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Abstract. Nowadays, multiresolution visualization meth-
ods become an indispensable ingredient of real time inter-
active post processing. The enormous data bases, typically
coming along with some hierarchical structure, are locally
resolved on different levels of detail to achieve a signifi-
cant saving of CPU and rendering time. Here the method
of adaptive projection, and the corresponding operators on
data functions respectively, are introduced. They are de-
fined and discussed as mathematically rigorous foundation
for multiresolution data analysis. Having in mind especially
data from efficient numerical multigrid methods, this ap-
proach applies to hierarchical nested grids, consisting of
elements, which are any tensor product of simplices, gen-
erated recursively by an arbitrary, finite set of refinement
rules from some coarse grid. The corresponding visualiza-
tion algorithms, e. g. color shading on slices or isosurface
rendering is confined to an appropriate depth first traver-
sal of the grid hierarchy. Thereby a continuous projection of
the data onto an adaptive, extracted subgrid is calculated
recursively. The presented concept covers different meth-
ods of local error measurement, time dependent data which
have to be interpolated from a sequence of key frames, and
a tool for local data focusing. Furthermore, it allows for a
continuous level of detail.

1 Introduction

Today’s computing hardware and the rapid develop-
ment of efficient numerical algorithms allow the succes-
sively finer approximation of physical quantities in sci-
entific computing. Especially sophisticated multi-grid
methods [30,1,24,27,47] are nowadays capable of resolv-
ing complex solution structures. In a post processing
step the user wants to explore the corresponding large
amount of data with typically millions of unknowns
interactively to improve his understanding of interest-
ing features. The numerical methods are mostly based
on a variety of domain discretizations such as struc-
tured or unstructured Finite Difference, Finite Element
or Finite Volume grids, which are in general supplied
with a natural hierarchical structure. The correspond-
ing meshes may consist of a single or of mixed element
types, e. g. simplicial, prismatic, rectangular or cubic
ones. The recursive generation of elements is in general
described by a finite set of refinement rules. Further-
more, very often in the implementation of numerical

methods non standard and application dependent data
structures are essential for an efficient implementation
of the simulation algorithm.

Data analysis especially by suitable visualization
methods is an indispensable tool to study and under-
stand the simulation results. Typical basic tools are
the drawing of isolines, respectively the color-shading
or texturing on 2D domains, on surfaces, or on arbi-
trary slices in 3D and the rendering of isosurfaces in
3D. Efficiency of the visualization is requested to ex-
tract the required information from the enormous data
base at a high frame rate. A variety of multiresolution
visualization methods has been designed to serve this
purpose for certain grid types in two and three dimen-
sions. For a more detailed overview we refer to the next
paragraph. These methods correspond to a specific lo-
cal error measurement. The considered error type, e. g.
in the L, L? norm, or in terms of wavelet coefficients,
is in general closely related to the physical problem
underlying the simulation. If error indicator values are
below a certain threshold the algorithm locally stops
on coarser levels of detail. Algorithmic effort is needed
to avoid cracks in the resulting approximation of sur-
face graphs, isolines and isosurfaces or jumps in color
and texture values.

We here present a unified approach to multireso-
lution visualization on nested grids which covers mul-
tiple types of error indication and comes along with
a robust and efficient solution of the above continu-
ity problem for a large class of visualization applica-
tions. The approach is based on the definition of an
appropriate adaptive projection of the considered dis-
crete function. Throughout the paper the term projec-
tion is always meant in the sense of the mathematical
operation which can be applied to some function. Here
a discrete function, the data given on a Finite Element
mesh, is projected onto an adaptive grid that consists
of different levels of mesh elements. The projection is
recursively defined on the grid hierarchy and depends
on some error indicator given on the grid nodes. It is
guaranteed to be continuous if a natural saturation con-
dition is fulfilled by the error indicator. Various types
of indicators are supported. One possibility is that the
saturation condition may fail. This typically happens



on coarse grid levels. Therefore, in a preroll step a slight
modification is introduced, which again “saturates” the
indicator values. Furthermore, we point out that espe-
cially the use of hierarchical offset values as an error
indicator in addition allows an estimation of min/max—
values on grid cells, which is essential e. g. for hierar-
chical isosurface generation.

The concept applies to time dependent data as well,
where a finite number of key frames is given and in be-
tween some interpolation is used. It is explained how
to interpolate error indicator values to obtain an ap-
propriate adaptive projection at any time.

Furthermore, a continuous level of detail, in our
concept the continuity of the adaptive data projection
with respect to the user prescribed threshold, can easily
be obtained by a slight generalization of the projection
criterion.

Finally, in case of Finite Element spaces of higher
order polynomial degree the presented methods can be
adapted to enable a “virtual”, adaptive refinement of
the finest grid cells to resolve the local function with
arbitrary prescribed precision.

The paper is organized as follows. At first we review
related work on multiresolution visualization in Sec-
tion 1.1 and, in order to especially clarify the notation,
we give a brief overview on nested grids and function
spaces in Section 1.2. In Section 2 and 3 we introduce
adaptive data projections depending on some type of
error measurement, and explain a general adaptive vi-
sualization algorithm. Next, various types of projection
criteria, respectively error indicators, are discussed in
Section 4. In Section 5 we derive additional projection
criteria for geometric shapes as well as time dependent
and vector valued functions. In Section 6 it is explained
how to guarantee a continuous level of detail with re-
spect to the user prescribed threshold value and Sec-
tion 7 discusses adaptive projection in case of higher
order polynomial degree of the discrete function spaces.
Although the discussion of algorithmic aspects is not
the paper’s main intention, in Section 8 we comment
on some aspects concerning the implementation, and
in Section 9 we discuss the efficiency of the presented
approach and compare it with other methods. Finally,
in Section 10 we draw conclusions.

Let us remark that although the presented concept
applies to 2D and 3D visualization applications, with
a strong focus on the 3D case, most of the schematic
figures deal with the 2D case. This is solely to simplify
the presentation.

1.1 Related Work

As already described, improving the efficiency of visu-
alization methods with respect to very large data sets

in two and three dimensions is a key issue in recent re-
search. A variety of applications, such as terrain visu-
alization, surface modeling, medical imaging and espe-
cially numerical simulations deliver enormous amounts
of data. An interactive exploration is indispensable to
analyze the output, understand solution features and
modify input parameters. Multiresolutional techniques
have proved to be the adequate solution for a large
class of applications. Authors have approached them in
a multitude of ways. Here we exemplarily give a brief
and naturally incomplete overview.

The efficient rendering of height fields, in geo-
graphic imaging especially for flight simulation pur-
poses has been studied e. g. by Certain et al. [7],
Faust et al. [20] and Floriani et al. [14]. Applying
some hierarchical algorithm they adaptively extract
conforming triangular meshes from the underlying reg-
ular data base. Thereby data in the center of the typ-
ically moving viewpoint is resolved finer than in outer
areas. Errors are measured in the L° norm, respec-
tively in pixels in image space. Gross and Staadt [25]
consider a wavelet compressed data representation and
use wavelet coefficients as an error indicator. Cohen—
Or and Levanoni [12] study continuous level of detail
rendering in case of Delaunay triangulated terrain.

