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I. NEITZEL AND W. WOLLNER

Abstract. In this paper, an elliptic optimization problem with pointwise in-
equality constraints on the state is considered. The main contribution of this
paper are a priori L2-error estimates for the discretization error in the optimal
states. Due to the non separability of the space for the Lagrange multipli-
ers for the inequality constraints, the problem is tackled by separation of the
discretization error into two components. First, the state constraints are dis-
cretized. Second, with discretized inequality constraints, a duality argument
for the error due to the discretization of the PDE is employed. For the second
stage an a priori error estimate is derived with constants depending on the
regularity of the dual problem. Finally, we discuss two cases in which these
constants can be bounded in a favorable way; leading to higher order esti-
mates than those induced by the known L2-error in the control variable. More
precisely, we consider a given fixed number of pointwise inequality constraints
and a case of infinitely many but only weakly active constraints.

1. Introduction

In this paper, we are concerned with finite element discretization error estimates
for convex elliptic optimal control problems with pointwise state constraints. Due to
the presence of measures in the optimality system, pointwise state constraints pose
a challenge in many questions of numerical analysis. Yet, even though the literature
for state-constrained problems is less complete than for control constrained ones,
some considerable progress has been made in the last years. In addition to the
first results for state-constrained problems on plain convergence, cf. [5], as well as
problems with only finitely many integral state constraints, cf. [4], we would like
to mention, in particular, the results on error estimates for linear-quadratic control
problems from [8] and [16], where the error estimates ‖q̄− q̄h‖L2(Ω) ≤ ch2−d/2−ε for
the optimal controls is shown in d = 2 or d = 3 space dimensions. In [8], the authors
consider variational discretization of a purely state-constrained problem. Due to
the lack of control constraints, this is equivalent to a control discretization with
piecewise linear functions, which is considered in [16], with different techniques.
In addition, [16] contains results for problems with additional control constraints
and a piecewise constant control discretization. For a more complete overview
on state-constrained optimal control problems and further references, we refer the
reader to [11]. Let us also point out new results based on higher regularity of the
Lagrange multipliers, which can be obtained under assumptions on the given data,
in [7]. There, the authors obtain the rate ‖q̄− q̄h‖L2(Ω) ≤ ch| log h| in two and three
space dimensions. The same order of convergence is proven in the context of the
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2 I. NEITZEL AND W. WOLLNER

so called variational discretization in [10, Corollary 3.3] if both the continuous and
discrete control are uniformly bounded in L∞(Ω).

In different settings with only finitely many controls, leading to either completely
finite-dimensional problems with finitely many state constraints, cf. [15], or so-called
semi-infinite programming problems with infinitely many state constraints, cf. [13,
14], higher convergence rates can be established, if some structural assumptions are
satisfied.

On the other hand, problems with control functions and finitely many constraints
have also been of interest to the optimal control community. In [6], a nonconvex
semilinear problem with finitely many pointwise inequality and equality constraints
on the state, and pointwise box constraints on the control has been analyzed for
piecewise constant control approximation. In [12], the authors prove optimal error
estimates for a linear-quadratic problem with finitely many equality constraints on
the state and piecewise linear control discretization.

A rate of convergence for the optimal controls allows to derive the same estimate
for the error for the optimal states by means of a discretization error for the state
equation as well as Lipschitz continuity of the solution operator of the PDE, cf. [8].
However, as numerical experiments in the same paper indicate, this convergence
rate for the state is not necessarily optimal. In contrast to that, in the setting
with finitely many equality state-constraints from [12], the authors could prove
an optimal rate of convergence by means of applying the duality argument of the
Aubin-Nitsche Trick to the whole optimality system. This is possible as the dual
space for given finitely many constraints is separable, in contrast to the setM(Ω)
of regular Borel-measures appearing in the presence of pointwise constraints on all
of Ω.

The present work is concerned with an extension of this technique, i.e., the dual-
ity argument for the optimality system, of [12] to the case of finitely many inequality
constraints on the state. Moreover, we will directly consider the dependence of the
appearing constants with respect to the number of inequality constraints. This
will be done by providing an alternative proof to [12, Lemma 3] that provides the
explicit dependence of the constant with respect to the number and distribution of
the inequality constraints.

The extension of the results from [12] to inequality constraints with explicit
tracking of the appearing constants, allows to have a different continuous problem
associated to each mesh. In certain situations, this will allow us to obtain im-
proved L2-error estimates for the optimal state for a problem with pointwise state
constraints in the whole domain.

To make the idea clear; the standard model for elliptic optimization problems
with pointwise inequality constraints is given by finding (q, u) ∈ L2(Ω) × H1

0 (Ω)
solving

(P)


min J(q, u)

s.t.

{
(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),

u−(x) ≤ u(x) ≤ u+(x) a.e. in Ω,

on a given domain Ω ⊂ Rd, d = 2, 3 with some given bounds u−, u+. The standard
discretization of this problem using some finite element space Vh ⊂ H1

0 (Ω), here we
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consider the lowest order choice, is given by finding (qh, uh) ∈ Vh × Vh

(Ph)


min J(qh, uh)

s.t.

{
(∇uh,∇ϕh) = (qh, ϕh) ∀ϕh ∈ Vh,

u−(xi) ≤ uh(xi) ≤ u+(xi) i = 1, . . . , N,

where the xi, i = 1, . . . , N , are the vertices of the triangulation. As outlined above,
order optimal convergence rates can be derived for the control ‖q − qh‖. However,
estimates for the error in L2 of the state, i.e., ‖u− uh‖, obtained from this control
estimate are suboptimal compared to the numerically observed convergence orders,
as well as compared to the best-approximation to u in Vh. Using the properties
of the discretization and a corresponding interpolation operator Ih it is clear, that
the finitely many inequality constraints in (Ph) correspond to

Ihu−(x) ≤ uh(x) ≤ Ihu+(x) in Ω̄.

We now define an intermediate problem where only the constraints are discretized.
It reads, find (qN , uN ) ∈ L2(Ω)×H1

0 (Ω)

(PN )


min J(q, u)

s.t.

