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Abstract. A multi-resolution approach is presented for data on a large
class of hierarchical and nested grids. It is based on a procedural inter-
face and a set of hierarchical and adaptive visualization methods. Such
a method consists of a recursive traversal of mesh elements from the
grid hierarchy combined with an adaptive stopping according to some
error indicator which is closely related to the visual impression of data
smoothness. During this traversal user data is only temporarily and lo-
cally addressed on single elements. No in advance mapping onto pre-
scribed formats is necessary. The user only has to supply a set of element
access routines as an interface to his specific data structures. As no extra
storage is required, also large, economically stored computational grids
can be handled on workstations with moderate local memory. Significant
examples illustrate the applicability and efficiency on different types of
meshes.

1 Introduction

Efficient numerical algorithms such as multi grid methods are nowadays capa-
ble to resolve complex structures in the simulation of physical processes. In a
post processing step the user wants to explore the large amount of data with
typically millions of unknowns interactively to improve the understanding of in-
teresting features. Therefore efficient visualization tools are essential to extract
the requested information from the enormous data base at a high frame rate.
The numerical methods are mostly based on a variety of domain discretizations
such as structured or unstructured Finite Difference, Finite Element or Finite
Volume grids, which are in general supplied with a hierarchical structure. These
meshes may consist of a single or of mixed element types, e. g. simplicial, pris-
matic, rectangular or cuboidal, and they are frequently generated by different
recursive, adaptive refinement strategies. Thereby non standard and application
dependent data structures are often essential for an efficient implementation of
the simulation algorithm.

The hierarchical type of these numerical data structures, first used for comput-
ing, 1s also well suited to improve the efficiency of a class of typical visualization
methods. In the present paper two main aspects will be discussed.



First, we ask for a flexible integration of the above large class of hierarchical
data structures from the applications into a post processing environment. The
gap between the user’s numerical data formats and the prescribed structures
usually used by visualization tools is one of the fundamental outstanding prob-
lems in scientific visualization [7,15]. Most of the visualization software currently
in use works on prescribed data formats [2,5,9,16]. User data has to be converted
into such a format. But this is time and storage expensive especially in case of
large nested grids, where very often closely related to the specific application an
economical data storing is possible. It seems to be impossible to set up a fairly
general and efficient data format covering all the above grid types. For non hier-
archical meshes in [13] a different approach, which tries to avoid these difficulties,
is proposed. A mesh is defined as a procedurally linked list of elements. There
is no random access to a single element. Information about elements is only lo-
cally and temporarily provided by user supplied access procedures. This concept
can be generalized to hierarchical grids. In section 2 we will introduce access
routines to hierarchical elements supporting a recursive traversal of any nested
grid hierarchy. Furthermore in section 3 a type of economical data structures to
store nested grid data efficiently is discussed. We point out that such structures,
which can exclusively been handled by a procedural approach, are well suited to
store even very large grid geometries on a standard graphic workstation.

Second, especially the huge amount of data delivered by efficient numerical meth-
ods requires as well efficient visualization methods to support an interactive anal-
ysis of the physical characteristics modeled by the simulation. We will discuss
mainly the extraction of isosurfaces as a typical graphical tool to inspect 3D data
sets, although this methodology applies to other methods as well. The classical
marching cube method, by Lorensen and Cline [11], efficiently renders local iso-
surfaces on hexahedral grids. But the underlying search algorithm for intersected
elements is still an overall traversal of the set of elements. Mainly three different
types of improvements have been investigated: an efficient presorting of elements
[3,10,14], a seed point selection strategy combined with a spreading search for
isosurfaces using adjacency information [6], and the recursive hierarchical search
for intersected elements using precomputed and stored min/max values [17]. We
sketch here how to combine a hierarchical search over the grid hierarchy with an
adaptive stopping on elements where the visual improvement, one would obtain
on finer grid levels, is below a user—prescribed error tolerance. Such an adaptive
stopping on coarser grid levels has been considered for instance in the context
of volume rendering for an adaptive splatting technique [8] and for an algorithm
based on successively refined tetrahedral Delaunay meshes [1]. The advantage of
our algorithm is, that it can be implemented on a fairly general class of hierar-
chical grids, which are in our case procedurally addressed, acts strictly local on
elements without referring to their neighbourhood, and rules out discontinuities
on the isosurface due to transitions between different grid levels. This concept
can easily been generalized to other visualization methods, such as color shad-
ing or isoline drawing in 2D, or on volume slices in 3D. It applies to hierarchical
meshes consisting of elements, which are tensor products of simplices in one, two



