancing such a large simulation is challenging.
We visualize the imbalance in LBM, MD, and adaptivity in a dynamically adaptive
simulation on 1536 ranks in Table 2. This simulation consists of around 100 million
LBM cells and 1.5 million particles. The imbalance in the LBM is approximately 1.3

11 For comparison: the highly optimized code waLBerla achieves up to 5 MFLUPSC on
SuperMUC [80] using pure MPI parallelization.



1772 The European Physical Journal Special Topics

Fig. 5. Weak scaling runtime results for the pore scenario over 160 finest grid time steps.
After 16 time steps, we adapt the grid of the LBM simulation according to the updated
positions of the particles. We compare the previous ESPResSo (ESPResSo) version with our
implementation (p4est) and a slightly optimized version (p4est opt). The number indicates
the refinement level of regular grids or the span of levels used in a dynamically adaptive
discretization for the respective smallest problem of the scaling series. Values are averaged
over ranks and time steps. Top left: total runtime; top right: runtime for grid changes; mid
left: runtime of a single LBM step; mid right: runtime of a single MD step; bottom left:
MFLUPSC; bottom right imbalance in LBM (max/avg).



Particle Methods in Natural Science and Engineering 1773

Table 2. We visualize the imbalance for each time step for a run on 1536 cores using the
optimized version of p4est on a dynamically adaptive grid using refinement levels between
six and nine.

Time step ncells imb. LBM imb. MD imb. grid change

t0 1.067× 108 1.291 7.259 1.002
t1 1.013× 108 1.295 1.135 1.002
t2 1.012× 108 1.302 1.218 1.003
t3 1.012× 108 1.292 1.069 1.002
t4 1.012× 108 1.301 1.136 1.003
t5 1.012× 108 1.284 1.111 1.002
t6 1.012× 108 1.301 1.05 1.002
t7 1.012× 108 1.284 1.338 1.002
t8 1.012× 108 1.3 1.254 1.002
t9 1.013× 108 1.304 1.144 1.002

Notes. We measure imbalance as maximum run time over average run time.

in all steps, while, for MD, it is also bounded by 1.4 except for the very first time step.
Grid adaptivity is almost perfectly balanced. This behavior stems from using a grid
library: When using uniform weights for all cells in our grids with strong refinement
at boundaries, we obtain partitions which contain mostly boundary cells. This could
be avoided by assigning boundary cells lower weights. Note that these weights should
not be zero and have to be calibrated depending on the hardware architecture as,
using a grid-library, operations such as neighbor-access and exchanging data between
partitions is executed in all cells.

To improve overall performance, there are well-known optimizations like embed-
ding small regular grids into octree cells that can be incorporated in our version in
future work. Moreover, embedding patches facilitates using a streaming-optimized
data-layout which is known to be beneficial in terms of cache efficiency [81].

By design, the average number of particles per core is 1000. The inhomogeneity of
our setup leads to processes without any local particles on the one hand and processes
with more than 3000 local particles in cases 3–6 and up to 5000 local particles in
cases 4–7. In cases 3–6, the number of particles in the ghost layer of the partitions
varies between 0 and 2000. The upper bound increases in cases 4–7 to 2500 ghost
particles.

Note that adapting the grid includes deciding which cells to alter, actually chang-
ing the grid, establishing 2:1 balancing, mapping data between both grids, reparti-
tioning based on the FCT, transferring the payload to its new owners, and rebuilding
all p4est meta-structures such as p4est ghost or p4est mesh . Still, the complete
grid adaptation never takes longer than 0.75 seconds.

5.2.2 Electrokinetic flow in a pore geometry

Based on the experimental setup of [82], our collaborators from project C.5 performed
2D simulations with the finite element method [83]. We ported the simulation setup
of [83] to a three-dimensional model in ESPResSo.