For arbitrary triangular surfaces, e. g. isosurfaces
in numerical data fields, surfaces generated by some
3D scanning process, or shapes in geometric modeling,
adaptive coarsening strategies have been presented by
Turk [58], Hamann [28] and Schroeder et al. [53]. In
a non interactive preparatory step requested surface
reduction rates are achieved by successive elimination
of vertices. Hoppe [31] introduced so called progressive
meshes, which allow an efficient complexity reduction
and fast transmission of data over the net at any pre-
scribed resolution. A conceptional overview on hierar-
chical triangulations is given by Floriani and Puppo
[15]. For a comparison of different mesh simplification
algorithms we refer to Cignoni et al. [11].

In 3D the efficient storing and handling of hierar-
chical data coded in octrees has been studied among
others by Gargantini [21], Williams [61], Tamminen
and Samet [57], and Levoy [38]. Ghavamnia and Yang
[22] have discussed how to address hierarchically com-
pressed data in fast volume rendering.

Hierarchical searching for isosurfaces was first con-
sidered by Wilhelms and van Gelder [59] on hexahedral
meshes. They thereby speed up the classical march-
ing cube algorithm introduced by Lorensen and Cline
[40]. The grid elements are encoded in an octree, which
allows the recursive search for isosurface intersections
starting on the coarse grid elements. This method is
especially efficient in case of smooth functions at the
expense of extra storage for the min and max values



on each node in the octree structure (cf. Section 4.4).
The hierarchical approach competes with other efficient
isosurface extraction methods which use some efficient
presorting [23,55,39] or seed cell algorithms, such as
the extremal graph methods by Itoh and Koyamada
[32,33]. These approaches are preferable if the data is
governed by high frequencies.

But in contrast to these approaches, the hierarchi-
cal data access, as for instance in 2D, can be combined
with an adaptive choice of the desired data resolution.
A fast and adaptive visualization of volume data is im-
plemented in the hierarchical splatting algorithm by
Laur and Hanrahan [37]. They have used a L?>-type
error indicator on an octree encoded voxel data base
to speed up rendering substantially. Wilhelms and van
Gelder [60] use such a hierarchical speed up in a scan
plane type approach to volume rendering, especially
for preview purposes. Cignoni et al. [8] have applied
a successive adaptive refinement of volumes by Delau-
nay methods, which leads to non nested hierarchical
meshes. They discuss further issues in [9]. Additional
points are successively inserted in areas, where an L*°—
type error indicator measures differences above a cer-
tain threshold value. Adaptive isosurfaces on regular
data fields are treated by the octree based decimation
algorithm presented by Shekhar et al. [54]. Based on
error indicator values on the octree cells the recursive
tree traversal is stopped locally on coarser grid lev-
els. Thereby they enforce at most one level transitions
between cells on which they definitely draw local iso-
surfaces.

Different approaches have been presented to solve
the outstanding continuity problem, e. g. to avoid
cracks in adaptive isosurfaces. In the Delaunay ap-
proach by Cignoni et al. [8] and in the nested mesh
method by Grosso et al. [26] the successive remesh-
ing during the refinement guarantees the continuity.
On the other hand, Shekhar et al. [54] rule out hang-
ing nodes by inserting additional points on faces with
a transition from finer to coarser elements due to an
adaptive stopping criteria.

Any adaptive visualization algorithm in 2D and 3D
is based on a specific local error measurement. Differ-
ent approaches to measure errors have been considered.
Often the hierarchical data offset from one grid level to
the next finer one is measured in the L norm (cf. e. g.
[31,54]. Klein et al. [36]) to achieve higher reduction
rates measuring surface distances in the more natu-
ral Hausdorff norm. Grosso et al. used L2, respectively
H*'2 [26] projections of regular field data onto adaptive
unstructured meshes. Finally, wavelet coefficients are
often appropriate error indicators. Among many other
contributions we here especially cite Gross, Staadt [25]
and Certain et al. [7]. Bonneau et al. [5] studied a prob-

lem dependent blending of different wavelet based er-
ror indication. Eck et al. [17] and Schréder et al. [52]
have worked out multiresolution visualization methods
on triangulated surfaces based on local error measure-
ment in wavelet spaces. Compare Sections 4, 5 for a
comparison of different types of error measurement.

1.2 Data on nested grids

In the following section we will discuss a general ap-
proach to adaptive projection methods based on nested
grids. Let us therefore briefly introduce some basic con-
cepts of nested grids and of function spaces defined on
them. Let XY™ C IR™ be the set of simplices of di-
mension m, e. g. X! the set of line segments, X2 the
set of triangles and X3 the set of tetrahedrons. Here
we consider all elements E C IR™ consisting of tensor
products of simplices, i. e. for some integer k

k
B= Qo
i=1

with o; € XY™ where m; denotes the dimension of
o; and k,mq,---,my have to be choosen, such that
Zf:o m; = n (cf. [46] for the definition of simplices
and tensor products).

Example are triangles (E = X?), rectangles (E = X' x
X') in 2D and tetrahedrons (E = X3), prisms (E =
%2 x X1, or hexahedrons (E = X' x X1 x X1) in 3D
(cf. Fig. 1).

A conforming mesh M is a set of elements E such
that any two elements of M are disjoint or they inter-
sect in a boundary simplex, e. g. a common face, edge or
vertex. A family of conforming meshes {M'}o<i<i,,..
is called a nested grid, if for all E* € M™ there
exists an E' € M! with B N E' = E"' and
Ugmiepn B = Upicpn E' - These kinds of grids are
mostly recursively generated by refinement of certain
elements of the preceding coarser mesh. Correspond-
ing to a nested grid {M'}o<;<i,..., We consider a family
Vo<, of discrete function spaces, which in most
applications are ordered by set inclusion:

VecVvic...cVicVH ¢ ... ¢ Yhmax

Since we consider only tensor product elements we as-
sume a corresponding tensor product structure for the
function spaces as well. That is if U! € V! and E* € M"
with E' = ®!, 0;, then U'|g is in the span of func-
tions []1", U; with functions U; defined on o;. E. g. in
the case of a rectangle [zg,z1] X [yo,¥1], the bilinear
function

r—x — r— —
U(z,y) = Uoo LY 0 + Un L Y= %
o —T1Y0 — Y1 o — 1 Y1 — Yo
r—x — T —T —
Uip 0¥~ h + U1 0 Y=Y
1 —ToYo — Y1 T1 — Zo Y1 — Yo




is the prototype of a tensor product function. The co-
effients coincide with the values at the nodes of the
rectangle.

Moreover, for the time being we restrict ourselves to

conforming Lagrangian finite element function spaces
generated by tensor products of linear functions Uj;
on simplices ;. This especially includes the elements
sketched in Fig. 1 with, for instance, linear, bilinear or
trilinear functions defined on them. I. e. data is pre-
scribed on the nodes of the elements and there are
no further degrees of freedom. In case of higher order
function spaces the method presented here works on
the embedded tensor product subspaces. Nevertheless
a generalization seems possible, cf. Section 7. In multi—
grid applications function values on vertices may vary
from one grid level to the other, because of the so called
coarse grid correction [27]. For visualization purposes
we suppose that always the unique finest level value is
given on each vertex.
Let us finally introduce some further useful notation.
We define U':=Py:U where Py: denotes the nodal in-
terpolation operator on the grid M! and U is a given,
mostly discrete, continuous function. For E € M!
the set of child elements in M** is denoted by C(E)
(cf. Fig. 1). Furthermore, let us denote the set of nodes
of E and C(E) by N(E), and N(C(E)) respectively,
and define

N (B):=N(C(E)) \N(E),

Ne(By= | NE)Z\N(E)  NM):= ] N(E).

ECE EeM!