or three dimensions and the corresponding function spaces generated by tensor
products of linear functions on simplices. This especially includes the elements
sketched in Fig. 1 with, for instance, linear, bilinear or trilinear functions defined
on them. A detailed discussion of this concept can be found in [12]. Section 4
gives a brief overview on the basic ideas and in section 5 several examples un-
derline the applicability of the presented concept. Let us finally clarify some
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Fig.1. The basic element types and their refinement (for triangles and tetrahedrons

we depict two types of refinement).

notation concerning the grids, which will be used throughout the subsequent
sections. A set of nested grids {M'}o<i<i,,,, is a family of meshes, which are
recursively generated by refinement of certain elements of the preceding coarser
mesh. More explicit, an element E € M! is refined according to some refinement
rule and we thereby obtain a set of child elements C(E) C M!*! (cf. Fig. 1).
By refining an element new vertices z are generated. Let us denote the set of
vertices of E and C(FE) by N (F), N(C(F)) respectively.

We finally remark that, although we mainly focus on the 3D case, most of the
schematic figures deal with the 2D case, to simplify the presentation.

2 A procedural interface to hierarchical meshes

In [13] a visualization interface for arbitrary meshes with general data functions
on them has been proposed. This interface tries to avoid restrictions on the
element types. A mesh is defined as a procedurally linked list of non intersecting
elements. The access to data is done by user supplied procedures addressing the
user data structures and returning the required data temporarily in a prescribed
element structure ELEMENT. It especially contains a reference to some element
type, the coordinate vectors for the nodes, and function data on them. (Here
we restrict ourselves to the basic concept. The true data structure is slightly
more general, especially concerning the interface for function data). In general
at the same time only one FLEMENT structure is present in storage. There is
no random access to a single element. But this is in fact not necessary for most



common and frequently used visualization methods (cf. section 4). Especially no
permanent mapping of numerical data onto new data structures is required. The
visualization tools directly work on the data structures the user is accustomed
to from his numerical method. He only has to provide the access procedures
and give a description of the element types. For the details on the procedural
interface we refer to [13].

So far no hierarchical structure is taken into account. Now we enlarge this in-
terface by access procedures which procedurally represent the tree structure un-
derlying a nested grid. Two procedures first_macro(), next_macro() successively
deliver information on the coarse grid elements in an ELEMENT data structure,
overwriting previous element data. A call of first_child() generates and fills an
additional ELEMENT structure with some first child data. Finally successive
calls of next_child() traverses the other child elements of the same parent ele-
ment and replaces previous child data (cf. Fig. 2). Thereby during a recursive
traversal of the grid hierarchy, a list of at most n temporarily filled ELEMENT
structures is present in memory at the same time, where n is the depth of the hi-
erarchy. This especially implies that also in the user data structures the element
information needs not to be stored completely on all grid levels, but it may be
generated when needed, based on complete parent information and economically
stored offset data (cf. section 3).

first_macro()

level 0 first_child()

level 1
level 2

Fig.2. A schematic sketch of the procedural access to hierarchical grids by the four
routines first_macro(), next_macro(), first_child(), next_child().

The above access procedures supply a visualization method with all necessary in-
formation to locally evaluate and graphically represent grid geometry and data.
This is sufficient to run merely all visualization algorithms, e. g. isosurface ren-
dering, isoline drawing and data dependent color shading. In section 4 we will see
that additional error indicator values on vertices are required by the hierarchi-
cal and adaptive visualization methods. Furthermore we need upper and lower
bounds for data on elements, typically computable based on the error indicator
values. Additional procedures are included to supply visualization methods with
such information.



