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Abstract

Physical simulation on surfaces and various appli-
cations in geometry processing are based on par-
tial differential equations on surfaces. The implicit
representation of these eventually evolving surfaces
in terms of level set methods leads to effective and
flexible numerical tools. This paper addresses the
computational problem of how to solve partial dif-
ferential equations on level sets with an underly-
ing very high-resolution discrete grid. These high-
resolution grids are represented in a very efficient
format, which stores only grid points in a thin nar-
row band. Reaction diffusion equations on a fixed
surface and the evolution of a surface under cur-
vature motion are considered as model problems.
The proposed methods are based on a semi implicit
finite element discretization directly on these thin
narrow bands and allow for large time steps. To en-
sure this, suitable transparent boundary conditions
are introduced on the boundary of the narrow band
and the time discretization is based on a nested it-
eration scheme. Methods are provided to assemble
finite element matrices and to apply matrix vector
operators in a manner that do not incur additional
overhead and give fast, cache-coherent access to
very large data sets.

1 Introduction

This paper addresses the computational problem of
how to solve partial differential equations (PDEs)
on the level sets of smooth scalar functions that
are approximated by very high-resolution discrete
grids. The context for this work is the growing in-
terest in computing PDEs on surfaces that are rep-
resented implicitly as the level sets of a smooth
scalar function φ. Starting with the pioneering pa-
per by Osher and Sethian [31] this way has become
increasing important in a variety of fields such as

computational physics [3,4,6,7,20], scientific visu-
alization [23], image analysis [5, 8], and computer
graphics [27, 30]. Most of these applications rely
on the efficient computation of partial differential
equations on curves or surfaces implicitly repre-
sented by a level set function φ resolved on a dis-
crete, usually structured, grid. The attraction of
solving problems with discretely sampled implicit
surfaces is the relatively large number of degrees of
freedom provided by the grid and the freedom of
not having to choose an explicit surface parameter-
ization, which often limits shape and topology.

There are in particular two scenarios in which
such surface-based PDEs are interesting. The first
is when the implicit surface serves as the domain
and one would like to solve a PDE for a function u
intrinsic on the surface. Projections of the deriva-
tives in the ambient space onto the surface pro-
vide a mechanism for computing differential oper-
ators that live on the surface [5]. The other sce-
nario is when the surface itself evolves according to
a geometric PDE that depends on the shape. The
most prominent example is motion by mean cur-
vature [16]. For the discretization in space either
finite difference [31, 33] or finite element schemes
[10] are considered. Semi-implicit time discretiza-
tions are suitable due to their stability properties
also for large time steps, compared to explicit time
discretization for diffusion type problems which re-
quire time steps of the grid size squared. This is par-
ticularly important when one is considering higher
order PDEs [14, 20].

Perhaps the greatest promise of level-set meth-
ods, for both moving interfaces and PDEs defined
on static surfaces (codimension one), is their ability
to deal with a wide variety of complicated shapes
in an elegant manner within a single computational
framework. However, the computation and memory
requirements on the discrete grid that represents φ
become prohibitive as the grid resolution increases.
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The complexity of the surface increases (roughly)
as the grid resolution squared, but the overall grid
size increases with the cube of the resolution.

Several technical advances have addressed dif-
ferent aspects of the problem associated with stor-
ing and computing level-set equations at high res-
olutions. The introduction of methods that solve
PDEs on a small subset of grid points, that consti-
tute a narrow band around the surface [2,32,37] pro-
vided significant advantages in computation time.
As grid sizes become progressively larger the num-
ber of computations in the narrow band is not the
limiting factor on performance. Rather, the perfor-
mance of computations is limited by the very small
fraction of the grid values that can fit into cache
or random-access memory. To address this several
authors have proposed memory-efficient data struc-
tures for storing the narrow bands associated with
level sets that are represented with large grids.

