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Abstract. The simulation of physical processes on interfaces and a variety of applications
in geometry processing and geometric modeling are based on the solution of partial differential
equations on curved and evolving surfaces. Frequently, an implicit level set type representation
of these surfaces is the most effective and computationally advantageous approach. This paper
addresses the computational problem of how to solve partial differential equations on highly resolved
level sets with an underlying very high-resolution discrete grid. These high-resolution grids are
represented in a very efficient Dynamic Tubular Grid encoding format for a narrow band. A reaction
diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion
approach, by isotropic, or truly anisotropic curvature motion are investigated as characteristic model
problems. The proposed methods are based on semi-implicit finite element discretizations directly
on these narrow bands, require only standard numerical quadrature and allow for large time steps.
To combine large time steps with a very thin and thus storage inexpensive narrow band, suitable
transparent boundary conditions on the boundary of the narrow band and a nested iteration scheme
in each time step are investigated. This nested iteration scheme enables the discrete interfaces to
move in a single time step significantly beyond the domain of the narrow band of the previous time
step. Furthermore, algorithmic tools are provided to assemble finite element matrices and to apply
matrix vector operators via fast, cache-coherent access to the Dynamic Tubular Grid encoded data
structure. The consistency of the presented approach is evaluated and various numerical examples
show its application potential.
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1. Introduction. This paper addresses the computational problem of how to
solve partial differential equations (PDEs) on the highly resolved level sets of smooth
scalar functions 1. The context for this work is the growing interest in computing
PDEs on surfaces that are represented implicitly as level sets

[φ = c] := {x ∈ Ω |φ(x) = c}

of a smooth scalar function φ on a domain Ω. Starting with the pioneering paper by
Osher and Sethian [49] this approach has become increasingly important in a variety
of fields such as computational physics [3,5,8,12,30], scientific visualization [38], image
analysis [6,14], and computer graphics [43,48]. Most of these applications rely on the
efficient computation of partial differential equations on curves or surfaces implicitly
represented by a level set function φ. Thereby, φ is discretized on a discrete, usually
structured, grid. The attraction of solving problems with discretely sampled implicit
surfaces is the relatively large number of degrees of freedom provided by the grid and
the freedom of not having to choose an explicit surface parametrization, which often
limits shape and topology.
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There are in particular two scenarios in which such surface-based PDEs are inter-
esting. The first is when the implicit surface serves as the domain and one would like
to solve a PDE for a function u intrinsic on the surface. Examples are the spreading
of thin liquid films or coatings on surfaces [53], and reaction diffusion equations for
texture generation on surfaces [62]. Projections of the derivatives in the ambient space
onto the surface provide a mechanism for computing differential operators that live on
the implicit surface [6]. A corresponding finite element approach is discussed in [9]. Fi-
nite elements on narrow bands are investigated in [18] and in [29] an improved approx-
imation of tangential differential operators is presented. Furthermore, in [25] a finite
element level set method is introduced for the solution of parabolic PDEs on moving
surfaces. The other scenario is when the surface itself evolves according to a geometric
PDE that depends on the shape. The most prominent example is motion by mean
curvature [27]. For the discretization in space either finite difference [49, 55] or finite
element schemes [19] are considered. Semi-implicit time discretizations are suitable
due to their stability properties for large time steps. Thus they outperform explicit
time discretization for diffusion type problems which require much smaller time steps.
This is particularly important when one is considering higher order PDEs [23,30].

In many applications in material science, biology and in geometric modeling PDE
models are considered on curved surfaces, which frequently evolve themselves in time.
Here, examples are transport and diffusion of a surfactant on interfaces in multiphase
flow [36], surfactant driven thin film flow [32] coupled with surface evolution [57],
e.g. a lubrication model on the enclosed membrane of lung alveoli coupled with the
expansion or contraction of the alveoli [57] and diffusion induced grain boundary
motion [10].

Perhaps the greatest promise of level-set methods, for both moving interfaces and
PDEs defined on static surfaces (codimension one), is their ability to deal with a wide
variety of complicated shapes in an elegant manner within a single computational
framework. However, the computation and memory requirements on the discrete grid
that represents φ become prohibitive as the grid resolution increases. The complexity
of the surface increases (roughly) as the grid resolution squared, but the overall grid
size increases with the cube of the resolution.

Several technical advances have addressed different aspects of the problem asso-
ciated with storing level sets and computing level-set equations at high resolutions.
The introduction of methods that solve PDEs on a narrow band around the sur-
face [2, 18, 50, 65] provided significant advantages in computation time. As grid sizes
become progressively larger the number of computations in the narrow band is not
the limiting factor on performance. Rather, the performance of computations is lim-
ited by the very small fraction of the narrow band values that can fit simulataneously
into cache or random-access memory as well as the number and pattern of accesses
to these values. To address this issue several authors have proposed memory-efficient
data structures for storing narrow bands associated with level sets.

The use of such narrow bands, which can encode many millions of degrees of
freedom, gives the level-set approach to surface representation a distinct computational
advantage relative to parametric representations, such as triangle meshes. The reason
is that with careful attention to how grid points are stored and accessed, the grid-
based, implicit method for processing surfaces provides regular, predictable access to
memory in a way that allows for cache coherency (on conventional processors) and
data streaming on more advanced architectures.

This very thin computational domain presents a challenge for numerical schemes,
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however, because one must introduce a solution for the PDE along the boundary
domain, whose shape can be quite irregular. As the resolution increases the boundaries
of the computational domain come progressively closer to the level set of interest, and
the so called natural boundary conditions allow artifacts from the grid (whose faces
are aligned with the cardinal directions) to propagate into the PDE on the surface.
Furthermore, when solving free boundary problems by a standard approach, the time
steps must be limited so that at each iteration the moving interface (level set of
interest) is neither impeded by the boundary conditions nor allowed to pass outside
of the computational domain (at which point its shape is lost).

This work also builds on the research in computer science on efficient data struc-
tures for storing sparse computational domains associated with level sets. In recent
years quadtrees (2D) and octrees (3D) [15] have been applied to level sets in numerous
papers [22, 26, 33, 40–42, 58–61]. The pointer-based quadtree and octree data struc-
tures reduce the storage requirements of level sets to O((d+ 1)n), but also introduce
an O(d) access time, where d is the depth of the quadtree or octree and n is the num-
ber of grid points in the narrow band. Note that it may be the case that d >> log n.
The octree data structure can be modified to reduce storage requirements to O(n)
and access time to O(log n) (see [15]). This access time is nevertheless still penalizing
in the context of the level set method, and state-of-the-art octree-traversal and search
methods [28, 56] utilize bit-arithmetic that cannot immediately be used in conjunc-
tion with these modifications. The method of Losasso et al. [40] addresses some of
the performance issues associated with octrees. Instead of using a traditional octree
they propose to use a coarse uniform grid in which each grid cell stores an octree of
its own. This decouples the depth of the octree from the size of the computational do-
main and hereby lowers the depth d. In addition they introduce an iterator construct
that speeds up access locally during interpolation for semi-Lagrangian advection. Un-
fortunately a comparative study of the practical performance of this method has not
been documented. Furthermore, no method has been published on how to ensure
cache coherency in the octree storage format as the narrow band changes due to the
temporal evolution of the level set. Cache coherency becomes increasingly important
in high resolution. The Dynamic Tubular Grid (DT-Grid) [46] employs a hierarchical
encoding of the topology of the narrow band, inspired by the storage-format of sparse
matrices. Similar and derivative works employ a run-length encoding, and focus either
on flexibility [34] or are tailored for a specific application in fluid simulation [35]. All
of these data structures require O(n) storage and have O(1) access time to grid points
in a local stencil during the sequential access typically required by level set methods.
Furthermore these data structures have been shown to perform faster in practice than
recent narrow band and octree approaches due both to the lower memory footprint
and the more cache coherent memory layout and access patterns [34]. In this work
we utilize the DT-Grid since it has been shown to perform slightly faster and require
less memory than the run-length encoding alternatives.

