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Abstract. We present a finite volume scheme for anisotropic diffusion on evolving hypersurfaces. The underlying motion is
assumed to be described by a fixed, not necessarily normal, velocity field. The ingredients of the numerical method are an
approximation of the family of surfaces by a family of interpolating polygonal meshes, where grid vertices move on motion
trajectories, a consistent finite volume discretization of the induced transport on the cells (polygonal patches), and a proper
incorporation of a diffusive flux balance at polygonal faces. The main stability results and convergence estimate are obtained.
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INTRODUCTION

In many applications, evolution problems do not reside on a flat Euclidean domain but on a curved hypersurface.
Frequently this surface is itself evolving in time driven by some velocity field. In [1] Dziuk and Elliot proposed a
finite element scheme for the numerical simulation of diffusion processes on such evolving surfaces, and in [2] a
finite volume variant was proposed for simulation on simplicial meshes. In this paper we introduce a finite volume
methodology for simulation of diffusion process on general evolving polygonal meshes. our finite volume is closely
related to the pioneer work by C. Le Potier in [3] and the work of K. Lipnikov, M. Shashkov and I. Yotov in [4].

MATHEMATICAL MODEL

We consider a family of compact, smooth, and oriented hypersurfaces Γ(t)⊂ Rn (n = 2, 3) for t ∈ [0, tmax] generated
by a time dependent function Φ : [0, tmax]×Γ0 → Rn defined on a reference surface Γ0 with Φ(t,Γ0) = Γ(t). Let us
assume that Γ0 is C3 smooth and that Φ ∈ C1([0, tmax], C3(Γ0)). For simplicity we assume the reference surface Γ0
to coincide with Γ(0) (cf. 2).

We denote by v = ∂tΦ the velocity of material points. The evolution of a conservative material quantity u with
u(t, ·) : Γ(t)→R, which is propagated with the surface and simultaneously undergoes a linear diffusion on the surface,
is governed by the parabolic equation

u̇ + u∇Γ · v − ∇Γ · (D∇Γu) = g on Γ = Γ(t) , (1)

where u̇ = d
dt u(t,x(t)) is the (advective) material derivative of u, ∇Γ · v the surface divergence of the vector field v,

∇Γu the surface gradient of the scalar field u, g a source term with g(t, ·) : Γ(t)→ R and D a diffusion tensor on the
tangent bundle. Here we assume a symmetric, uniformly coercive C2 diffusion tensor field on whole Rn to be given,
whose restriction on the tangent plane is then effectively incorporated in the model. With a slight misuse of notation,
we denote this global tensor field also by D . Furthermore, we impose an initial condition u(0, ·) = u0 at time 0,
and treat the case of surfaces with boundary. We then consider a Dirichlet boundary condition u(t, ·) := u|∂Γ(t, ·)
on the boundary ∂Γ(t). Let us assume that the mappings (t,x) → u(t,Φ(t,x)), v(t,Φ(t,x)), and g(t,Φ(t,x)) are
C1([0, tmax], C3(Γ0)), C0([0, tmax], C3(Γ0)) and C1([0, tmax], C1(Γ0)) regular, respectively.



DERIVATION OF THE FINITE VOLUME SCHEME

For the ease of presentation we restrict ourselves to the case of two dimensional surfaces in R3. let us give some
preliminary definitions

Definition 0.1 (Cell, cell center and vertices) We call cell S a continuous 3D fan of triangles, where each triangle
shares an edge with the preceding triangle, and all triangles share a common pivot point XS called cell center or
center point. The corner points pi, (i = 0,1, · · ·) as depicted on Figure 1 (left) will be called vertices.
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Figure 1. Admissible cell S and corresponding normals νSi, j to triangles (left), sub-cells Spi of S, virtual unknowns Xk
p2,1/2,

Xk
p2,3/2 of Sp2 ≡ Sp2,1 and associated contravariant vectors µk

p2,1/2, µk
p2,3/2 (middle), sub-cells Sp2, j around the vertex p2 (right).

Definition 0.2 (Admissible cell) Let S be a cell, XS its center point, and pi (i = 0,1, · · · ,nS−1) its nS vertices. For a
given vertex pi we denote by νSi, j =

−−→
XS pi ∧

−−→
XS p j/(‖ −−→XS pi ∧

−−→
XS p j ‖) ( j ≡ (i+1) mod nS) the normal of the triangle

[XS, pi, p j] if it has a non zero measure. We will then call S admissible cell if for any i, j≡ (i+1) mod nS, l ≡ ( j +1)
mod nS, m ∈ {0,1, · · · ,nS−1} ‖−−→XS pi‖ ≤maxl,m ‖−−→pl pm‖ and νSi, j ·νS j,l > 0 for well defined normals.

