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Abstract 

Through the increase of computing power, Large Eddy Simulations (LES) have 

become an invaluable design tool for industrial applications. However, the 

increasing amount of data that is generated in each simulation imposes new 

requirements on data analysis and compression. Two shortcomings of classical 

approaches are addressed in this study. First, due to storage limitations, only a 

limited set of quantities can be extracted from the simulation, but needs to be 

selected in advance. This requires a-prior knowledge about the flow structure 

and an experienced user. Second, classical post-processing starts after the 

simulation is completed. Nevertheless, many effects occur at an early stage of 

the simulation and can give useful insights into trends. Data I/O and computing 

time can be reduced, if they are monitored carefully. 

To address both issues, we apply a spectral basis approach for nonlinear 

dimensionality reduction to turbulent flow data. The spectral basis is derived 

from the eigenvectors of the Laplace-Beltrami (LB) operator which are optimal 

for representing smooth functions on a surface. The solution is projected to the 

LB basis to achieve a compact representation of the flow with a spectral 

separation. We demonstrate our approach on the LES of the turbulent flow 

through a HVAC duct that was studied intensively in the past, e.g. by Jäger, A. 

et al., 2008.  Results are compared to a PCA analysis based on an extensive mesh 

study regarding their compactness and ability to identify large-scale and 

dominant flow features at an earlier state during the simulation. 

 

1. Introduction  

Through the increase of computing power, Large Eddy Simulations (LES) have 

become an invaluable design tool for industrial applications. Compared to 

Reynolds-Averaged approaches, LES provide more detailed insights into 



transient and turbulent effects over several length-scales. However, the large 

amount of data that is generated during the simulation requires new methods for 

data analysis and compression.  

Two major shortcomings of classical approaches are addressed in this study. 

First, due to storage limitations, the entire flow data of LES can usually not be 

retained for all time steps and grid points. Therefore, only a limited set of 

quantities which are defined a priori of the simulation will be extracted during 

run-time. This requires an understanding of the physical effects of the flow 

before the simulation is set up and complicates the investigation of phenomenon 

that arise unexpectedly during the simulation. Second, classical post-processing 

starts after the simulation is completed. But fortunately, many effects already 

occur at an early stage during the simulation and can give useful insights into 

trends, e.g. grid dependency of the results. Data I/O and computing time can be 

saved, if they are monitored carefully. 

In this paper, we apply two different dimensionality reduction techniques to the 

LES of the turbulent flow through a HVAC duct. As a practical relevant test-

case from the automotive industry, the HVAC duct was studied intensively in 

the past (Jäger, A. et al., 2008, Wang, C., 2013) and offers several demanding 

flow features, notably pressure driven flow separation and flow around an 

obstacle. To start, we perform a Principal Component Analysis (PCA) which is 

successfully used for linear dimension reduction of a variety of types of data. 

Applied to flow data, Frederich, O. and Luchtenburg, D., 2011 have shown the 

ability of PCA to extract dominant coherent structures from turbulence. These 

can then be used to investigate and characterize flows by different large-scale 

physical effects, such as vortex shedding or separation. However, in general, 

PCA are not able to pick up the spectral properties of turbulence and thus lacks 

the ability to clearly separate physical effects by their frequency or wave number. 

Besides, the principal axes only account for those statistical effects that they 

were trained on. They can become unstable in case of strong derivation or new 

features. To address both issues, we can construct a spectral basis that respects 

the geometrical boundaries of the test-case, is compact and independent of the 

flow solution. For car-crash simulations, a basis derived from the eigenvectors 

of the Laplace-Beltrami (LB) operator of a surface has successfully extracted 

spectral geometric modes that describe mechanical deformations (Iza-Teran, R., 

2017, Iza-Teran, R. and Garcke, J., 2019). Here, we introduce an extension of 

the approach for the case of turbulence. In this case, the solution is projected to 

the LB basis to achieve a compact representation of the flow with a spectral 

separation. We compare both methods, using an extensive mesh study, regarding 

their compactness and ability to identify large-scale and dominant flow features 

at an early state of the simulation. 

While we can demonstrate the potential of our LB based approach, further 

research will be necessary to develop a more compact basis that can resolve 
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physical effects with high fidelity. For example, an improved statistical 

modeling of small-scale turbulent structures promises additional ways to identify 

flow features for analysis and classification purposes. 
 

