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Abstract 

During the product development process of cars, numerical simulations are 

used to, for example, study the influence of variations in the material 

properties, the geometry of parts, or changes in connecting components. 

Engineers analyze and compare the different simulations using their own 

engineering knowledge and employ post-processing tools, which are typically 

limited to the simultaneous analysis of only a few simulations at a time. The 

complex structure of the data and its sheer size, the required 3D visualization 

of the geometry and the needed inspection of the associated design variables of 

each configuration prohibits a detailed comparative analysis of more than a few 

simulations by hand.  

Motivated by this, we present new machine learning approaches to analyze 

bundles of numerical simulations. Furthermore, we introduce an analysis 

method that allows the studying of the correspondence between numerical 

simulations and highly resolved, in time and space, three dimensional 

measurement data from real car crash experiments. On the one hand, we use 

methods for so-called nonlinear dimensionality reduction. These methods are 

able to compute a lower dimensional representation of the data, along which an 

intuitive and comparative characterization of a simulation bundle can be 

achieved. In particular, this analysis approach allows an easy identification of 

different deformation behavior in the numerical simulation bundle. On the 

other hand, a fundamentally new approach allows the representation of each 

simulation in a new compact representation as a sum of elementary 

components, which can be understood as analogous to the Fourier transform, 

but for geometries and shapes. The analysis of several simulations then takes 

place in the obtained space of so-called spectral coefficients. We present 

applications of this new data analysis procedure for the study of many 

simulations with changes in the input parameters and for the comparison 

between time dependent simulations and a real crash experiment. 



Overall, we demonstrate how machine learning approaches enable a fast 

evaluation of not only simple post processing quantities but the complete 3D 

deformations of many finite element design variants simultaneously. This 

considerably improves the usefulness of simulation data management systems 

supporting a faster, simplified and improved post processing of many 

simulation results.  

 

1. Challenges in the Virtual Development Process 

In the automotive sector, numerical simulations of different design 

configurations mark the virtual product development process. Here, material 

properties, shapes, and interconnection of parts and connecting components are 

varied. In addition, different load cases are investigated. Efficient software for 

the assessment of several simulation results exists only as long as well-chosen 

quantities of interest, e.g. curves, intrusion or acceleration, are studied. For the 

interactive and detailed analysis of numerical simulations specialized 3D 

visualization software is used. 

An effective, data-driven handling of bundles of numerical simulations for the 

comparison of different results, not only based on some key quantities, but on 

the whole results itself, is so far only possible to a limited extent. Approaches 

from machine learning, which are based on nonlinear dimensionality reduction, 

were successfully used to represent simulation results in a lower-dimensional 

space, which is computed from the data. See Bohn et. al., 2013, Garcke & Iza-

Teran, 2014, Garcke & Iza-Teran, 2015, Iza-Teran, 2014, Iza-Teran & Garcke, 

2014, and Schöne et. al, 2013 for further information. Through the 

dimensionality reduction, an intuitive visual organization of many simulations 

is possible. The arrangement of the simulations in three dimensions takes 

different changes in their geometry, i.e. different deformations during the 

collision, into account by employing suitable mathematical principles. 

Furthermore, in recent years new optical measurement methods were 

developed, which can deliver hundreds of detailed 3D point cloud 

measurements per second (Heist et. al., 2014). Due to the high resolution in 

space and time, detailed measurement data are obtained from a real crash 

experiment. A direct alignment, however, between 3D simulations and 3D data 

is not yet possible. The present article addresses these limitations. The 

presented approaches allow an alignment of simulation and measured data in 

an entirely new way. It delivers a substantial improvement during the different 

phases of the product development process, especially for the automotive 

industry.  

 



Machine learning approaches for data from car crashes and numerical car 

crash simulations 

2. Approaches for the Evaluation of Many Simulations 

Due to the large size of the underlying data, the evaluation of numerous 

simulations require methods for data reduction. Two of those are presented, 

where the first one is based on manifold learning, an area of machine learning. 

The results in Bohn et. al, 2013, Garcke & Iza-Teran, 2015, Garcke & Iza-

Teran, 2014, Iza-Teran, 2014, Iza-Teran & Garcke, 2014, and Schöne et. al., 

2013 have already proven its applicability for simulation data. The second one 

is a new analysis method introduced in Iza-Teran, 2016 and Iza-Teran & 

Garcke, 2016. We will present the underlying major ideas of those two 

approaches in the following. 