Definition 0.3 (admissible polygonal surface) We define an admissible polygonal surface Γh as a C0 union of
admissible cells where for two different cells Si, Sk ⊂ Γh, Si ∩ Sk is either an interface σ = Si|Sk = [pi p j], a vertex
pi, or is merely empty.

We now consider a sequence of admissible polygonal surfaces {Γk
h}k=0,...kmax with Γk

h interpolating Γ(tk) for tk = kτ

and kmaxτ = tmax. Here, h indicates the maximal diameter of a cell on the whole sequence of polygonization, τ the time
step size and k the index of a time step. All polygonisation share the same grid topology, and given the set of vertices p0

j

Figure 2. Zoom of sequence of polygonization Γk
h interpolating a surface in its evolution.

on the initial polygonal surface Γ0
h, the vertices of Γk

h lie on motion trajectories. Thus, they are evaluated based on the
flux function Φ, i. e. p j(tk) = Φ(tk, p0

j). Upper indices denote the explicit geometric realization at the corresponding
time step. We further assume that at each time step tk, the Euclidean distance from any center point Xk

S to Γ(tk) is
less than h2 and the sub-cells Sk

i, j := [Xk
S , pk

i , pk
i+1] (i + 1 being the following index) are uniformly regular triangles.

At each time step tk, we consider a virtual subdivision of each cell Sk with nS vertices into nS polygonal sub-cells
{Spi}i=1,··· , nS sharing XS as depicted on Figure 1 (middle). This induces a subdivision of each edge σ = [pi, p j]⊂ ∂S
into two sub-edges. Let us consider a vertex pi and reorganize its surrounding cells S j counter clockwise (cf. Figure
1 (right)). We call σpi, j−1/2 and σpi, j+1/2 the two sub-edges of S j incident at pi, and on each of these sub-edges, we
respectively put the virtual unknowns Xk

pi, j−1/2 and Xk
pi, j+1/2. We recall that the index “ j− 1/2“ refers to the next

sub-edge.
On Spi, j, sub-cell of S j containing pi, we define the covariant vectors ek

pi, j| j−1 := Xk
pi, j−1/2 − Xk

S j
and ek

pi, j| j+1 :=

Xk
pi, j+1/2−Xk

S j
and their contravariant counter part µk

pi, j| j−1 and µk
pi, j| j+1 in T k

pi
:= Span{ek

pi, j| j−1,e
k
pi, j| j+1} such that



µk
pi, j| j−1 ·e

k
pi, j| j−1 = 1, µk

pi, j| j−1 ·e
k
pi, j| j+1 = 0, µk

pi, j| j+1 ·e
k
pi, j| j−1 = 0 and µk

pi, j| j+1 ·e
k
pi, j| j+1 = 1 (cf. Figure 1 (middle)).

Using this dual system of vectors, we define on Spi, j the natural approximation of tangential gradient
∇u(tk, ·)|Spi , j ≈∇k

pi, ju := [u(Pk(Xk
pi, j−1/2))−u(Pk(Xk

S j
))]µk

pi, j| j−1 +[u(Pk(Xk
pi, j+1/2))−u(Pk(Xk

S j
))]µk

pi, j| j+1. Here, Pk is the

orthogonal projection onto the smooth surface when applied to interior points of Γk, and the orthogonal projection onto the
boundary of the smooth surface when applied to boundary points of Γk. Based on these notational preliminaries, we can now derive
a suitable finite volume discretization. Let us integrate (1) in {(t,x)|t ∈ [tk, tk+1],x ∈ Sl,k(t)} (Sl,k(t) := Φ(t,Pk(Sk)∩Γ(tk)) where
Pk is taken to be the projection of onto a suitable extension of Γ(tk). ) We should mention here that Pk is context depend.∫ tk+1

tk

∫
Sl,k(t)

gdadt ≈ τmk+1
S Gk+1

S (2)

where Gk+1
S = g

(
tk+1,P

k+1Xk+1
S

)
and mk+1

S the measure of Sk+1. The use of the Leibniz formula leads to the following
approximation of the material derivative∫ tk+1

tk

∫
Sl,k(t)

(u̇+u∇Γ · v) dadt =
∫

Sl,k(tk+1)
uda−

∫
Sl,k(tk)

uda≈ mk+1
S u

(
tk+1,P

k+1Xk+1
S

)
−mk

Su
(

tk,P
kXk

S

)
. (3)