In contrast to the finite difference schemes already implemented in this context
we consider here finite element methods with a semi-implicit discretization approach
in time and introduce the required suitable DT-Grid based linear algebra operations
on finite element matrices. We introduce transparent boundary conditions together
with nested iterations in time that decrease the impact of the irregular narrow band
boundary on the quality of the discrete solution. In the case of moving interfaces, this
enables semi-implicit updates with large time steps that do not restrict the updated
solution to the thin computational domain from the previous time step.
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As applications we consider texture synthesis via a reaction diffusion model,
anisotropic fairing of surfaces, and the evolution of surfaces by mean curvature motion
or by truly anisotropic curvature motion. These models are applied to very large data
sets that are appropriate for state-of-the-art applications in surface processing.

2. Finite Element Discretization on Narrow Bands. In this section we
will treat a simple scalar reaction diffusion equation on a fixed surface and classical
curvature motion as a role model for a geometric evolution problem. We will recall
in both cases a finite element discretization in the level set context and introduce
the fundamental notation involved then restricting the computation to a narrow band
around the surface of interest. We will rely on the notation introduced here in the later
description of our improved narrow band algorithms. Several difficulties immediately
present themselves with this formulation. The first is the choice of proper boundary
conditions on the boundary of the narrow band which do not interfere too much
with the solution on the actual surface. The second issue is the manipulation of the
narrow band itself, which must be rebuilt as the actual surface gets too close to the
boundary. Addressing these problems, which we do in the next sections, is one of the
main contributions of the paper.

2.1. A Reaction Diffusion Model on Level Sets. As a model for a reaction
diffusion process on a fixed, closed surface M ⊂ IR3 we consider the following scalar
initial value problem: Find a function u : IR+ ×M→ IR, such that

∂tu−∆Mu = f(u) (2.1)

with initial condition u(0) = u0, where u0 is some initial value function on the surface
M. Here ∆M is the Laplace Beltrami operator on M. The case of multiple species
and applications to texture generation are detailed on Section 4.1. Let us suppose that
M can be represented as the zero level set of a function φ : Ω→ IR, where Ω is a box
domain enclosingM. Then the Laplace Beltrami operator can be written in level set
form and we obtain ∆Mu = |∇φ|−1div(|∇φ|P [φ]∇u) [6], where P [φ] = 1I− ∇φ|∇φ|⊗

∇φ
|∇φ|

at a point x on M is the projection onto the tangent space TxM. Now, we first
discretize in time and introduce a time derivative uk+1−uk

τ for functions uk at time
k τ . Testing equation (2.1) with a smooth function ϑ and applying integration by
parts we derive the following time discrete weak formulation:∫

Ω

|∇φ|u
k+1 − uk

τ
ϑ+ |∇φ|P [φ]∇uk+1 · ∇ϑ dx =

∫
Ω

|∇φ|f(uk)ϑ dx (2.2)

for all test functions ϑ ∈ C1. Here the nonlinear right hand side f is evaluated on the
old time step. The operator P [φ] ensures a decoupling of the reaction diffusion process
on different level sets [φ = c], which reflects the geometric nature of the problem (2.1).
This weak formulation directly implies natural boundary conditions P [φ]∇u · ν = 0
on ∂Ω, where ν is the outer normal on ∂Ω.
A convergence theory for narrow band level set methods based on unfitted Finite
Elements is given in [18]. For the numerical solution of general ellipic equations on
implicit surfaces with Finite Elements see also [9]. To identify the solution on
M it suffices to consider the weak formulation restricted to a small band around M.
In case this band consists of level sets [φ = c] for level set values c from an interval
(−δ, δ) the above boundary condition is fulfilled for any u because P [φ]ν vanishes on
the narrow band boundary.
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Next, we discretize in space based on a finite element approximation. At first, let us fix
some notation. In what follows, we denote discrete quantities with upper case letters
to distinguish them from continuous quantities in lower case letters. The domain Ω is
supposed to be covered by a regular hexahedral grid and we denote the corresponding
space of continuous, piecewise tri-linear functions by Vh, where h indicates the grid
size. Let {Θi}i∈I be the canonical nodal basis of this finite element space for an
index set I corresponding to all grid nodes. A discrete function U is represented
as a nodal vector Ū = (Ui)i∈I, where U =

∑
i∈I UiΘi is the corresponding discrete

function. Now, given an approximation Φ ∈ Vh of the level set function φ, we obtain
an approximation Mh := [Φ = 0] of the continuous surface M as one particular
discrete level set represented by the function Φ. Concerning the reaction diffusion
model, we replace all continuous quantities in (2.2) by their discrete counterparts and
introduce mass lumping. We define the weighted lumped mass and stiffness matrix
explicitly as

M[Φ]=
(∫

Ω

I0
h(|∇Φ|)I1

h(ΘiΘj) dx
)
i,j∈I

, L[Φ]=
(∫

Ω

|∇Φ|P [Φ]∇Θi · ∇Θj dx
)
i,j∈I

,

where I0
h, I1

h denote the piecewise constant and the piecewise multilinear Lagrangian
projection, respectively. Furthermore, we introduce the right hand side vector F̄ [U ] =
(f(Ui))i∈I and end up with the system of linear equations

(M[Φ] + τL[Φ]) Ūk+1 = M[Φ]
(
τF̄ [Uk] + Ūk

)
.

Solving this system allows us to iteratively compute a discrete solution Uk at times
tk = kτ for k ≥ 1 given an approximation U0 of u0. For a narrow band solution
strategy to be discussed here we observe in the discrete model different from the
continuous counterpart a coupling of the solution on different nearby level sets due
to the overlapping support of the basis functions. This leads to an interference of the
solution onMh with the boundary condition on the boundary of the narrow band and
is in particular crucial for a jaggy narrow band boundary consisting of facets of grid
cells. To resolve this difficulty, one either can modify the narrow band domain and the
corresponding basis functions, such that the narrow band turns into a union of discrete
level sets, which has recently been proposed by Deckelnick et al. [18], or one keeps
the rectangular cell geometry and the corresponding basis function, but introduces
suitable ”transparent” boundary conditions - an approach to be investigated in this
paper.