2. Laplace-Beltrami Operator for Nonlinear Dimensional Reduction 

As used in Iza-Teran, R., 2017 and Iza-Teran, R. and Garcke, J., 2019 the 

Laplace-Beltrami operator is computed on a surface mesh embedded in three 

dimensional space. This operator is actually a Laplace operator, the difference 

is, that it is evaluated on the surface which is represented in three dimensional 

space.  

The numerical evaluation of the LB operator requires the use of a metric that 

measures the distance along the surface. This distance is called geodesic distance 

and it is computed based on the shortest path algorithm for triangular surface 

meshes as described in Mitchell, J. S. B. et.al 1987. The approach in Iza-Teran, 

R., 2017 and Iza-Teran, R. and Garcke, J., 2019 was shown to provide a compact 

representation for functions defined on the mesh, for example the deformations. 

In general, for functions defined on a surface, it has been shown Aflalo, Y. et.al., 

2015 that the eigenfunctions of the Laplace-Beltrami operator are optimal for 

representing smooth functions. Let 𝑆 be a given Riemannian manifold (e.g. a 

surface) with a metric 𝑔𝑖𝑗 and an induced Laplace-Beltrami operator, ∆𝑔, with 

associated spectral basis 𝜑𝑖 (the eigenfunctions), where ∆𝑔𝜑𝑖  = 𝜆𝜑𝑖 (the 

eigenvalue problem). The representation error for any function 𝑓 → ℝ is shown 

in Aflalo, Y and Kimmel, R. 2013 to be given by,  
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The optimality has been shown with the following result from Aflalo, Y. et.al., 

2015. 
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This means one can expect, depending on the degree of smoothness of the 

functions on the surface, to achieve a good representation using few components 

in the summation. Dimensionality reduction is then achievable using only few 

coefficients obtained through the scalar product 〈𝑓, 𝜑𝑖〉 (the spectral 

coefficients). We notice the analogy to the Fourier decomposition, where for 



smooth periodic functions the representation is also optimal and very compact. 

Data analysis can then be performed by using only those coefficients.  

Flow data is three dimensional, but one can consider sections of the domain, for 

example the mid plane section or the duct walls. This gives as a result a 

geometrical surface. The proposed procedure of deriving a reduced 

representation of the flow data consists of two major steps: 

1) Evaluate the discrete Laplace Beltrami operator on each respective geometric 

surface and calculate the eigenvalue and eigenvectors. 

To reduce storage space, only the first ten percent of eigenvectors with the 

largest eigenvalues are determined. They form a subspace consisting of the 

spectral components with the largest spatial wavelengths. It is worth noting that 

the resulting basis solely depends on the geometry of the respective duct part and 

is independent of the flow solution. This computation is performed only once 

per geometry part, before the actual numerical simulation.  

2) Project all flow variables for each time step and part separately on the 

respective spectral basis. 

If the flow variables are vectors, each component, such as Ux, Uy, Uz, is treated 

independently. This results in one coefficient per basis vector, flow variable 

component, time step and geometry part. Considering the independence of the 

basis from the solution, the coefficients are particular suitable for a comparative 

analysis of large numbers of different simulations.  

In a practical workflow the spectral basis has to be computed only once for each 

geometry part. This is done prior to the first transient simulation. During the run 

time of the simulations, the solution of one time step can be transformed to the 

new representation as soon as it is available. There is no need to store all transient 

flow data in order to perform an analysis afterwards and only the coefficients for 

the reduced basis are kept during run time. Besides, the projection onto the new 

basis can easily be done on subareas of the geometry, e.g. the meshes that result 

from the parallel execution of the core solver on different processes. In addition, 

it is possible to do this directly in memory which will reduce IO–operations 

considerably.  

In Figure 1 an example vector of the spectral LB basis in the mid plane of the 

duct, parallel to the main flow direction, is shown. The spectral character of the 

basis can be observed by a sinus like spatial distribution. Besides, an influence 

of the geometric boundaries of the flap on the shape of the eigenvector in the 

center region can clearly be identified. 
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Figure 1: 18th eigenvector of the LB operator on the mid plane geometry of the duct 

 

3. HVAC Test-Case and Numerical Setup 

The turbulent channel flow through a HVAC duct was chosen as a suitable test 

case. It provides both, an industrial relevant application and complex flow 

features that allow the demonstration of advanced data analysis. The geometry 

is set up according to the description in Jäger, A. et al., 2008 to allow a 

comparison with their experimental and numerical studies. It consists of a duct 

with a rectangular cross section and a bend of 90 degrees. In the lower part of 

the duct, a flap is placed with an angle of 30 degrees towards the wall. Inside the 

bend and behind the flap, a flow separation is observed. The resulting turbulent 

flow regions show an unsteady behaviour over several length scales of wave 

numbers and frequencies. The influence of four meshing parameters on these 

flow regions are investigated in this study.  