 

2.1.  Diffusion Maps 

Methods for dimensionality reduction are based on the assumption that for 

high-dimensional data sets, the dimension in this context is number of nodes * 

number of time-steps, one can find a much lower intrinsic dimension. A short 

example may illustrate this phenomenon: Consider a component that rotates 

around an axis. The rotation angle is the only parameter and for every angle 

one can find a component that belongs to it. Using a discrete mesh the 

component is discretized and so they can be seen as a collection of points and 

elements on the mesh. Hence, the representation of this component is a high-

dimensional vector and its dimension belongs to the number of nodes forming 

the component. However, the intrinsic dimension is still one and belongs to the 

rotation angle. 

In this context the diffusion maps approach creates a similarity matrix out of 

the current data, i.e. the part under different angles, using a proper distance-

measure. One can proof, that the eigenvectors of this matrix approximate the 

intrinsic coordinates, assuming enough data is used. The different positions of 

the part, i.e. the different meshes, may be sorted by their spectral coordinates in 

the eigenvector basis. In our illustrative example, the result is an ordering 

according to the rotation angle, which is represented by the first eigenvector. 

 

2.2.  Spectral transformation of surface-discretization 

The main principle of our new approach consists in finding a suitable basis, 

which represents the information from the discretization. This can be 

understood as an analogy to the Fourier-transform in time series analysis. A 

compact representation of a periodic signal is achieved by applying the Fourier 

transform and, after that, by using only its frequencies in the Fourier-space. A 



closer look on that yields, that under the transformation, a different basis 

containing sine- and cosine-functions, is used to span the periodic signal. 

According to this new basis, periodic signals can now be represented very 

compactly and therefore the analysis of many of those periodic signals, with 

different frequencies, can be done  easily in the frequency-space because now 

every signal can be organized by its frequency.  

We will now outline two possibilities to compute such a basis for a finite 

element discretization. For more details, see Iza-Teran, 2016 and Iza-Teran & 

Garcke, 2016. 

Geometric approach 

As said above, using the Fourier-transform a periodic signal can be written as a 

sum of symmetric components because it may be represented on a circle using 

sine and cosine, i.e. the Fourier-basis. Therefore, the Fourier-basis leads to a 

very compact representation of those signals. To carry over this property to a 

finite element mesh, one should think about symmetries analogously. For 

example, in the case of a rotation it is possible to use functions on a sphere, so-

called spherical harmonics. Using this basis, rotations may be, as in the case of 

periodic signals, represented very compactly. The compactness of this basis 

lays in its rotational invariance, so specific rotations can be written as Fourier-

coefficients in that basis. 

This principle can for example be generalized to deformations which they do 

not tear the structure apart. During a crash, the distances on the surface are 

preserved, at least approximately, as long as no fractures arise. Such distance 

preserving deformations are called isometries. Our new approach now consists 

in obtaining a new basis, which is invariant to isometries. With a geometry-

based ansatz, using the discrete Laplace-Beltrami operator on the discretization 

mesh of the parts, a spectral decomposition of the deformations results in a 

kind of elementary deformations. This is in correspondence to the Fourier-

transform and the described example. 

Stochastic approach  

The new approach employing symmetries can be enhanced with a stochastic 

setting. Suppose that some simulations already have been computed with small 

changes in the input parameters. We will now consider these changes as 

stochastic. Furthermore, we assume that the deformations, due to the different 

parameters, are small in comparison to a reference configuration in a short 

interval of the simulation. Hence, to every point of the mesh a “point cloud” 

can be assigned, namely the set of movements for the chosen point at a fixed 

time step, as observed in all the different simulations. Based on Singer & 

Coifman, 2008 and Kushnir et. al. 2012, one can assemble a covariance matrix 
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for the “stochastic” movements from the individual point clouds. Further, using 

the covariance matrix, the Jacobian for the transformation between the 

reference simulation and every other simulation can be approximated, which 

then allows a suitable distance measure between pairs of simulations. As a 

result of this approximation and the resulting distance measure, a new basis can 

be computed which is invariant to these kind of transformations, see Iza-Teran 

& Garcke, 2016 for the mathematical details. 