Thus, N7 (E) denotes the set of new nodes which
are created when refining an element E once, whereas
N¢(E) collects all nodes of elements generated form F
by the recursive refinement up to the finest level. Fi-
nally, N'(M') denotes the set of all nodes corresponding
to elememts of the refinement level [.

The set of (open) faces F' of a specific element E
is denoted by F(E). It is noteworthy that every vertex
z' in N (E) can be evaluated as a weighted sum over
the coordinate vectors of its thereby defined parent ver-
tices ' € P(z"*') C N(E) with weights w1 (z'):

>

zteP(zH1)

41

T = Wi+l (:L'l) z'. (1)

The weights are assumed to depend solely on the re-
finement rule and on a numbering of child and parent
vertices. In general, the number of refinement rules is
small, such that element and vertex production rules,
including the weights, can easily be stored in a lookup
table. Different refinement rules such as the bisection

strategy, the so called red—green refinement or the re-
finement of prismatic grids are for instance discussed
in [3,50], [18] and [56] respectively.

W\
R

Fig. 1. Basic element types in two and three dimensions
with possible refinements.

2 Adaptive data projection

Before we develop a rigorous concept of adaptive pro-
jection methods in multiresolution visualization, let us
introduce the basic idea with some simple considera-
tions. First of all let us stress that finding appropriate
data projections is a key issue in this field. Typical
visualization methods, such as the extraction of isosur-
faces, the color shading on slices in 3D, or the drawing
of height fields on 2D domains, successively visit cells
and invoke local rendering operations. In the hierar-
chical context, we process all grid cells on the coarsest
level and, depending on certain user defined criteria,
recursively pass over to child cells or confine ourselves
with stopping at the current cell and the correspond-
ing data resolution. The criterion whether to stop or to
proceed is mostly related to some error measurement.
L e. if the true data is already sufficiently approximated
on a coarse cell then we can skip the expensive search
for detailed features to be visualized on the child level.
A very first, preliminary version of such a recursive vi-
sualization algorithm Inspect() applied to any macro
element is sketched in the following pseudo code

Inspect(E) {
if C(E) # 0N -S(E)
for all E € C(E)
Inspect(E);
else Extract(E);

}

where S(E) is the boolean valued stopping criterion
and the procedure Extract() finally performs the lo-
cal rendering on the element E. If n(E) is some



error evaluation on E and € a user prescribed er-
ror tolerance, then one possible stopping criterion is
S(E):=(n(E) < €). Let us remark that in the above
algorithm we have also skipped local search restric-
tions, such as in the case of isosurface extraction the
consideration of min/max bounds for some hierarchical
guidance (cf. [59]).

Voo,
L

Fig. 2. An adaptive traversal of a 2D grid leads to non
conforming grids, respectively hanging nodes.

It is obvious that this rudimentary strategy comes
along with the drawback of cracks in isolines or jumps
in the color intensity at edges in 2D or on slices in
2D, cracks in isosurfaces in 3D respectively. They oc-
cur because of the non conformity of the resulting tri-
angulation (cf. Fig. 2). In explicit, at transition faces
between leaf elements of the recursive traversal on dif-
ferent grid levels, different approximations of the true
function U are taken into account. On the one element
additional finer level nodal values have to be consid-
ered, whereas on the other, adjacent element an inter-
polation of coarser nodal values defines the actually
considered data approximation. In order to achieve an
appropriate visual output from multiresolution visual-
ization methods we have to guarantee consistent data
projections in case an adaptive stopping criterion is
applied during the mesh traversal.

At first one might ask for some adjustment proce-
dure, which explicitly refers to adjacency information
among elements on the same, or on different grid levels
(cf. [54]). But in this case the adaptive visualization
method can no longer be coded as a strict, easy to
implement and fast depth first hierarchical tree traver-
sal. Even worse, in practical application, especially on
economically stored unstructured grids [43], adjacency
information is often not stored, but has to be retrieved
from the grid hierarchy and the knowledge of the refine-
ment process. 1. e. depending on the refinement rule we
have to express adjacent elements of children as chil-
dren of adjacent elements. If we only store neighbour-
hood relations on the macro grid this allows a recur-
sive, but in general expensive evaluation of adjacency
[16,43].

Therefore, we ask for a different approach which
does not refer to adjacency information explicitly. It
motivates the introduction of an appropriate adaptive
data projection which turns out to be a mathemati-
cally rigorous and algorithmically flexible and efficient
tool. We are thus able to formulate various multireso-
lution visualization operations. They can be applied to
a large class of computational, hierarchical grids, con-
sisting of elements which are tensor products of sim-
plices with at least the corresponding tensor products
of linear functions as the accompanying discrete func-
tion spaces. Furthermore there are provisions for much
more general discrete functions such as those from gen-
eral hp—Finite Element methods (cf. Section 7).

First of all, we replace the stopping criterion on
elements by some projection criterion S(z') for every
vertex ' € N (M') with [ < [,,... For the time being
we assume S to attain values FALSE (0) and TRUE
(1). If n(x") is some error indicator on z' and € is a user
prescribed threshold then we define

Sy(@)=(n(@') < e).

A variety of different projection criteria will be dis-
cussed in Section 4 and 5. In Section 6 we will slightly
generalize this to ensure a continuous level of detail
in the animation of parameters such as the above
threshold value. Now we uniquely define the adaptive
projection operator Ps corresponding to the above
point-wise defined projection criterion S. It maps
a discrete function U € V'max to a continuous, but
now adaptive function PsU. Here we take the tensor
product structure of the local function space into ac-
count and obtain by (1) the following recursive formula
for values of PsU on vertices z € N (M!max)\ N'(MO):

(Projection Operator)

>

z-1eP(zl)

+(1 = S(@)U(") 2)

Furthermore, on the coarsest grid (PsU)(z%) = U(z?)
for 2° € N(M?). We choose the interpolated values if
the projection criterion is fulfilled, else the true values
are retrieved from the data base. If S(z) is true for all
r € N(C(E)) where E € M' then

PsU|g = PsU'|g,

(PsU)(2"):=S (") wat (27 (PsU) (™)

that is the projection remains unchanged if we recur-
sively process elements and vertices on finer grid levels.
This implies a deduced natural stopping criterion on
elements

SEy= N\ S@.

zENc(E)



Although the adaptive projection is continuous by def-
inition, in case of isosurfaces on specific grid types,
we have to carefully handle the restriction of PsU at
transition faces between different levels of resolution,
on which bilinear discrete functions are involved. For a
detailed discussion we refer to [45]. Checking for the el-
ement stopping criterion, that is testing the nodal pro-
jection criterion at all nodes z € N¢(E) involves a look
ahead onto all fine grid details on element E. But this
is computationally expensive and not very handsome.
Therefore we require a natural saturation condition for
the projection criterion:

(Saturation Condition) If the Projection
criterion S(z') is true for a node &' € N(E)
then S(z'') is true for all nodes z™# €

NH(E).