In Jäger, A. et al., 2008 this case was used to investigate aeroacoustic noise 

generation around the flap based on numerical and experimental results. 

Unsteady wall pressure fluctuations were measured at 7 positions within the 

HVAC duct by means of wall flush mounted 1⁄4 inch microphones (Figure 2) in 

the symmetry plane of the duct. The Sound Pressure Level (SPL) at these points 

is achieved by means of a Fast Fourier Transformation (FFT). In this study, the 

SPL are used for an initial validation of the numerical set up against the 

experiment. Most important features in the SPL are a characteristic peak at 

around 80Hz, as well as the decay of the spectrum for higher frequencies. For 

the FFT analysis, the parameters are set according to Jäger, A. et al., 2008 with 

a DFT length of 512 and 50% overlap for a frequency resolution of 4 Hz. 



 

Figure 2: Geometric dimensions and sensor position of the HVAC duct (Jäger, A. et 

al., 2008) 

To provide the necessary temporal and spatial resolution, Detached Eddy 

Simulations are performed with OpenFOAM version 2.4. The numerical set up 

is similar to the one described in Wang, C., 2013, although, in our study, a wall-

function formulation is used to resolve the viscid sub layer at the wall 

boundaries. By this means, computing time will be saved in trade for a lower 

accuracy of the results. This can be justified by the preliminary focus of this 

study on data analytics rather than the investigation of the flow physics. The 

boundary conditions are set according to Jäger, A. et al., 2008 with a vertical 

inlet velocity of 7.5 m/s. At the duct outlet, a large region of a coarse mesh layers 

are added to damp oscillations that can be reflected at the outlet boundaries. To 

ensure a fully developed turbulent flow in the area of the bent duct and the flap, 

a startup duct with 3 m length was attached to the inlet. 

Mesh study and input parameter 

Considering the usual workflow of setting up CFD simulations, mesh generation 

is the most time-consuming part for the engineer. On the one hand, the mesh 

quality and resolution need to be high enough to provide accurate results and 

enable confidence in the results. At the same time, a finer mesh resolution causes 

higher computing costs and thus the mesh should be kept as coarse as possible. 

One way to realize this is to refine only areas that contain large gradients of the 

flow solution or are of the highest interest for the evaluation. Nevertheless, these 

criteria are based on a-priori knowledge about the flow solution which require 

an experienced user. Similar issues arise from the numerical settings of the 

computational solver which can have a strong influence on the solution. 

In this study, we want to create an automatic approach of identifying differences 

in the flow solution depending on global and local mesh properties and boundary 

condition. Thus, we define three mesh regions that are meshed independently 

with different resolutions. Additionally, we investigate the influence of a 

slipping boundary condition in the inlet duct compared to a wall function 

formulation. The mesh regions are marked in Figure 3. “Duct” refers to the area 

around the flap from x=0.6 to x=0.32, whereas the second region (“round”) 

includes the bent part of the duct. The mesh cell sizes in both regions are varied 
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independently between 0.7 mm and 2.8 mm. The third region (“flap”) refers to 

the area closely around the flap. It has to be noted that the size of this region 

depends on its resolution. This is because the applied mesh generator, 

SnappyHexMesh, tries to provide a smooth transition between changing mesh 

resolutions and needs more space for larger differences.  

 

Figure 3: Refinement regions for the mesh study 

While setting up the simulation, it was noticed that a slipping boundary at the 

inlet duct will prevent the channel flow to become completely turbulent before 

reaching the bend. Therefore, a longer inlet duct was created and wall friction 

was added, later called Configuration I. However, these first “wrong” results 

contain very useful knowledge for the mesh creation process and will thus be 

included in the analysis later on (Configuration II). 

Table 1 summarizes the simulation cases and their mesh variations during the 

mesh study. Altogether 12 simulations are performed. The discretization 

scheme, solver settings, time step width Δt = 2E-5 and overall time steps N = 

60,000 are held constant for all simulations. 