In this setup, which is depicted in Figure 6, we use the full electrokinetic simu-
lation, embedding ions and counterions into the fluid, applying an electric field by
setting a potential at both hemispheres (orange and red boundaries), and charging
the body of the capillary (royal blue boundary). This results in an electro-osmotic
flow, as ions have accumulated around the pore to compensate the local charge. The



1774 The European Physical Journal Special Topics

Fig. 6. Simulation setup of a charged pore. We charge the body of the capillary (royal blue)
and apply an electric field by setting a potential at the hemispheres (orange and red) to
obtain an electro-osmotic flow around the pore.

electric field that is applied from the hemispheres leads to a force density acting on
the ions which is transferred to the fluid. In our preliminary simulation run, we have
chosen a discretization from levels seven to ten and a pore diameter of 250 nm12. The
resulting flow-field after 8000 time steps is shown in Figure 7.

6 Conclusion and outlook

We have presented ways to port a large scale multi-functional regular grid simulation
code for a variety of different types of models (continuum mechanics and molecular
dynamics) to tree-structured dynamically adaptive grids. We observed during the
integration process, that it is highly beneficial to separate the actual grid functional-
ity from the application code. In the work presented in this paper, we show how we
extended the grid framework p4est to meet all requirements, in particular random
access to direct neighbors, that we derive from the wish to keep application code
changes as light-weight as possible. Besides the option to use adaptive grids, and,
therewith, simulate substantially larger spatial domains and time spans, the applica-
tion code ESPResSo in our example also profits from functionalities such as domain
partitioning and inter-process communication in the parallel implementation, that
previously had to be provided by the application code itself and can now be taken
care of (in an optimized way) by the grid framework. Our results show the general
suitabiltity and potential of our approach for various show-cases. We can show good

12 We need a higher grid-resolution for embedding real or virtual particles into the given
system as well as for modeling the actual pore geometry.



Particle Methods in Natural Science and Engineering 1775

Fig. 7. Velocity field of the simulated electro-osmotic flow in the charged pore system.

parallel efficiency, low runtime overhead due to dynamical grid adaptivity, and a
large potential to save computational cost for real-world simulation scenarios by grid
adaptivity. Note that we are restricted in terms of code optimization by the fact that
we keep code changes minimal and, in particular, do not alter or deteriorate parts of
the existing extensive functionality of ESPResSo.

Future work, that has already begun is the implementation of a multi-GPU
version of the Lattice-Boltzmann implementation in ESPResSo based on a patch-
based approach. Preparatory steps have been made in the thesis work of Benjamin
Kurz [84]. In addition, further optimizations such as a level-wise instead of global
grid partitioning scheme [8] as well as more sophisticated grid cell weighting in
the finest common tree partitioning are to be analyzed in terms of their
effectiveness.

This work was financially supported by the German Research Foundation (DFG) via the
grant SFB 716/D.8. Besides the authors, several other people have contributed to the work
presented in this paper: Malte Brunn (IPVS, University of Stuttgart) has implemented a
first version of the molecular dynamics simulation on p4est Linked-Cell systems and the
coupling between molecular dynamics and Lattice-Boltzmann in his master thesis. Steffen
Hirschmann (IPVS, University of Stuttgart, project D.9) has made substantial contributions
in the supervision of this thesis, in optimizing the coupled molecular dynamics – Lattice-
Boltzmann simulations and in setting up the particulate flow through a pore scenario.
Georg Rempfer and Florian Weik (ICP, University of Stuttgart, project C.5) have provided
helpful support in all questions concerning ESPResSo and the underlying physical models.
Ingo Tischler has implemented the adaptive grid electrokinetics and electrostatics solvers
in ESPResSo, jointly supervised by Michael Lahnert, Georg Rempfer, and Florian Weik.
Carsten Burstedde (University of Bonn), the main developer of p4est , has contributed a
lot of helpful advice on how to handle, extend, and optimize p4est and its use in ESPResSo.



