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Abstract. We present a finite volume scheme for anisotropic diffusion on evolving hypersurfaces. The underlying motion is
assumed to be described by a fixed, not necessarily normal, velocity field. The ingredients of the numerical method are an
approximation of the family of surfaces by a family of interpolating polygonal meshes, where grid vertices move on motion
trajectories, a consistent finite volume discretization of the induced transport on the cells (polygonal patches), and a proper
incorporation of a diffusive flux balance at polygonal faces. The main stability results and convergence estimate are obtained.
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INTRODUCTION

In many applications, evolution problems do not reside on a flat Euclidean domain but on a curved hypersurface.
Frequently this surface is itself evolving in time driven by some velocity field. In [1] Dziuk and Elliot proposed a
finite element scheme for the numerical simulation of diffusion processes on such evolving surfaces, and in [2] a
finite volume variant was proposed for simulation on simplicial meshes. In this paper we introduce a finite volume
methodology for simulation of diffusion process on general evolving polygonal meshes. our finite volume is closely
related to the pioneer work by C. Le Potier in [3] and the work of K. Lipnikov, M. Shashkov and I. Yotov in [4].

MATHEMATICAL MODEL

We consider a family of compact, smooth, and oriented hypersurfaces I'(r) C R” (n = 2, 3) for t € [0,#4x] generated
by a time dependent function @ : [0,7,4,] X T9 — R" defined on a reference surface I’y with ®(z,Iy) = I'(¢). Let us
assume that Iy is C? smooth and that ® € C'([0, 4], C?(Tp)). For simplicity we assume the reference surface I'g
to coincide with I'(0) (cf. 2).

We denote by v = d,® the velocity of material points. The evolution of a conservative material quantity u with
u(t,-) :T'(t) — R, which is propagated with the surface and simultaneously undergoes a linear diffusion on the surface,
is governed by the parabolic equation

i+ uVr-v — Vr'(@Vru) =g OnF:r(I), (1)

where i = %u(mx(r)) is the (advective) material derivative of u, Vr - v the surface divergence of the vector field v,
Vru the surface gradient of the scalar field u, g a source term with g(¢,-) : I'(¢r) — R and Z a diffusion tensor on the
tangent bundle. Here we assume a symmetric, uniformly coercive C? diffusion tensor field on whole R” to be given,
whose restriction on the tangent plane is then effectively incorporated in the model. With a slight misuse of notation,
we denote this global tensor field also by 2. Furthermore, we impose an initial condition u(0,-) = ug at time 0,
and treat the case of surfaces with boundary. We then consider a Dirichlet boundary condition u(z,-) := u|yr(z,-)
on the boundary dI'(z). Let us assume that the mappings (z,x) — u(t,®(z,x)), v(t,®(t,x)), and g(t,P(¢,x)) are
C' ([0, tmax], C*(T0)), C*([0,tmax), C*(To)) and C'([0,,nax], C'(Tp)) regular, respectively.



DERIVATION OF THE FINITE VOLUME SCHEME

For the ease of presentation we restrict ourselves to the case of two dimensional surfaces in R>. let us give some
preliminary definitions

Definition 0.1 (Cell, cell center and vertices) We call cell S a continuous 3D fan of triangles, where each triangle
shares an edge with the preceding triangle, and all triangles share a common pivot point Xg called cell center or
center point. The corner points p;, (i=0,1,---) as depicted on Figure 1 (left) will be called vertices.
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Figure 1.  Admissible cell S and corresponding normals Vg, ; to triangles (left), sub-cells Sp, of S, virtual unknowns Xlljz 12>
Xk k

p23)2 of S, =§),,1 and associated contravariant vectors “];2,1 ey (middle), sub-cells S, ; around the vertex p (right).

Definition 0.2 (Admissible cell) Let S be a cell, Xs its center point, and p; (i =0,1,--- ,ng — 1) its ng vertices. For a
—_— —_—
given vertex p; we denote by Vs, . = Xspi AXsp;/(|| Xspi AXspj ||) (j = (i+1) modns) the normal of the triangle
(X5, pi, pj| if it has a non zero measure. We will then call S admissible cell if for any i, j= (i+1) modng, [ = (j+1)
—
mod ng, m € {0,1,--- ,ng— 1} || Xspi|| < maxy,, ||pipm| and Vs, Vs;, > 0 for well defined normals.

Definition 0.3 (admissible polygonal surface) We define an admissible polygonal surface T, as a C° union of
admissible cells where for two different cells S;, Sy C I', S; NSy is either an interface & = S;|Sy = [pip;], a vertex
pi, or is merely empty.