2.2. Curvature Motion of Level Sets. The second model problem is the
evolution of surfaces under mean curvature motion. Given an initial surface M0 we
ask for a family of surfaces {M(t)}t≥0 generated from the motion of points x(t) under
the evolution

ẋ(t) = −h(t)n(t) (2.3)

with initial condition x(0) = x0 with x0 ∈ M0. Here n(t) is the normal and h(t) the
mean curvature on M(t). Given the normal velocity v of a moving surface the level
set equation ∂tφ + |∇φ|v = 0 [49] allows to encode the surface motion implicitly in
a family of level sets M(t) = [φ(t, ·) = 0] for a level set function {φ(t)}t≥0 in space
and time. An investigation of the viscosity solution approach to mean curvature
motion can be found in [27]. The convergence of finite element solutions to the
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Fig. 2.1: A sketch of a narrow band domain Ωn corresponding to a level set (plotted in red)
is shown. In the blowup on the right interior nodes are indicated by green dots, whereas the
boundary ∂Ωn is represented by blue lines.

viscosity solution for mean curvature motion is discussed in [16]. In our case,
v = h = div

(
∇φ
|∇φ|

)
. Hence, we end up with the level set equation of mean curvature

motion ∂tφ− |∇φ|div
(
∇φ
|∇φ|

)
= 0 on IR+ ×Ω with initial data φ0. Again discretizing

in time and applying integration by parts we obtain the weak formulation∫
Ω

φk+1 − φk

τ |∇φk|
ϑ+
∇φk+1

|∇φk|
· ∇ϑ dx = 0 (2.4)

for sufficiently regular test functions ϑ, where we take into account the old time step
solution for the weight |∇φk|−1. As the resulting natural boundary condition on ∂Ω
we obtain ∇φ ·ν = 0. Thus, the level sets are forced to be perpendicular on ∂Ω. Now,
aiming for a fully practical numerical algorithm we discretize in space and introduce
the usual regularization |x|ε =

√
ε2 + |x|2 for the norm |∇φk| in the denominator

and replace it by |∇φk|ε [27]. Thus, we end up with a sequence of linear systems of
equations (

M[Φk] + τL[Φk]
)

Φ̄k+1 = M[Φk]Φ̄k (2.5)

for the nodal vector Φ̄k+1 of the discrete level set function at time tk+1 = τ(k + 1).
Here, the involved lumped mass and stiffness matrices are given by

M[Φ] =
(∫

Ω

I0
h(|∇Φ|−1

ε )I1
h(ΘiΘj) dx

)
i,j∈I

, (2.6)

L[Φ] =
(∫

Ω

|∇Φ|−1
ε ∇Θi · ∇Θj dx

)
i,j∈I

. (2.7)

Solving these systems iteratively for a given approximation Φ0 of φ0 we obtain a
sequence of discrete surfaces Mk

h = [Φk = 0]. As before, we might restrict the
computational domain to a - in this case moving - narrow band around the moving
family of surfaces. Now we have to carefully update this computational domain in
every time step and to resolve the issue of boundary conditions.

2.3. Transparent Neumann Boundary. The continuous formulation oper-
ates on the solution on each level-set separately. Thus, solutions from different level
sets do not interact and we can truncate the computational domain to a narrow band
around the zero set without affecting the solution on this zero level set. However,
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Fig. 2.2: Visualization of the minimal narrow band: We intersect the dragon surface with a
plane and draw all those elements that touch this plane. At some points the narrow band
seems to be rather thick, but appearances are deceiving. Such an impression is created if
the surface is nearly parallel to the clip-plane, such that more cells intersect the plane.

the discrete formulation introduces a coupling of nearby level sets through a coupling
of the contributions of different discrete basis functions. Hence, in case of a very
thin band the natural boundary conditions induced by the weak formulation interfere
strongly with the solution onMh. This interaction undermines the numerical conver-
gence of the scheme (cf. Table 2.1 below). In this section we will describe boundary
conditions which try to avoid this interference.

Given a level set surface Mh for a level set function Φ ∈ Vh we define discrete
narrow bands of varying width as a union of supports of discrete basis functions.
Hence, for the thinnest band we consider a corresponding index set

I1
int := {i ∈ I | supp Θi ∩Mh 6= ∅}

and the resulting narrow band domain Ω1
n =

⋃
i∈Iint

supp Θi. A sketch of this narrow
band is given in Figure 2.1. This is the smallest possible band which allows to resolve
the discrete surfaceMh in the sense that the description of the surface requires nodal
values of all basis functions considered in the definition of the band.

Given this narrow band we can successively increase the width of the band and
iteratively define

Ij+1
int := {i ∈ I | ∃k ∈ Ijwith supp Θi ∩ supp Θk 6= ∅} .

The corresponding narrow band domain is given by

Ωjn =
⋃
i∈Ij

int

supp Θi . (2.8)

In what follows, we will skip the index indicating the width of the narrow band if
it is clear from the context. Let us denote by Vhint = span{Θi | i ∈ Iint} the space
of discrete functions on the narrow band domain Ωn which vanish on the boundary
∂Ωn and by Vbd = span{Θi | i ∈ I \ Iint , supp Θi ∩ Ωn 6= ∅} the discrete function space
corresponding to boundary values on ∂Ωn. Hence, the direct sum Vhn = Vhint⊕Vhbd rep-
resents the discrete finite element space corresponding to the narrow band domain Ωn.
Now, we replace the domain of integration in the weak formulations by the narrow
band domain.

For the reaction diffusion model integration by parts leads to the boundary inte-
gral

∫
∂Ωn
|∇φ|P [φ]∇uk+1 · νϑda on ∂Ωn, which gives rise to the Neumann boundary

condition P [φ]∇uk+1 · ν = 0.
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[φ = 0]

ν

ν

∇φ
‖∇φ‖

This condition is automatically fulfilled
in the continuous case where the boundary
of the narrow band consists of level-sets that
are parallel to the level set of interest. But in
the discrete case the boundary of the narrow
band consists of the grid aligned boundary
segments of single grid cells. Prescribing nat-
ural boundary conditions P [φ]ν 6= 0 would
consequently couple the gradient of the so-
lution uk+1 with the grid-aligned, faceted
boundary of the narrow band domain, which
is obviously meaningless (cf. Fig. 2.1, 2.2
and the sketch on the right). Let us sup-
pose that a good estimate uk+1

approx of the solution uk+1 is given. Then, by adding the
boundary integral

∫
∂Ωn
|∇φ|P [φ]∇uk+1

approx · νϑda on the right hand side of the weak
formulation in (2.2) we could compensate for this defect (cf. [21]). Hence, we obtain
a modified time discrete weak formulation, namely∫
Ωn

|∇φ|
(
uk+1 − uk

τ
ϑ+ P [φ]∇uk+1 · ∇ϑ− f(uk)ϑ

)
=
∫
∂Ωn

|∇φ|P [φ]∇uk+1
approx · νϑda .

In case of the finite element discretization we add a corresponding correction vector

Γ̄[Uapprox] =
(∫

∂Ωn

|∇Φ|P [Φ]∇Uk+1
approx · νΘj da

)
j∈I

(2.9)

for a given fully discrete approximation Uk+1
approx of Uk+1 on the right hand side of the

modified system of linear equations. In explicit, we get

(M[Φ] + τL[Φ]) Ūk+1 = M[Φ]
(
τF̄ [Uk] + Ūk

)
+ τ Γ̄[Uk+1

approx] . (2.10)

Here F̄ is the nodal vector in IRIext corresponding to the right hand side f . A suitable
choice for the approximation is given by the discrete solution at the last time step,
i. e. we might set Uk+1

approx = Uk. A motivation for this correction is the following.
If ‖∇u

k+1−∇uk

τ ‖L2(∂Ωn) is uniformly bounded, the discussed defect of the Neumann
boundary condition on the narrow band boundary for the modified model in (2.9) is
bounded by O(τ). Table 2.1 compares the impact of this modified boundary condition
on the convergence properties for the following test case with the explicitly known
solution. We consider as a model problem the exponential decay of the amplitude of
the second spherical harmonic eigenfunction on a sphere with radius 1

3 if considered as
initial data for the equation ∂tu−∆Mu = 0. We compute the L2 difference between
the exact solution and the discrete narrow band solution for different grid resolutions
(333, 653, 1293...) for the computational domain Ω = (− 1