 

3. Comparative Analysis 

After a suitable basis is computed, every simulation can be written as a sum of 

elements of that basis and as a result, a comparative analysis can be performed 

efficiently. The comparison of the simulations is now based on the obtained 

spectral coefficients. An interesting property of this new representation is that 

said elements can be seen as different scales and that they are independent 

from each other. Recall the example with the rotating component: The parts of 

the structure, where a rotation and a translation happens, are built out of these 

two independent components. The first spectral component represents the 

translation, the second the rotation. This property and its generalization to other 

isometries enables interesting and important applications, some of which we 

will introduce in the following.  

 

4. Applications  

We will now present two use cases. The first one deals with the comparative 

analysis of many simulation results, the second one with the comparison of 

experiment and simulation. 

4.1.  Comparison of Many Simulations 

We study a FE-model of a Chevrolet C2500 Pick-Up Truck, from the National 

Crash Analysis Center (NCAC), containing approximately 60000 nodes and 

elements (Bohn et. al., 2013 ). A head-on collision is studied, where we vary 

the plate thickness of nine different parts between the 116 different numerical 

simulations we performed. From every simulation result the deformation of the 

beams was extracted and a geometrical basis was computed, under the 

assumption that the distances inside of a part are preserved in every time step. 

Using the new basis the resulting deformation for each plate thickness 

parameter setup can be written as a sum of elementary components. 



We are now focusing on the beam and the x, y, z coordinates of the translation 

in the new basis. The obtained spectral coordinates for a deformed and moved 

part now represent the contribution of the corresponding elementary 

component. For illustration, we now take the first component in x, y, z 

direction. Hence, we obtain three coefficients per simulation and per time step. 

We look at about 100 time steps per simulation, which we now can visualize 

simultaneously in a single diagram. In other words, for hundreds of time steps 

and simulation results, it is now possible to depict the temporal development of 

the crash behavior, see figure 1. In the figure, every point represents a result of 

a simulation at one time step, we show in this way a position for each 

simulation at each time step. In this case, the bifurcation of the simulation 

results is clearly visible using the elementary components. It is easy to see how 

all simulations start with the same geometry and then form two different modes 

over time. In particular, the specific time step of the bifurcation is 

approximately identified. 

 

 

Figure 1: Comparative analysis of about 100 time-dependent simulations. Every point 
represents a simulation at a specific time step. A bifurcation is obvious; two modes of 
the deformations are clearly visible. The specific time step of the bifurcation is also 
approximately identifiable. 
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4.2.  Comparison with Experimental Collisions  

4.2.1.   Deformation  

The decomposition based on the described stochastic approach delivers not 

only a decomposition in translations and rotations. Global deformations of a 

structure as well as local deformations are obtained as elementary components. 

Based on said basis, we implemented a matching process between a simulation 

and high resolution 3D measurements coming from real crash experiment. As a 

result, an innovative comparison between real and simulated deformations is 

now possible. 

 

Figure 2: The decomposition of the geometry into elementary components enables an 
easily computable morphing of the simulation mesh. Using that, a matching of a mesh 
with a measured point cloud obtained from the experiment is possible. 

In figure 2, a beam and a synthetic 3D measurement, both with different 

deformations, are shown on the left hand-side. The elementary components are 

made of different local deformations and one of those is essentially 

corresponding to the bending of the front part. In an optimization step the 

spectral coefficients corresponding to the components are modified until the 

discrete simulation data approximates the real deformation of the structure. The 

obtained result is shown on the right hand-side of figure 2.  

 

4.2.2.   Alignment 

We will now present results from a real test-structure studied in the internal 

Fraunhofer project “Hochgeschwindigkeits-3D-Messdatenerfassung zur 

Validierung von Experiment und Simulation in der Crashbewertung”, together 



with Fraunhofer EMI and IOF. In the experimental setup, the structure gets 

under load by an accelerated mass. In the course of the project, several real 

experiments were performed, but we will focus on one to illustrate our 

approach for comparing simulation and experiment. A FE-model, which 

describes the test structure, was designed at Fraunhofer EMI, see figure 3. 

 

Figure 3: Finite-element model of the test-structure. 

The position of the camera allows the measurement of a 3D point cloud 

covering parts of the upper beam, see figure 4 (left). About 45 numerical crash 

simulations were performed, with a spot weld thickness randomly chosen 

between [1.8, 2.19], see figure 4 (right) for an illustration of the setup. 