The use of such narrow bands, which can en-
code many millions of degrees of freedom, gives the
level-set approach to surface representation a dis-
tinct computational advantage relative to paramet-
ric representations, such as triangle meshes. The
reason is that with careful attention to how grid
points are stored and accessed, the grid-based, im-
plicit method for processing surfaces provides reg-
ular, predictable access to memory in a way that al-
lows for cache coherency (on conventional proces-
sors) and data streaming on more advanced archi-
tectures.

This very narrow computational domain presents
a challenge for numerical schemes, however, be-
cause one must introduce a solution for the PDE
along the boundary domain, whose shape can be
quite irregular. As the resolution increases the
boundaries of the computational domain become
progressively closer to the level set of interest, and
the so called natural boundary conditions allow ar-
tifacts from the grid (whose faces are aligned with
the cardinal directions) to propagate into the PDE
on the surface. Furthermore, when solving free
boundary problems with finite differences, the time
steps must be limited so that at each iteration the
moving interface (level set of interest) is neither im-
peded by the boundary conditions nor allowed to
pass outside of the computational domain (at which
point its shape is lost).

This paper addresses these issues by introduc-
ing numerical schemes for finite element solutions

to PDEs on implicit surfaces that are appropriate
for the Dynamic Tubular Grid (DT-grid) data struc-
ture [28] which is storage efficient and fast in prac-
tice. In contrast to the finite difference schemes al-
ready implemented in this context we consider here
finite element methods with semi-implicit schemes
in time and introduce the required suitable DT-grid
based linear algebra operations on finite element
matrices. These numerical schemes introduce trans-
parent boundary conditions together with nested it-
erations in the time discretization that do not allow
the irregularity of the narrow band to impact the so-
lution. In the case of moving interfaces, this allows
semi-implicit updates with larger times steps that
do not restrict the updated solution to the compu-
tational domain from the previous time step. As ap-
plications we consider texture synthesis by systems
of reaction diffusion equations and the evolution of
surfaces by mean curvature motion on very large
data sets that are appropriate for state-of-the-art ap-
plications in surface processing.

2 Related Work

There are several bodies of related work with re-
spect to narrow band methods and corresponding
sparse storage schemes. Narrow band methods for
moving interface simulation were first proposed in
[2] and proved their efficiency in various applica-
tions [18, 27, 38]. Narrow band techniques have
been combined with boundary element methods
[17] and with multiscale resolution techniques [39].
In [19] the reinitialization of the level set function
on a narrow band is discussed and instabilities at
the narrow band boundary are avoided by smooth-
ing kernels applied to the level set function. Surface
evolution based on the evolution of distance func-
tions on narrow band domains is investigated theo-
retically in [11]. A heap sorted queue is applied for
the adminstration of narrow band data in an active
contour method [29]. Already in [12] Marc Droske
proposed a finite element method for Willmore flow
based on a iterative update scheme on narrow bands.
We pick up and refine this type of iterative update
scheme here on very thin narrow bands and high
resolution background grids.

The work presented also builds on the research
in computer science on efficient data structures for
storing sparse computational domains associated
with level sets. In recent years quadtrees (2D)



Figure 1: A sketch of a narrow band domain Ωn corre-
sponding to a level set (plotted in red) is shown. In the
zoom in on the right interior nodes are indicated by green
dots, whereas the boundary ∂Ωn is represented by the blue
lines.

and octrees (3D) [9] have been applied to level
sets in numerous papers [13, 15, 25, 26, 34]. The
quadtree and octree data structures reduce the stor-
age requirements of level sets to O((d + 1)n), but
also introduce an O(d) access time, where d is the
depth of the quadtree or octree and n is the num-
ber of grid points in the narrow band. The Dynamic
Tubular Grid [28] employs a hierarchical encoding
of the topology of the narrow band, inspired by
the storage-format of sparse matrices. Subsequent
works employ a run-length encoding, and focus ei-
ther on flexibility [21] or are tailored for a specific
application in fluid simulation [22]. All of these
data structures require O(n) storage and have O(1)
access time to grid points in a local stencil during
the sequential access typically required by level set
methods. Also they perform faster in practice than
recent narrow band and octree approaches due both
to the lower memory footprint and the more cache
coherent memory layout and access patterns [21].
In this work we utilize the DT-Grid since it has been
shown to perform slightly faster than the run-length
encoding alternatives.