Based on this condition the stopping criterion simpli-
fies to

S(E):=

/\ S(z) .

zeN(EB)

If the saturation condition is not fulfilled for a specific
type of projection criterion, then we can adjust the cri-
terion in a preprocessing step. In case of a typical error
indicator this generally turns out to be necessary only
on coarse grid levels. On finer grid levels, on the other
hand, we are already in a saturated state, except at
singularities approximated in the data which are still
not well resolved. For a detailed numerical background
we refer to [2,18]. Such a saturation condition is very
often implicitly assumed in multiresolution visualiza-
tion. Here we state it explicitly. This especially pre-
vents us from overlooking details on fine grid levels. If
a certain error indicator does not fulfill the above con-
dition, a slight modification leads to a properly sat-
urated indicator, and an induced projection criterion
respectively. A simple update algorithm for an error
indicator n and thereby the corresponding projection
criterion &, is the following level-wise traversal of the
grid hierarchy, starting on the second finest level and
ending on the macro grid (cf. Fig. 2).

for  =lpax—1;1>0;1—-)
for all E € M {
* = max
wH‘lENé'H(E)
for all z' € N(E)
} if (n(z') <n")

Let us emphasize that a depth first traversal of the
hierarchy in the adjustment procedure would not be
sufficient.

n(x'*);

v;ﬂ‘; (XXX )
= Vi
.......... ....
A
............... ....

Fig. 3. A schematic sketch of the preroll to adjust indi-
cator values and ensure the saturation condition. On the
left, different grid levels of a triangular mesh are indi-
cated by color. On the right, it is indicated that the sets
of four child elements are taken into account to adjust
the error indicator values on the parent elements.

3 A multiresolution algorithm

The general multiresolution algorithm is based on the
application of the above introduced adaptive projec-
tion operator. It computes a continuous function on an
adaptive grid performing a depth first traversal of the
mesh hierarchy. This can be written in pseudo code

Inspect(E) {
PsU = AdaptiveProjection(U, E);
if ElementOfInterest(PsU, E) {
if C(E) #0A-S(E)
for all £ € C(E)
Inspect(E);
else Extract(E);
}
}

where AdaptiveProjection() is the above introduced
nodal projection operation (2) and FElementOfInter-
est() checks whether features to be visualized are pos-
sibly inside the element or not. E. g. it is verified if
the element is a candidate for the intersection with an
isosurface or if there are critical points where to place
some icons. For an implementation of such a routine
along the guidelines of adaptive error measurement see
Section 4.4. Let us emphasize that the saturation con-
dition is the key which prevents us from having to check
complex adjacency information.

This saturation condition comes along with another
desirable and straightforward consequence. Performing
the adaptive visualization algorithm we end up with at
most one level transitions at faces of elements on which
the local rendering takes place. I. e. on each such face,
vertices of only two, not necessarily successive levels
will occur (cf. Fig. 2). We prove this by contradiction.

Let us suppose that two elements E, E meet at
a certain face F. On E the above algorithm already
stops, i. .e. S(E) is true, whereas on E elements E' C
E? C E of two different finer levels are traversed, i. e.



Fig. 4. In the adaptive traversal at most one level tran-
sitions occur. Thus child element of E? would not be
visited, if the algorithm stops on E.

S(E),S(E?) are false (cf. Fig.4). Furthermore we as-
sume that E', E? have faces F', respectively F? with
F' c F? C F. By assumption there exists a node
z! € N(C(E?)) \ N(E?) for which the projection cri-
terion S(z!) fails. We then know by means of the sat-
uration condition that S(z?) also fails for all nodes
z? € N(E?), especially for those on F2 C F. There-
fore S(z) fails at least on one node z € Ng(E). But
this contradicts our assumption that S(E) is true, once
more because of the saturation condition.

If we run the adaptive algorithm, the full grid hierarchy
is partially traversed. We can obviously not do better,
i. e. resolve the considered physical quantity finer than
provided by the actual local depth of the hierarchical
data base. Let us suppose that the projection criterion

solely
hierarchical

adaptive

O
ROLLEEPPA,

.
R LTy R

full adaptive
numerical grid

Fig. 5. A solely hierarchical traversal of the grid would
stop at a certain level of the hierarchy, whereas an adap-
tive traversal allows a stopping criterion depending on
the data.

is related to the same error estimator 7 that was origi-
nally used in the adaptive numerical algorithm to com-
pute the data. Then the adaptive projection in the post
processing resamples the computational grid history
for decreasing threshold value € down to the threshold
value €* at which the computation was finally stopped.
Fig. 5 depicts this schematicly and compares it with a

simple cut off at some level of the grid hierarchy. If we
use a different projection criterion, the computational
grid hierarchy and the portion of it traversed during
the visualization algorithm will not match properly. In
certain local areas a recomputing would be necessary
to overcome this shortcoming.

4 Primary projection criteria

Up to now the projection criterion S(z) on nodes z on
different grid levels is still some abstract boolean val-
ued function which is admissible if the saturation con-
dition is fulfilled. The almost trivial choice is the level
wise post processing which is induced by the projec-
tion criterion S(z) = (I > I*) for z € N(M")\N (M)
where [* is the considered recursion depth. We will now
discuss further suitable and more advanced projection
criteria, corresponding to different aims of a multires-
olution strategy.

4.1 Visual error indicator

The visual impression and a sufficient resolution of nu-
merical data in the visualization process is closely re-
lated to curvature, for instance curvature of isosurfaces
or isolines on slices. Therefore, we ask for a discrete cur-
vature quantity which locally measures the quality of
the data approximation from the viewpoint of the vi-
sual appearance [45]. One thing we can easily recognize
in images consisting of isosurfaces, are folds at surface
edges or, in case of isolines on slices, folds at polygon
vertices. In each element the data gradient VU! is al-
ways perpendicular to an isosurface or an isoline on any
chosen plane. Therefore at any point 2 on an element
face F' the normal component of the jump of the nor-
vU

malized gradient, denoted by [ﬁ] F locally measures

the fold in the data function(cf. Fig. 6). Here the jump

Fig. 6. A schematic sketch of the jump of the normal-
ized gradients across an edge in 2D.



operator applied to some function W is defined as

[W]F:Z lim

i—00

W () = W(a7))|
for sequences {z; } and {z] } converging to x from dif-
ferent sides of F'. Let us remark that for linear functions
u on simplices the gradients are constant on elements.
This jump obviously serves as a well-founded graphical
error criterion and motivates the following definition of
an error indicator for a node x € N'(M?)

VU (z)

nv(z) = Fef(rjrlwa;§(A$€F [W]F

and the corresponding projection criterion Sy (z) =
(nv(z) < €) for a threshold value € (cf. [45]). Fig. 7
shows isosurfaces for a test data set resulting from ap-
plications of the adaptive algorithm for different values
of € and in Fig. 8 we sketch the statistical behaviour in
a diagram. Fig. 9 demonstrates the applicability of the
method for simulation data.

Fig.7. Adaptive isosurface extraction on a test data
set, the grid of which consists of 12 million tetrahedrons,
for different threshold values.

4.2 Numerical error indicator and wavelet
coefficients

Adaptive numerical methods have become popular es-
pecially in the last decade and proved to be efficient
strategies to adequately resolve solution features in
simulation computations. Features of significant inter-
est are for instance general singularities, boundary lay-
ers, or vortices which can not be sufficiently resolved by
numerical methods on standard uniform grids. Many of
these adaptive methods have in common that they suc-
cessively cycle over the following three steps: compute
an approximate solution on the current grid, calculate
local error estimator or indicator values ny(z) for grid
nodes z, adapt the grid applying local refinement or
for time dependent problems also local coarsening. This
cycle is stopped if a prescribed error tolerance is falling
short. Depending on a given norm |||, for some partial
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Fig. 8. On a logarithmic scale we compare different vi-
sualization strategies concerning the overall number of
visited cells for increasing grid level. Compare Fig. 7 for
the corresponding data set. We expect the purely hi-
erarchical isosurface extraction to distinguish from the
marching cube method in the slope of the curve by a
factor of % . This is obviously reflected by the above dia-
gram. Furthermore, for successively increased threshold
value the method reaches a saturated state successively
earlier. The behaviour at the singularity is not visible
in the diagram.

differential equations true error estimators are known,
such that a reliable a posteriori error estimate

llu = Ull < Cl|(nn () atenrran |1

holds [44], where u,U are the continuous, respectively
numerical solution on the grid M" and ||| - ||| is an ap-
propriate norm on the space RN M) E. g. for Pois-
son’s problem we are lead to

v (@):=hp||[VU (@)nr] el L r)

as an error indicator on faces F, respectively on ver-
tices ¢ which are going to be created on theses faces
after some local refinement, where hy is the diameter
of face F'.