Case Grid points 

[mio] 
Config. 

(I/II) 
Δhround 

[mm] 
Δhduct 

[mm] 
Δhflap 

[mm] 

1 1.84 I 8 4 1 

2 1.68 I 4 2 2 

3 1.89 I 4 2 1 

4 2.67 I 4 2 0.5 

5 3.92 I 2 1 1 



 

 

Automatic workflow and data extraction 

The simulation workflow is sketched in Figure 4. Each parametric case includes 

an automatic mesh generation according to the input meshing parameters, 

calculation of an initial steady-state solution, and a transient pisoFoam run.  

For data extraction, the built-in functionalities of OpenFOAM are used to define 

point cloud locations at which the static pressure values are recorded. For a 

simple comparison of different simulations, the point locations are kept constant. 

The interpolation of the flow solution at these positions is performed by 

OpenFOAM internally before the data is stored. The mesh resolution of the point 

cloud is set to match approximately the resolution of the finest computational 

mesh, in order to capture all spatial structures.  

Three surfaces are defined to capture the flow at all regions of interest, including 

the bend, mid plane, and upper duct wall. Considering the temporal resolution 

that is needed for physical investigations of the aeroacoustics in the duct, the 

sampling frequency for data extraction is set to 5kHz. A simple low-pass filter 

is realized by extracting one snapshot every 10 numerical time steps that is time-

averaged over the last 10 samples. This procedure will smooth out small 

temporal features and allows an accurate frequency resolution up to around 

1kHz.  

6 1.63 I 8 4 2 

7 2.73 I 2 2 0.5 

8 4.67 I 2 1 0.5 

101 1.81 II 8 4 1 

102 1.65 II 4 2 2 

103 1.86 II 4 2 1 

104 2.64 II 4 2 0.5 

Table 1:  Grid points and cell sizes for all cases of the mesh study 
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Figure 4: Automatic simulation workflow with OpenFOAM 

 

4. Results 

In this section, we present selected results from the mesh study. To provide a 

first validation of the numerical setup, we compare the pressure spectra at wall 

position 2 – as defined in Figure 2 – to the results from Jäger, A. et al., 2008. 

Second, the time dependent spectral coefficients at the outer duct of the bend are 

investigated for a bundle of ten simulations with respect to a change in the 

boundary condition of the underlying simulations. This is carried out for both 

the PCA and the LB-basis with a focus on their capabilities to identify a flow 

separation in some of the simulation after few time steps. Next, we want to assess 

the compactness of the PCA and LB basis, e.g. when used for compression of 

turbulent flow data. Pressure spectra at wall position 4 will be reconstructed from 

the respective spectral coefficients using only 2% of the components.  

As mentioned before, the presented results are selected to demonstrate the 

principal characteristics and the potential of the proposed method for data 

analysis. In most cases, we concentrate on a few simulations and local flow 

behavior only. In order to perform a comprehensive mesh optimization, a global 

comparison of the results, at least including all regions and quantities of interest, 

is necessary. This could be based on the spectral coefficients or derived features 

and will be investigated in future research activities. 

Wall Pressure Fluctuation at single positions 

Prior to the investigation of advanced features, we want to build confidence in 

the numerical setup by investigating common flow properties. Thus, the sound 

pressure levels (SPL) at wall position 2, for two flow configurations, Case 3 and 

Case 103, are plotted in Figure 5. Both consist of the same grid resolution in the 

duct, bend, and around the flap. However, the inlet duct in Case 3 was extended 



from 1,5m to 3m to let the channel flow become fully turbulent before entering 

the bend. The experimental results from Jäger, A. et al., 2008 are added for 

validation.  

At wall position 2, the peak frequencies of the spectra agree well with the 

experimental results. Small differences in the amplitudes are in an expectable 

range. They can originate from uncertainties of the experimental setup or in the 

turbulence models as well as numerical errors. For higher frequencies, both 

simulations show more variance in the spectra then the experiment which can be 

explained by the smaller number of intervals that the spectrum is averaged over. 

For frequencies above 100 Hz, Case 3 agrees well with the experimental results 

while Case 103 induces much higher amplitudes. An explanation for this 

anomaly cannot be derived solely from the SPL spectra. Thus, further quantities 

need to be investigated. In a conventional engineering work flow, these are, for 

example, flow visualizations, boundary profiles, or wall shear stresses to find 

regions of separated flow or the like. In the following, we introduce a different 

approach by investigating the spectral coefficients of the LB and PCA-basis 

representation of the flow in the bend. 