3 Finite Elements on Narrow Bands

3.1 Review of Level Set Finite Elements

Let us consider the finite-element formulation for
reaction-diffusion equations on a fixed surface and a
discretization of curvature motion, respectively. We
deal with both as model problems for the cases of
static and moving surfaces, respectively.

A reaction-diffusion model on level sets. We
consider the following scalar initial value problem:
The solution is a function u : IR+ × M → IR,
such that ∂tu−∆Mu = f(u) with initial condition
u(0) = u0, where u0 is some initial value function
on the surface M and ∆M is the Laplace-Beltrami

operator on M. We represent the surface M as the
zero set of a smooth scalar function φ : Ω → IR,
so that M = {x|φ(x) = 0}, where Ω is a box do-
main enclosing M. The Laplace Beltrami operator
of u is expressed in terms of derivatives of φ, which
gives ∆Mu = |∇φ|−1div(|∇φ|P [φ]∇u) , where
P [φ] = 1I − ∇φ

|∇φ| ⊗
∇φ
|∇φ| is the projection onto

the tangent space TxM of the surfaceM. Now, we
first discretize in time and introduce a time deriva-
tive uk+1−uk

τ
for time step functions uk. Testing

the equation with a smooth function θ and applying
integration by parts we derive the following time
discrete weak formulation:Z

Ω

|∇φ|u
k+1 − uk

τ
θ + |∇φ|P [φ]∇uk+1 · ∇θ dx

=

Z
Ω

|∇φ|f(uk)θ dx (1)

for all test functions θ ∈ C1. Here the nonlinear
right hand side f is evaluated on the old time step
(forward differences). The operator P [φ] ensures a
decoupling of the reaction-diffusion process on dif-
ferent level sets [φ = c], which reflects the geomet-
ric nature of the problem. Thus, to identify the so-
lution on M it suffices to consider the weak formu-
lation restricted to a small band arround M. Next,
we discretize in space based on a finite element ap-
proximation. We denote discrete quantities with up-
per case letters to distinguish them from continuous
quantities in lower case letters. The domain Ω is
supposed to be covered by a regular hexahedral grid
and we denote the corresponding space of continu-
ous, piecewise tri-linear functions by Vh, where h
indicates the grid size. Let {Φi}i∈I be the canonical
nodal basis of this finite element space for an index
set I corresponding to all grid nodes. A discrete
function U is represented as a nodal vector Ū cor-
responding to nodes of the spatial grid. We achieve
the vector Ū = (Ui)i∈I, where U =

P
i∈I UiΦi

is the corresponding function. Given an approxima-
tion Φ ∈ Vh of the level set function φ, we obtain an
approximation Mh := [Φ = 0] of the continuous
surfaceM as one particular discrete level set repre-
sented by the function Φ. Concerning the reaction-
diffusion model, we replace all continuous quanti-
ties in (1) by their discrete counterparts and intro-
duce mass lumping. Thus, we define the weighted
lumped mass and stiffness matrix

M[Φ] =

„Z
Ω

I0
h(|∇Φ|)I1

h(ΦiΦj) dx

«
i,j∈I

,



L[Φ] =

„Z
Ω

|∇Φ|P [Φ]∇Φi · ∇Φj dx

«
i,j∈I

,

where I0
h, I1

h denote the piecewise constant and
the piecewise multilinear Lagrangian projection, re-
spectively. Furthermore, we introduce the right
hand side vector F̄ [U ] = (f(Ui))i∈I and end up
with the system of linear equations

(M[Φ] + τL[Φ]) Ūk+1= M[Φ]
“
τF̄ [Uk] + Ūk

”
.

Solving these systems we iteratively compute
(Uk)k≥1 for a given approximation U0 of u0.