Seen against this background it appears convenient to
use these estimator values also for the visual post pro-
cessing and define the error projection criterion Sy (x)
= (nn(z) < ¢€), where € is again some user defined
threshold.

Wavelet based methods have also become very pop-
ular and effective instruments in numerical methods
[34], data compression [62] and especially in multireso-
lution visualization [25,42,19]. They are especially pow-
erful when considered on regular, structures grids. A
key issue of wavelet type multiresolution visualization
is the error measurement in terms of local frequen-
cies, which is often a desirable feature, e. g. for geo-
graphical maps. At first, if data is not already given



Fig. 9.

On the top color shading on slices and iso-
surfaces for increasing threshold values is applied to a
porous media data set. The isosurface corresponds to
the interface between fresh and salt water in this two
phase flow calculation. On the bottom the intersections
with element faces are outlined in black.

in wavelet space, it is analyzed and a hierarchy of
wavelet coeflicients is extracted from the input data
set. These wavelet coefficients correspond to wavelets
or pre-wavelets ¥'(-) with 1 <[ < [,.., evaluated at
the nodes © € N (M) of a specific hierarchical depth.
In terms of our approach, during a recursive wavelet
synthesis which locally converts back to the standard
function basis, the wavelet coefficients can serve as the
appropriate error indicator 7, (), if we ensure satu-
ration. Therefore this important class of methods also
fits into the presented frame. For a detailed discussion
of this topic we refer to the variety of efficient and spe-
cialized methods in the literature.

4.3 Magnifying glasses

Another desirable feature of multiresolution data pro-
cessing is the focus on a specific domain in image or
object space. Inside some lens domain {2 we thus ex-
pect at least a certain fineness h,,;, of the grid on which

Fig.10. Application of a magnifying lens to a 3D data
set on a hexahedral grid. An adaptive isosurface and
color shading on a slice are drawn for a ball shaped
magnifying lens. Outside the lens domain isosurface and
color shading are only resolved on coarse grid levels. In
the lower left corner a full resolution image is added for
comparison.

we extract and visualize information. Qutside a signif-
icantly coarser mesh width h,.,, is supposed to be suf-
ficient. To focus on certain details using a lens has al-
ready been discussed by Bier et al. [4] and by Cignoni
et al. [10]. Here we embed such an approach in the
concept of adaptive projection operators. In what fol-
lows we will restrict ourselves to lens domains (2 in
object space with Lipschitz continuous boundary. For
domains (2 in image space we consider the pull back
2 = M~'(2), where M is the affine transformation
from object space to image space. We ask for a projec-
tion criterion, which leads to the requested behaviour
of the visualization method. Furthermore it has to be
admissible, that is to fulfill the saturation condition, to
ensure continuity of the adaptive projection and result
in an appealing graphical output. Here the saturation
condition can be weakened: projection criteria on par-
ent nodes have to imply projection criteria on nodes.
Let us define the lens projection criterion

Sp(z):=(h(z) < min{h,.., Cr dist(z, 2) + hpin}),

where h(z) = dist(z, P(z)), P(z) is again the set of
parent nodes of z, and C,, is some constant which solely
depends on the type of refinement rules and will be
fixed later. For a variety of domains {2 this criterion
is obviously easy to calculate and we are left to prove
that the saturation condition holds.

Let us assume that Sg(z') is true for one z' € N(E)
on some element E. For any z'*' € N3"(E) with 2’ €
’P(xH—l)

h(z™) < |2 — ' | < ah(a')



for a fixed constant o € (0,1) depending on the refine-
ment rules used in the grid generation. Then taking
into account that dist(z, £2) is Lipschitz continuous in
z with Lipschitz constant 1 we obtain for C,, < 1=2

| dist(z', 2) — dist(z™, 2) | < |2 — 2|
1—
< h(z').

‘M

<ah(z') <

This immediately yields
Cudist(z', 2) — (1 — a) h(z') < Cydist(z"t, 2).
Using the above estimates we finally observe

h(z"") < arh(a')

< min{Apay , Cpdist(z', 2) + hpin } — (1 — @) h(z")
< min{Apay, Cudist(z', 2) — (1 — ) h(x") + hpin }
< min{Apay , Oy dist(z™, 2) + hpin} -

Therefore Sr,(z'**) holds, which had to be proved.

In case of a regular hexagonal octree « %
(cf. Fig. 1). Therefore 1 is an admissible value for C,,. If
we apply triangular or tetrahedral bisection [50,41] or
the so called red refinement of simplices [18], where tri-
angles and tetrahedrons are divided into four, respec-
tively eight child elements, o depends on the regularity
of the initial mesh. Let us remark that for decreas-
ing values of the constant C,, we obtain an increas-
ing thickness of the transition zone between fine and
coarse grid granularity. Fig. 10 and 11 depicts examples

Fig.11. Color shading of the density in a 2D phase
transition simulation is shown on the left with respect to
an applied circular lens and on the right equally fine on
the whole domain. Thereby data is given on a uniform
triangular grid.

for 2D and 3D meshes, where we have chosen a ball
shaped lens domain in object space, whereas Fig. 13
points out that also non standard domains can be han-
dled as lens domains. In the application the lens do-
main will be parameterized to ensure an effective and
interactive exploration of the data base. To underline
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the close relation to the projection criterion derived
from error indicators and a corresponding user defined
threshold we here define ny (x):=h(z) as indicator and
€(x):=min{ Aoy, Cry dist(z, 2)+ hoin } as threshold. In
what follows we refer to this analogy.

4.4 Hierarchical values

Frequently the data values stored on higher order grid
nodes "' are not the original function values U (z'*)
but the offset Us(z**') at the nodes corresponding to
the canonical nodal projection operator onto V' ap-
plied to U. They are related to the U—values by the
following recursive formula

>

zleP(zH1)

U(zh) = wara (1)U (2') + Us(2™)

The Us—values allow an economical d—compression of
the data and the original values can easily be retrieved,
if the above recursion is applied during the mesh traver-
sal in a visualization method. Furthermore we can
choose

Sw(z):=(Us(x)| <€)

as a projection criterion. As before it is admissible if

Fig.12. Adaptive color shading and isosurface extrac-
tion based on the hierarchical error indicator are applied
on a hexahedral grid.

the saturation condition is fulfilled. For smooth data,
e. g. U(z) = u(z) for all z € N(M!mx) with u € C?,
|Us(z*)| = O(diam(E)?) for '+ € N} (E) which im-
plies the saturation condition asymptotically on grids
M! for [ sufficiently large (cf. Fig. 12). We can apply
the adjustment algorithm from Section 2 to precom-
pute an admissible hierarchical L*—error indicator. Al-
ternatively we can compute a robust upper bound for



the offset values on elements by the recursive formula

na (2):=|Us ()| + (™)

max max
{E|2eN(E)} gitieN T (B)

where on the second finest grid level ng(z):=|Us ()]
for all z € N(M!max). These values can also be used to
perform the necessary intersection test during the hier-
archical extraction of an isosurface. Thereby we avoid
the expensive storing of min/max—values as discussed
in [59] (cf. also Section 5.3).

