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Abstract. We presenta morphological multi-scalemethod
for imagesequenceprocessing,which resultsin a truly cou-
pled spatio-temporal anisotropic diffusion. The aim of the
method is not to smooththe level-setsof single framesbut
to denoisethewholesequencewhile retaininggeometric fea-
turessuchas spatialedges andhighly accelerated motions.
This is obtained by an anisotropic spatio-temporal level-set
evolution, wheretheadditional artificial time variable serves
asthemulti-scaleparameter. Thediffusiontensorof theevo-
lution dependson themorphology of thesequence,givenby
spatialcurvaturesof thelevel-setsandthecurvatureof trajec-
tories(=acceleration) in sequence-time.We discussdifferent
regularization techniquesanddescribean operator splitting
technique for solving the problem. Finally we compare the
new methodwith existing multi-scaleimagesequencepro-
cessingmethodologies.

1 Intr oduction

Duringthelastdecadescale-spacemethodshaveprovento be
usefulin imageprocessing,includingimagedenoising, edge
enhancementandshaperecovery from noisy data[1,25,33,
38]. A given imageis therebyconsidered as initial datato
somesuitableevolution problem. The artificial time param-
eteractsasthe scaleparameter, which guidestheuserfrom
noisyfine scalerepresentationsto enhancedandcoarsescale
representationsof theoriginal image.

Within many applications not only single images but
whole image sequences are of particular interest.The ob-
servedtimeperiod thereby rangesfromafew secondstodays,
months andyears.In medicalimageprocessingrecentacqui-
sitionhardwaresuchasultrasound(US),magnetic resonance
imaging(MRI) andcomputedtomographyimaging(CT) en-
ablefor anobservationof e.g.thehumanheartduring a car-
diaccycle, theflow of a tracerthrough blood vessels,or the
growth of tumors. Theseimagesequencesandespeciallyul-
trasound dataarecharacterized by high frequentnoisetypi-
cally due to measurementerrorsof the underlying imaging
device. Theparticularinterestin medicalapplicationsis un-
derstanding of growth andflow phenomenaof tissueandthe

quantitativevolumechange in time (e.g.blood volumein the
heart).Thusoneoftenis interestedin theextractionof certain
level-surfacesfromthedatawhichboundvolumesorseparate
regions of interest.Moreover theextraction of thevelocities
describingthemotionof thelevel-setsin thesequence,theso
calledoptical flow, is desired.

Moreover the methodtakes into accountthe velocity in
whosedirection the level-sets move within the image se-
quenceand finally the acceleration of the level-setswhich
characterizes this motion in sequence-time. Let us empha-
sizethattheresultingevolution is a truly coupledanisotropic
spatio-temporal smoothing processwhichtreatstheimagese-
quenceasa unit andnotasa compilation of singleframes.

Thepaperis organizedasfollows: First, in Section2 we
discusssomebackground work on imageprocessing, image
sequenceprocessingand the optical flow problem. In Sec-
tion 3 we review ananisotropic level-setdiffusionmodel for
the processingof single frames. This further motivatesthe
modelingof the final evolution. Before we give a detailed
descriptionof the new model in Section5, we will have to
discusstheextraction of motion velocitiesfrom givenimage
sequencesin Section4. In Section6 we discussthe robust
evaluationof curvatureson level-setsand the discretization
by finite elements. Before we draw conclusions in Section
8, we would like to compare the new methodwith existing
imagesequenceprocessingmethodology in Section7. In the
Appendix we give further detailson thespatio-temporal dis-
cretization.

2 Relatedwork

ScaleSpacemethods in imageprocessingdefinean evolu-
tion operator

�����
	
which actson initial data �� and deliv-

ersa scaleof representations � �����
	 � ��������� . Thetime param-
eter

�
serves as the scaleparameter that guides from fine

scaleson the initial data(
�����

) to successively coarserand
smootherscales.Throughout this paperwe will alwaysde-
notethe multi-scaleparameterby

�
whereas– to avoid any

confusion – for the sequence-timeparameterwe will use � ,
which represents time in theimage-sequencedata.