{
(∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ H1

0 (Ω),

u−i ≤ u(xi) ≤ u+
i i = 1, . . . , N,

where we do not necessarily require N to be the number of nodes, but a finite
number that may depend on h. We will show, in Theorem 19, that an estimate of
the form

‖uN − uh‖ ≤ Ch,Nh4−d(| ln(h)|+ 1)7−2d

holds with a constant Ch,N depending on the regularity of the dual problem asso-
ciated to the given choice of h,N , more precisely, the chosen set xi of points for
the inequality constraints. Finally, we will discuss cases in which this constant can
be bounded independently of h,N and, moreover, an estimate for ‖u− uN‖, of at
least the same order, is available.

The rest of the paper is structured as follows. In Section 2, we will introduce
the precise setting of the continuous optimization problem under consideration.
In Sections 3 and 4, we describe the two discretization steps and introduce the
problems (PN ) and (Ph), respectively. Then, in Section 5, we collect several known
results regarding the discretization error for the PDE. In Section 6, we show the
above claimed error estimate between ūN and ūh, the optimal states of (PN ) and
(Ph). Here, we consider N pointwise state constraints, where N can either be fixed
or mesh-dependent. We point out that in the latter case, we do not necessarily
require the constraints to be prescribed in the grid points. The main result of this
section is stated in Theorem 19. It is obtained using an appropriate dual problem,
i.e., we apply the Aubin-Nitsche trick to the optimality system.

In Section 7, we discuss the implication of the main Theorem 19 in special
situations where the constant Ch,N can be bounded. These situations are, finitely
many pointwise inequality constraints in a fixed given set of N points which may or
may not coincide with the vertices of the mesh. Secondly, we consider the case where
pointwise constraints are prescribed on Ω. In this case, we confine our discussion
to a setting with only weakly active constraints.

In both cases, we eventually arrive at an error estimate of roughly order O(h4−d)
for the states ū and ūh. To put these results in perspective, we point out that in
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space dimension d = 2, this is roughly order O(h2), a result that was not available
before. In space dimension d = 3, we obtain roughly the order O(h), which is stated
in [10, Corollary 3.3] and [7], yet without the additional assumptions on uniform
boundedness of the discrete solutions in the former and boundedness of the desired
state, in the definition of J , in the latter case.

2. The Continuous Problem (P) and its Properties

In this section, we will analyze the continuous state-constrained Problem (P)
with respect to existence and regularity of solutions, optimality conditions, and
auxiliary properties that are needed in the subsequent analysis. In what follows,
we will use standard notation for Lebesgue and Sobolev spaces. The norm and
scalar product on L2 will be given by ‖ · ‖ and (·, ·). Norms on the Sobolev spaces
W s,p will be denoted by ‖ · ‖s,p. Further, the duality pairing between the space of
continuous functions and its dual M(Ω), the space of all regular Borel measures,
will be denoted by 〈·, ·〉.

As a prototypical model, we consider the partial differential equation coupling
the state u ∈ H1

0 (Ω) =: V and the control q ∈ L2(Ω) =: Q to be Poisson’s problem
on a convex smooth or polygonal domain Ω ⊂ Rd, d = 2, 3, with boundary Γ. As
cost functional, we consider L2-tracking with some given desired state ud ∈ L2(Ω)
together with a Tikhonov regularization with parameter α > 0 acting on q.

Remark 1. To avoid technicalities, we consider H2 regular problems to assert
full approximation orders within the finite element approximation of the PDE. The
required convexity of the domain in the case of a smooth boundary is only needed to
assert that the standard finite element space is indeed a subspace of H1

0 (Ω); to avoid
a technical, but possible, discussion of additional terms due to a non conforming
discretization.

Moreover, let two functions u± ∈ C(Ω̄)∩H2(Ω) be given that satisfy u− < u+ as
well as u−(x) < 0 < u+(x) for all x ∈ ∂Ω. We consider the following optimization
problem

(2.1)
Minimize J(q, u) =

1

2
‖u− ud‖2 +

α

2
‖q‖2

s.t. (∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ V,
u−(x) ≤ u(xi) ≤ u+(x) ∀x ∈ Ω̄.

By unique solvability of the state equation, the control-to-state coupling defines
a continuous linear map S : Q → V given by S(q) = u(q). Moreover, by our
assumptions on Ω the map S defines an isomorphism Q → V ∩H2(Ω). Note that
H2 ↪→ C(Ω) holds due to well known Sobolev embeddings, cf. [1]. In the following,
we will implicitly use embeddings from V ∩H2(Ω) into C(Ω) as well as into L2(Ω)
without explicitly mentioning these.

Remark 2. We point out that by continuity of the states u(q) and the conditions
on u±, the constraints can only be active in an interior subdomain Ω0 of Ω and the
distance of active points to ∂Ω can be estimated by a constant that depends only on
the given data.

We define a reduced formulation of the optimal control problem in the usual way,
i.e., we consider
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(P)
Minimize j(q) := J(q, S(q))

s.t. u−(x) ≤ S(q)(x) ≤ u+ ∀x ∈ Ω̄.

The existence of an optimal solution to Problem (P) is obtained in a standard
way since one shows by straight forward calculations that the set of feasible controls,

Qfeas := {q ∈ Q : u−(x) ≤ S(q)(x) ≤ u+(x), ∀x ∈ Ω̄},
is not empty. The - by strict convexity - unique optimal control will be denoted by
q, with associated optimal state u. Moreover, there exists a Slater point qτ and a
real number τ such that u− + τ ≤ S(qτ ) = uτ ≤ u+ − τ . It is then clear that also
‖u+ − u−‖∞ ≥ 2τ .

Based on the Slater condition, we can now formulate the first order necessary
optimality conditions for Problem (P). Note that by convexity, these are also suf-
ficient.

Theorem 3. A control q ∈ Qfeas with associated state u = S(q) is an optimal
solution of Problem (P) if and only if there exist nonnegative Lagrange multipliers
µ+, µ− ∈ M(Ω) as well as an adjoint state z ∈ W 1,s

0 (Ω), s < d
d−1 , such that the

adjoint equation

(2.2) (∇ϕ,∇z) = (ϕ, u− ud) + 〈µ+ − µ−, ϕ〉 ∀ϕ ∈W 1,s′

0 (Ω)

with 1
s + 1

s′ = 1, the gradient equation

(2.3) αq + z = 0,

and the complementary slackness conditions

(2.4) 〈µ+, u− u+〉 = 〈µ−, u− − u〉 = 0

are fulfilled.