For the sake of completeness let us sketch the corre-
sponding ElementOfInterest() routine (cf. Sect. 3):

ElementOfInterest(PsU, E) {
if(ming PsU —nu (E) < C < maxg PsU+nu(E))
return true;
else
return false;

}

Whereby ng(E):=maxen(c(e)\w (&) ne(z) and C
denotes the isovalue currently of interest.

5 Derived projection criteria

Up to now different projection criteria have been dis-
cussed mainly for stationary and scalar discrete func-
tions on 2D and 3D hierarchical grids. How to de-
rive appropriate criteria from them, especially for vec-
tor valued, time dependent functions, or for geometric
shapes will be discussed in what follows.

5.1 Combining different criteria

In the previous paragraphs we have discussed several
types of projection criteria, which we apply to define
adaptive data projections in multiresolution visualiza-
tion. They all ensure a sufficient resolution of the visual
image with respect to some quality criterion, e. g. an
acceptable error for the considered physical quantity,
a suitable resolution of the geometric shape, or a de-
tailed data enhancement in a user defined focus. It is
frequently required to fulfill several criteria at the same
time. Therefore we combine the set of corresponding
projection criteria {S;}1<i<m to one criterion

8:281/\82/\"'/\Sm. (3)
Again the saturation property for S is inherited from
those for the different S;. Fig. 13 presents a combina-
tion of magnifying lens and geometric error indicator
for a geographical map.

A different combination of error indicators is needed
in case of vector valued function data, where we already
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Fig.13. The application of a magnifying glass for a
non standard lens domain combined with a geometry
error control.

have error indicator values at hand for the components
of the data function. Therefore we can collapse a vec-
tor of corresponding error indicators 7; to one error
indicator 7 for each node defining

77(53):7(771 (.ZU), e 7”7d(x))

for a function 7 : IRY — IR which is increasing in all
its components. It can easily be proved that this in-
duces the admissibility of the adjoint projection crite-
rion S(z) = (n(x) < €). Especially every norm on the
space IR%, such as the maximum norm, is well suited.

5.2 Geometry error indicator

Up to now we have considered discrete functions on
domains in two and three dimensions. But instead of
planar domains in IR? we can similarly deal with sur-
faces G in IR® which are approximated by polygonal
grids M! for [ < I, starting with a coarse initial ap-
proximation M°. Let us emphasize that G does not
have to be a parameterized surface (cf. Fig. 18, which
displays the deformation of an elastic cylindrical shell).
Nevertheless we can parameterize M!m=x over M by
some function G which is supposed to be closed to a
parameterization g of G over M° (cf. [17]). Following
the guidelines for the adaptive projection of discrete
functions, we can analogously define adaptive geome-
try projections

PsG:=(PsG)(M°)

applying the above results to the in general vector val-
ued parameterization G of G (cf. Sect. 5.1). Fig. 14
shows results for some geographical map.

5.3 Time dependent data

In most physical simulations and for many applications
in geometric modeling the discrete function U or the



Fig. 14. Geometry error control for geographical maps.
We compare data representation on a regular and on a
triangular mesh. The elements on which the stopping
criterion is fulfilled are outlined for the two grid types.
The same type of error indicator and the same threshold
value leads to slightly different results as it is visible
especially in the lower left corner.

geometry G are time dependent. Typically a sequence
of time steps, also called key frames, is given and an
appropriate interpolation is used in between. We here
restrict ourselves to the case of multi scalar functions.
As already mentioned in Paragraph 5.2, a geometric
multiscale analysis works analogously. Let us denote
by {Ut, }1<i<m the sequence of time steps. An interpo-
lation U(t,z) is uniquely defined by a corresponding
interpolation

U(ta (L')I:I(t, Ut1 ((L’), T Utm (.’L‘))

on the nodes z € N (M!max). The concrete interpo-
lation scheme, however, depends on the application.
Here we implicitly assume a uniform mesh M!max and
rule out adaptivity of the considered numerical grids
in time. For a concept to handle adaptive data in time
and space we refer to [48]. On the set of time steps
{Ut; }1<i<m a corresponding set of admissible indica-
tors {n;}1<i<m is assumed to be given. We ask for
an appropriate indicator 7n(t,z) on every node z €
N (M!==x) which again should be admissible. As we
already know from Section 5.1 vy;(n1 (), -, nm(x)) is
admissible for any family of component wise increas-
ing functions +; with ¢t € [t1,t,]. If we suppose the
interpolation to be defined as a weighted sum

I(ta Utl (.'U), T Utm (ZE)): Z Ht; (t)Ut, (.’L')

with continuous non negative weights p, (t) we gain an
appropriate induced and admissible indicator

n(t, 2):=y( (1e; (8)0e: (€))1<i<m)

where < is a standard norm in IR™, fixed in time
(cf. Fig. 15). For the linear interpolation in time the
weights coincide with the simple hat functions

Fig. 15. Interpolation in time for adaptive color shad-
ing on slices: The pictures show the distribution of the
concentration in a two phase flow calculation at differ-
ent time steps, which do not coincide with timesteps
from the computation.

t—1t;—1
ti — tic1 ti — tip

t—tit1

e, (t):= max{0, min{

Compare Fig. 15 for an adaptive color shading on slices
on a tetrahedral mesh and Fig. 16 for adaptive isosur-
faces on hexahedral grids, both extracted from interpo-
lated data. Let us remark that if we take the indicator
nu(z) as defined in Section 4.4 into account, the in-
duced indicator

nH(ta q;);: Z Hi; (t)TIti (x)

can be used to calculate reliable data bounds for the in-
terpolated function. To check this, we straightforward
estimate the difference U (t,z)—U!(t,z), where U'(t, z)
is the local restriction to a certain grid level [

|U(t,.’L‘) - Ul(t: .CE)'
= |I(t7Ut17"'7Utm) _I(tJUtlla"'7Utlm)|

< Z pu; (1) |Us; (2) = Uy, ()] < Z ot ()70t () -

From our point of view this important property points
out a significant advantage of the hierarchical intersec-
tion test compared to other acceleration algorithms for
isosurface extraction, including the span space meth-
ods [55], the k—tree method [39], or the extremal graph
approach [32]. Without any sophisticated adjustment
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the expensive preparatory step which comes along with
these algorithms has to be invoked on every new inter-
polation in time. This turns out to be a major draw-
back compared to almost no extra cost for the hierar-
chical strategy, provided time dependent data is con-
sidered.

time

Fig. 16. Interpolation in time for adaptive isosurfaces.
Above at different times an isosurface of a porous me-
dia density is extracted on a hexahedral grid. Below in
a projective view from the top the edges of the cells
on which the local isosurfaces are extracted show the
adaptive approach.

6 Continuous level of detail

For fixed projection criterion we have so far obtained
continuous, adaptive projections in space and time and
thereby an appropriate visual output for a variety of
visualization methods. If we apply the adaptive projec-
tion method corresponding to some nodal indicator
for varying threshold €, and parameters of €(z) respec-
tively (cf. Section 4.3), continuity is no longer ensured.
Indeed every time the projection criterion switches on
a node z an immediate local transition between orig-
inal data and projection will cause local jumps in the
visual appearance of the animation. To overcome this
shortcoming, we slightly generalize the projection cri-
terion. Instead of the boolean valued projection crite-
rion S(z) = (n(x) < €(x)) for some indicator 7 and a
threshold e(x) we introduce a real valued function

S(z):=x(n(), e(x))
where x : R x R§ — [0,1] is supposed to be a Lip-
schitz continuous function, monotone decreasing in 7,
with x(n,€) = 1 for n < e. Now we replace S by S in
the definition of the adaptive projection and obtain.