1776 The European Physical Journal Special Topics

References

1. T. Weinzierl, M. Mehl, SIAM J. Sci. Comput. 33, 2732 (2011)
2. R.S. Sampath S.S. Adavani, H. Sundar, I. Lashuk, G. Biros, Dendro: parallel algorithms

for multigrid and AMR methods on 2:1 balanced octrees, in SC ’08: Proceedings of the
2008 ACM/IEEE Conference on Supercomputing (2008), pp. 1–12

3. C. Burstedde, L.C. Wilcox, O. Ghattas, SIAM J. Sci. Comput. 33, 1103 (2011)
4. H. Klimach, K. Jain, S.P. Roller, End-to-end parallel simulations with APES, in

Advances in parallel computing (IOS Press, 2014), Vol. 25, pp. 703–711
5. A. Lintermann, S. Schlimpert, J.H. Grimmen, C. Günther, M. Meinke, W. Schrüder,

Comput. Methods Appl. Mech. Eng. 277, 131 (2014)
6. T. Tu, D.R. O’Hallaron, O. Ghattas. Scalable parallel octree meshing for teraScale appli-

cations, in SC ’05: Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (ACM/IEEE, 2005)

7. F. Schornbaum, U. Rüde, SIAM J. Sci. Comput. 38, C96 (2016)
8. F. Schornbaum, U. Rüde, SIAM J. Sci. Comput. 40, C358 (2018)
9. S.G. Parker, Future Gener. Comput. Syst. 22, 204 (2006)

10. M. Wahib, N. Maruyama, T. Aoki, Daino: A high-level framework for parallel and
effcient AMR on GPUs, in SC16: International Conference for High Performance Com-
puting, Networking, Storage and Analysis (IEEE, 2016), pp. 621–632

11. A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves,
M. Lijewski, F. Lüffler, B. O’Shea, J. Parallel Distrib. Comput. 74, 3217 (2014)

12. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704
(2006)

13. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Kos̆ovan,
C. Holm, ESPResSo 3.1: Molecular dynamics software for coarse-grained models, in
Meshfree methods for partial differential equations VI, Lecture Notes in Computational
Science and Engineering, edited by M. Griebel, M.A. Schweitzer (Springer, Berlin, Hei-
delberg, 2012), Vol. 89, pp. 1–23

14. M. Bader, C. Böck, J. Schwaiger, C. Vigh, SIAM J. Sci. Comput. 32, 212 (2010)
15. M. Bader, Space-filling curves: an introduction with applications in scientific computing

(Springer, Heidelberg, New York, 2013)
16. G. Inci, A. Arnold, A. Kronenburg, R. Weeber, Aerosol Sci. Technol. 48, 842 (2014)
17. J. Hüpfner, T. Richter, P. Kos̆ovan, C. Holm, M. Wilhelm, Progr. Colloid. Polym. Sci.

140, 140 (2013)
18. B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Müller, K. Kremer, M. Deserno,

Nature 447, 461 (2007)
19. M. Kuron, A. Arnold, Eur. Phys. J. E 38, 20 (2015)
20. S. Kesselheim, M. Sega, C. Holm, Soft Matter 8, 9480 (2012)
21. K. Breitsprecher, P. Košovan, C. Holm, J. Phys.: Condens. Matter 26, 284108 (2014)
22. K. Breitsprecher, P. Košovan, C. Holm, J. Phys.: Condens. Matter 26, 284114 (2014)
23. S. Succi, The Lattice Boltzmann equation for fluid dynamics and beyond (Clarendon

Press, 2001)
24. D.A. Wolf-Gladrow, Lattice-gas cellular automata and Lattice Boltzmann models – an

introduction (Springer, 2000)
25. S. Succi, The Lattice Boltzmann equation: for complex states of flowing matter (Oxford

University Press, 2018)
26. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)
27. D. d’Humières, S. Succi, D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand,