Proof. The proof follows along the lines of [3]. �

For further reference, we split the adjoint state z̄ = z̄0 + z̄µ into a regular part
z0 ∈ H1

0 (Ω) solving

(∇ϕ,∇z0) = (u− ud, ϕ) ∀ ϕ ∈ H1
0 (Ω),

and a less regular part z̄µ ∈W 1,s
0 (Ω), s < d

d−1 , given by

(2.5) (∇ϕ,∇z̄µ) = 〈µ̄+ − µ̄−, ϕ〉 ∀ ϕ ∈W 1,s′

0 (Ω).

We note, that for some cases it is suitable to consider simply a feasible point.
We will denote such a point by q0 which is compatible with the definition of the
Slater point qτ , although q0 is not a Slater point itself.

Lemma 4. There exists a constant C > 0 such that the following bounds on the
variables given by Theorem 3 hold:

‖q‖+ ‖u‖+ ‖z0‖ ≤ C(‖ud‖+ ‖q0‖) =: C0,

‖µ+‖M(Ω) + ‖µ−‖M(Ω) ≤
C

τ
(‖ud‖+ ‖q0‖+ ‖qτ‖)(‖ud‖+ ‖q0‖)

=: Cτ .

Without loss of generality, we assume 1 ≤ C0 ≤ Cτ .
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Proof. Utilizing J(q, u) ≤ J(q0, u0), and the given form of the cost functional, the
assertion is shown for q and u. Elliptic regularity proves the result for z0.

To see the bound on µ±, we proceed by meanwhile standard calculations with
the optimality system and test the adjoint equation (2.2) with u−uτ ∈ V ∩H2(Ω).
We obtain, utilizing (2.4) and the definition of the Slater point,

(∇(u− uτ ),∇z)− (u− uτ , u− ud) = 〈µ̄+, u− uτ 〉+ 〈µ̄−, uτ − u〉
= 〈µ̄+, u+ − uτ 〉+ 〈µ̄−, uτ − u−〉
≥ τ(‖µ̄+‖M(Ω) + ‖µ̄−‖M(Ω)),

noting that the supports of µ̄+ and µ̄− are disjoint. Using the state equation, we
conclude

τ(‖µ̄+‖M(Ω) + ‖µ̄−‖M(Ω)) ≤ (q − qτ , z)− (u− uτ , u− ud)

≤ (q, z)− (u, u− ud)− (qτ , z) + (uτ , u− ud)

≤ C(‖ud‖+ ‖q0‖)2 + C‖qτ‖(‖ud‖+ ‖q0‖).

This shows the assertion. �

Note that the optimality system from Theorem 3 implies additionalW 1,s-regularity
of the optimal control q, obtained by means of the gradient equation (2.3).

Corollary 5. With the notation of Lemma 4, for any s < d
d−1 , we have q ∈

W 1,s(Ω), u, z0 ∈ V ∩H2(Ω) and there exists a constant C > 0 such that

‖u‖2,2 + ‖z0‖2,2 ≤ C(‖ud‖+ ‖q0‖),
‖q‖1,s ≤ CCτ

holds.

Proof. The assertion follows from the previous Lemma 4 together with elliptic reg-
ularity. �

3. The Problem (PN) with Finitely Many State Constraints and its
Properties

In this section, we will introduce a problem with finitely many pointwise state
constraints, relying on the same assumptions and using the same notations as in the
previous section. Recall that the states u = S(q) are continuous with homogeneous
Dirichlet boundary conditions and thus the constraints can only be active in an
interior subdomain of Ω denoted by Ω0. We will therefore consider some given,
fixed points xi ⊂ Ω0, i ∈ BN = {1, . . . , N} in which we impose pointwise inequality
constraints, and the two vectors u− < u+ ∈ RN are obtained from evaluating u±
at xi ∈ Ω0, i = 1, . . . , N with dist(Ω0,Γ) > 0. We point out that we do not require
the xi to be grid points, yet to have pairwise positive distance.

We consider the following optimization problem

(3.1)

Minimize J(q, u)

s.t. (∇u,∇ϕ) = (q, ϕ) ∀ϕ ∈ V,
u−i ≤ u(xi) ≤ u+

i i ∈ BN .
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Since the problem is governed by the same partial differential equation as Prob-
lem (2.1), we use the same control-to-state operator and obtain the reduced problem
formulation

(PN )
Minimize j(q)

s.t. u−i ≤ S(q)(xi) ≤ u+
i i ∈ BN .

Obviously, the set of feasible controls,

QNfeas := {q ∈ Q : u−i ≤ S(q)(xi) ≤ u+
i , i ∈ BN},

is not empty since it contains the set Qfeas. The - by strict convexity - unique
optimal control will be denoted by qN , with associated optimal state uN . Also, the
Slater point qτ for Problem (2.1) is a Slater point for Problem (PN ) independent
of N as well. It is clear that also |u+

i − u
−
i | ≥ 2τ .

Optimality conditions for Problem (PN ) can now be obtained analogously to
Problem (P). However, since there are only finitely many constraints, the Lagrange
multipliers have a specific structure, compare [3] for problems with only finitely
many active points. We denote the associated space of Lagrange multipliers by

M =MN = {µ ∈M(Ω) |µ =
∑
i∈BN

µiδxi},

where δxi
denotes the Dirac measure associated to xi ∈ Ω0. In particular, the norm

onM is given by

|µ|M = ‖µ‖C∗ = sup
v∈C(Ω0)

〈v, µ〉
‖v‖

=
∑
i∈BN

|µi|.

In contrast to (P) the space M ⊂ M(Ω) is separable. We obtain the following
analogue to Theorem 3.

Theorem 6. A control qN ∈ Qfeas with associated state uN = S(qN ) is an optimal
solution of Problem (PN ) if and only if there exist nonnegative Lagrange multipliers
µ+
N , µ

−
N ∈M =MN as well as an adjoint state zN ∈W 1,s

0 (Ω), s < d
d−1 , such that

the adjoint equation

(3.2) (∇ϕ,∇zN ) = (ϕ, uN − ud) + 〈µ+
N − µ

−
N , ϕ〉 ∀ϕ ∈W

1,s′

0 (Ω)

with 1
s + 1

s′ = 1, the gradient equation

(3.3) αqN + zN = 0,

and the complementary slackness conditions

(3.4) 〈µ+
N , uN − u

+〉 = 〈µ−N , u
− − uN 〉 = 0

are fulfilled.