Thesimplestlinearimageprocessingmodel givenby the
heatequation ����� �"!#� �$� with thenoisyimage�%� asinitial
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dataleadsto smoothimagesbut alsodestroys edgesin the
image,indicatedby high gradients.The proposal of Perona
andMalik [24] andthemodification of Catt̀e et al. [7] avoids
this drawbackconsidering anevolutionproblem� � ��� div

�'&(�*) + �-, ) 	
+ � 	.�/��0
wherethediffusioncoefficient depends on themagnitudeof
thegradient of a (regularized)versionof theactualimage � .
Here, �-, �21 ,43�� is the convolution of the imagewith a
Gaussiankernel

1 , of variance 576 �
. In contrast to the

original Perona/Malikmodel ( 5 �/� ) theregularizationturns
this model into a mathematicallywell posedproblem and
moreover it avoidsthedetectionandaccentuationof artificial
edgeswhicharedueto noise.A suitablechoicefor thediffu-
sion coefficient is

&(� � 	"�8�
9�: � �<;�=>� 	@? � for some
= 6 �

.
At leastformally, decreasing the diffusion coefficient in ar-
easof highgradientsthenresultsin abackwarddiffusionand
thusan enhancementof edges,whereasareasof low gradi-
entsaresmoothed in an isotropicway. Themethodwasim-
provedby Weickert [37] who took anisotropic diffusioninto
account. Thereby thediffusionis of originalPerona/Malik re-
spectively Catt̀eetal. typein directionsof theimagegradient
(i.e. orthogonal to level-sets)andof linear typein directions
tangential to level-sets.This leadsto an additional smooth-
ing tangentialsmoothing of level-setsandenablesto amplify
intensitiesor correlations along level-sets.In [26] Preusser
andRumpfappliedthis typeof anisotropic diffusionto visu-
alizearbitrary vectorfields.Convergence of a finite element
method andfinite volumemethodswereshown by Kačurand
Mikula [18] and Mikula and Ramarosy[22]. Furthermore
adaptivity wasconsideredin [5,27,19].

In the axiomatic work of Alvarezet al. [1] general non-
linearevolution equationswerederivedfrom asetof axioms.
Including theaxiomof grayvalueinvariance(i.e.themodel is
supposedto beinvariant under monotonetransformationsof
thegrayvalue)leadtoacurvatureevolution model.Curvature
motionhasbeenstudiedintensively in geometry andphysics,
whereinterfacesaredrivenbysurfacetension[4,34]. Already
in thebasicmodel for meancurvaturemotion� � ��� ) + � ) div

�'+ � ; ) + � ) 	.�/��0
singularities in theevolution mayoccur. In this settingexis-
tenceof viscositysolutionshasbeenshown independentlyby
Evans andSpruck[13] andChenet al. [8]. Anisotropic cur-
vature motion hasfor instancebeenstudiedby Belletini and
Paolini [6]. Moreover Sapiroproposeda modificationof the
meancurvature motion modelwhich takes into account the
imagegradientmagnitude [31].

Thedetectionof motionin imagesequences,alsoknown
astheoptical flowproblem, is oneof thefundamentaltasksin
computervision andimageprocessing.For two dimensional
(2D) imagesit hasbeenstudiedextensively in thepast[2,3,
30,12,23]. The velocity of a level-setsplits up into a com-
ponent normal to the level-setand a component tangential
to it. The extraction of the tangential velocity is in general
not well posed[30]. Thus,onehasto restrictthesetof pos-
sible solutionvelocitiesandinsteadwork with the apparent
velocity[15], which arisesfrom locally constanttranslations
in space.As analternative onemight askfor regularizations

in termsof elasticstressesor viscousfluid effects [35,20,10,
9,11,14,17], which is computationally expensive andmostly
paysoff in casesof largedeformationsin betweenframesof
the sequence,which we rule out in our applicationsconsid-
eredhere.