Curvature Motion of Level Sets. The second
application considered in this paper is the evolution
of surfaces under mean curvature motion. Given
an initial surface M0 we ask for a family of sur-
faces M(t) generated from the motion of points
x(t) under the evolution ẋ(t) = −h(t)n(t) with
initial condition x(0) = x0 with x0 ∈ M0. Here
n(t) is the normal and h(t) the mean curvature on
M(t). The corresponding level set equation is

given by ∂tφ − |∇φ|div
“
∇φ
|∇φ|

”
= 0 on IR+ × Ω

with initial data φ0. Again discretizing in time and
applying integration by parts we obtain the weak
formulationZ

Ω

φk+1 − φk

τ |∇φk|ε
θ +

∇φk+1

|∇φk|ε
· ∇θ dx = 0 (2)

for test functions θ ∈ C1. Here, we take
into account the old time step solution for the
weight |∇φ|−1 and the usual regularization |x|ε =p

ε2 + |x|2. Now, as in the case of the reaction-
diffusion equation on a fixed surface we discretize
in space and again end up with a sequence of linear
systems of equations“

M[Φk] + τL[Φk]
”

Φ̄k+1 = M[Φk]Φ̄k

for the nodal vector Φ̄k+1 of the discrete level set
function at time tk+1 = τ(k + 1). Here, the
involved lumped mass and stiffness matrices are
given by

M[Φ] =

„Z
Ω

I0
h(|∇Φ|−1

ε )I1
h(ΦiΦj) dx

«
i,j∈I

,

L[Φ] =

„Z
Ω

|∇Φ|−1
ε ∇Φi · ∇Φj dx

«
i,j∈I

.

Solving these systems we iteratively compute
(Φk)k≥1 for a given approximation Φ0 of
φ0 and obtain a sequence of discrete surfaces
Mk

h = [Φk = 0].

3.2 Transparent Neumann Boundary

The continuous formulation operates on the solu-
tion of each level-set separately, and thus, solutions
from different level sets do not interact and we can
truncate the computational domain to a narrow band
around the zero set without affecting the solution.
However, the discrete formulation introduces a cou-
pling of nearby level sets through the finite extent
of the test/basis functions and the natural boundary
conditions induced by the weak formulation inter-
fere strongly with the solution on Mh in case of a
thin narrow band. This interaction undermines the
numerical convergence of the scheme on finer grids.
In this section we will describe boundary conditions
which avoid this interference.

Given a level set surface Mh for a level set
function Φ ∈ Vh we define a discrete nar-
row band as a union of supports of discrete ba-
sis functions. Hence, we consider a correspond-
ing index set Iint := {i ∈ I | supp Φi ∩Mh 6= ∅}
and the resulting narrow band domain Ωn =S

i∈Iint
supp Φi. This is the smallest possible band

to resolve the discrete surface Mh. Let us denote
by Vh

int = span{Φi | i ∈ Iint} the space of discrete
functions on Ωn which vanish on ∂Ω and by Vbd =
span{Φi | i ∈ I \ Iint , supp Φi ∩ Ωn 6= ∅} the dis-
crete function space corresponding to boundary val-
ues on ∂Ωn. Hence, the direct sum Vh

n = Vh
int ⊕ Vh

bd

represents the discrete finite element space corre-
sponding to the narrow band domain Ωn. Now, we
replace the domain of integration in the weak for-
mulations by the narrow band domain.

For the reaction diffusion model integra-
tion by parts leads to the boundary integralR

∂Ωn
|∇φ|P [φ]∇uk+1 · νθ da on ∂Ωn, which

gives rise to the Neumann boundary condition
P [φ]∇uk+1 · ν = 0. This condition is meaningless
and for P [φ]ν 6= 0 artificially couples the gradient
of the solution uk+1 with the faceted, grid-aligned
(jaggy) boundary of the narrow band domain. Let
us suppose that a good estimate uk+1

approx of the solu-
tion uk+1 is given. Then, we could compensate for
this defect adding the above boundary with the un-
known uk+1 replaced by the known approximation
uk+1

approx on the right hand side of the weak formula-



tion (cf. [12]). For the finite element discretization
we obtain the corresponding correction vector

Γ̄[Uapprox] =

„Z
∂Ωn

|∇Φ|P [Φ]∇Uk+1
approx · νΦj da

«
j∈I

for a given approximation Uk+1
approx of Uk+1 on the

right hand side of the modified system of linear
equations

(M[Φ] + τL[Φ]) Ūk+1=M[Φ]
“
τF̄ [Uk] + Ūk

”
+ τ Γ̄[Uk+1

approx ] .