2 ,
1
2 )3 on the discrete surface

at a fixed time t0 = 0.01. To conclude, the straightforward approximation of PDEs on
level set surfaces with thin, grid aligned and thus faceted bands and natural boundary
conditions does not lead to consistent schemes. Transparent boundary conditions
are an effective way to resolve this shortcoming and lead at least experimentally to
a consistent numerical scheme. Already for the second thinnest possible band, we
observed optimal, second order consistency. One observed in Table 2.1 that the error
might stay nearly constant or even slightly increases from one grid resolution to the
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grid size 173 333 653 1293 2573 5133

natural boundary conditions
j = 1 0.008630 0.003052 0.002378 0.004136 0.004901 0.004986
j = 2 0.006465 0.001884 0.000911 0.000408 0.001375 0.001108
j = 4 – 0.001763 0.000407 0.000179 0.000181 0.000285
j = 8 – – 0.000432 0.000109 1.98e-05 2.77e-05

transparent boundary conditions
j = 1 0.005976 0.000775 0.000320 0.000124 0.000134 7.91e-05
j = 2 0.006791 0.001828 0.000388 8.24e-05 0.000132 4.99e-05
j = 4 – 0.001745 0.000428 0.000128 1.86e-05 5.31e-05
j = 8 – – 0.000432 0.000109 2.66e-05 8.73e-06

Table 2.1: We compare the L2 error of the narrow band solution on the discrete interface for
the heat equation on the sphere at a fixed time in case of natural boundary conditions (top
rows) and the proposed transparent boundary conditions (bottom rows). This comparison is
done for different grid size listed in the columns and different width of the involved narrow
band (listed in the rows).

next finer one. This is possibly due to a particular alignment or misalignment of the
discrete interface and the grid cells, which frequently will change while moving from
a coarser to the next finer mesh.

For the discrete mean curvature motion we might proceed similarly. From (2.4)
we deduce the natural boundary condition ∇φk+1 · ν = 0 on Ωn. Hence, level lines
meet the boundary at right angles, which contradicts our intention to obtain bundles
of nearly parallel level set surfaces on the narrow band. Given an approximation
φk+1

approx of the time discrete solution φk+1, we again compensate for this defect adding
a corresponding boundary integral. Indeed, for the spatial finite element discretiza-
tion we consider Γ̄[Φk+1

approx,Ωn] =
(∫

∂Ωn
|∇Φk|−1

ε ∇Φk+1
approx · νΘj da

)
j∈I

as a correction

vector in (2.5) and obtain the modified system(
M[Φk] + τL[Φk]

)
Φ̄k+1 = M[Φk]Φ̄k + τ Γ̄[Φk+1

approx,Ωn] (2.11)

to be solved in each time step. If the time step is large compared to the width of
the narrow band, it may happen that the new zero level set is no longer completely
inside the narrow band and our time stepping scheme breaks down. To overcome
this difficulty would require sophisticated a priori estimates for the expected position
of the zero level set and correspondingly thicker narrow bands. Alternatively, we
can apply an appropriate thin narrow band approach based on Dirichlet boundary
conditions and an adaptation of the narrow band in an inner loop for each time step.
The next section is devoted to this approach.

2.4. Transparent Dirichlet Boundary Conditions and Nested Iterations.
If Dirichlet boundary conditions are considered for a discrete time step of mean cur-
vature motion on a narrow band domain, the proper selection of the Dirichlet data
has to anticipate the new position of the zero level set. Otherwise the interface mo-
tion might be hampered (cf. Table 2.2). Indeed, due to the maximum principle the
new zero level set will stay in the narrow band as long as we assume different signs
of the boundary values on both sides of the interface. Hence, we ask for a suitable
approximation φk+1

approx of the unknown level set function φk+1 defined on the boundary
of the narrow band.
Our ansatz is to improve this approximation in an inner iteration for each time step.
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In this inner iteration we also adjust the narrow band domain itself, which allows the
evolving surface to move beyond the boundary of the current narrow band. These are
the two key ingredients for an efficient narrow band approach, which confines with
thin bands even in case of highly resolved level set surfaces.
Before we detail this inner iteration let us briefly comment on some basic implemen-
tation issues of the Dirichlet boundary condition. To unroll the discrete scheme in
matrix vector notation, we exploit the introduced splitting of the finite element space
Vhn = Vhint ⊕ Vhbd. Thus, reordering degrees of freedom we obtain a decomposition
Ūn = (Ūint, Ūbd), where Uint ∈ Vhint and Ubd ∈ Vhbd. Correspondingly, we obtain a
splitting of the stiffness matrix with respect to Vint and Vbd by

L =
(

Lint,int Lbd,int

Lint,bd Lbd,bd

)
.

Here Lint,int is the actual stiffness matrix on Vint. Furthermore, let us introduce a
trivial extension operator E : IRIint → IRIn ; Ūn 7→ (Ūint, 0) and the corresponding
restriction operator R : IRIn → IRIint ; Ū 7→ Ūint. Based on this notation we can
rewrite Lint,int = RLE and obtain the linear system

R(M [Φk] + τL[Φk])EΦ̄k+1
int = R(M [Φk]Φ̄k − τL[Φk]Φ̄k+1

approx). (2.12)

to be solved for prescribed Dirichlet data Φk+1
approx ∈ Vbd. The practical consequence

is that we always work with the full matrix L and do not explicitly extract Lint,int

from it. Boundary data and solution vector are stored in one vector in IRIn . In the
linear solver (e.g. a CG method) we only update values on interior nodes and keep
the boundary nodes fixed.

Now, we have all the notation at hand to construct the inner iteration to be performed
in each time step. In this inner iteration we modify the boundary conditions and the
computational domain, to reflect the actual position of the evolving surface at the new
time. This will in particular allow the evolving surface to leave the initially selected
narrow band in a single time step. Inner iterations in one time step of an interface
evolution – even though not in the context of a narrow band method – have recently
been investigated for fluid structure interaction in [11] and for two-phase flow in [31].
At first, we initialize the inner iteration with data from the previous time step setting
Φk+1

approx = Φk on Vhn . Next, we extend Φk via a discrete signed distance transform from
the interior of the current narrow band onto the narrow band boundary.
In the actual inner iteration, we solve (2.12) for Φk+1

int . Next, a new discrete signed
distance function is computed for the discrete level set surface [Φk+1

int = 0]. Simultane-
ously, for a given width parameter j of the narrow band (cf. (2.8)), the corresponding
narrow band domain Ωn = Ωjn is recomputed. This requires a rebuilding of the DT-
Grid encoded data structure, which will be discussed in Section 3. The recomputed
signed distance function on this new band is then considered as the new approxi-
mation Φk+1

approx. To solve (2.12) in the next inner iteration, we in addition need an
extension of Φk onto the new narrow band domain. This update scheme is iterated
until the narrow band domain is no longer changing and the resulting solution update
on the boundary of the narrow band is sufficiently small.
The resulting scheme allows for large time steps and discrete surfaces propagating
significantly outside the initial narrow band in one time step. If we use an index m to
identify the inner iteration, we thus compute in each time step intermediate solutions
Φk+1,m and intermediate narrow band domains denoted by Ωk+1,m

n . In pseudo code
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Ωk+1,0 Ωk+1,0

φk+1,1φk+1,1

φk = φk+1,0

Ωk+1,1 Ωk+1,1

Ωk = Ωk+1,0

φk+1,2

Fig. 2.3: A sketch of the inner iteration scheme: In the kth time step we start with the narrow
band Ωk+1,0 = Ωk defined by the old time step data Φk (green) and compute the new solution
time step Φk+1,1 (red) using Eq. 2.12 (left); we define the new narrow band Ωk+1,1 around
Φk+1,1 (red) and extend Φk to this new domain (middle); based on the extended Φk and the
boundary data imposed by Φk+1,1 we then compute the next iterate Φk+1,2 (blue) solving
(2.12) this time on the already updated narrow band domain Ωk+1,1.

