
An adaptive staggered grid sheme for onservation lawsWolfram Rosenbaumwolfram�iam.uni-bonn.deMartin Rumpfrumpf�iam.uni-bonn.deSebastian Noellenoelle�iam.uni-bonn.deInstitute of Applied Mathematis, Bonn University, GermanyWe present an adaptive staggered grid sheme in two spatial dimensions for theapproximate solution of hyperboli systems of onservation laws. It is based on theseond order entral sheme of Nessyahu and Tadmor [7℄ and its extension to two-dimensional artesian grids by Jiang and Tadmor [3℄. The ease of evaluating uxesnot on the border but inside a ell and the omponentwise appliation of the salarframework to solve systems of onservation laws make this sheme very onvenientto work with. No (approximate) Riemann solvers, �eld-by-�eld deompositions, et.are required. The resulting algorithms are partiularly simple and omputationallyvery eÆient. Moreover, they an be easily applied to problems where no Riemannsolvers exist (see for example [8℄ for an appliation to granular avalanhes).Besides these obvious advantages of the entral framework, there are also algo-rithmial diÆulties aused by the use of staggered grids. The most well-knowndiÆulty is the smearing of ontat disontinuities. Another problem is presentedby grid-orientation e�ets whih our for radially symmetri ows. Both of theseissues are treated in the forthoming paper [6℄. There are other diÆulties whih aremore losely related to the grid struture itself rather than the partiular solver usedon the grids. One of these issues is the treatment of boundaries of the omputationaldomain, see e.g. [5℄. Another hallenging task, whih is partiularly important forpratial appliations, is loal adaptive grid-re�nement and oarsening, in partiularfor unsteady ows. Sine the grids are now staggered, new tehniques need to bedeveloped. These tehnial diÆulties have prompted several authors to leave thestaggered grid approah by projeting the intermediate solution bak onto the origi-nal grid, see for example [2, 4℄. Here we attak the problem of loal grid-adaptationdiretly using strutured staggered grids. We would like to mention that unstru-tured adaptive staggered grids have been developed earlier by Arminjon, Viallon ando-workers, and were suessfully applied to steady ows (see [1℄ and the referenestherein).Given an adaptively re�ned retangular grid (the original grid) there is no uniquehoie of a orresponding staggered dual grid. Our approah relies on the followingnatural design priniples:



1. the orners of the staggered ells should lie in the interior of the original ells,and vie versa (this is our de�nition of staggered grids)2. the loal resolution of the dual grid should reet that of the original grid3. the edges of the dual ells should be parallel to the axis, but we do not requirethe dual ells to be retangular.As our original grid we use an adaptive retangular grid organized in a quadtree.We onstrut the staggered dual grid loally on eah ell C of the original gridfollowing simple rules onsidering only the size of the diret neighbours of C. Addinga few auxiliary nodes to the list of nodes of the original grid in exeptional situations,we an guarantee that eah ell of the dual grid ontains exatly one node of theoriginal grid. Thus we an handle the dual grid by storing the nodes of the originalgrid in a hash-table.As the staggered grid orresponding to the dual grid we use the original gridagain. We re�ne and oarsen only the original and not the dual grid.Figure 1 below shows an example of the two orresponding grids, the originalone with solid lines and the dual grid with broken lines.

Figure 1: original and orresponding dual gridWe have applied our sheme to various one- and two-dimensional test problems,e.g. the rotating one, Sod's and Lax' shok tube and the forward faing step for theEuler equations of gas dynamis, as well as the Brio-Wu Riemann problem and theOrsz�ag-Tang vortex for the equations of ideal magnetohydrodynamis. In Figure 2we display numerial results for the forward faing step, using up to nine levels of



loal grid-re�nement, whih orresponds to 512 ells in the x-diretion on the �nestgrid. Note that for this problem, speial are has to be taken at the boundary, wherethe �rst of our design priniples annot be enfored. Details will be presented in theproeedings.

Figure 2: forward faing stepReferenes[1℄ P. Arminjon and M.-C. Viallon. Convergene of a �nite volume extension of theNessyahu{Tadmor sheme on unstrutured grids for a two-dimensional linear hyper-boli equation. SIAM J. Numer. Anal. 36 (1999), 738{771.[2℄ G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher and E. Tadmor. High-resolution non-osillatory entral shemes with non-staggered grids for hyperboli onservation laws.SIAM J. Numer. Anal. 35 (1998), 2147{2168.[3℄ G.-S. Jiang and E. Tadmor. Nonosillatory entral shemes for multidimensional hy-perboli onservation laws. SIAM J. Si. Comput., 19 (1998), 1892{1917 (eletroni).[4℄ H. Kurganov and E. Tadmor. New high-resolution entral shemes for nonlinear on-servation laws and onvetion-di�usion equations. To appear in J. Comput. Phys.[5℄ D. Levy and E. Tadmor. Non-osillatory boundary treatment for staggered entralshemes. Preprint (1997).[6℄ K.-A. Lie and S. Noelle. A new non-osillatory entral sheme for multi-dimensionalhyperboli onservation laws. (Preprint, to be submitted for publiation)[7℄ H. Nessyahuh and E. Tadmor. Non-osillatory entral di�erening for hyperboli on-servation laws. J. Comput. Phys. 87 (1990), 408 { 463.[8℄ Y.-C. Tai, N. Gray, and S. Noelle. Shok apturing numerial methods for shallowgranular free surfae ow. (Preprint, to be submitted to J. Comput. Phys.)This work was supported by DFG-SPP ANumE.