Here F̄ is the nodal vector in IRIext corresponding
to the right hand side f . A first possible choice for
the approximation is given by the last time step, i. e.
we may set Uk+1

approx = Uk.
For the discrete mean curvature motion we

can proceed similarly. The natural boundary
condition implied by the weak formulation is
|∇Φk|−1

ε ∇φk+1 · νθ = 0. Hence, given an ap-
proximation φk+1

approx of the unknown φk+1, we again
compensate for this defect adding the boundary in-
tegral

R
∂Ωn

|∇φk|−1
ε φk+1

approx · νθ da on the right hand
side of the weak equation. For the finite element
discretization we correspondingly consider the cor-
rection vector

Γ̄[Φk+1
approx, Ωn]=

„Z
∂Ωn

|∇Φk|−1
ε ∇Φk+1

approx · νΦj da

«
j∈I

and obtain the modified system to be solved:

(M[Φ] + τL[Φ]) Φ̄k+1= M[Φ]Ūk+τ Γ̄[Φk+1
approx, Ωn]

(3)
Again the old time step solution may serve as a first
approximation of the unknown Φk+1.

3.3 Transparent Dirichlet Boundary

So far, we have focused on Neumann type bound-
ary conditions. In particular in case of mean curva-
ture motion one might alternatively consider Dirich-
let conditions. We propose boundary data which is
coherent with a suitable, smooth extension of the
unknown level set function φk+1 in time step k+1.
Here a signed distance function from the current
discrete surface is a good approximation. To present
the discrete scheme in matrix vector notation, we
exploit the introduced splitting of the finite element
space Vh

n = Vh
int ⊕ Vh

bd. Thus, reordering degrees
of freedom we obtain a splitting Ūn = (Ūint, Ūbd),

where Uint ∈ Vh
int and Ubd ∈ Vh

bd. Correspondingly,
we obtain a splitting of the stiffness with respect

to Vint and Vbd by L =

„
Lint,int Lbd,int

Lint,bd Lbd,bd

«
. Here

Lint,int is the actual stiffness matrix on Vint. Fur-
thermore, let us introduce a trivial extension op-
erator E : IRIint → IRIn ; Ūn 7→ (Ūint, 0) and
the corresponding restriction operator R : IRI →
IRIn ; Ū 7→ Ūint. Based on this notation we can
rewrite Lint,int = RLE and hence the linear sys-
tem to be solved in case of Dirichlet data Φk+1

approx

is R(M [Φk] + τL[Φk])EΦ̄k+1
int = R(MΦ̄k −

τL[Φk]Φ̄k+1
approx). The practical consequence is that

we always work with the full matrix L and do not
explicitly extract Lnn from it. Boundary data and
solution vector are stored in one vector in IRIn .

3.4 Solver Based on Nested Iterations

Here, we discuss the scheme for mean curvature
motion, which requires special care because of the
iterative update of the computational domain. The
corresponding scheme for the reaction diffusion
model on a fixed narrow band is a special case.

The inner iterations must modify the boundary
conditions and the computational domain, as the so-
lution moves toward the edge of the narrow band.
Thus, the inner iterations compute the new Φk+1

relative to the old Φk using Eq. 3. After each in-
ner iteration we compute a new distance map to
the zero set of the new Φk+1. This redistancing
rebuilds the DT-grid (to a specified width, as de-
scribed in [28]). If the narrow band changes, we i)
extend the old solution onto the new band using the
signed distance transform (Eikonal equation) from
the previous domain and ii) repeat the inner iteration
with Dirichlet conditions using the distance field to
Φk+1 on the boundary. That is, the domain exten-
sion E [Ωn, Ω̃n]Φ̄ from a narrow band Ωn onto a new
band Ω̃n is the discrete solution of the Eikonal equa-
tion |∇φ| = 1 with boundary data Φ̄ on the inner
nodes of the band Ωn. If the computational domain
does not change, we simply redistance, update the
boundary conditions, and solve. These inner itera-
tions repeat until the change from one iteration to
the next falls below a threshold.