(PsU)(z):=S(z") Z wzi+1($l)(PS'U)(.'L';')

zleP(z!1)

+(1=S™)U (=)

By construction PzU continuously depends on 7, e.
The corresponding stopping criterion S(E) can be
adapted in a straightforward manner

S(E):= Sz .

max
sHeNFH(E)

I e. we test for S(E) = 1. Moreover, in order to achieve

an appropriate blending result for varying values of e
we assume x(n,€) = 0 for n > Ce (cf. Fig. 17) and
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Fig.17. On the top a typical function y ist sketched,
and on the bottom the scale of indicator values on dif-
ferent grid levels is drawn schematicly.

C > 1. Here appropriate means that Ps(U) on a finally
extracted element E locally only depends on original
U—values on nodes of at most two grid levels. This is
a desirable property which is already satisfied for the
original projection Ps(U) due to the saturation condi-
tion (cf. Section 2). I. e. if

min_n(z")
C<C*= zleN(E)
max (z+1)

s eNi (B)

for all elements E up to the second finest grid level this
property also holds for the modified projection Pg(U).
We obtain smooth transitions between different lev-
els of detail without any additional interaction on the
hierarchy compared to the case of the non modified
adaptive projection.As it is typical for smooth data on
sufficiently fine grid levels, C* is strictly larger than 1
(cf. Section 4.4). But in general, especially on coarse
grid levels, we only have C* > 1 because of the sat-
uration condition. To overcome this drawback we can
introduce a modification of the suggested adjustment
algorithm for indicators and replace the conditional
blowup of the indicator (cf. Section 2) by the following
pseudo code statement

if n(z') <Cn*  n(a') =Cn*;
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where C'is the constant later on used for the definition
of x. Otherwise we have to accept additional interac-
tion effects between different grid levels. In case of the
magnifying lens the situation is simpler. Here we have
to decrease the constant C, .

Finally the combined projection criterion (cf. equation
3) for a set of different real valued projection criteria
{Si}lgigm can be redefined by

1 XL
S:Ezzzlsz

To summarize, we have so far obtained a data pro-
jection continuously depending on a threshold value e.
Nevertheless, the visual appearance of the graphical
results will only reflect this continuity, if we guaran-
tee that the parameters of the finally generated graph-
ical primitives also depend continuously on Pgs(U)
(cf. e. g. [20,31]).

7 HP-Finite Element data

Up to now we have solely considered Finite Element
data which is - for each element in the function space -
spanned by tensor products of linear functions (cf. Sec-
tion 1.2). A higher order polynomial degree is often
used in the numerical code to improve the approx-
imation order whenever the approximate solution is
smooth enough. Recently, adaptive methods, which
adapt the grid size and the polynomial degree locally
have become popular [6,49]. In general in areas where
the solution points out higher order differentiability the
polynomial degree p is successively increased to obtain
an exponential decay of the numerical error. In con-
trast, in areas where the solution properties indicate
singularities a refinement of the grid size h in gen-
eral turns out to be the preferable strategy for error
reduction. The combination of both is called the hp-
Finite-Element approach. An efficient visualization of
data from these effective discrete function spaces is a
challenging task. Here we discuss a generalization of
the presented adaptive approach for meshes with suc-
cessively refined grid size. Therefore error information
is measured on leaf elements of the grid hierarchy and
if necessary additional “virtual” grid levels are intro-
duced (cf. Fig. 18).

On the corresponding “virtual” elements E,, we de-
fine standard adaptive projections Pgs,, corresponding
to some projection criterion S,, on “virtual” nodes z,,.
The corresponding function spaces are again spanned
by linear functions but now on the later on refined grid.
We can interpret this strategy as an h—subsampling of
the actual polynomial data.

For the sake of simplicity let us assume that the con-
sidered grid consists solely of one element type, which

Fig. 18. Deformation of an elastic shell, which has been
computed with a higher order Finite Element method.
The black lines indicate edges of the elements. Virtual
refinement is used to obtain a much better approxima-
tion to the actual polynomial shape and the stress coded
in color.

is triangular or rectangular in 2D, respectively tetrahe-
dral, prismatic or hexahedral in 3D. For each of these
element types we consider a fixed refinement rule which
decreases the element diameter by a factor of 1, e. g.
in the case of simplices this is the red refinement rule
[18], whereas for right angled cells the quad—, or octree
construction is considered (cf. Fig. 1). These refine-
ment rules come along with additionally created nodes
N, (E) on element edges and faces and in the interior.
Let us suppose some projection criterion S,,(z,,) to
be defined on these nodes. On child elements E,, of a
“virtually” refined element we introduce the stopping
criterion S(E,,) deduced from the projection criterion
on the corresponding vertices (cf. Section 2). Starting
on E,, = E as the initial “virtual” element with nodes
z,, and projection criterion S,,(z,,) inherited from the
adaptive projection on the original grid the adaptive
visualization algorithm can be defined analogously to
the standard case. Finally we ask for easy to compute
projection criteria on nodes and for a replacement of
the above saturation condition. It is much too expen-
sive to store error indicators on all “virtual” nodes.
They therefore have to be computed from the original
data during runtime. To ensure efficiency of the final
algorithm only local information, which resides on the
currently inspected element E,,, should be taken into
account for the definition of an error indicator. Further-
more,it is now ruled out to look ahead onto much finer
grid levels in a preroll step in order to fulfill the satura-
tion condition. To overcome this difficulty we suppose
N (233"), Tespectively S, (z}F'), to be uniquely defined
depending on U(z},)Vz,, € P(z;') and U(z;}'). For
instance, a suitable first choice for the error indicator
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would be the hierarchical offset value (cf. Section 4.4)
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With these restriction indicator values on edges, re-
spectively faces, depend solely on data values on this
edge or face and coincide with those evaluated on the
adjacent element. Therefore, continuity of the induced
adaptive projection is guaranteed if we do not apply
the adaptive stopping criterion. In order to also allow
an adaptive stopping, which is the actual aim of our
considerations, a modification of the indicator values
Ty is necessary. We recursively define
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T (T, ) = 10N {7y, (2 %Elgljam){mp(wip)} }-
Thereby it is especially ensured that “virtual” nodal
values on element faces are always generated by inter-
polation whenever the algorithm stops at a coarser level
on the corresponding adjacent element. This definition
is necessary to overcome the saturation assumption.
In a certain sense we construct a somewhat saturated
error indicator in a top down manner instead of as-
suming the bottom up implication of the saturation
condition. The construction also properly matches the
original projection criterion § on true nodes z from the
original grid hierarchy and the new projection criterion
Sho-

Therefore, we no longer need the stronger satura-
tion condition. But we can also be no longer certain
that we do not overlook fine details in the data, when
stopping on insufficiently refined “virtual” elements.
Furthermore, the useful property of finding at most one
level transitions at faces no longer holds. Nevertheless,
on higher order polynomial data the experimental re-
sults are satisfying, which seems to rely on the sufficient
smoothness of the considered data function. If we apply
the same strategy for general data on arbitrary grids,
serious difficulties concerning image quality occur.