Proof. As for Theorem 3, the proof follows along the lines of [3]. �

For any i ∈ BN , we have the associated Green’s function zi ∈W 1,s
0 (Ω), s < d

d−1
given by

(3.5) (∇ϕ,∇zi) = ϕ(xi) ∀ ϕ ∈W 1,s′

0 (Ω).

With this we can split the adjoint state as zN = z0,N +
∑
i∈BN

(µ+
i,N −µ

−
i,N )zi with

µ±i,N ∈ R+ where µ±N =
∑
i∈BN

µ±i,Nδxi
and z0,N ∈ H1

0 (Ω) solves

(∇ϕ,∇z0,N ) = (uN − ud, ϕ) ∀ ϕ ∈ H1
0 (Ω).
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Analogous to Lemma 4 and Corollary 5 we obtain:

Lemma 7. For the variables given by Theorem 6, there exists a constant C > 0
such that the estimates

‖qN‖+ ‖uN‖+ ‖z0,N‖ ≤ C(‖ud‖+ ‖q0‖),
|µ+
N |M + |µ−N |M ≤ Cτ

hold.

Corollary 8. With the notation of Lemma 7, for any s < d
d−1 , we have qN ∈

W 1,s(Ω), uN , z0,N ∈ V ∩H2(Ω) and there exists a constant C > 0 such that

‖uN‖2,2 + ‖z0,N‖2,2 ≤ C(‖ud‖+ ‖q0‖),
‖qN‖1,s ≤ CCτ

holds.

4. The Discrete Problem (Ph) and its Properties

Consider a typical discretization Th of Ω into triangular or tetrahedral elements
K fulfilling the usual conformity and shape regularity conditions, cf., [2]. The
discretization parameter h denotes the maximum element size, i.e., h := maxhK ,
where hK denotes the diameter of a element K. The standard conforming finite
element space is given by

Vh := {v ∈ C(Ω): v|K ∈ P1(K) for K ∈ Th}.

Here, P1(K) denotes the space of linear polynomials. For a given control q ∈ Q,
the discrete version of the state equation is then given by

(4.1) (∇uh,∇ϕh) = (q, ϕh) ∀ϕh ∈ Vh.

The discrete state equation defines an operator Sh : Q → Vh. We arrive at the
following discrete problem

(Ph)

Minimize J(qh, uh)

s.t. (∇uh,∇ϕh) = (qh, ϕh) ∀ϕh ∈ Vh,
u−i ≤ uh(xi) ≤ u+

i i ∈ BN ,

which we can equivalently express in reduced form as

(Ph)
Minimize jh(q) := J(q, Sh(q))

s.t. u−i ≤ Sh(q)(xi) ≤ u+
i i ∈ BN .

Note that we follow the variational discretization concept introduced by Hinze [9],
i.e., we do not discretize the control explicitly. We point out that since we do not
consider control constraints, this is equivalent to a full discretization of the optimal
control problem using P1 finite elements. This yields the following definition of
discrete feasible controls:

Qhfeas = {q ∈ L2(Ω) |u−i ≤ (Shq)(xi) ≤ u+
i ∀i ∈ BN}.

Recall that while the number of constraints may or may not depend on h, it is still
clear by standard error estimates for the state equation, i.e.,

‖S − Sh‖L(L2(Ω),L∞(Ω)) ≤ ch2−d/2,
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that for h small enough the Slater point qτ is also a Slater point for the discrete
problem, w.l.o.g. using the same value τ . This asserts the existence of a feasible
point for (Ph) and hence a unique solution of (Ph), and, moreover, the existence
of discrete Lagrange multipliers. For ease of presentation, we will not consider
the superscript N in the notation for the discrete optimal variables, although the
problem may depend on the set {xi | i ∈ BN}.

Corollary 9. For h small enough, there exists a unique optimal control q̄h with
associated optimal state ūh = Sh(q̄h) to the discretized problem (Ph).

Theorem 10. For h small enough, a control qh ∈ Qhfeas with associated state
uh = Sh(qh) is an optimal solution of Problem (Ph) if and only if there exist
nonnegative Lagrange multipliers µ+

h , µ
−
h ∈M as well as an adjoint state zh ∈ Vh,

such that the discrete adjoint equation

(4.2) (∇ϕ,∇zh) = (ϕ, uh − ud) + 〈µ+
h − µ

−
N,h, ϕ〉 ∀ϕ ∈ Vh,

the discrete gradient equation

(4.3) αqh + zh = 0,

and the complementary slackness conditions

(4.4) 〈µ+
h , uh − u

+〉 = 〈µ−h , u
− − uh〉 = 0

are fulfilled.

Analogous to the continuous case, for any i ∈ BN , we have the associated discrete
Green’s function zi,h ∈ Vh given by

(4.5) (∇ϕ,∇zi,h) = ϕ(xi) ∀ ϕ ∈ Vh.

With this we can split the adjoint state as zh = z0,h +
∑
i∈BN

(µ+
h,i − µ

−
h,i)zi,h with

µ±h,i ∈ R+ where µ±h =
∑
i∈BN

µ±h,iδxi
and z0,h ∈ Vh solving

(∇ϕh,∇z0,h) = (uh − ud, ϕh) ∀ ϕh ∈ Vh.

Lemma 11. For the variables given by Theorem 10, there exists a constant C > 0
such that the bounds

‖qh‖+ ‖uh‖+ ‖z0,h‖ ≤ C(‖ud‖+ ‖q0‖),
|µ+
h |l1 + |µ−h |l1 ≤ Cτ

hold. Here, w.l.o.g., the constant Cµ given by Lemma 4 can be used.

Proof. This is analogous to Lemma 4. �

5. Auxiliary Results

In preparation of our error estimates, we collect some auxiliary results. Let us
first point out that by standard finite element estimates, we know with s < d

d−1 ,
there is some ε > 0 such that

‖S − Sh‖L(L2(Ω),L2(Ω)) ≤ ch2,

‖S − Sh‖L(L2(Ω),L∞(Ω)) ≤ ch2−d/2,

‖S − Sh‖L(W 1,s(Ω),L∞(Ω0)) ≤ ch2−ε.