This scheme allows for large time steps and dis-
crete surfaces propagating significantly outside the
initial narrow band in this time step. In each time
step we compute intermediate solutions Φk+1,j and
intermediate narrow band domains Ωk+1,j

n . The ex-



tension operator E [Ωk+1,j
n , Ωk+1,j+1

n ] ensures that
the previous time step solution Φk as well as the
successively updated solution Φk+1,j itself is ex-
tended onto the new band. In pseudo code notation
the scheme looks as follows:

MeanCurvatureMotion(Φ̄0) {
initialize Ω0

n ;
for (k = 1; k ≤ K; k + +) {

Φ̄k+1,0 = Φk; j = 0; Ωk+1,0
n = Ωk

n ;
do {

compute Φ̄k+1,j+1 on Ωk+1,j
n solving

R(M [Φk] + τL[Φk])EΦ̄k+1,j+1
int

= R(M [Φk]− τL[Φk]Φ̄k+1,j);
Define new band Ωk+1,j+1

n for Φ̄k+1,j+1;
Apply E[Ωk+1,j

n , Ωk+1,j+1
n ] to Φ̄k+1,j+1, Φk;

j = j + 1;
} while(|Φ̄k+1,j − Φ̄k+1,j−1| ≥ δ

or Ωk+1,j
n 6= Ωk+1,j−1

n )

Φ̄k+1 = Φk+1,j ; Ωk+1
n = Ωk+1,j

n ;
} }

The procedure in the case of Neumann condi-
tions imposed on the boundary of the narrow band is
completely analogues. We just exchange the linear
system to be solved. The Dirichlet boundary condi-
tions ensure that the new interface [Φk+1,j+1 = 0]
is a subset of the current narrow band Ωk+1,j

n . This
is no longer true in case of Neumann boundary con-
ditions. Indeed, the discrete interface may cross
∂Ωk+1,j

n . Hence, before we are able to define the
new band, we have to extend Φk+1,j+1 until we re-
solve the zero level set.

4 Narrow Band on the DT-Grid

In this section we describe how the proposed narrow
band algorithms can be implemented on the Dy-
namic Tubular Grid (DT-Grid) data structure [28]
in order to obtain a framework that is efficient both
with regard to memory and time utilization. The
DT-Grid is a data structure and set of algorithms
designed for storing data of a subset of nodes or
elements defined on a regular grid. Constant time
access and cache performance for neighborhood op-
erations are achieved through the careful use of it-
erators, which are used to build, store, and mani-
pulate the solution and all of the associated matri-
ces/vectors. We begin with a brief overview of the
DT-Grid terminology required to comprehend the
exposition of the implementation issues, and next
we describe how to implement the proposed narrow
band algorithms in the DT-Grid framework.

Figure 2: a) The 1D, 2D and 3D components of the DT-
Grid encoding of a sphere. b) A slice of the narrow band
of a DT-Grid encoding of a sphere.

4.1 Dynamic Tubular Grid Terminology

The nodes in the narrow band are stored in the DT-
Grid in (x, y, z) lexicographic order which allows
for a number of specific algorithmic constructs. In
order to represent the topology of the narrow band,
a 3D DT-Grid consists of 1D, 2D and 3D grid com-
ponents as shown in Figure 2a. The 3D grid com-
ponent consists of the nodes in the narrow band, the
2D grid component is the projection of the narrow
band onto the XY-plane, and the 1D grid compo-
nent is the projection of the 2D grid component onto
the X-axis. For a full explanation of the DT-Grid
we refer the reader to [28]. Here it is sufficient to
say that each grid component has two constituents:
data and coord. The coord constituent in the nD
grid component stores the nth coordinate of the first
and last node in each topologically connected com-
ponent of grid points in a column of the nD grid
component. These are colored red in Figure 2. As
also depicted in Figure 2b, the data1D and data2D

constituents link the 1D, 2D and 3D grid compo-
nents together by storing indices that point to the
first coordinate in a column in the coord constituent
of the 2D and 3D grid components respectively.