Theimageprocessingmodelsdiscussedabovedonot im-
mediatelyapply to imagesequence processing.Sincethere
is no coupling betweensuccessive framesof thesequencein
any of the approaches,it is only possibleto processthe se-
quenceasacollectionof steady-images.Still this lacksacor-
relationof thesmoothedversionsof thesingleframes.There-
foremodifications of thestandardimageprocessingmethods
have to be taken into account, which introduce a coupling
betweenthe framesof thesequence in termsof the velocity
or accelerationof thesequence.In the2D movie multi-scale
analysis[15,1] anevolution equationwasderived from a set
of axioms,whichdependsonthecurvature(given in termsof
theeigenvaluesandeigenvectorsof theshape-operatorA , cf.
Section3) of level-setsandtheaccelerationof themotion:� � �B� ) + � ) C(���D0 A 0*EGFHFJI�KL	JM
This forms thebasefor theapproachespresentedby Sartiet
al. in [32] andMikula etal. in [21]. In Section7 thelatterwill
becomparedto themethodbeingpresentedin thispaper.

3 Review of Anisotropic level-setdiffusion in
steady-image processing

In this sectionwe will briefly review ananisotropic level-set
diffusion modelwhich wasoriginally presentedin [28]. As
commonfor level-setmodels,we dealsimultaneously with
all level-sets.Although in certainapplications our interestis
focusedon onespecificimplicit surface,possiblyin advance
convertedfrom a parametric to animplicit representation.

Let usdenoteby �%�"NPORQTS U thegrayvaluefunction of
theinitial imagewith inscribedlevel-setsV8W� N � ��XZY[O ) ��� � X 	\�$] � M
We assume��� and the set of corresponding implicit sur-
faces� V W� � W to benoisyandaskfor a family of successively
smoothedimages��� ���D0�^ 	-)_� Y`S U�a� � where � ���D0H^b	 NOcQdS U
and � ���e0�^ 	f� �P� �_^b	 . Throughout this paper O will always
be the unit squareor cube g ��0H9Jh_i , j �lkm0on

. The variable
�

servesasthescaleparameter. Thereby, for eachgrayvalue
]

a
family of surfaces� V W� � ��p�q r-st is generated,with

V W u ��v%�ow �V W� . Here we assume� �_^L0H^b	 to be sufficiently smoothand+ � ���D0 X 	yx�$� for all
���D0 X 	 Y`S U a�{z O . Indeed, dueto theim-

plicit function theoremthe corresponding sets
V W� thenare

actuallysmoothsurfaces.

3.1 TheShape Operator

Sinceourgoalis amorphological multi-scalemodel, weneed
acharacterizationof thelevel-setgeometryonimages.To this
endlet us considerthe normalto a level-set | � X 	 N � }~� }~ �
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of someimage � . We denote the tangent spaceby ��� V N ��'�
��E�� �.| � X 	 � 	*� . We computetheJacobianof thenormal� | ���
Id ��|���| 	 � � �) + � )

on S U�� andconsidertherestrictionA�N �/� | � Id ��|���| 	
on the tangentspace� � V . A is a symmetric mapping and
on thetangent space��� V it coincideswith theShape Oper-
ator A��.�J� . Therefore A is characterizedby theeigenvalues��� � 0 � � 0*� � andthe eigenvectors �.� � 0 � � 0 | � . The eigenval-
ues �>� correspondto theprincipal curvaturesof the level-set
andtheeigenvectors � � aretheprincipal directionsof curva-
ture.Thus,thegeometry of the level-setis determinedby A
via its eigenvaluesandeigenvectors.