Particle tracing and related methods can be implemented similarly. For an ef-
ficient implementation we here have to process elements in the order in which
they are traversed by an integral line of some vector field, e. g. a particle path.
If we run the integration on level 7, we therefore have to recover the “hierar-
chical history” of an adjacent ¢ level element in each step, which can be done
recursively. Here the hierarchical history is described as the corresponding list of
ELEMENT structures and the recovering is done adjusting the list correspond-
ing to the current element. This requires a procedure neighbour() on the coarse
grid level and an evaluation of adjacency relations among the set of children of
any parent element (cf. section 3).

3 Economically stored nested grids

One of the main advantages of a procedural access to hierarchical data is that
economically stored hierarchical grids can be addressed directly by the visual-
ization. This allows us to handle even very large grid geometries interactively on
a graphics workstation. Let us now sketch the minimal information, which is to
be stored to address a hierarchical grid procedurally for numerical or graphical
purposes.

For each element the geometry of its children is uniquely described by the re-
finement rule, if no additional grid alignment is taken into account. I. e. the
coordinates of each [ + 1 level vertex z'** in N(C(E)) \ N(E) can be evaluated
as weighted sums over the coordinates of the I level parent vertices z' € N(FE)
with weights w1 (2') depending solely on the refinement rule:

= Z wa (2') 2!

zteN(E)

In general the number of refinement rules is small, such that element and vertex
production rules, including the weights, can easily be stored in a lookup table.
On curved boundary segments, where vertices generated by the refinement rules
on the grid boundary are pushed afterwards onto the continuous smooth bound-
ary, these new coordinates have to be stored additionally. We skip a detailed
discussion here and only remark that the storage requirement is typically of
lower order, because the boundary is a lower dimensional set.

A general hierarchical grid can be described by a list of macro elements, and the
subdivision history for each of them, given by a tree of hierarchical elements.
Therefore, in the user’s application a macro element data structure MacroFEle-
ment contains full information on the corresponding element: an identification
of the nodes, including their coordinates or a reference to them, adjacency re-
lations across element faces, and a reference to the tree of child elements. An
economical hierarchical element data structure FcoFElement, which corresponds
to a node in any macro element’s subdivision tree, consists of the index of the
element’s refinement rule, an array of identifiers for the new nodes generated by
the refinement, to address data values on them, and finally a reference to an ar-
ray of child elements (cf. Fig. 3). Let us mention that the highest level elements



MacroElement EcoElement

MacroNode  *macroNode int refrule
MacroElement *neighbour Node **newNode
EcoElement  *self BoundPoint  *boundPoint

EcoElement  *child

Fig. 3. A sketch of possible user data structures which fully describe a hierarchical grid
in a pseudo C notation (MacroNode and Node are the reference types for vertices on the
coarse grid and new vertices generated during the refinement respectively. BoundPoint
is the structure to store vertices on curved boundary segments)

are not represented explicitly in the data base. Complete information on those
elements is already present on their parent’s level.

A typical visualization method now runs over the list of macro elements, and
recursively processes higher level elements of the hierarchical tree. Thereby eco-
nomically stored information for a child element is temporarily completed refer-
ring to the economical data structure for hierarchical elements, given as EcoFEle-
ment data, and complete parent element information, which has already been
stored in an ELEMENT structure (possibly slightly enlarged by some additional
user data) in a preceding step of the recursion. Let us mention that besides the
nodal coordinate vectors and the data references we can also generate informa-
tion on element adjacency recursively, where we identify neighbouring cells of
child elements as child elements of neighbouring cells.