notation the resulting scheme for the computation of K time steps of mean curvature
motion looks as follows (cf. also Figure 2.3):

MeanCurvatureMotion(Φ̄0) {
initialize Ω0

n;
for (k = 1; k ≤ K; k + +) {

Φ̄k+1,0 = Φk; m = 0; Ωk+1,0
n = Ωkn ;

do {
compute Φ̄k+1,m+1 on Ωk+1,m

n solving
R(M [Φk] + τL[Φk])EΦ̄k+1,m+1

int = R(M [Φk]Φ̄k − τL[Φk]Φ̄k+1,m);
Define new band Ωk+1,m+1

n for Φ̄k+1,m+1;
Apply E [Ωk+1,m

n ,Ωk+1,m+1
n ] to Φ̄k+1,m+1 and Φ̄k;

m = m+ 1;
} while(|Φ̄k+1,m

bd − Φ̄k+1,m−1
bd | ≥ δ or Ωk+1,m

n 6= Ωk+1,m−1
n )

Φ̄k+1 = Φk+1,m; Ωk+1
n = Ωk+1,m

n ;
}

}

Here, the operator E [Ωk+1,m
n ,Ωk+1,m+1

n ] represents the extension based on the dis-
crete signed distance transform described above. In fact, for given data it computes
a discrete solution of the Eikonal equation |∇φ| = 1, which takes as input the given
data values on the discrete zero level set [Φk+1,m+1 = 0] of the current updated it-
erate Φk+1,m+1. For the thinnest narrow band with j = 1 we use a first order PDE
scheme [7]. For thicker narrow band we use a second order Weno PDE scheme [47].
Figure 2.3 sketches the first two update steps in the inner iteration of a single time
step. Figure 2.4 demonstrates the difference between a straightforward implementa-
tion of a narrow band algorithm with the extended solution from the previous time
step as Dirichlet data on the narrow band boundary and the proposed algorithm with
the additionally built in inner iteration. Table 2.2 exemplifies the convergence proper-
ties of the proposed method depending on the width of the narrow band and the grid
size in the case of spheres contracting under mean curvature motion. Here the exact
solution is analytically given. Without inner iteration, we do not observe any order
of consistency. With the inner iteration already on the thinnest possible narrow band
we observe almost first order consistency in space and time. Furthermore, optimal
second order consistency can be observed as long as the width of the narrow band is
not too small and the time step is sufficiently small. This is due to the fact that the
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Fig. 2.4: Mean curvature motion applied to a cylindrical shape with rounded edges (left).
On the planar cross section (sketched in red on the left) the discrete solution for the scheme
with (in red) and without (in blue) inner iterations is compared at time step 0, 6 and 8 for
a time step size τ = 0.04 and a grid size h = 0.008 (middle). On the right we depict for
two different time steps the cross section of the discrete solution based on the new algorithm
(again in red), with the cross section corresponding to the method without inner iteration
(in blue) at a different time but with comparable width in x direction. Here, we have taken
into account a narrow band with one layer of cells on each side of the evolving surface.

grid size 173 333 653 1293 2573

scheme with inner iterations τ = h2

j = 1 0.018982 0.006987 0.004533 0.002694 0.001267
j = 2 0.012818 0.002848 0.001277 0.000883 0.000785
j = 4 0.007579 0.001830 0.000492 0.000144 6.16e-05
j = 8 0.006822 0.001629 0.000411 9.65e-05 2.33e-05

scheme with inner iterations. τ = 1
8
h

j = 1 0.024438 0.015436 0.005113 0.000767 0.008048
j = 2 0.024601 0.014252 0.003951 0.002080 0.000305
j = 4 0.010950 0.008937 0.002940 0.001370 0.000603
j = 8 0.008948 0.004677 0.001996 0.000910 0.000393

scheme with without inner iterations. τ = 1
8
h

j = 1 0.026056 0.050502 0.042877 0.047269 0.049729
j = 2 0.006402 0.014512 0.024515 0.036311 0.043778
j = 4 0.006223 0.002222 0.007890 0.019629 0.030859
j = 8 0.176777 0.003851 0.000525 0.004257 0.012067

Table 2.2: For a sphere of radius 0.25 around the origin as initial surface, we compute the
mean error of the shrinking radius on the discrete zero level set compared to the analytical
radius at time 0.0059. In the rows we compare narrow bands of different width measured in
cells. The columns refer to different underlying full grids with a grid size h ranging from 16−1

to 256−1. In the upper third, the scheme with inner iterations is applied for time step size
τ = h2. This enables us to experimentally verify the (optimal) second order consistency in
space for a not too thin narrow band. In the second third, for a fairly large time step τ = h

8

and with the inner iterations we observe the expected first order consistency dominated by
the time discretization error, whereas in the third part without inner iterations consistency
completely breaks down.

scheme is only first order accurate in time.
Finally, Figure 2.5 shows the application of the discrete mean curvature motion algo-
rithm on a highly detailed level set surface on an underlying 1986× 1323× 1104 grid.
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Fig. 2.5: The mean curvature motion scheme with Dirichlet boundary conditions is applied
to an asian dragon surface ( 1986× 1323× 1104 ) [1] at times 0, 0.01, 0.06, and 0.23 (from
left to right). The initial time step size is τ = h ≈ 0.0005. In later stages of the evolution
a time step τ = 8h is applied. In each time step 1 up to 3 inner iterations are performed.
Inner iterations are in particular needed in the initial phase of the evolution.

3. Narrow Band Implementation on the Dynamic Tubular Grid. In this
section we describe how the proposed narrow band algorithms can be implemented
on the Dynamic Tubular Grid (DT-Grid) data structure [46] in order to obtain a
framework that is efficient both with regard to space- and time-utilization.

The DT-Grid is a data structure and a set of algorithms designed for storing data
of a subset of nodes or elements defined on a regular grid. In particular the DT-Grid
is well suited for storing data defined in a narrow band.

Asymptotically, the storage requirement of the DT-Grid is linear in the number
of nodes in the narrow band. The asymptotic computational complexity of finite
element method with its sequential data access to sparse, locally assembled matrix
stencils, is also linear when implemented on the DT-Grid. Furthermore, the DT-Grid
has been shown to perform faster and require less storage in practice than recent
narrow band algorithms and sparse data structures, such as octrees and run-length
encoded volumes [34,45,46]. Performance analysis indicates that the faster run-times
of the DT-Grid are due both to the low memory footprint as well as the cache-
coherency of the storage format, which results in low L1 and L2 cache miss rates [45].
Constant time access and cache performance for neighborhood operations are achieved
through the careful use of iterators used to build, store, and manipulate the solution
and all of the associated matrices/vectors. We first give a brief overview of the
DT-Grid terminology required to comprehend the exposition of the implementation
issues. Next, we describe how to implement the proposed finite element narrow band
algorithms in the DT-Grid framework.

3.1. Dynamic Tubular Grid Terminology. The DT-Grid [46] separately
stores the topology and data of the narrow band nodes in a compact form conve-
nient for fast manipulation and access. In particular the nodes in the narrow band
are stored in the DT-Grid in (x, y, z) lexicographic order which allows for a number
of specific algorithmic constructs.