We denote the coord1D , coord2D , coord3D ,
data1D and data2D constituents of the topology
since they specify the topology of the narrow band.
The data3D constituent contains the actual data
values, e.g., a level set function, and is stored se-
parately from the topology in a flat data vector of
length equal to the number of nodes in the narrow
band. Since a total (lexicographic) ordering, start-
ing from zero, is imposed on the nodes in the nar-
row band, entry i in the data vector corresponds
uniquely to node i in the narrow band. In fact,
traversing the entries in the data vector sequentially
from start to end corresponds to accessing the data
of all nodes in the narrow band in lexicographic or-



der. This also means that storing multiple data items
at each node in the narrow band can be done by
allocating multiple separate data vectors. Entry i
in each of these data vectors then identify the data
stored at node i in the narrow band.

The DT-Grid utilizes the concept of stencil iter-
ators to sequentially access each individual node of
the narrow band and provide constant time access to
the node’s neighbors as defined by a stencil suited
for some computational task. In particular a spe-
cific stencil iterator consists of M individual itera-
tors, where M is the number of nodes in the stencil,
and an iterator is simply a construct that sequen-
tially visits all grid points of the narrow band in lex-
icographic order. Each iterator provides constant
time access to the appropriate data items. Details
are given in [28].

4.2 DT-Grid Implementation

The applications of the narrow band framework pro-
posed in this paper require the definition of a nar-
row band level set function as well as a number
of vectors and matrices defined over this narrow
band. The vectors contain an entry for each node in
the narrow band, and the matrices are defined over
the cardinal product of the narrow band with itself.
However, the matrices are sparse and banded due
to the limited support of the nodal basis functions
employed in the finite element method.

The narrow band, vectors and sparse matrices are
represented as a single instance of a DT-Grid topol-
ogy and a number of flat data vectors. We cre-
ate a number of customized stencil iterators that
compute boundary face integration on the narrow
band, matrix-vector multiplication, and mass and
stiffness matrix assembly with the stencil iterator
framework.

The narrow band mesh used in our proposed
framework is defined in terms of finite elements.
Assembling the mass and stiffness matrices require
an iteration over these elements, whereas the stencil
iterators of the DT-Grid visit all the nodes. How-
ever, an iterator that sequentially visits all elements
of the narrow band can be phrased as a stencil it-
erator with a stencil of eight nodes that form a fi-
nite element cell. The iterator of the lexicograph-
ically smallest node in the stencil (corner) dictates
the movement of the stencil, and the stencil itera-
tor skips a node whenever at least one of the seven
remaining nodes in the stencil are outside the nar-

row band. Similarly an iterator that sequentially
visits all boundary faces of the narrow band can be
phrased as a stencil iterator.

5 Applications

We begin with the generation of a texture. There-
fore we solve the initial value problem for two func-
tions a, b : IR+ × M → IR where M is the
0-isosurface of a level set function φ. Reaction-
diffusion equations describe a variety of biologi-
cal and chemical phenomenon, but have been used
in 3D graphics for the generation of interesting,
natural-looking textures on surface [35, 36]. The
form we use in this paper, as way of demonstrating
the proposed numerical scheme, are the equations
proposed by Turing:

∂ta = cs(α− ab) + ca∆Ma

∂tb = cs(ab− b− β) + cb∆Mb

Generally, cs, ca, cb, and α are parameters that de-
termine the shapes, frequencies, sizes, etc. of the
resulting texture (steady state) and β : M → IR
is a stochastic function (e.g. generated through a
pseudo-random number generator), that creates a
degree of randomness in the texture.