Let us finally estimate storage requirements and thereby capabilities of a proce-
dural approach, where we assume that only one refinement rule is used, which
generates ¢ children in each step. Now consider n levels of global refinement on
a macro grid with m elements. Then the required storage for the hierarchy is

n_1
m(c - ~EE+ME>

c —

where EE, M E is the storage requirement for a single EcoElement or MacroFEle-
ment structure respectively and furthermore % is an estimate for the storage
needed per element on the finest grid level, if we neglect the small and constant
memory block for the macro elements. A hierarchical, tetrahedral grid consist-
ing of 10 million tetrahedrons on the finest level, where tetrahedrons are divided
into eight children in each refinement step, with six new nodes per refinement
(cf. Fig. 1), can be stored in ~ 46 MB (here we suppose a need of 4 bytes in
storage per integer, floating point number, and pointer). Compared to this, a
non hierarchical storing of the finest grid level would require at least ~ 340 MB
(4 nodes and 4 adjacency references, plus ~ é coordinate vector per element)

without the chance to run hierarchical visualization methods.



4 An hierarchical and adaptive visualization strategy

Visualization methods, especially on 3D data sets such as isosurface extrac-
tion and color shading on slices, can benefit from the nested structure of the
underlying grid. In the following we will focus on the isosurface case. Similar
considerations hold for other visualization methods as well.

The cost to extract an isosurface from a given volume data set can be reduced
enormously, taking into account hierarchical information. Instead of traversing
all elements, like a standard marching cube strategy does, we can recursively
test for intersections on coarser level elements £ to decide whether the children
C(F) have to be visited or not. If the considered function on the grid is smooth,
this leads to a cost reduction of one order of magnitude up to a logarithmic
factor. The intersection test on an element requires the calculation of robust data
bounds. Simply taking into account the function values on the element vertices
z! € N(E) will not be sufficient, because we might overlook information apparent
on finer grid levels only, e. g. strongly curved segments of an isosurface (cf. Fig. 4).
Let us suppose that we have at hand an estimate for the function’s second
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Fig.4. On the left: isoline segments in 2D will be missed if just vertex information is
taken into account to test for intersections (The same holds in 3D for isosurfaces), on
the right: An adaptive traversal of a 2D grid leads to hanging nodes.

derivatives — or something comparable — on each element of the hierarchy.
Then a straightforward calculation of bounds is possible by means of Taylor
expansion. In what follows we will see that such quantities are also essential to
support an adaptive visualization strategy and can therefore with some care be
reutilized here. For details we refer to [12].

Up to now, full information on the finest grid level is always extracted and visu-
alized, disregarding that in areas where the isosurface is smooth, a considerably
coarser resolution would visually be acceptable as well. But this would restrict
the method’s tree traversal to a coarser subtree and thereby considerably reduce
the amount of graphic primitives which have to be rendered, and thereby sub-
stantially speed up image generation without missing fine details in other areas
of the data sets. The locally coarser resolution can be obtained by an adap-



tive stopping during the recursive traversal of the grid hierarchy on elements
FE, where some error indicator n(F) is below a given threshold value ¢. There
is a variety of possible error indicators related to the local smoothness of the
data (cf. [12] for a comparison). We found the jump of the normalized function
gradient on the element faces to be an appropriate error criteria, because it mea-
sures angles between adjacent polygons, locally representing an isosurface. These
jumps can be calculated and stored in a precomputing step on the vertices of
the hierarchical grid, lying on the corresponding element faces. The error criteria
n(E) on an element E is then defined as the maximal indicator value on all its
faces, i. e. on the vertices z'*1 € N (C(E))\ N(E). Following the adaptive strat-
egy, hanging nodes will in general be unavoidable. They occur on faces where
we have a transition from coarser to finer elements, which are traversed by our
adaptive algorithm (cf. Fig. 4). Hanging nodes lead to cracks in the isosurface.
To rule out these artifacts we have to replace the true function value v on the
finer elements at the considered face by interpolated values /v coinciding with
the function on the adjacent coarser element. The decision, whether to take the
original function value, or the interpolation at a specific vertex, has to be based
on the error indicators as well, i. e. we choose the interpolation at a vertex, if the
stored indicator value is larger than €. The interpolation is evaluated analogously
to the calculation of coordinates for child vertices (see section 3). If we suppose
the indicator values on coarser level vertices to be larger than indicator values
on vertices appearing on the children of the corresponding elements, the result-
ing interpolation will be continuous and cracks will be ruled out (for bilinear
faces some additional considerations have to be taken into account [12]). This
is a natural assumption especially for fine grid levels and smooth data. In case
of violations we adjust the indicator values, according to the condition, in an
additional precomputing step. Let us emphazise that we operate only locally on
single elements and thereby avoid an expensive non local construction of a con-
forming closure. The following algorithm sketches the hierarchical and adaptive
isosurface extraction for an isosurface value « :