10 I. NEITZEL AND W. WOLLNER

We refer to [18] for the finite element error on S in L(W 1,s, L∞). The estimates
in L(L2, L2) and L(L2, L∞) are standard finite element error estimates. We also
collect a few standard estimates for the finite element error for the PDE solution,
as they are provided in [12]. The only update is the explicit dependence on the
Slater point since we will need it in our subsequent analysis.

Lemma 12. Denote by u(q) and uh(q) the solutions to the state equation and
its discretization (4.1) with given, fixed, right-hand-side q. Then, for the optimal
controls qN and qh to (PN ) and (Ph) it holds

|uN (xi)− uh(qN )(xi)| ≤ CCτh4−d(| lnh|+ 1)7−2d,

|u(qh)(xi)− uh(xi)| ≤ CCτh4−d(| lnh|+ 1)7−2d,

where (qN , uN ) solve (PN ) and (qh, uh) solve (Ph).

Proof. The proof can be found in [12, Corollary 1], with the obvious modifications
due to the bounds on the multipliers given in Lemma 7 and Lemma 11. �

Lemma 13. Let (qN , uN ) solve Problem (PN ) and (qh, uh) solve Problem (Ph).
Then there exists a constant C > 0 such that

‖uN − uh‖ ≤ C‖qN − qh‖+ Ch2(‖ud‖+ ‖q0‖),

‖∇(uN − uh)‖ ≤ C‖qN − qh‖+ Ch(‖ud‖+ ‖q0‖)
holds

Proof. This is analogous to [12, Lemma 7]. �

Lemma 14. Let (qN , uN ) solve Problem (PN ) and (qh, uh) solve Problem (Ph).
Further, we define z0,N , z0,h, zi, and zi,h as in the discussion after Theorems 6
and 10. Then it holds

‖z0,N − z0,h‖ ≤ C‖qN − qh‖+ Ch2(‖ud‖+ ‖q0‖),

‖∇(z0,N − z0,h)‖ ≤ C‖qN − qh‖+ Ch(‖ud‖+ ‖q0‖),

‖zi − zi,h‖ ≤ Ch2−d2 .

Proof. This is analogous to [12, Lemma 8 and Lemma 9]. �

6. An Error Estimate between (PN) and (Ph)

6.1. The Dual Problem. We remind the reader, that for the optimal controls qN
and qh to Problems (PN ) and (Ph), respectively, and any ε > 0 there exists C > 0
such that

‖qN − qh‖ ≤ CCτh1−ε,

compare, for instance [8, 16].
From this we conclude that the respective optimal states uN and uh to (PN )

and (Ph) converge in L∞(Ω), since standard L∞ estimates for the discretization of
the PDE, see, e.g., [17], together with Lipschitz continuity of the solution operator
S : L2(Ω)→ L∞(Ω), guarantee

‖uN − uh‖∞ ≤ CCτh1−ε.

In particular, for

h ≤
( 2τ

CCτ

)1/(1−ε)
,
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we conclude that

{i ∈ BN | µ̄+
i,N > 0 or µ̄+

i,h > 0} ∩ {i ∈ BN | µ̄−i,N > 0 or µ̄−i,h > 0} = ∅,

i.e., the discretization does not lead to points in which the state switches from the
upper to the lower bound or vice versa.

Before we come to the proof of the main result of this paper, we need to state
an appropriate dual problem. The resulting dual is similar to the one considered
in [12] with some modifications due to the consideration of inequality constraints
and the possible increase of the number of constraints as h→ 0.

To this end, we define the following sets:

A+
+ = {i ∈ BN | (µ̄+

h − µ̄
+
N )i > 0},

A+
− = {i ∈ BN | (µ̄+

h − µ̄
+
N )i < 0},

A−+ = {i ∈ BN | (µ̄−N − µ̄
−
h )i > 0},

A−− = {i ∈ BN | (µ̄−N − µ̄
−
h )i < 0}.

By this construction it follows:

(6.1)

i ∈ A+
+ ⇒ uh(xi) = u+

i ,

i ∈ A+
− ⇒ uN (xi) = u+

i ,

i ∈ A−+ ⇒ uN (xi) = u−i ,

i ∈ A−− ⇒ uh(xi) = u−i .

From our above arguments, we conclude that all four sets are pairwise disjoint once
h is sufficiently fine.

Now, let

ũd =
uN − uh
‖uN − uh‖

and pick θ ≥ 0. To shorten notation, we introduce the sets

D+ = A−+ ∪ A+
+, D− = A+

− ∪ A−−.

By definition of these sets, we observe the relations

(6.2)
ūN − ūh ≤ 0 on D+,

ūN − ūh ≥ 0 on D−.

With this we can consider the following dual problem to find (q̃, ũ) solving

(PD)

Minimize
1

2
‖ũ− ũd‖2 +

α

2
‖q̃‖2

s.t. (∇ũ,∇ϕ) = (q̃, ϕ) ∀ϕ ∈ V,
ũ(xi) ≤ −θ i ∈ D+,

ũ(xi) ≥ θ i ∈ D−.

Lemma 15. There exists a Slater point qθτ for Problem (PD).

Proof. This is a direct consequence of the fact that by construction we know that
dist(D+,D−) > ε, where ε = ε(h) > 0 depends on the distance of the points xi. �
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In particular, we assert that there exist Lagrange multipliers µ̃+, µ̃− ∈ M asso-
ciated to the upper bound on D+ and the lower bound on D− and an adjoint state
z̃ ∈W 1,s

0 (Ω) for s < d
d−1 such that

(6.3)

(∇ũ,∇ϕ) = (q̃, ϕ) ∀ϕ ∈ V,

(∇ϕ,∇z̃) = (ũ− ũd, ϕ)

+ 〈ϕ, µ̃+〉 − 〈ϕ, µ̃−〉 ∀ϕ ∈W 1,s′

0 (Ω),

αq̃ + z̃ = 0,

µ̃+
i = 0 ∀i ∈ BN \ D+,

µ̃−i = 0 ∀i ∈ BN \ D−,
〈ũ+ θ, µ̃+〉 = 0,

〈θ − ũ, µ̃−〉 = 0,

µ̃+, µ̃− ≥ 0,

(θ + ũ)(xi) ≤ 0 ∀i ∈ D+,

(θ − ũ)(xi) ≤ 0 ∀i ∈ D−.