We now consider a sequence of admissible polygonal surfaces {I'X },—o. .. with I'X interpolating I'(#) for #; = kT
and kyqx T = tiay- Here, h indicates the maximal diameter of a cell on the whole sequence of polygonization, T the time
step size and k the index of a time step. All polygonisation share the same grid topology, and given the set of vertices p(j)-
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Figure 2. Zoom of sequence of polygonization F’;l interpolating a surface in its evolution.

on the initial polygonal surface 1'2, the vertices of F’,‘l lie on motion trajectories. Thus, they are evaluated based on the
flux function @, i. e. p;(t) = P(1, p(]).). Upper indices denote the explicit geometric realization at the corresponding

time step. We further assume that at each time step #;, the Euclidean distance from any center point X_é to ['(r) is
less than 42 and the sub-cells S{f = [Xéc , pi-‘, pi.‘ t1] (i+ 1 being the following index) are uniformly regular triangles.
At each time step 7, we consider a virtual subdivision of each cell S¥ with ng vertices into ng polygonal sub-cells
{Sp; }i=1,, ng sharing Xs as depicted on Figure 1 (middle). This induces a subdivision of each edge ¢ = [p;, p;| C IS
into two sub-edges. Let us consider a vertex p; and reorganize its surrounding cells S; counter clockwise (cf. Figure
1 (right)). We call 6, ; 1/, and G, ;1> the two sub-edges of §; incident at p;, and on each of these sub-edges, we
respectively put the virtual unknowns XI'; -1/ and We recall that the index “j — 1/2* refers to the next
sub-edge.
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B limt it = L Moy it € ijen = O g it €, -1 =00 1 55y -€p 00 = 1(ef Figure 1 (middle)).
Using this dual system of vectors, we define on S, ; the natural approximation of tangential gradient

Vult s, ~ V= (PHXE ) —u( PEEE DL (PR )~ u(PHKE DI Here, ¥ s the
orthogonal projection onto the smooth surface when applied to interior pomts of T*, and the orthogonal projection onto the
boundary of the smooth surface when applied to boundary points of I*. Based on these notational preliminaries, we can now derive
a suitable finite volume discretization. Let us integrate (1) in {(£,x)|f € [tg, txs1],x € SY4(6)} (S*(2) := (¢, 22 (S¥) NI (1)) where
Pk is taken to be the projection of onto a suitable extension of I'(;). ) We should mention here that &¥ is context depend.

Tt 1
~ k+1 ~k+1
/rk /S’~k(z) gdadt = tmg" Gy 2)

where Gé‘“ =g tk+1,yk+1X§+l) and m’§+l the measure of S¥*1. The use of the Leibniz formula leads to the following
approximation of the material derivative

Tit1
. . B _ ok Lkl ok kyk
/tk /S’*(z) (#+uVr-v)dadt = /S""(tm) uda /Sl-k(tk) uda = mg" " u (tk+1a PETX ) mgu (tk7 P XS> . 3)

Furthermore, integrating the elliptic term again over the temporal evolution of a lifted cell and applying Gauss’ theorem, we derive
the following approximation:

Tkt 1
/z /S”f(t @Vr‘u) dadt = /tk /35“(( 9 Vru- ,Uaslk( )dldl‘

~ k-1 rk+ e ktlyktl kt+1
~ TZ( Moo (25 Vit o) sy ity 1o (25T Vi igu) - pf./(s>\j<s>—l> @

where 15« is the unit outward co-normal on dS'¥(r) tangential to ['(¢) and m[, ¥ g) 11,2 the measure of Gp mﬂ 1»- The summation

is done over the vertices p; of the topological cell S, j(S) denotes the reordered index number of S as a cell of the cluster of cells

around p;; @k“ = D(tyaq ,X§H) and n¥ )11 Tespectively nk being defined as the unit outward co-normal vectors of

+1
Dis /(é)\/ Pis /(é>\/(3)+l

S’;I . These last vectors belong to the plane ka and are respectively normal to o, + (54172 and G _1/2- To close our equation,
we 1mpose a flux continuity on sub-edges which is numerically expressed as
k+1 k+1 k+1Y 4 k+1 k+1 _ k1Y g kL
M pinj+1/2 [(Upnj+l/2 Upei >7Lp it (Upnjflﬂ Upj ) l[’i-j*”j|j+1:| )
k+1 k+1 k+1 k+1 k+ k+1
T M2 [(Upi,j+3/2 UPnHl) lpi,j+2\j+1\j+ (Um,Hl/Z Up. JH) )Lp J+1|J 0.
k+1 k1, k41 k1 k+1 . k41, k41 ey k+1 L
where A =9y . LA =9 . ,and A+ LA similarly defined.
i+l Hpiilitt pidlitt pii— I\J\JH s Hpiili-1 Mpnlitt pz,JH\JIJ 1 Tpijli—1 y
We denote by Uk+1 the cell center unknowns and U 12 the sub-edge unknowns. (5) gives a local relatlons Mk“U[lﬁj 12 =
1,
Nk“U k+l between the vector of cell centers unknowns U;f‘*j]7 and the vector of sub-edge unknowns U " +l /2 around vertices p;.
The behav10r of the system depends on the matrices MII;H, Ngl,“ and
kL gk ! k+1
Qk+1 Pt /2 gt M 127 J+1|J\J 1 (©6)
T kLT ke s
pij+1/27pi j—1]jlj+1 Mpii—1/2 p, J|J 1