We use the weak formulation combined with a
forward difference scheme for the reaction terms
and an implicit scheme for the diffusion.

Figure 3 (top) shows the solution of a reaction-
diffusion equation on a 3D model of a dragon [1],
which has been scan-converted to a DT-Grid, us-
ing the method in [21], with a volumetric represen-
tation of 982 × 695 × 442 grid points. With the
reaction-diffusion quantities a and b and the mass
and stiffness matrices, the full volumetric problem
would not be solvable at this resolution on a con-
ventional computer. The parameters, given in the
caption, have been choosen to produce spots. The
renderings at different levels of resolution demon-
strate the difference in scale between the full model
and the underlying grid.

Several authors have proposed anisotropic
reaction-diffusion methods for anisotropic textures.
For that purpose we replace the isotropic diffusion
operator ∆Mu by an anisotropic version, defined
by ∆̃Mu = |∇φ|−1div(|∇φ|DP [φ]∇u) =
|∇φ|−1div(|∇φ|

`
α̃2P [v] + β̃2P [v⊥]

´
P [φ]∇u).

Figure 3 (bottom) shows solutions to the anisotropic



Figure 3: Results of the reaction-diffusion. (Top) Isotropic reaction-diffusion that generates a pattern with round spots
after 150 iterations. (Left) A picture of the whole dragon of resolution 982 × 695 × 442. Parameters are cs = 0.05,
ca = 2.5e − 07, cb = 6.3e − 08, α = 16, and β = 12 ± 0.4, with grid spacing h = 0.00102. (Middle) A zoom
to the feet region is shown, and (right) an even closer zoom to the foot overlaid with the mesh shows the fineness of the
resolution. Bottom row: The same dragon surface with two zooms as result of an anisotropic reaction diffusion after 400
iterations with v = (0, 0, 1)T , and diffusion in the orthogonal direction at one-fourth the main direction. (and otherwise
the same parameters as the isotropic case).

reaction-diffusion equation with dominant diffusion
in the z direction.

Another demonstration of the framework is the
use of mean curvature motion on surfaces, which
has been proposed for denoising (fairing) models
that are derived from measured surface data. Vari-
ous extensions of the approach, for both paramet-
ric and implicit surfaces, have been proposed to
preserve high-curvature features. Figure 4 shows
results for mean curvature motion for a scan con-
verted model (DT-grid of size 2471× 1439× 827)
of the Lucy Statue [1]. The full 3D grid of level-
set data, stored as floats, would require almost 11
gigabytes of data, whereas the DT-Grid representa-
tion of the model requires roughly 159MB. These
results demonstrate different levels of blurring ren-
dered from different distances, in order to demon-
strate the smoothing of small-scale features on very
large models.

Because of the very large sizes of these mod-
els, the run times in the current version are still
significant. The reaction-diffusion results required
approximately 10 minutes (11.5 minutes in the
anisotropic version) per timestep on an Intel Pen-

tium 3.6 GHz processor. The mean-curvature re-
sults required roughly 8 minutes per timestep for the
Lucy Statue [1] in Figure 4 and about 5.5 minutes
per timestep for the Asian Dragon [1] in Figure 5.
However, these are very large models, which are not
solvable without the very narrow band offered by
the DT-grid and associated numerical schemes.
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Figure 4: Results of the mean curvature motion on the lucy statue (scan converted to a DT-grid of size 2471× 1439×
827). Initial surface (Top) and after 19 timesteps with τ = h (Bottom). The first image shows the whole statue, the
second a first zoom into the head region, the third depicts an even closer zoom to the neck and the last image shows the
belonging mesh generated using the marching cubes algorithm [24].

Figure 5: Evolution of the mean curvature motion on the asian dragon surface ( 1986×1323×1104). Here a closeup to
the head with timesteps 0,6,30,44 (τ = h2) is shown. The last two images show the mesh, generated using the marching
cubes algorithm [24], of an even closer zoom to the tongue at timesteps 0 and 44.
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