L.-S. Luo, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 360, 437 (2002)
28. L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang, Phys. Rev. E, 83, 056710 (2011)
29. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008)
30. I. Ginzburg, F. Verhaeghe, D. d’Humieres. Commun. Comput. Phys. 3, 519 (2008)
31. S. Hou, J. Sterling, S. Chen, G.D. Doolen, A Lattice Boltzmann subgrid model for

high Reynolds number flow, in Pattern formation and lattice gas automata (American
Mathematical Society, 1996), Vol. 6, pp. 151–166

32. R. Brownlee, A. Gorban, J. Levesley, Physica A 387, 385 (2008)



Particle Methods in Natural Science and Engineering 1777

33. X. Shan, X.-F. Yuan, H. Chen, J. Fuid Mech. 550, 413 (2006)
34. R. Deiterding, S.L. Wood, J. Phys.: Conf. Ser. 753, 082005 (2016)
35. M. Geier, A. Greiner, J.G. Korvink, Phys. Rev. E 73, 066705 (2006)
36. P. Asinari, Phys. Rev. E 78, 016701 (2008)
37. S. Seeger, H. Hoffmann, Continuum Mech. Thermodyn., 12, 403 (2000)
38. M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, Comput. Math. Appl. 70, 507 (2015)
39. E.K. Far, M. Geier, K. Kutscher, M. Krafczyk, Comput. Fluids 140, 222 (2016)
40. K. Kutscher, M. Geier, M. Krafczyk, Comput. Fluids, in press
41. M. Geier, M. Schn̈nherr, Computation 5, 15 (2017)
42. M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Modeling and analyzing performance for

highly optimized propagation steps of the Lattice Boltzmann method on sparse lattices,
arXiv:1410.0412 (2014)

43. U.D. Schiller, Thermal uctuations and boundary conditions in the Lattice Boltzmann
method, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, 2008

44. L. Li, R. Mei, J.F. Klausner, J. Comput. Phys. 237, 366 (2013)
45. A. Pasquali, M. Geier, M. Krafczyk, Comput. Math. Appl., in press
46. A. Fakhari, T. Lee, Phys. Rev. E, 89, 033310 (2014)
47. A. Fakhari, T. Lee, Comput. Fluids, 107, 205 (2015)
48. O. Filippova, D. Hänel, J. Comput. Phys. 147, 219 (1998)
49. D. Yu, R. Mei, W. Shyy, Int. J. Numer. Methods Fluids 39, 99 (2002)
50. J. Tölke, S. Freudiger, M. Krafczyk, Comput. Fluids 35, 820 (2006)
51. M. Geier, A. Greiner, J.G. Korvink, Eur. Phys. J. Special Topics 171, 173 (2009)
52. H. Chen, Phys. Rev. E 58, 3955 (1998)
53. H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, R. Zhang, Physica

A 362, 158 (2006)
54. M. Rohde, D. Kandhai, J.J. Derksen, H. Van den Akker, Int. J. Numer. Methods Fluids

51, 439 (2006)
55. P. Neumann, Hybrid multiscale simulation approaches for micro- and nano ows, Ph.D.

thesis, Technische Universität München, 2013
56. M. Lahnert, C. Burstedde, F. Weik, Towards Lattice-Boltzmann on dynamically adap-

tive grids – minimally-invasive grid exchange in ESPResSo. Englisch, in ECCOMAS
Congress 2016, VII European Congress on Computational Methods in Applied Sciences
and Engineering, edited by M. Papadrakakis et al. (ECCOMAS, 2016)

57. M. Mehl, T. Neckel, P. Neumann, Int. J. Numer. Methods Fluids 65, 67 (2010)
58. M. Lahnert, C. Burstedde, M. Mehl, Scalable Lattice-Boltzmann Simulation on Dynam-

ically Adaptive Grids, submitted
59. F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 121, 973 (2004)
60. G. Rempfer, Electrokinetic transport phenomena in soft-matter systems, Ph.D. thesis,

University of Stuttgart, 2018
61. G. Rempfer, G.B. Davies, C. Holm, J. de Graaf, J. Chem. Phys. 145, 044901 (2016)
62. P.P. Ewald, Ann. Phys. 369, 253 (1921)
63. S.W. de Leeuw, J.W. Perram, E.R. Smith, Proc. R. Soc. London A: Math. Phys. Eng.