Furthermore, integrating the elliptic term again over the temporal evolution of a lifted cell and applying Gauss’ theorem, we derive
the following approximation:∫ tk+1

tk

∫
Sl,k(t)

∇Γ · (D∇Γu) dadt =
∫ tk+1

tk

∫
∂Sl,k(t)

D∇Γu ·µ∂Sl,k(t) dl dt

≈ τ ∑
pi

(
mk+1

pi, j(S)+1/2(D
k+1
S ∇

k+1
pi, j(S)u) ·nk+1

pi, j(S)| j(S)+1 +mk+1
pi, j(S)−1/2(D

k+1
S ∇

k+1
pi, j(S)u) ·nk+1

pi, j(S)| j(S)−1

)
(4)

where µ∂Sl,k(t) is the unit outward co-normal on ∂Sl,k(t) tangential to Γ(t) and mk+1
pi, j(S)+1/2 the measure of σ

k+1
pi, j(S)+1/2. The summation

is done over the vertices pi of the topological cell S, j(S) denotes the reordered index number of S as a cell of the cluster of cells
around pi; Dk+1

S := D(tk+1,X
k+1
S ), and nk+1

pi, j(S)| j(S)+1 respectively nk+1
pi, j(S)| j(S)+1 being defined as the unit outward co-normal vectors of

Sk
pi, j(S). These last vectors belong to the plane T k+1

pi, j and are respectively normal to σ
k+1
pi, j(S)+1/2 and σ

k+1
pi, j(S)−1/2. To close our equation,

we impose a flux continuity on sub-edges which is numerically expressed as

mk+1
pi, j+1/2

[(
Uk+1

pi, j+1/2−Uk+1
pi, j

)
λ

k+1
pi, j| j+1 +

(
Uk+1

pi, j−1/2−Uk+1
pi, j

)
λ

k+1
pi, j−1| j| j+1

]
(5)

+ mk+1
pi, j+1/2

[(
Uk+1

pi, j+3/2−Uk+1
pi, j+1

)
λ

k+1
pi, j+2| j+1| j +

(
Uk+1

pi, j+1/2−Uk+1
pi, j+1

)
λ

k+1
pi, j+1| j

]
= 0.

where λ
k+1
pi, j| j+1 := Dk+1

S µ
k+1
pi, j| j+1 ·n

k+1
pi, j| j+1, λ

k+1
pi, j−1| j| j+1 := Dk+1

S µ
k+1
pi, j| j−1 ·n

k+1
pi, j| j+1, and λ

k+1
pi, j+1| j| j−1, λ

k+1
pi, j| j−1 similarly defined.

We denote by Uk+1
pi, j the cell center unknowns and Uk+1

pi, j+1/2 the sub-edge unknowns. (5) gives a local relations Mk+1
pi

Ūk+1
pi, j+1/2 =

Nk+1
pi

Ūk+1
pi, j between the vector of cell centers unknowns Ūk+1

pi, j , and the vector of sub-edge unknowns Ūk+1
pi, j+1/2 around vertices pi.

The behavior of the system depends on the matrices Mk+1
pi

, Nk+1
pi

and

Qk+1
pi, j :=

(
mk+1

pi, j+1/2λ
k+1
pi, j| j+1 mk+1

pi, j−1/2λ
k+1
pi, j+1| j| j−1

mk+1
pi, j+1/2λ

k+1
pi, j−1| j| j+1 mk+1

pi, j−1/2λ
k+1
pi, j| j−1

)
(6)

We then assume from now on that the sub-edge points are chosen such that Qk+1
pi, j is positive definite and (Mk+1

pi
)−1Nk+1

pi
is positive.

It is then clear that an admissible polygonization must allow this set-up. It is worth mentioning here That if all incident angles at
vertices are less than 180 degrees, a good choice of center point Xk

S of each cell Sk combined with a suitable optimization procedure
around the vertices will always guarantee the above mentioned condition. The scheme described in [2] is then a good example and
Qk+1

pi, j is a diagonal matrix in that case. We recall (2), (3), and (4) to obtain the following equation on each cell

mk+1
S Uk+1

S −mk
SUk

S − τ ∑
pi

mk+1
pi, j(S)+1/2

[(
Uk+1

pi, j(S)+1/2−Uk+1
pi, j(S)

)
λ

k+1
pi, j(S)| j(S)+1 +

(
Uk+1

pi, j(S)−1/2−Uk+1
pi, j(S)

)
λ

k+1
pi, j(S)−1| j(S)| j(S)+1

]
+ mk+1

pi, j(S)−1/2

[(
Uk+1

pi, j(S)+1/2−Uk+1
pi, j(S)

)
λ

k+1
pi, j(S)+1| j(S)| j(S)−1 +

(
Uk+1

pi, j(S)−1/2−Uk+1
pi, j(S)

)
λ

k+1
pi, j(S)| j(S)−1

]
= τmk+1

S Gk+1
S (7)

which together with (5), the initial condition and the boundary condition give the finite volume scheme. Let us define the following
discrete H1

0 semi-norm.