3.2 Theanisotropic level-setmodel

We considerthe following type of nonlinear boundary and
initial valueproblemon O : Givenaninitial image� � N�O�QS U find a family of images ��� ���D0�^ 	 N�O�QlS U � ��p�q r s which
obey thefollowing anisotropic evolutionequation� � ��� ) + � ) div

�e� ,���H� + �) + � )�� �$� in S U a z O 0� , �.�D� ����P  �$� on S U a z ��O 0 (1)� ���e0�^ 	¡� �>� �_^b	 in O 0
where   denotes theouternormalto O . Theanisotropic geo-
metriclevel-setdiffusionmodelshoulddepend on thegeom-
etry of the level-sets.Thus it is naturalto basethedefinition
of thediffusioncoefficient

� , ���D� onaregularizedversionA ,
of theshapeoperator A . We assumethis regularizedversion
diagonalizeswith respectto the basis ��� �@¢ , 0 � �H¢ , 0 | , � hav-
ing eigenvalues ��� �@¢ , 0 � �H¢ , 0*� � . We thenconsider the scalar
function

&(� � 	 N �7�
9�: � �<;�=>� 	@? � from thebasicimagepro-
cessingmodels now actingon A , . In matrix representation
wethusobtain� , � � � N � � , � � � � A , 	�/£¥¤,�¦§ &(� � �D¢ , 	 &(� � �H¢ , 	 ��¨© £ , 0
where

£ , ��� � �@¢ , 0 � �H¢ , 0 | , 	 ¤ , i.e. thebasistransformation
fromtheregularizedframeof principaldirectionsandthenor-
mal ��� �D¢ , 0 � �J¢ , 0 | , � ontothecanonical basis�.ª � 0 ª � 0 ª � � .Let us recall that in the function

&
the parameter

=
acts

asa steeringparameterfor thedetection of edges.For larger
valuesof

=
, more featureson a level-set will be regardedas

edges.In thestandardPeronaMalik model thevalue
=

is ex-
actly theswitchbetweenforwardandbackwarddiffusion.

Remark1. Although we have basedthis shortreview on 3D
imagesand therefore level-setswhich are 2D-surfaces,we
will presentexamples of 2D-image-sequences in later sec-
tions.Thedefinitionof thediffusiontensorof theanisotropic
diffusion tensorfor 2D imagesthenobviously hasthe form£ ¤,¡«m¬ E� � &(� � , 	D0o� � £ , , where� , is theregularizedcurvature
of thelevel-lines.

4 Extracting motion velocitiesfr om imagesequences

Let usfrom now onassume,weareconcernedwith animage
sequence.At first,weconsideracontinuousfamily of images
onsometimeinterval g ��0
®¯h eachimageagaindefinedon O �g �e0H9Hh�i�0 j �°ke0*n , whichwe will denote by�±NG²³Q´S U 0µ� � 0 X 	·¶Ql� � � 0 X 	J0
where ² denotes the sequence-time/spacecylinder ² N �g �e0
®�h z O . Hereandin the following � alwaysdenotesthe
sequence-time parameterand X asbeforespatialcoordinates.
Again theperspective of level-setswill play a centralrole in
ourmodel. As before wedenoteV W � � 	\� ��XZY�O ) � � � 0 X 	\�$] � 0| � X 0 � 	\� + � � � 0 X 	) + � � � 0 X 	H) if

) + � � � 0 X 	H)�x�°�e0
the level-setof � � � 0 X 	 to level-value

] Y[S U respectively the
normalto this level-set,which now depend on thesequence-
time � . Hencewe have families of level-sets � V W � � 	 � W p�q r
whichchange in sequence-time.Assumingthereis somecor-
respondencebetweenconsecutive imagesin the sequence
(i.e. thesequence is continuousin sequence-time),it will be
an essentialpart of the new model, to extract the underly-
ing motion, which influencesthe observed imageintensity.
Beforeproceedingto the description of the new time-space
coupledsmoothing model, we therefore will briefly focus
on theextraction of thesemotion-velocitiesfrom the image-
sequence.A moredetaileddiscussioncanbefound in [29].