Again, we can split z̃ = z̃0 +
∑
i∈BN

(µ̃+
i − µ̃

−
i )zi.

Lemma 16. For the solution of (PD) and the associated variables by (6.3) there
exists a constant C > 0 such that there holds:

‖q̃‖+ ‖ũ‖+ ‖z̃0‖ ≤ C(‖ũd‖+ ‖qθ0‖) =: C̃0,

|µ̃+|M + |µ̃−|M ≤
C

τ
(‖ũd‖+ ‖qθ0‖+ ‖qθτ‖)(‖ũd‖+ ‖qθ0‖)

=: C̃τ .

Without loss of generality, we assume 1 ≤ C̃0 ≤ C̃τ .

Proof. The proof is analog to Lemma 4. �

The essential difficulty at this point is that, in contrast to Cτ , the multiplier
bound C̃τ for the dual problem might degenerate since ‖qθτ‖ might go to infinity
if the distance between the points xi tends to zero. Hence, C̃0 ≤ C̃τ need to be
tracked explicitly.

6.2. The Main Result. We have now collected all needed auxiliary details to
come to the proof of the main result. Before that we restate well known estimates
for the control variable tracking the constant C̃τ explicitly.

Theorem 17. Let qN and qh be the solutions to (PN ) and (Ph). Then there exists
a constant C = cCτ > 0 such that

‖qN − qh‖ ≤ Ch
2−d2 (| ln(h)|+ 1)

7
2−d

holds.

Proof. The proof closely resembles the proofs of [8, Theorem 3.6] and [12, Theo-
rem 4].
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Using the optimality conditions (3.2) we obtain

(u(qh)− uN , uN − ud) = (∇z,∇(u(qh)− uN ))−
∑
i∈BN

(µ+
i,N − µ

−
i,N )(u(qh)− uN )(xi)

= (z, qh − qN )−
∑
i∈BN

(µ+
i,N − µ

−
i,N )(u(qh)− uN )(xi)

= − α(qN , qh − qN )−
∑
i∈BN

(µ+
i,N − µ

−
i,N )(u(qh)− uN )(xi).

For the difference in the functional values, we obtain from the above calculation

(6.4)

j(qh)− j(qN ) =
1

2
‖u(qh)− uN‖2 +

α

2
‖qN − qh‖2

+ (u(qh)− uN , uN − ud) + α(qN , qh − qN )

=
1

2
‖u(qh)− uN‖2 +

α

2
‖qN − qh‖2

−
∑
i∈BN

(µ+
i,N − µ

−
i,N )(u(qh)− uN )(xi).

By an analogous calculation, we obtain

(6.5)
jh(qN )− jh(qh) =

1

2
‖uh − uh(qN )‖2 +

α

2
‖qN − qh‖2

−
∑
i∈BN

(µ+
i,h − µ

−
i,h)(uh − uh(qN ))(xi).

Summation of the equations (6.4) and (6.5) yields

(6.6)

α‖qN − qh‖2 ≤ |j(qN )− jh(qN )|+ |j(qh)− jh(qh)|

+
∑
i∈BN

(µ+
i,N − µ

−
i,N )(u(qh)− uN )(xi)

+
∑
i∈BN

(µ+
i,h − µ

−
i,h)(uh − uh(qN ))(xi).

To continue, we note that, due to the nonnegativity of µ̄+
N , complementary slack-

ness (3.4), and feasibility of uh, it holds∑
i∈BN

µ+
i,N (u(qh)− uN )(xi) =

∑
i∈BN

µ+
i,N (u(qh)− u+ + u+ − uN )(xi)

=
∑
i∈BN

µ+
i,N (u(qh)− u+)(xi)

≤
∑
i∈BN

µ+
i,N (u(qh)− uh)(xi)

≤ |µ+
N |l1 max

i∈BN

|u(qh)− uh)(xi)|.

By Lemma 12 and Lemma 7, we conclude

(6.7)
∑
i∈BN

µ+
i,N (u(qh)− uN )(xi) ≤ CC

2

τh
4−d(| lnh|+ 1)7−2d.
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Analog calculations for the remaining multiplier terms, using Lemma 12 and Lemma 11
for the second sum in (6.6), give

(6.8)
α‖qN − qh‖2 ≤ |j(qN )− jh(qN )|+ |j(qh)− jh(qh)|

+ CC̃2
τh

4−d(| lnh|+ 1)7−2d.

Further, a straightforward calculation for j yields

2|j(qN )− jh(qN )| = ‖uN − ud‖2 − ‖uh(qN )− ud‖2

= (uN − uh(qN ), uN − ud + uh(qN )− ud)

≤ ‖uN − uh(qN )‖(‖uN‖+ ‖uh(qN )‖+ 2‖ud‖)
≤ cC0h

2.

Similarly, we obtain

|j(qh)− jh(qh)| ≤ cC0h
2.

Combining this with (6.8) gives the assertion. �

Theorem 18. Let q̃ be the solution to (PD) and define

q̃h := Ihz̃0 +
∑
i∈BN

(µ̃+
i − µ̃

−
i )zi,h,

with zi,h as in (4.5). Then it holds

‖q̃ − q̃h‖ ≤ CC̃τh2−d2 (| ln(h)|+ 1)
7
2−d.

Proof. The proof is similar to the one for the primal problem in Theorem 17. The
only difference occurs in estimates (6.7) and (6.8), where it is sufficient to point
out that the properties of the interpolant Ih guarantee that q̃h fulfills the estimates
from Lemma 12. �

Theorem 19. There is a constant C > 0, independent of θ, N , h such that for the
solutions uN and uh to (PN ) and (Ph) and the corresponding Lagrange multipliers
µ±N , µ

±
h given by Theorems 6 and 10 it holds

‖uN − uh‖+ θ|µ+
N − µ

+
h |M + θ|µ−N − µ

−
h |M ≤ CC̃τh

4−d(| ln(h)|+ 1)7−2d

with the constant C̃τ as in Lemma 16.

Proof. We abbreviate the errors as follows

eu = uN − uh ∈ V ∩W 1,s′(Ω),

eq = qN − qh ∈ Q,

ez = zN − zh ∈W 1,s
0 (Ω),

eµ
+

= µ+
N − µ

+
h ∈M,

eµ
−

= µ−N − µ
−
h ∈M.