In order to represent the topology of the narrow band, a 3D DT-Grid consists
of 1D, 2D and 3D grid components as shown leftmost in Figure 3.1. The 3D grid
component consists of the nodes in the narrow band, the 2D grid component is the
projection of the narrow band onto the XY-plane, and the 1D grid component is the
projection of the 2D grid component onto the X-axis. For a full explanation of the
DT-Grid we refer the reader to [46]. Here it is sufficient to say that each grid com-
ponent has two constituents: data and coord. The coord constituent in the nD grid
component stores the nth coordinate of the first and last node in each topologically
connected component of grid points in a column of the nD grid component. These
are colored red in Figure 3.1, left. As also depicted leftmost in Figure 3.1, the data1D
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and data2D constituents link the 1D, 2D and 3D grid components together by storing
indices that point to the first coordinate in a column in the coord constituent of the
2D and 3D grid components respectively.

We denote the coord1D, coord2D, coord3D, data1D and data2D constituents the
topology since they specify the topology of the narrow band. The data3D constituent
contains the actual data values, e.g. a level set function, and is stored separately from
the topology in a flat data vector of length equal to the number of nodes in the narrow
band. Since a total (lexicographic) ordering, starting from zero, is imposed on the
nodes in the narrow band, entry i in the data vector corresponds uniquely to node
i in the narrow band. In fact traversing the entries in the data vector sequentially
from start to end corresponds to accessing the data of all nodes in the narrow band
in lexicographic order. This also means that storing multiple data items at each node
in the narrow band can be done by allocating multiple separate data vectors. Entry
i in each of these data vectors then identify the data stored at node i in the narrow
band.

The DT-Grid utilizes the concept of stencil iterators to sequentially access each
individual node of the narrow band and provide constant time access to the node’s
neighbors as defined by a stencil suited for some computational task. In particular
a specific stencil iterator consists of M individual iterators, where M is the number
of nodes in the stencil, and an iterator is simply a construct that sequentially visits
all grid points of the narrow band in lexicographic order. The center iterator of the
stencil iterator dictates the movement of the entire stencil at each increment. Given
the new (x, y, z) position of the center iterator during an increment of the stencil
iterator, the remainder of iterators are positioned correctly relative to this position
facilitated by the lexicographic storage order of the nodes. Details are given in [46].

3.2. Implementation. The applications of the narrow band framework pro-
posed in this paper require the definition of a narrow band level set function as well
as a number of vectors and matrices defined over this narrow band. The vectors con-
tain an entry for each node in the narrow band, and the matrices are defined over the
cardinal product of the narrow band with itself. However, the matrices are sparse and
banded due to the limited support of the nodal basis functions employed in the finite
element method. The narrow band, vectors and sparse matrices can be represented
as a single instance of a DT-Grid topology and a collection of flat data vectors. Fur-
thermore we create a number of customized stencil iterators that compute boundary
face integration on the narrow band, matrix-vector multiplication as well as mass
and stiffness matrix assembly with the stencil iterator framework. In the following
subsections we describe the implementation of each of these components.

Iterating over Elements and Boundary Faces. The narrow band mesh used
in our proposed framework is defined in terms of a finite element approach. Assembling
the mass and stiffness matrices requires an iteration over these elements, whereas the
stencil iterators of the DT-Grid visit nodes. However, an iterator that sequentially
visits all elements of the narrow band can be phrased as a stencil iterator with a
stencil of eight nodes as depicted in Figure 3.1.a. The iterator of the lexicographically
smallest node in the stencil (marked in red in Figure 3.1.a) dictates the movement
of the stencil, and the stencil iterator skips a node whenever at least one of the
seven remaining nodes in the stencil are outside the narrow band. This procedure
enumerates all elements of the narrow band in lexicographic order.

Similarly an iterator that sequentially visits all boundary faces of the narrow
band can be phrased as a stencil iterator. Such a boundary face iterator is required
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Fig. 3.1: Left: The 1D, 2D and 3D components of the DT-Grid encoding of a sphere. Right:
a) The stencil of an iterator that visits elements. b) The stencil of an iterator that visits
boundary faces. The element is shown as a wire frame cube in the center. c) The stencil
of an iterator with access to neighboring nodes for a multi-linear nodal basis function (the
center node is colored red).

in the computation of the boundary integrals arising from the transparent boundary
conditions. A boundary face iterator can be implemented as an iterator that visits
all elements (as described above), augmented with 24 nodes in the stencil as shown
in Figure 3.1.b. Consider the element-face outlined in green. This face constitutes
a boundary face if at least one of the nodes colored red is outside the narrow band.
Similar configurations exist for the remaining faces.

Vectors and Sparse Matrices. As mentioned above, data items associated
to each node in the narrow band can be stored as flat vectors of length equal to
the number of nodes in the narrow band. Simple vector operations that operate on
vectors locally on an entry-by-entry basis, such as addition, subtraction and dot-
product, utilize no information about the topology of the narrow band and hence
require no special treatment in our framework.

The mass and stiffness matrices arising from the finite element machinery on the
narrow band are sparse banded matrices due to the limited support of the nodal basis
functions. In fact in case of multi–linear finite elements the number of non-zero entries
in a row of a matrix used in our framework will be at most N = 27 . Equivalently to
the situation arising with vectors, simple matrix operations that operate on matrices
locally on an entry-by-entry basis can be done without knowledge of the narrow band
topology.

To facilitate matrix-vector multiplications, c = Ab, a coupling with the narrow
band topology is required. This is done by means of a stencil iterator and a stencil
defined by the support of a nodal basis function. In particular, the stencil at a
particular node, i, must include all neighboring nodes (cf. Figure 3.1.c). The matrix-
vector product is formed by sequential iteration of the stencil iterator over the narrow
band topology. At each node, i, entry ci of the resulting vector is computed as
ci =

∑N−1
j=0 Ai,S(j)bS(j), where S is the stencil iterator, and S(j) is the mapping from

node j in the stencil to the corresponding number in the total lexicographic ordering
of nodes in the narrow band. Note that if a node in the stencil is outside the narrow
band, its contribution in the above product is set to zero.

The above matrix storage has the advantage that a single DT-Grid topology in-
stance is used to define both the topology of the narrow band as well as of the location
of non-zero entries in matrices associated with this narrow band. The restriction, R,
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and extension, E, operators on vectors arising in connection with Dirichlet bound-
ary conditions can be integrated into the above matrix-vector implementation in a
straightforward manner. The implementation of these operators requires the construc-
tion of a boundary-mask vector of bits, stored along with the topology in lexicographic
order, which distinguishes between internal and boundary nodes by storing a 1 for
each internal node and a 0 for each boundary node. Hence internal and boundary
nodes are stored intermixed in order to retain the lexicographic order of the nodes in
the narrow band. The boundary-mask is incorporated into the matrix-vector multipli-
cation to construct products of the form RAEŪn and RAŪbd. In both of these cases
an entry in the resulting vector is computed only if it is an internal node (this is due
to the trailing restriction operator). In the case of the product RAEŪn, the computa-
tion of the i’th entry in the resulting vector is modified to

∑N−1
j=0 B̄S(j)Ai,S(j)ŪnS(j),

where B̄S(j) is the S(j)’th entry of the boundary-mask vector. In the case of the
product RAŪbd, the computation is modified to

∑N−1
j=0 (¬B̄S(j))Ai,S(j)ŪbdS(j), where

¬ implies a negation of the boundary mask bit.