Suppose ��NG²¸QlS U i 0µ� � 0 X 	\¶Ql� � � 0 X 	
is thevelocity field generatingthemotionin spaceandtime.
Thereforeasinglemotiontrajectory is describedby X � � 	 with�º¹DX � � 	\� � � � 0 X � � 	
	JM
It isobviousthatthisopticalflow problem— theextractionof� from theimagedata— is anill posedproblem:Any tangen-
tial motion,thatonly movesonelevel-setwithin itself cannot
be captured by the process.Neverthelessfollowing two as-
sumptionswill allow usto derive a formula for thesocalled
apparent velocity:

(A1) Intensitiesarepreservedalongmotiontrajectories:� � � � 0 X � � � 	*	¡� � � � � :�»e0 X � � � :�»�	
	�{� �½¼ » ¼ ® �{� � M
This assumptionis reasonable sinceit is relatedto the
invarianceof the imageacquisitiondevice, which usu-
ally measuresphysicalquantities.If thisphysicalquantity
movesin time,sodoesthecorrespondingimageintensity.

(A2) Locally theunderlyingmotionis a translation:| � ��� 0 X � �H� 	
	·� | � �H� :{»e0 X � �H� :{»�	*	�{� �½¼ » ¼ ® �{� � M
This assumptionis of course fulfilled, assumingthe
sceneryconsistsof solidobjectsmoving in space.
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Differentiating theseassumptions with respectto
»

andeval-
uatingat

»��¾�
, we get the following two expressionsfor� � ��¿�| : �<À�Á��¿ � � ^ | � � � ¹ �) + � ) if

) + � )Px�/�e0 (2)� À�Á � �ÂA ? � �m¹@| M (3)

Equation (2) is an expression for the normal component� ¿ | � � ^ |±| of thevelocity. For equation(3) we remem-
ber that theShapeOperatorA operateson the tangent space�m� V and � ¹ |ÃYf�m� V . Adding thetwo partswe obtainthe
apparentvelocity��Ä*Å�Å"N � ��¿ : �<À�Á � � � � ¹ �) + � ) | : A ? � � ¹ | � M (4)

In 2D this formula wasalreadyobtainedby Guichard[15,16]
although he did not explicitly expressit in termsof the in-
trinsicShapeOperator. From(3) we againseethelimitations
of thetangentialmotioncapturing, becauseit involvesthein-
verseof theShapeOperator, whichof coursemaynotexist.

Moreover, in many physical applications it will besuffi-
cient to have thenormalvelocity � ¿ , if theobservedprocess
gives reasonthat ��À�Á �l�

. For example in porous medium
flow we already know from thephysicalmodel, thattheflow
will be in direction of the pressuregradient, which in sim-
ple settingswill be the normal to the level-sets.Also in the
situationdepicted in Figure1 we conclude that the normal
velocity is sufficient to characterize themotionsincethetis-
sueof thehumanheartwill not allow for tangential motions.
Therewe have depictedthe extractionof motion velocities
from animagesequenceshowing oneventricle of thehuman
heartduring a cardiaccycle. Moreover Figure2 shows the
extraction of thevelocity from anartificial dataset,in which
ellipsoidallevel-setschangetheirhalf-axes in time.

Giventheapparentvelocity we canfurthermorecompute
theaccelerationof themotion, whichis equivalentto thecur-
vature of theapparent trajectory, resultingfrom theapparent
velocity (cf. [15,16])E�F�FJI�K'� � 0 X 	 N � �ºÆ�� ÄoÅHÅ � � :�»e0 X � � :�»�	
	�ÇÇÇ Æ.v-�� � ¹ ��Ä*Å�Å :°�'+ ��ÄoÅHÅ 	 ��Ä*Å�Å M (5)

In Figure1 wehavedepictedtheextraction of motion ve-
locitiesfrom animagesequenceshowing oneventricle of the
human heartduringa cardiac cycle.