We then assume from now on that the sub-edge points are chosen such that Q];’f 11 is positive definite and (M’p‘jrl )*lN’I;_le is positive.
It is then clear that an admissible polygonization must allow this set-up. It is worth mentioning here That if all incident angles at
vertices are less than 180 degrees, a good choice of center point X § of each cell S¥ combined with a suitable optimization procedure
around the vertices will always guarantee the above mentioned condition. The scheme described in [2] is then a good example and
Ql€+1 is a diagonal matrix in that case. We recall (2), (3), and (4) to obtain the following equation on each cell

ml§+1U§+1 _mlgU‘éc_TkaJ.r_lv [(UkJrl Uk+1 ))LkJrl n (ka_l_ Uk+1 );LkJrl
pi

PisJ(8)+1/2 PisJ(8)+1/2 Piyi(S PisJ(S)J(S)+1 Pi;j(s)-1/2 —1j(S)iS)+
ket 1 kt1 T\ g k1 +1 1\ gkt — k] k]
T M [(Upmsu/z Up,,/m) Aprsits11is)is)- (Up. is-12~ Upiis );Lp, J)1i65)- 1] =tmg" Gy )

which together with (5), the initial condition and the boundary condition give the finite volume scheme. Let us define the following
discrete H(; semi-norm.

Definition 0.4 (Discrete energy semi-norm). For any U* € “//hk (set of constant function on cells), we define

.
k k k k k k k k
v H1rk : Zk; )y < piisr12 = YUpisr Upiisri2 = Upiiis >stmzms> (Uf)i7j(5)+1/2 Ui Upiits-12 Up,m) ®)
S prest



where the sub-edge values U /(S) 11, are defined by (5), and the boundary values are taken to be uniformly zero.
stm,pi,.fm (quf (prm) ) /2 denotes the symmetric part onp i) defined in (6).

We are now able to establish the main properties of the scheme.

Proposition 0.5 The problem (7) has a unique solution.

A PRIORI ESTIMATES
For simplicity in the analysis, we assume Xé‘ in the convex hull of the vertices of S¥, as well as the following:

(i1, X5) XM < Chry YK,

k k
pi,.i+1/2) Xp 1+1/2| <Cht, |1 (tk“’ypi,./’+1/2) p,1+1/2| < Che ©)

p gy p 1) together with p;, Yk(tk+17Xé’f), Yk(tkH,X[’j‘_‘jH/z) and

Yk (tk+1, Vi jt1 /2) denote the points with the same barycentric coordinate in the convex hull of the image of the vertices of
S¥ through &.

where ¥ , is the point that defines the sub-edge o

Theorem 0.6 (Discrete L°(IL?),1L2(H") energy estimate). Let {U*};_ ...
initial data U° € ”//ho and the homogenous boundary condition, then there exists a constant C depending solely on ty,y such that

be the discrete solution of (7) for a given discrete
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=1,
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Theorem 0.7 Discrete H' (%), 1L (H!) energy estimate). We assume the sub-matrices Q];,-. j (¢f. (6)) to be symmetric for any sub-

cell Sk around pl Let {U k Yh=1, oy » € the discrete solution of (7) for given discrete initial data U = “//ho and the homogenous
bmmdary condition, then there exists a constant C depending solely on ty,x such that

Knax

k k2 2 k
Y Ao UM gy + _max U |Lrﬁ§c(nU°|M( o)+ U1 ro+r2|c 'w(m) an
k=1 2"y Rmax l

k k—1 . . . .
where dFU k— % is defined as a difference quotient in time.

CONVERGENCE

Theorem 0.8 (Error estimate). We define the piecewise constant error functional on Fﬁ fork=1,--- kpnax

EF=Y (u*’(tk,xk) - U§) st
Sk

measuring the pull back u™ (ty,-) = u(ty, P*()) of the continuous solution u(ty,-) of (1) at time t and the finite volume solution
U* of (7). Xs+ denotes the characteristic function of the cell S, Furthermore, let us assume that || E° ||L2(1—2)§ Ch, then the error
estimate

k/ﬂﬂv’(
k2 k2 2
4 fnax I E" |l ark + 7 Y I EY| 1k =< C(h+1) (12)
=1, ki =1

holds for a constant C depending on the regularity assumptions and the time ty y.
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