Concerning the storage requirements, the matrices usually constitute the bot-
tleneck in practical implementations. In the case of multi-linear basis functions for
example, a stiffness matrix will require 27 times the storage required by the level set
values in the narrow band. To reduce the storage requirements we keep as few ma-
trices in memory as possible during computations. If necessary we lower the storage
requirements of each matrix by performing a uniform quantization of the individual
matrix entries whenever possible. The uniform quantization requires the numerical
range of matrix entries to be known, and these can be determined prior to the simu-
lation based on the properties of the particular matrix.

Rebuilding the Dynamic Tubular Grid and Extending Data. The simu-
lation of evolving surfaces requires an iterative tracking of the narrow band domain as
defined in Section 2. This involves rebuilding the narrow band while extending level
set data (e.g. the discrete signed distance functions Φk+1,m+1 and Φk from Section
2.4) onto the new band. Rebuilding the narrow band domain is facilitated by the
DT-Grid’s dilation operator [46]. In particular dilating a 3D DT-Grid by j nodes
corresponds to iterating a cube-shaped stencil of dimensions (2j + 1)3 over the nodes
in the narrow band and adding to the narrow band all nodes outside that pass under
the support of the stencil. Using the dilation operator, rebuilding the narrow band
domain according to an updated level set function entails first the identification of
narrow band elements that the discrete interface passes through. Secondly this set of
nodes is dilated to define a new narrow band domain in accordance with the definition
in Section 2. Many algorithms exist for computing and re-initializing signed distance
values, and we proceed as follows. The iterate Φk+1,m+1 is re-initialized to a dis-
crete signed distance function on the updated narrow band domain by the algorithm
in [51]. The values of the previous solution time step Φk at nodes of the previous
narrow band domain Ω̄k+1,m are kept fixed, whereas discrete signed distance values
at the new nodes are computed in an iterative manner applying the method in [37].

4. Applications.

4.1. Reaction-Diffusion Textures on Implicit Surfaces. As an important
application of PDEs on a fixed surface we consider the generation of textures based on
a reaction diffusion model. Reaction diffusion equations describe a variety of biological
and chemical phenomenon, and have been used in 3D graphics for the generation of
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interesting, natural-looking textures on surfaces [63]. Here, we consider the system of
partial differential equations proposed by Turing [62]

∂ta = cs(α− ab) + ca∆Ma
∂tb = cs(ab− b− β) + cb∆Mb

on a level set surface M = [φ = 0], where cs, ca, cb, and α are parameters that
determine the shapes, their scale and frequency in the steady state limit and β :M→
IR is a stochastic function, that creates a degree of randomness in the texture. The
tradeoffs and choices for these parameters are nicely described in [54]—we list specific
choices for these parameters with the figures in this paper. As discussed in the scalar
case in Section 2.1 we discretize the reaction term explicitly and the diffusion term
implicitly in time and make use of the transparent Neumann boundary conditions.
Figure 4.1 shows the solution of a reaction-diffusion equation on a 3D dragon model [1],

Fig. 4.1: Reaction diffusion textures generated on a dragon model are depicted on different
scales from left to right. On the right, in addition the edges of a corresponding marching
cube mesh are shown to represent the underlying grid visually. The pattern is generated in
150 time steps for the parameters cs = 0.05, ca = 2.5 10−7, cb = 6.3 10−8, α = 16, and
β = 12± 0.4 and an effective grid spacing h = 0.00102.

which has been scan-converted to a DT-Grid with 982 × 695 × 442 grid point of the
underlying mesh using the method in [34]. In the literature, anisotropic reaction-
diffusion has been proposed to generate anisotropic texture pattern. For that purpose
we replace the isotropic diffusion operator ∆Mu by an anisotropic one. Given a
tangent, unit length vector field v we define

∆M,vu = |∇φ|−1div
(
|∇φ|

(
g1vv

T + g2(1I− vvT )
)
P [φ]∇u

)
,

where diffusion in v direction is weighted by g1 and in the perpendicular direction by
g2. Now, we choose v such that the texture aligns approximately with the subdomi-
nant principal curvature direction on the surface. Therefore, we pick up the structure
tensor approach from [64] and define the 3× 3 tensor

J(x) = (∇φσ(x)⊗∇φσ(x))σ , (4.1)

where the index σ indicates an approximate Gaussian filtering via the application
of the discrete heat equation semigroup with time step σ2

2 . Let us suppose that
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λ1 ≤ λ2 ≤ λ3 are the eigenvalues corresponding to eigenvectors v1, v2, and v3. Then
we choose v = v1, g1 = g2(λ1), and g2 = g2(λ2), where g(s) = (1 + s2

γ2 )−1. Examples
of such anisotropic textures are shown in Figure 4.2.

Fig. 4.2: An anisotropic reaction-diffusion is applied to the dragon model, resulting in
anisotropic spot texture on two different scales. For each scale we show a side view and a
diagonal view after 450 iterations with parameters γ = 1

2
, cs = 0.05, α = 16, and β = 12±0.4.

To control the size of the spots the relation between ca and cb to cs has to be changed. We
take into account ca = 2.5 10−7 and cb = 6.3 10−8 (left), and ca = 1.5625 10−8 and
cb = 3.9375 10−9 (right).

4.2. Surface Fairing based on Curvature Motion. Curvature motion mod-
els have been considered for the fairing of scanned surface models [20,65]. Figure 4.3
shows results for the standard mean curvature motion model for a scan converted
model (DT-grid of size 2471 × 1439 × 827) of the Lucy Statue [1]. The full 3D grid
with level-set data stored as floats, would require almost 11 gigabytes of data, whereas
the DT-Grid representation of the model requires roughly 159MB. Because of the very
large sizes of such models, the run times in the current version are still significant.
The mean-curvature results required roughly eight minutes per time step on an Intel
Pentium 3.6 GHz processor for the Lucy Statue [1] in Figure 4.3 and about 5.5 minutes
per time step for the Asian Dragon [1] in Figure 4.4. However, these are very large
models, which are not manageable without the very thin band approach offered by
the DT-grid. We investigated several runs of the mean curvature code by a profiler,
and found that the overhead of employing the DT-Grid data structure is relatively
small. In particular the most time-intensive part is independent of the DT-Grid and
consists of the preparation of the matrices which comprises about 62% of the total
run-time. The remaining 38% is spent iterating stencil-iterators over the DT-Grid,
solving the linear systems, computing the signed distance function, and rebuilding the
DT-Grid during the inner iterations.
In Figure 4.5 the mean curvature motion is applied to a dumbbell which breaks into
two pieces. This demonstrates the advantage of level set methods to change the topol-
ogy of the surface and it illustrates the very accurate resolution of singularities via a
level set approach on very large grids. The fairing results of the standard mean curva-
ture motion model can be improved incorporating the anisotropic geometric diffusion
model (cf. [13, 52])

∂tφ− |∇φ|div(A∇φ) = 0 . (4.2)

Given the diagonalization Qdiag(λ1, λ2, λ3)QT of the regularized geometric structure
tensor Jσ from (4.1), we choose the anisotropy tensorA(x) = Qdiag(g(λ1), g(λ2), 0)QT .
This schemes preserves edges on the surface indicated by a large principal curvature
across the edge. Notice that due to the motion of the surface the structure tensor has
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Fig. 4.3: Mean curvature motion is applied to the Lucy statue. On the left the initial surface
and the result after 19 time steps with time step size τ = 0.0004 are shown. On the right,
we render corresponding blow ups at two different scales and overlay the finest scale blow
up with the mesh generated using the marching cubes algorithm [39].