From the second equation in the optimality conditions (6.3) of the dual problem,
we deduce, by definition of ũd,

‖eu‖ = (ũd, eu)

= (ũ, eu) + 〈eu, µ̃+〉 − 〈eu, µ̃−〉 − (∇eu,∇z̃).



L2-ERROR IN STATE CONSTRAINED ELLIPTIC OPTIMIZATION 15

Further, by definition of A±+ and A±−, we assert,

|eµ
+

|M =
∑
i∈A+

+

−eµ
+

i +
∑
i∈A+

−

eµ
+

i ,

|eµ
−
|M =

∑
i∈A−+

eµ
−

i +
∑
i∈A−−

−eµ
−

i .

Further, by the sign and complementarity conditions in (6.3), it follows

0 ≤
∑
i∈A+

+

(θ + ũ)(xi)e
µ+

i −
∑
i∈A−+

(θ + ũ)(xi)e
µ−

i

−
∑
i∈A+

−

(θ − ũ)(xi)e
µ+

i +
∑
i∈A−−

(θ − ũ)(xi)e
µ−

i

= −θ|eµ
+

|M +
∑
i∈A+

+

ũ(xi)e
µ+

i +
∑
i∈A+

−

ũ(xi)e
µ+

i

− θ|eµ
−
|M −

∑
i∈A−+

ũ(xi)e
µ−

i −
∑
i∈A−−

ũ(xi)e
µ−

i .

Combination of the previous calculations with the first and third equation in (6.3)
yields

‖eu‖+ θ|eµ
+

|M + θ|eµ
−
|M ≤ (ũ, eu) + 〈eu, µ̃+〉 − 〈eu, µ̃−〉 − (∇eu,∇z̃)

+
∑

i∈A+
+∪A

+
−

ũ(xi)e
µ+

i −
∑

i∈A−+∪A
−
−

ũ(xi)e
µ−

i

+ (q̃, ez)− (∇ũ,∇ez) + α(eq, q̃) + (eq, z̃).

Reordering the terms according to the equations in the necessary optimality con-
ditions for the primal problem in Theorem 6 and its discretization in Theorem 10
gives

‖eu‖+ θ|eµ
+

|M+θ|eµ
−
|M ≤ (eq, z̃)− (∇eu,∇z̃)

+ (ũ, eu) +
∑

i∈A+
+∪A

+
−

ũ(xi)e
µ+

i −
∑

i∈A−+∪A
−
−

ũ(xi)e
µ−

i − (∇ũ,∇ez)

+ α(eq, q̃) + (q̃, ez)

+ 〈eu, µ̃+〉 − 〈eu, µ̃−〉
≤ (eq, z̃)− (∇eu,∇z̃)

+ (ũ, eu) +
∑

i∈A+
+∪A

+
−

ũ(xi)e
µ+

i −
∑

i∈A−+∪A
−
−

ũ(xi)e
µ−

i − (∇ũ,∇ez)

+ α(eq, q̃) + (q̃, ez).

The last inequality follows from the sign of µ̃±, see (6.2), together with the implied
sign of eu by the construction of A±±, see (6.1). Now, by subtracting the continuous
and discrete state equation, the adjoint equation (3.2) and (4.2) and the gradient
equations (3.3) and (4.3), we see that we can add an arbitrary discrete function on
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the right in each of the three lines. To this end, let q̃h be chosen as in Theorem 18
and define ũh := Sh(q̃h). Then, consider

ẽu = ũ− ũh, ẽq = q̃ − q̃h.
For the approximation of z̃, we define

z̃h = z̃0,h +
∑
i∈B

(µ̃+
i − µ̃

−
i )zi,h ∈ Vh,

where z̃0,h solves
(∇ϕ,∇z̃0,h) = (ũh − ũd, ϕ) ∀ϕ ∈ Vh,

and define
ẽz = z̃ − z̃h.

Thus we obtain

(6.9)

‖eu‖+ θ|eµ
+

|M + θ|eµ
−
|M ≤ (eq, ẽz) + (ẽu, eu) + α(eq, ẽq) + (ẽq, ez)

− (∇ẽu,∇ez)− (∇eu,∇ẽz)

+
∑

i∈A+
+∪A

+
−

ẽu(xi)e
µ+

i −
∑

i∈A−+∪A
−
−

ẽu(xi)e
µ−

i .

Now, due to the gradient equation (3.3) and its analogs for the discrete and dual
problem, and the stability of the solution operator, we see that

(ẽu, eu) + α(eq, ẽq) + (ẽq, ez) ≤ C‖eq‖‖ẽq‖.
From Theorems 17 and 18 we conclude,

(6.10)
(ẽu, eu)+ α(eq, ẽq) + (ẽq, ez)

≤ CC̃τh4−d(| ln(h)|+ 1)7−2d

Now, we note that to estimate the term (eq, ẽz) it is sufficient to bound

‖ẽz‖ ≤ ‖z̃0 − z̃0,h‖+
∑
i∈BN

|µ̃+
i − µ̃

−
i |‖zi − zi,h‖

≤ C‖ẽq‖+ cC̃0h
2 + CC̃τh

2−d2

≤ CC̃τh2−d2 ,

where the last inequality follows from Lemma 14 applied to the dual problem and
the bound on the l1-norm of the multipliers in Lemma 7. Theorem 18 and Theo-
rem 17 yield

(6.11) (eq, ẽz) ≤ CC̃τh4−d(| ln(h)|+ 1)7−2d.

To proceed, we recall that

ez = z0,N − z0,h +
∑
i∈BN

(
(µ+
i − µ

−
i )zi − (µ+

i,h − µ
−
i,h)zi,h

)
.

We have, by Theorems 17 and 18 as well as Lemma 13 and 14, neglecting higher
order terms in h,

(6.12)

(∇ẽu,∇(z0,N − z0,h)) ≤ C‖q̃ − q̃h‖‖uN − uh‖
≤ C‖q̃ − q̃h‖‖qN − qh‖

≤ CC̃τh4−d(| ln(h)|+ 1)7−2d.
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To continue, we calculate, for any i ∈ BN noting that zi is the Green’s function for
the point xi,

(6.13)
(∇ẽu, µ+

i ∇zi − µ
+
i,h∇zi,h) = eµ

+

i (∇ẽu,∇zi) + µ+
i,h(∇ẽu,∇(zi − zi,h))

= eµ
+

i (ũ− ũh)(xi) + µ+
i,h(∇ẽu,∇(zi − zi,h)).