AdaptInspect(a,F) {
Iv = Interpol(v, E);
if IntersectionTest(a,Tv,F) {
if (C(F) # 0) A (1(F) > )
for all EF € C(E)
AdaptInspect(FE);
else Extract(a,F);
}
}

where Interpol() is the implementation of the above interpolation operator, In-
tersectionTest() checks whether « is contained in the image interval of the cur-
rently considered local function, and Eztract() renders the local intersection of
the 1sosurface with an element. Let us finally mention that our error indicator
n(E) can be utilized similar to a bound of the second derivatives to estimate
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Fig.5. An adaptive isosurface extracted from a 50331648 element data set. A table
lists for each grid level the number of visited cells and the number of drawn local
isosurfaces due to the adaptive stopping criteria.

higher order data contributions on a specific element. Thereby it allows a robust
implementation of the intersection test without referring to additional informa-
tion.

5 Examples and Applications

To illustrate the performance of the hierarchical and adaptive strategy for dif-
ferent applications we now discuss some test cases. Fig. 5 depicts a significant
example of an adaptive isosurface on a test data set which consists of precalcu-
lated values of an analytic function at the vertices of a tetrahedral grid. Fig. 6
deals with the density from a porous media calculation based on a hexahedral
mesh (Numerical data provided by S. Oswald, Ziirich). The hexahedrons are suc-
cessively bisected, every time in one direction, cycling over z, y and z. The data
is timedependent. Above, the isosurface for a fixed value is drawn at different
times. They especially enlighten the adaptive strategy. Below a color shading of
the density on an intersection plane is shown at the same times. Again black
lines mark the intersected element faces. Function data at any time is interpo-
lated based on a small set of time steps equipped with the corresponding data.



Thereby the maximal error indicator of two time steps can be utilized as a pos-
sible error indicator for any interpolated data in between. This distinguishes our
approach from the other efficient non hierarchical isosurface methods where a
preroll is unavoidable for each new time. In Fig. 7 we analyze the behaviour
of the hierarchical and adaptive approach for an isosurface with a cusp type
singularity on a sequence of successively refined tetrahedral grids. They are eco-
nomically stored as described in section 3 and the final grid consists of ~ 12
million elements. At each refinement step a tetrahedron is divided into eight
child elements. A diagram shows in a logarithmic scale the total number of vis-
ited elements for different grid levels, including the coarser level elements passed
by the hierarchical algorithm. We compare the results for a standard marching
cube type algorithm, where we only count the elements on the finest level, with

Fig. 6. At different times porous media data is visualized using isosurfaces (above) and
color shading on slices (below). Additional black lines mark intersections with element
faces in a projective view (in the middle) corresponding to the isosurfaces and on the
intersection plane itself (below).
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Fig.7. In a diagram on the left we compare the proposed isosurface method for different
threshold values e with the standard marching cube type algorithm. On the right for
two different € grid models of the extracted isosurfaces are drawn.

Fig. 8. Several adaptive isosurfaces from a porous media data set and and an adaptive
slicing of a non—conforming hexahedral grid.

those for a solely hierarchical and for several hierarchical and adaptive runs of
the algorithm, corresponding to different threshold values e. This reflects the
theoretically expected costs and underlines the considerable data reduction ca-
pability of the adaptive approach. Finally Fig. 8 shows a combination of several
smoothly shaded, adaptive 1sosurfaces from the same data set and the result
of an adaptive slicing algorithm on a non—conforming adaptive hexahedral grid
on which a discrete solution of the Hamilton—Jacobi—Bellman equation is given
(Numerical data provided by L. Griine [4], Augsburg). Tt demonstrates the ap-
plicability of our procedural approach to non standard grid geometries.
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