 

Figure 5: SPL at wall position 2 for Cases 3 and 103, experimental results from Jäger, 

A. et al., 2008 

 

Spectral coefficients at outer wall of the bend 

In the following, all 12 simulation runs with different meshing parameters are 

considered for a comparative analysis. As stated in Table 1, 0Case 1 - 8 refer to 

configuration Conf. I with a long inlet duct, while for Cases 101 - 104 a short 

inlet duct was used (Conf. II). The mesh resolution in the duct and bend are 

varied simultaneously for both configurations. For deriving a low dimensional 

representation of the flow data at the wall, two approaches are compared.  
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First, we construct the LB-basis on the outer bent duct geometry, as defined in 

section 3. Each static pressure solution snapshot is projected onto the newly 

derived basis. In Figure 6 a) the two spectral coefficients that exhibit the largest 

variance for the simulations with Conf. II are plotted for the first 0,2s (=500 time 

steps) of the simulation. Each point represents one snapshot for one transient 

simulation, starting from the initial steady state solutions that lie close together 

for all cases.  

A clear separation of the results into two groups corresponding to Conf. I and 

Conf. II can be observed. The second configuration with a short inlet duct, shows 

considerably more variance over time. During the first 500 time steps, an 

oscillation with increasing amplitude develops from the initial solution for all 

simulations of Conf. II. This could result from a flow separation above the bend, 

when the distance from the duct inlet is not long enough for the channel flow to 

become fully turbulent. Hence, the flow is more prone to separation in this 

configuration. Once the separation occurs, the solver changes locally into a 

detached eddy mode and resolves the turbulent structures explicitly which 

ultimately results in a higher variance in the flow. The behavior can already be 

identified after a few time steps as follows from Figure 6 a). For Conf. I, the 

oscillation has a much smaller amplitude and frequency. Thus, the influence of 

the inlet duct length can clearly be identified. For example, this could be 

exploited for an optimization of the inlet duct without the need to run the 

simulation for the whole duration and can eventually save computing time.   

 

Figure 6:  First two coefficients with largest variance for cases 1-8 and 101-104,  from 

the projection of the static pressure solution at the bend’s outer wall to a) the LB-basis and b) 

the PCA basis for the first 500  time steps 

For the second approach, the spectral basis is construction by means of a 

principal component analysis (PCA). It is performed on a dataset of 600 

Snapshots taken from Case 3 with a constant temporal spacing spread over the 

entire simulation. The flow solutions of all time steps and simulations are 

projected onto the new basis, analogically to the workflow before with the LB-

basis. Once again, the two coefficients with largest variance for Conf. II are 



evaluated in Figure 6 b). Although the two configurations can be identified, the 

distinction is not as clear as for the first approach. This can be explained by the 

way that the principal axes are constructed. By definition, the PCA finds those 

components that are the most compact representation of the underlying data, thus 

representing most variance. Nevertheless, in the training data taken from Case 

3, no flow separation occurs in the bend region. Therefore, the newly appearing 

variations in Conf. II are not captured by a few principal components but rather 

spread over many components. In order to find a compact representation for the 

second configuration, we would need to recalculate the principal axis from the 

respective data. However, this would strongly change the shape of the axes and 

eventually make a comparative analysis unfeasible.  

By an investigation of the LB - coefficients for Cases 1-8 in Figure 7 for the first 

200 time steps, an influence of the mesh resolution in the duct region can also 

be identified. The finer mesh for Cases 5, 7 and 8 leads to a clustering of the 

respective coefficients. This effect is small compared to the influence of the duct 

length and is not revealed by the PCA coefficients.  

 

 

Figure 7:  First 200 time steps for the same configurations as in Figure 6 

 

Altogether, the LB basis provides a more precise clustering of the solutions 

depending on influential parameters, for the investigated example. Besides, the 

LB coefficients show smooth oscillations, while less clear structures are found 
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in the PCA coefficients. Thus, the spectral characteristics of the LB eigenvectors 

seem to be more suitable to capture the temporal-spatial behavior of the 

investigated flow solutions. Particularly, its independence from the flow data 

prevents the spread of newly developing effects over several components as is 

the case for the PCA. This makes the LB operator to a promising technique for 

comparative data analysis tasks. More investigations are needed to assess its 

general capabilities of finding global and local differences in flow data for a 

variety of physical effects and flow behavior. 