Sci. 373, 27 (1980)
64. R.W. Hockney, J.W. Eastwood, Computer simulation using particles (Taylor & Francis,

Inc., Bristol, PA, USA, 1988)
65. M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)
66. M. Deserno, C. Holm, J. Chem. Phys. 109, 7694 (1998)
67. A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, C. Holm, Entropy

15, 4569 (2013)
68. J.E. Jones, Proc. Roy. Soc. London A: Math. Phys. Eng. Sci., 106, 463 (1924)
69. J.E. Lennard-Jones, Proc. Phys. Soc., 43, 461 (1931)
70. M. Buchholz, Framework zur Parallelisierung vonMolekulardynamiksimulationen in ver-

fahrenstechnischen Anwendungen, Dissertation, München, Institut für Informatik, Tech-
nische Universität München, 2010

71. T. Isaac, C. Burstedde, L.C. Wilcox, O. Ghattas, SIAM J. Sci. Comput. 37, C497 (2015)

https://arxiv.org/abs/1410.0412


1778 The European Physical Journal Special Topics

72. M. Lahnert, T. Aoki, C. Burstedde, M. Mehl, Minimally-invasive integration of p4est in
ESPResSo for adaptive Lattice-Boltzmann, in The 30th Computational Fluid Dynamics
Symposium (Japan Society of Fluid Mechanics, 2016)

73. C. Burstedde, O. Ghattas, L.C. Wilcox, Towards adaptive mesh PDE simulations on
petascale computers, in Proceedings of Teragrid (2008), Vol. 8

74. I. Tischler, Implementing adaptive electrokinetics in ESPResSo, MA thesis, University
of Stuttgart, 2018

75. M. Brunn, Coupling of particle simulation and Lattice Boltzmann background flow on
adaptive grids, MA thesis, Universität Stuttgart, 2017

76. S. Hirschmann, M. Brunn, M. Lahnert, C.W. Glass, M. Mehl, D. Pflüger, Load Balanc-
ing with p4est for Short-Range Molecular Dynamics with ESPResSo, in Advances in
parallel computing, edited by S. Bassini et al. (IOS Press, 2017), Vol. 32, pp. 455–464

77. P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)
78. B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)
79. S. Hirschmann et al. Load-balancing and spatial adaptivity for coarse-grained molecular

dynamics applications, in High Performance Computing in Science and Engineering ’18
(Springer, 2018), forthcoming

80. F. Schornbaum, Block-structured adaptive mesh refinement for simulations on extreme-
scale supercomputers, Doctoral thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU), 2018, p. 152

81. G. Wellein, T. Zeiser, G. Hager, S. Donath, Comput. Fluids, 35, 910 (2006)
82. R.M.M. Smeets, U.F. Keyser, D. Krapf, M.Y. Wu, N.H. Dekker, C. Dekker, Nano Lett.

6, 89 (2006)
83. G. Rempfer, S. Ehrhardt, C. Holm, J. de Graaf, Macromol. Theor. Simul. 26, 160051

(2016)
84. B. Kurz, Lattice-Boltzmann simulationen auf mehreren GPUs, Bachelor’s thesis, Uni-

versity of Stuttgart, 2018


	1 Introduction
	2 Modeling and discretization in space and time on adaptive grids
	3 Extensions of the grid framework p4est
	4 Minimally invasive integration of p4est grids in ESPResSo
	5 Results
	6 Conclusion and outlook