Fig. 4.4: Evolution by mean curvature motion for the asian dragon model. Here from left
to right a closeup to the head is shown at different time steps 0, 6, 30, 44 of the evolution
(τ = 10−6). The last two images show the mesh, generated using the marching cubes
algorithm [39], of an even closer blowup of the dragon tongue at time step 0 and 44.

to be recomputed in each step. We observed that the structure tensor computation
requires a narrow band width of at least 2 to enable a reliable estimate of the principal
curvatures. In Figure 4.6 this method is applied to smooth the Asian dragon model.
Here, we choose τ = 0.000015 and λ = 0.1. A narrow band with width parameter
j = 2 is used throughout in the algorithm.

4.3. Prior Driven Denoising with Anisotropic Mean Curvature Motion.
The usual isotropic mean curvature motion model is known as the gradient flow of the
usual surface area E =

∫
M da. Hence, given the enclosed volume, rounds spheres are

the preferred shape. For specific applications it might be advantageous to consider
different convex shapes as asymptotically optimal. This can be achieved via a weight-
ing of surface area depending on the surface orientation given by the normal direction
n. Thus, one considers the gradient flow with respect to the anisotropic surface en-
ergy Eγ =

∫
M γ(n) da, where γ : M → IR is a positive, convex and 1-homogeneous

function. When minimizing this energy, certain directions are preferred and the so
called Wulff shapes [4] are minimizers up to scaling. Such an anisotropic mean cur-
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Fig. 4.5: The evolution of a dumbbell under mean curvature motion is shown based on a
grid resolution of 1017 × 387 × 387 to demonstrate that topological changes are recovered
correctly at high resolution in this framework. From left to right the solution is rendered at
time 0, 1.288067 10−3, 1.290934 10−3, and 2.278962 10−3. The initial radius of the spheres
of the dumbell is 0.4971 and computations are performed with a time step τ = 0.95554 10−6.

Fig. 4.6: The mean curvature motion model is compared with the anisotropic geometric
diffusion after 30 time steps (top row). Furthermore, blow ups at the time steps 0, 7, 30,
and 47 are shown for the anisotropic geometric diffusion model (bottom row).

vature motion model has been applied to the smoothing of tubular vessel structures
in [44]. The level set formulation of the continuous anisotropic mean curvature motion
is given by

∂tϕ− |∇ϕ|div (γz(∇ϕ)) = 0.

For the discrete flow Dziuk and Deckelnick proposed a stabilization term [17] which
leads to the following weak formulation:∫

Ω

Φk+1 − Φk

τ |∇Φk|ε
Θ dx+

∫
Ω

γz(∇Φk) · ∇Θ dx = −λ
∫

Ω

γ(∇Φk)
|∇Φk|ε

(∇Φk+1 −∇Φk) · ∇Θ dx

To derive a matrix vector formulation of this equation we define in addition a vector
F̄γ [Φ] and a nonlinear stiffness matrix Lγ [Φ] given by

Fγ [Φ] =

∫
Ω

I3
h (γz(Φ)∇Θi) dx


i∈I

, Lγ [Φ] =

∫
Ω

I1
h

(
γ(∇Φ)∇Θi · ∇Θj

|∇Φ|ε

)
dx


i,j∈I

,
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Fig. 4.7: Anisotropic mean curvature motion applied to the Stanford Bunny of resolution
595×590×462 with a cube as Wulff shape. Time steps 0, 2000 and 4000 are depicted, where
τ = 5.7 10−8 and λ = 2.5.

where I3
h represents a third order exact Gaussian quadrature on the hexahedral cells.

We end up with the semi implicit time discretization

(M [Φk] + τλLγ [Φk])Φ̄k+1 = (M [Φk] + τλLγ [Φk])Φ̄k − τF̄γ [Φk] .

Transparent boundaries are handled as in the linear case in Section 2.4. In Fig. 4.7
we applied the anisotropic curvature motion model to the Stanford bunny leading to
successively more ”cubistic” representations of the initial surface. Here the anisotropy
is given by γ(z) = ‖z‖1 = |z1|+ |z2|+ |z3|. In the numerical experiment we observed
that, different from the isotropic case, we have to choose a narrow band which is at
least two cells wide to avoid small oscillatory artifacts.

4.4. Comparison to parametric surface processing. The level set method
is renown for its significant advantages over parametric surface approaches: in many
applications the raw data is already given in implicit form, a level set evolution can
easily cope with topological transitions, and the interplay between processes on the
surfaces and in the bulk regions can be integrated in a straightforward way into a
level set method. Nethertheless, the computational overhead seems to be significant.
Hence, in that respect we have explicitly compared our narrow band level set scheme
with a corresponding scheme for the evolution of parametric surfaces for a simple
test problem. We have considered a single iteration of the isotropic mean curvature
motion applied to a sphere. We have generated an implicit representation of the
sphere with radius 1

3 and center in ( 1
2 ,

1
2 ,

1
2 ) on an underlying grid with resolution

5133 and a triangulated sphere whose grid size given by the maximum length of edge
in the approximately uniform triangulation is approximately the same as the grid size
h = 512−1 of the above regular grid. In the level set case we define our computation
domain as the thinnest possible narrow band, which consists of an average thickness of
about 5 cells. We have executed one time step either of our level set or of a parametric
curvature motion scheme [24]. In both cases the time step size is chosen as τ = h2.
We have separately measured the time needed for the assembly of the matrix, for the
solution of the corresponding linear system of equations, and in the implicit case for
the rebuilding of the narrow band including the time for the level set redistancing with
a first order PDE scheme [7] (cf. Table 4.1). A single iteration in the CG algorithm
is about 12.5 times faster for the parametric grid than for the level set narrow band.
This is not surprising because the narrow band scheme requires about 5.5 times the
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rebuilding assembly solving degrees of freedom number iterations

narrow band 10.202 s 14.133 s 5.864 s 1 098 484 5
parametric 0.780 s 4.296 s 196 614 84

Table 4.1: Comparison of mcm on parametric and on implicit surfaces.

number of effective degrees of freedom. Despite of this the observed overhead for the
data access on the narrow band of about a factor 2 - measured in computing time per
degree of freedom - is strikingly small. Here the cache coherence of the narrow band
scheme pays out. The number of CG iterations is 17 times smaller for the level set
approach, which we expect to be due to the Dirichlet boundary conditions considered
on the boundary of the narrow band. Altogether, this results in a similar computing
time for the actual solution of the linear system. In addition, one has to count for the
obviously much higher assembly time and the time for the additional data structure
rebuilder.

5. Conclusions. This paper presented a novel solution strategy for geometric
PDEs on implicit surfaces, represented via a dynamic tubular grid approach on ex-
tremely large underlying grids. The method comes along with boundary conditions
which reduce the effects of the narrow band on the solution and allow the use of
semi-implicit finite-element schemes in the context of very thin bands. The results
show that it is feasible to solve PDEs on very large implicit surfaces (with resolu-
tions comparable to state of the art triangular surface meshes) in reasonable amounts
of time. Future work will be devoted to the transfer of further PDE based models
already studied on triangular surface meshes to highly detailed implicit surface repre-
sentations. So far we have either confined to evolution problems on fixed surfaces or
the evolution of the geometry itself obeying a geometric PDE. Surely, one can couple
both and consider a density u on a moving surface, which is governed by an evolution
problem and acting as a parameter for an evolution problem of the surface itself.
Indeed, the following system of reaction diffusion equations describes such a coupled
system:

∂tu(t)−∆M(t)u(t) = f(u(t), x(t)),
∂tx(t)− ε∆M(t)x(t) = g(u(t), x(t))

for a small parameter ε. There are plenty of applications in geometric modeling or
geometric texture generation, which lead to such coupled problems.
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