Definition 0.4 (Discrete energy semi-norm). For any Uk ∈ V k
h (set of constant function on cells), we define

‖Uk‖2
1,Γk

h
:= ∑

Sk
∑

pk
i ∈Sk

(
Uk

pi, j(S)+1/2−Uk
pi, j(S),U

k
pi, j(S)−1/2−Uk

pi, j(S)

)
Qk

sym,pi, j(S)

(
Uk

pi, j(S)+1/2−Uk
pi, j(S),U

k
pi, j(S)−1/2−Uk

pi, j(S)

)>
(8)



where the sub-edge values Uk
pi, j(S)+1/2 are defined by (5), and the boundary values are taken to be uniformly zero.

Qk
sym,pi, j(S) =

(
Qk

pi, j(S) +(Qk
pi, j(S))

>)/2 denotes the symmetric part of Qk
pi, j(S) defined in (6).

We are now able to establish the main properties of the scheme.

Proposition 0.5 The problem (7) has a unique solution.

A PRIORI ESTIMATES

For simplicity in the analysis, we assume Xk
S in the convex hull of the vertices of Sk, as well as the following:

|ϒk(tk+1,X
k
S )−Xk+1

S | ≤Chτ, |ϒk(tk+1,X
k
pi, j+1/2)−Xk+1

pi, j+1/2| ≤Chτ, |ϒk(tk+1,y
k
pi, j+1/2)− yk+1

pi j+1/2| ≤Chτ (9)

where yk
pi, j+1/2 is the point that defines the sub-edge σ k

pi, j+1/2 together with pi, ϒk(tk+1,Xk
S ), ϒk(tk+1,Xk

pi, j+1/2) and

ϒk(tk+1,yk
pi, j+1/2) denote the points with the same barycentric coordinate in the convex hull of the image of the vertices of

Sk through Φ.

Theorem 0.6 (Discrete L∞(L2),L2(H1) energy estimate). Let {Uk}k=1,··· ,kmax be the discrete solution of (7) for a given discrete
initial data U0 ∈ V 0

h and the homogenous boundary condition, then there exists a constant C depending solely on tmax such that

max
k=1,··· ,kmax

‖Uk‖2
L2(Γk

h)
+

kmax

∑
k=1

τ‖Uk‖2
1,Γk

h
≤C

(
‖U0‖2

L2(Γ0
h)

+ τ

kmax

∑
k=1
‖Gk‖2

L2(Γk
h)

)
(10)

Theorem 0.7 Discrete H1(L2),L∞(H1) energy estimate). We assume the sub-matrices Qk
pi, j (cf. (6)) to be symmetric for any sub-

cell Sk
pi, j around pk

i . Let {Uk}k=1,··· ,kmax , be the discrete solution of (7) for given discrete initial data U0 ∈ V 0
h and the homogenous

boundary condition, then there exists a constant C depending solely on tmax such that

kmax

∑
k=1

τ‖∂ τ
t Uk‖2

L2(Γk
h)

+ max
k=1,··· ,kmax

‖Uk‖2
1,Γk

h
≤C

(
‖U0‖2

L2(Γ0
h)

+‖U0‖2
1,Γ0

h
+ τ

kmax

∑
k=1
‖Gk‖2

L2(Γk
h)

)
(11)

where ∂ τ
t Uk = Uk−Uk−1

τ
is defined as a difference quotient in time.

CONVERGENCE

Theorem 0.8 (Error estimate). We define the piecewise constant error functional on Γk
h for k = 1, · · · ,kmax

Ek := ∑
Sk

(
u−l(tk,Xk)−Uk

S

)
χSk

measuring the pull back u−l(tk, ·) = u(tk,Pk(·)) of the continuous solution u(tk, ·) of (1) at time tk and the finite volume solution
Uk of (7). χSk denotes the characteristic function of the cell Sk. Furthermore, let us assume that ‖ E0 ‖L2(Γ0

h)
≤C h, then the error

estimate

max
k=1,··· ,kmax

‖ Ek ‖ 2
L2(Γk

h)
+ τ

kmax

∑
k=1
‖ Ek ‖ 2

1,Γk
h
≤C (h+ τ)2 (12)

holds for a constant C depending on the regularity assumptions and the time tmax.
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