5 Coupled spatio-temporal anisotropic level-setdiffusion
in imagesequenceprocessing

We arenow equippedto formulate the new coupledspatio-
temporal anisotropic level-setdiffusionmodel.Wewouldlike
to combine thegood edgeandcornerpreserving behavior of
themodel reviewedin Section3 with ananisotropic smooth-
ing in sequence-time in direction of the apparentvelocity.
To this end let us denote the sequence-time/spacegradient
by

+ u ¹ ¢ � w N �È� �m¹ 0@+"	 and the corresponding divergence by
div
u ¹ ¢ � w N � �m¹ :�+ .

Given a noisy imagesequence� � N ²¾QÉS U , we write
down thefollowing spatio-temporal level-setproblem:

Find �ZNGS U a z ²¸QlS U such that in S U a z ² :� � ��� ) + u ¹ ¢ � w � ) div
u ¹ ¢ � w �eÊ , + u ¹ ¢ � w �) + u ¹ ¢ � w � )�� �$�eM (6)

We imposetheinitial condition� ���e0�^Ë0�^ 	¡� �>� �_^L0H^b	 in ²³Q´S U 0
andfurthermoreoneof thefollowing boundaryconditions+ u ¹ ¢ � w � ^   u ¹ ¢ � w �°� on Ì a z �P² 0 (BC1)+ � ���D0 � 0�^ 	Í^   �/� on ��O� �_^L0*��0H^b	¡� � �_^L0
®�0�^ 	 in S UÂa and O 0_Î (BC2)

where   u ¹ ¢ � w denotes the outer normal to the sequence-
time/spacecube² and   denotestheouternormal to �ÏO . The
two differentboundaryconditionshave the following mean-
ing. In (BC1)weprescribegenerally naturalboundarycondi-
tions to the whole sequence, i.e. we have no flux acrossthe
spatialboundary of the single framesandmoreover no flux
at thebeginningandtheendof thesequence. It maybemore
convenient to imposenatural boundaryconditions in space
andperiodicity in sequence-timewhich is statedin (BC2).

Again thevariable
�

in the problemactsasthescalepa-
rameterandwe again emphasizethat we make a distinction
between

�
and� ; � denoting thesequence-timeparameter. The

definitionof theproblem indeedincreasedthedimensionof
thedatabyone,whichresultsin 4Drespectively5Dproblems
for 2D respectively 3D imagedata.In thefollowing sections
wewill describehow to solvethese4D respectively 5D prob-
lemswith moderate effort.

It remainsto definethe diffusion tensor

Ê , for the new
model.Denoting thetensorproductby ����Ð�N �¸� � � Ð·Ñ 	 � Ñ , we
considerthe normalizedsequence-time/spacevelocity vec-
tors Ò , N �Ó�_9G0 � ,ÄoÅHÅ 	 ; )Ô�
9�0 � ,Ä*Å�Å 	H) basedon regularized ap-
parentvelocities � ,ÄoÅHÅ , and the diffusion coefficient already
known from thesteadyimagemodelto buildÊ , � � ,Õ Ò , ��Ò , :7Ö � �� � , � � � � A , 	Ø× 0
with

� ,Õ �Ù&(�*) E�FHFHIHK , ) 	
. The function

&(� � 	"�l�_9�: � �.;�=�� 	
againis thewell known function from imageprocessing(cf.
Section3). With this definitionof thediffusiontensorwe in-
deedprescribe a behavior of the evolution that is edgepre-
servingin spacebut alsosmoothing thesequencenonlinearly
in directionof Ò , . If the acceleration is high the diffusion
will be decreasedvia the function

&
. This leadsto a good

preservation of highly curvedmotiontrajectories (i.e. highly
acceleratedmotion) asshown in Figure3.