For the last summand, we use Galerkin orthogonality twice and get, using the
properties of the Green’s function and Lemma 12 applied to the dual problem,

|(∇ẽu,∇(zi − zi,h))| = |(∇(ũ− uh(q̃)),∇(zi − zi,h))|
= |(∇(ũ− uh(q̃)),∇zi)|
= |(ũ− uh(q̃))(xi)|

≤ CC̃τh4−d(| lnh|+ 1)7−2d.

Combining the last equation with (6.13), (6.12), we obtain, using analog calculations
for the terms involving µ−i,N ,

(6.14)

−(∇ẽu,∇ez) ≤ CC̃τh4−d(| ln(h)|+ 1)7−2d

−
∑
i∈BN

eµ
+

i (ũ− ũh)(xi) +
∑
i∈BN

eµ
−

i (ũ− ũh)(xi)

+ CC̃τh
4−d(| lnh|+ 1)7−2d

∑
i∈BN

(µ+
i,h + µ−i,h)

≤ CC̃τh4−d(| ln(h)|+ 1)7−2d

−
∑

i∈A+
+∪A

+
−

eµ
+

i (ũ− ũh)(xi) +
∑

i∈A−+∪A
−
−

eµ
−

i (ũ− ũh)(xi),

where, for the last inequality, we used the bounds on |µ±h |l1 from Lemma 11.
Noting that the last two sums are the same as those in (6.9) except for the

opposite sign. We can combine (6.9), (6.10), (6.11), and (6.14) to obtain:

(6.15) ‖eu‖+ θ|eµ
+

|M + θ|eµ
−
|M ≤ CC̃τh4−d(| ln(h)|+ 1)7−2d − (∇eu,∇ẽz).

For the remaining term, we calculate, analog to (∇ẽu,∇ez), as follows

(∇eu,∇ẽz) ≤ CC̃τh4−d(| ln(h)|+ 1)7−2d

+
∑
i∈BN

(µ̃+
i − µ̃

−
i )(uN − uh(qN ))(xi).

Hence, Lemma 12 and the l1 bound on the dual multipliers in Lemma 16 prove the
assertion. �

7. Implications of Theorems 19

In the following, we will consider two special cases in which we can show a bound
on C̃τ independent of the variables h and N . From Lemma 16, we know that we
have to construct a suitable dual Slater point qθτ .
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7.1. Finitely Many Constraints. We start our discussion with the case that one
is interested in the solution of (PN ) with a given fixed finite set BN . In this case
BN is independent of h. It is then intuitively clear that the constant C̃τ defined
in Lemma 16 and used in Theorem 19 is bounded independently of h while the
dependence on N is irrelevant since N is fixed. To make this precise, we have the
following result:

Theorem 20. Let BN be a given, fixed, finite set. Then there exists a constant C
depending on BN but independent of h, such that for h sufficiently small the error
estimate

‖uN − uh‖+ |µ+
N − µ

+
h |M + |µ−N − µ

−
h |M ≤ Ch

4−d(| ln(h)|+ 1)7−2d

holds for the solution uN of (PN ) and uh of (Ph) with corresponding Lagrange-
multipliers µ±N and µ±h .

Proof. In view of the results of Theorem 19, the only thing left to be proven is that
the constant C̃τ coming from Lemma 16 can be chosen independent of h.

This is indeed the case. For the construction of the dual Slater point q1
1 , i.e.,

θ = 1 and τ = 1, we observe that the finitely many points in BN have positive
distance. Hence there exists ε > 0 such that the balls Bε(xi) for i ∈ BN do not
intersect. Consequently, for each i there exists a C∞0 (Ω) function ui such that
ui(xi) ≥ 2 = θ + τ and ui ≡ 0 on Ω \ Bε(xi). An appropriate right-hand-side is
defined as qi = −∆ui. Summing these functions qi with appropriate signs gives the
desired Slater point q1

1 independent of h. �

7.2. Weakly Active Constrains. Next, we consider the Problem (P) in the spe-
cial situation where the Lagrange multiplier µ± to the optimal solution (q, u) is
identically zero. In particular, in this situation the optimal pair (q, u) is a solution of
the problem (P) without inequality constraints and consequently (q, u) = (qN , uN )
for any choice of BN . The difficulty in this situation is that while the state con-
straint is irrelevant for the continuous problem; it may still be strictly active for
any discretized problem, i.e., exhibit non-zero multipliers µ±h . The standard dis-
cretization (Ph) for this problem would involve BN to be the set of all vertices on
the given mesh. In this case, we obtain the following error estimate:

Theorem 21. Let (q, u) be a solution to (P) with Lagrange-multiplier µ± ≡ 0,
and let (qh, uh) be the solution of (Ph) with corresponding Lagrange-multipliers µ±h
for the set BN given by all vertices of the mesh. Then there exists a constant C
independent of h such that for h sufficiently small the error estimate

‖u− uh‖+ |µ+ − µ+
h |M + |µ− − µ−h |M ≤ Ch

4−d(| ln(h)|+ 1)7−2d

holds.

Proof. By the preliminary discussion at the beginning of this section, we know that
µ±N ≡ 0 hence by the sign condition on µ±h we know that the sets A+

− = A−+ = ∅.
As a consequence D+ = A+

+ and D− = A−−, i.e., these sets are a subset of the sets
where the upper and lower bounds are strictly active, respectively, for the discrete
problem. Let A+ and A− be the set of active upper and lower bounds for u then
for any ε > 0 the estimate

dist(A+
+,A+) ≤ ε and dist(A−−,A−) ≤ ε
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holds for h sufficiently small by the known, suboptimal, convergence estimates.
Again, as in the proof of Theorem 20, we can pick ε such that

dist(A+,A−) > 3ε.

Noticing that A± have positive distance to ∂Ω independent of h, there exists a
function u ∈ C∞0 (Ω) such that

u(x) = 2, if dist(x,A−) ≤ ε, and u(x) = −2, if dist(x,A+) ≤ ε
and the function q = −∆u is a Slater point for the dual problem with τ = θ = 1
independent of N and h. �
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