 

 

 

 

Figure 4: The test structure that was used for the experiments. The point cloud from 
the real experiment (left), a finite-element model of the test-structure and the extracted 
beam for the analysis (right). 
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For the alignment and data analysis the following steps were done: 

1. Computation of the stochastic basis from the simulations and the spectral 

coefficients in this basis for the simulation results. 

2. Calculation of the spectral coefficients for the experimental data. 

3. Identification of the simulation that is the closest to the experiment by 

comparing the spectral coefficients. A joint visualization of an 

experiment together with a matching simulation is shown in figure 5. 

4. Dimensionality reduction using diffusion maps. 

 

 

 

Figure 5: Superposition of data from an experiment and a simulation, as a result of the 

introduced alignment procedure. 

Here, the dimensionality reduction enables an overview of all 46 simulations in 

terms of spot weld thickness. See figure 6 for a lower-dimensional embedding 

of the time-dependent simulations, where the input data for diffusion maps are 

the Euclidean distances of the spectral coefficients computed by the introduced 

procedure. 



 

Figure 6: Embedding of 46 simulations and 61 time steps using diffusion maps. The 
color of each point indicates the value of the spot weld for the corresponding 
simulation. 

 

We clearly observe the different modes, see the grey images in figure 6 to 

compare the bending-behavior. The left side of the three-dimensional 

embedding corresponds to the deformations starting in the upper area; the right 

side corresponds to those starting in the lower area. Outliers are also included; 

these unstable deformations are different to both modes. In addition, figure 6 

clearly shows that the spot weld thickness has a strong influence on the 

obtained deformation behavior.  

In a further analysis, we now locate the coordinates of the experimental data in 

the embedding. This allows an evaluation of both, simulation and experimental 

data, regarding the choice of parameters, see figure 7. 

We showed here an exemplary comparison between numerical simulations and 

physical experiments using our new approach. The investigation of a real car 

component under load will be part of our ongoing further research. 
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Figure 7: Embedding of experimental and simulation data using diffusion maps. The 
blue points represent the experimental data as it is aligned with the simulation results 
in the course of time. 

 

4.2.3.   Alignment with the von Mises Stress 

In a real crash scenario, the focus of the development process lays not 

necessarily on the upper beams, but on the beams at the bottom, which are 

connected to the firewall of the car. The used test structure is, however, so 

robust, that the beams at the bottom have not been significantly deformed in 

the experiments, so that their deformation behavior is already very robust. 

Nevertheless, it is important to examine the influence of the beams from the 

upper part on those at the bottom, especially in view of the changes in the spot 

welds. To study this behavior we will now take from the numerical simulation 

results the von Mises stress of the parts at the bottom as an input data for the 

data analysis, see figure 8. 



 

Figure 8: Image of the test structure. The frame marks the area from which the von 
Mises stress data stems. 

For the analysis of the deformations, we use the diffusion maps approach. Here 

the von Mises stress from the bottom of the structure was taken; the 

corresponding embedding can be seen in figure 9. Interestingly, one can get 

information on the deformation of the upper structure from this embedding 

obtained from the von Mises stress. As in the analysis before, three 

characteristic modes were found: a) the deformation begins at the top of the 

part and b) the deformation begins on the bottom and c) outliers. Since we are 

able to align the experimental result with the numerical simulations, we know 

the approximate position of the experiment also in this embedding by taking 

the simulation with the closest deformation. Thereby, we can indirectly 

determine to which mode of the von Mises stress the experimental result 

belongs. 
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Figure 9: Embedding according to the von Mises stress at time step 20. Here the color 
of each simulation corresponds to the thickness of the spot weld. Characteristic 
deformations for every group are shown as well. The real experiment is located in the 
group at the bottom right.  

 

5. Conclusion 

We proposed new approaches for the evaluation of several simulation results 

that allow an intuitive visual overview for the parameter depending behavior 

during the collision. Additionally, we introduced new approaches for the 

combined analysis of simulation and experimental data. Furthermore, we 

presented an indirect analysis, in which information about the observed 

experimental bending behavior of the upper beams was aligned with the stress 

behavior of the lower beams.   

These methods offer new opportunities for the analysis of many simulation 

results and allow integrating experimental data into such a data analysis. A 

usage of said methods on current industrial cases promises very interesting 

results for the engineering practice.  
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