In general the decomposition in the definition of

Ê ,
is not orthogonal. Only if the complete apparent velocity� ÄoÅHÅ vanishes,thediffusiontensorreducesto a diagonal ma-
trix. Therefore in general we actually have a coupled dif-
fusion, with a mixed spatio-temporal diffusion component&(�*) E�F�FJI�K , ) 	 Ò , ��Ò , . Thiscanbeobservedfromtheexample
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Fig. 1. Froman imagesequence, taken by anultrasounddevice, andshowing the left ventricleof thehumanheartduring onecardiaccycle
wehaveextractedthevelocitiesof theunderlyingmotion.Fromtop left to bottomright for successive framesof thesequenceoneiso-surface
of the muscleof theheartis depicted.Thecoloring codesthe normalvelocity going inward (red) or outward (blue).Sincethe tissueof the
heart’s muscledoesnot allow for tangentialmovementsit is sufficient to consider thenormalvelocity in thisapplication.

shown in Figure4, wherewe seea diffusionacrossthesharp
edgeof thesquare in directionof theunderlying velocity.

Figure5 shows the evolution of a noisy sampledataset
under thecoupleddiffusionmodel.Theimage-sequencecon-
sistsof acontinuousfunction whoselevel-setsweredisturbed
randomly in normaldirection. Theapplication to realdatais
shown in Figure 6 wherewe have extractedoneslice of the
3D echocardiographicalheartimagesequence(cf. Figure1).

Remark2. Hereandin the sequelwe have denoted regular-
ized quantities (like A , 0 � ,ÄoÅHÅ 0oE�FHFHIHK , ) with a superscript 5 .
We emphasizethat we do not distinguishbetweenregular-
ized geometrical quantitiesandquantitiesbasedon regular-
ized data,although they in generaldo not coincide. In the
next sectionwe will focuson the type of regularizationwe
choosein ourapplications.

6 Discretization and numerical solution

Up to now we have considered image-sequences to besuffi-
cientlysmoothin spaceandtime ² . Sincein theapplications
image-sequencesariseasa finite sequenceof singleimages
(theframes) consistingof arraysof pixelsor voxels,we will
discretizethe model in an appropriateway. For eachsingle
frame,we interpret thepixel/voxel valuesasnodal valueson
a uniform quadrilateral respectively hexahedralmeshÚ cov-
ering thewholespatialdomain O . Moreover sincetypically
the time offset !4� betweensuccessive framesis constantin
imagesequences, we introducean equidistantlattice in the
sequence-timedirection. In any coordinatedirection, wecon-
sider the datato be piece-wisemulti-linear, meaningpiece-
wise linear in sequence-timeandpiece-wisebilinearrespec-

tively trilinear in space.To simplify thenotation, we will al-
waysdenote discretequantities by upper caselettersto dis-
tinguishthemfrom theircontinuouscorrespondencein lower
caseletters.

6.1 Shapeoperator andapparentvelocityondiscretedata

The modelpresented above makesextensive useof regular-
izedgeometricquantitiessuchastheshapeoperator A , and
theapparent velocity � ,Ä*Å�Å . It is obviousthatonnoisyimage-
sequencedataa regularizationis necessary, but alsothedefi-
nition of thesequantitiesinvolving higher orderderivatives
on imageswhich are usually piece-wiseconstant or rarely
given as bilinear respectively trilinear datais not clear. We
will thereforein thefollowing focus on theseregularizedge-
ometricquantities.

For the regularizationof theunderlying imageswe have
different methods at hand:

– The simplestnon-morphological regularization method,
which is quitestandard in imageprocessingis theconvo-
lution of the imagewith a Gaussiankernel.Thereby one
solvesa shorttimestepof theheatequation� �
Û �{! Û �$� on ² 0
with thegiven image� asinitial valueto theproblem.

– Themorphological analogueof theGaussianconvolution
is themeancurvature evolution, which lets all level-sets
simultaneously evolve in directionof their normalwith a