 

Compactness of LB basis and principal components 

Next, we are interested in the accuracy of the reconstructed SPL spectra from a 

reduced number of components for each method. This addresses their ability to 

compress the flow data which can be regarded as a qualitative measurement for 

the compactness in a mathematical sense. While the PCA finds the most compact 

representation of a dataset for a given, reduced rank, it strongly depends on the 

data itself. Thus, we expect that the projection of a new dataset that differs from 

the original training data will be less compact. On the contrary, the LB basis is 

the most appropriate representation for smooth functions in a general sense, as 

described in Chapter 2, even though more compact bases can exist for a specific 

case.  

 

Figure 8:  Reconstructed SPL spectrum for Case 3 from 2% of the eigenvectors of the 

LB and PCA basis 

In Figure 8 and Figure 9 the reconstructed SPLs from the PCA and the LB basis 

formed on the mid plane geometry are shown alongside the original 

uncompressed data for Case 3 and Case 103. The reconstruction was performed 

on the time depending pressure signal with 2% of the components of each basis. 

Afterwards, the SPL spectra are recomputed at wall position 4. This position is 



chosen because it provides large deviation between the training and test data and 

thus allows a more general evaluation of the compactness. As before, the PCA 

is trained on snapshots from Case 3. 

For Case 3, differences between both signals are small. Altogether, the PCA 

provides a slightly better accuracy for most frequencies. This was expected 

because the PCA was trained on the same dataset as is used for testing. 

Nevertheless, the LB representation provides very accurate results up to around 

100 Hz. For higher frequencies, larger differences to the uncompressed signal 

are observed while the general shape is still preserved. In general, this deviation 

for higher frequencies results from omitting higher eigenvectors that represent 

small spatial and temporal structures when reconstructing the flow solution. The 

error will increase for data that is less smooth and has more energy in higher 

frequencies, e.g. Case 103. 

While the reduced PCA basis is able to rebuild the spectrum from its training 

data very well, the results for Case 103 are considerably worse. Large errors 

occur for the whole spectrum with increasing magnitude for larger frequencies. 

As stated above, this can be related to the changed principal components of the 

new dataset due to newly occurring variations in Case 103. Thus the original 

PCA basis is less compact for the changed data. In contrast, the results from the 

LB basis reconstructions are similarly accurate as they were for Case 3. This 

underlines the higher general optimality of the LB basis compared to the PCA 

approach.  

 

 

Figure 9: Reconstructed SPL spectrum for Case 103 from 2% of the eigenvectors of the 

LB and PCA basis 
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5. Conclusion  

In this study, we proposed a new approach for the analysis of turbulent flow data. 

Thereby, the flow solutions are projected to a spectral basis derived from the 

Laplace-Beltrami operator on a geometric surface. The resulting coefficients are 

used for a comparative analysis of simulation bundles and compression of the 

flow fields. Results are compared to a PCA analysis with regard to the 

compactness of each representation and their capabilities to cluster the data by 

physical effects.   

For the investigated example – the turbulent flow through a HVAC duct – the 

LB basis provides a more precise separation of the solutions depending on 

influential parameters. Besides, some of the LB coefficients show smooth 

oscillations while less clear structures are found in the PCA coefficients. This is 

in accordance with their behavior when used for data compression. While the 

PCA provides the most compact representation of a given data set, it can become 

much less compact when applied to new flow configurations. In contrary, the 

LB basis is more compact for a wider range of flows. In general, the spectral 

characteristics of the LB eigenvectors are more suitable to capture the temporal-

spatial behavior of the investigated flow solutions. More investigations are 

needed to assess the general capabilities of the LB basis to identify global and 

local differences in flow data for a variety of physical effects and flow behavior 

including turbulent properties. 

Beside a comparative analysis of simulation bundles, the observed results reveal 

interesting applications for data analytics based on the low dimensional 

representation of the flow data. If we consider only on a small number of 

components, it is practically feasible to store time dependent spectral coefficients 

for the whole simulation run. This way, we can reconstruct entire snapshots of 

the flow solution with a reasonable temporal and spatial accuracy. Eventually, 

the compressed data can be used to calculate derived features, such as POD or 

DMD modes, more efficiently and with less storage needed. A comprehensive 

parameter study with a global comparison of the results could be based on the 

spectral coefficients or derived global features. This will be carried out in future 

research activities. 
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