For a visualization method which draws isolines or
displays some color shading on slices, a straightforward
simplification is possible. Instead of subdividing the
three dimensional elements which intersect the slice,
we first compute the intersection polygons and then
subdivide them into triangles (cf. Fig. 19). Finally we
apply the above algorithm on such triangles extracted
on leaf elements of the original grid hierarchy. Fig. 20
demonstrates the significant improvement in data res-
olution obtained by the adaptive approach.

8 Some algorithmic aspects

We have implemented the concept of adaptive projec-
tions in 2D and 3D based on a general interface to data
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Fig.19. On the left the subdivision of a polygon into
triangles is shown, whereas in the middle picture ver-
tices and edge midpoints of a triangle are marked. The
sketch on the right shows an extracted adaptive grid
with more than one level transitions.

°
X1

Fig. 20. On the left the color shading on a slice applied
to a 3D data set with an only h-refined grid and on the
right the “virtual” h-subsampling on the same coarse
grid.

on arbitrary nested grids. This interface handles mesh
elements procedurally. In detail hierarchical access pro-
cedures address single elements and deliver information
on the considered element in a prescribed data struc-
ture for a general element. A coarse grid as well as a
recursive depth first traversal are thereby supported
by a set of specific interface routines. No conversion
to a prescribed mesh format is necessary in advance.
The data mapping is performed only temporarily while
running a visualization method. For details on the gen-
eral element description we refer to [51] and concern-
ing the hierarchical access routines especially compare
[43]. The images presented here are all generated ap-
plying this type of interface. Its major advantage is its
generality. A large class of visualization methods, once
implemented, and based on the procedural interface,
immediately work on new nested grid structures, if an
appropriate interface has been adapted to the specific
user data structure. The visualization needs no signif-
icant extra memory. Especially very large hierarchical
grids, which are often stored economically, are thereby
opened up for an effective post processing. Here eco-
nomical means that vertex and adjacency information
is present only on the coarse grid elements. On the
finer grid levels we solely store references to refinement
rules and references to new nodes. Complete data is
then generated recursively during the procedural mesh
traversal in the visualization (cf. [43]).



The presented multiresolution concept guarantees
conformity of the extracted adaptive projection. If iso-
surfaces are considered, a local triangulation has to
be generated on a leaf element in the adaptive mesh
traversal algorithm and an overall smoothly shaded ap-
pearance is often required. We retrieve the local trian-
gulation from a lookup table [40] which corresponds
to the element type. For every element type a lookup
table is automaticly generated whenever the algorithm
picks up an element of this type for the first time.

As in the non hierarchical case if smooth shading
is considered unique surface normals have to be cal-
culated at nodes. One approach is to interpret func-
tion gradients, which coincide with isosurface normals
after normalization, as a vector valued discrete func-
tion. Then we can apply the projection criterion al-
ready used for the original function and end up with
continuous normals and smoothly shaded isosurfaces.
An in advance calculation of interpolated gradients on
all nodes z € N (M!m=x) is often much too expensive
concerning CPU time and storage requirement. We use
hash tables to identify nodes on which a gradient has to
be evaluated and which appear several times on differ-
ent elements traversed in the isosurface methods [59].
The required hashing key depends on the coordinates
of the nodes. On revisited nodes we can then use the
already calculated gradients. A presentation of the cor-
responding algorithmic details is beyond the scope of
this paper and we refer to a forthcoming publication.

Let us finally comment on the use of color shading
or texture mapping on discrete surfaces for data visual-
ization when an adaptive projection has been applied.
As long as the mapping from the function space into
color or texture space is linear the resulting appearance
of color and texture is guaranteed to be continuous at
the corresponding 2D element faces. If other mappings
into color or texture space are considered we have to
perform the recursive adaptive projection not on the
data function itself but on the resulting color and tex-
ture.

9 Remarks on generality and
efficiency

The presented approach is restricted to nested grid hi-
erarchies as they especially appear in numerical meth-
ods for partial differential equations describing physi-
cal phenomena in two or three dimensions. It is highly
flexible in this mainly intended field of application, i. e.
it is independent of the concrete element types, the
refinement rules, and the possibly compressed user’s
data formats. Let us point out that there are other,
more general approaches especially for surfaces by De—
Floriani et. al. [13], Hamann and Chen [29] which also
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apply to non nested grid hierarchies, but with a differ-
ent focus concerning the field of applicability.
Concerning efficiency we especially have to pay for
the described flexibility in terms of CPU time, if we set-
tle the algorithms on the base of the described procedu-
ral data access (cf. Sect. 8). From our experience there
is a factor of about 2 - 3 compared to the same visual-
ization method implemented and adapted on a specific
data structure. Fig. 21 depicts a real world problem

Fig. 21. Different isosurfaces of the salt concentration
in a ground water flow are extracted from a compressed
10 million element data set.

from ground water flow on a hierarchical, unstructured
mesh consisting of 10 million elements and 1.4 million
elements (courtesy of K. Johannsen, ICA III, Univer-
sity at Stuttgart). The grid is adaptive and a set of dif-
ferent refinements rules is applied to generate it. Using
the general procedural interface to address this data
in highly compressed form we still obtain about 93 k
triangles per second in the adaptive isosurface genera-
tion. The following table lists the number of triangles
generated in the algorithm for an isosurface, the num-
ber of visited tetrahedra, respectively those on which
we finally extract a local isosurface, and the resulting
frame rate on a SGI Onyx2 with R10000 processor for
different threshold values e.

drawn visited| extracted|frames/sec

€ [triangles|tetrahedraltetrahedra
0.0 93 k 204 k 71k 1.0
0.01 34k 78k 26 k 2.6
0.1 3k 10 k 24k 21

Here we have taken the hierarchical error indicator
ng into account including the adjustment procedure
described in Section 4.4.

Finally, if optimal performance is required, the pre-
sented concept can easily be implemented on any op-
timized nested grid data structure which fits into our
general frame. For instance, consider a regular hexahe-
dral grid. If we apply the tetrahedral bisection strat-
egy presented by Maubauch [35] without storing tetra-



hedrons explicitly, but tracking the prescribed refine-
ment rules in terms of quad—tuples of index vectors
for the vertices, we obtain a method similar to the
one presented by Zhou et al. [63]. Fig. 22 shows re-

Fig. 22. Flat shaded adaptive isosurfaces are extracted
from a 129° sized Bucky Ball data set (courtesy of AVS
Internation Centre). We consider the hierarchical error
indicator for threshold values e = 0.02, 0.004, 0.0.

sult of the corresponding implementation of the iso-
surface algorithm for different threshold values. Again
we have applied the adjusted, hierarchical error indica-
tor (cf. Sect. 4.4). The overall number of tetrahedrons
is 12582912 and the grid consists of 2146 689 nodes.
The table below again lists threshold values, triangle,
respectively tetrahedra counts, and frame rates.

triangles visited

€ drawn|tetrahedral|frames/sec
0.02 81184 201757 3.45
0.01 128709| 307384 2.27
0.005 211219| 487107 1.43
0.0025 | 315440 727419 0.98
0.00125| 439230, 984029 0.74
0.0 590018 1259669 0.58

If we store min/max—values on the tetrahedrons the
number of visited tetrahedron for € = 0.0 reduces to
1216 638, which is a saving of only 3.4% , at the ex-
pense of additional 3145728 floating point values in
storage (two for every tetrahedron up to second finest
level).

10 Conclusions

A mathematically rigorous foundation of multiresolu-
tion data analysis is given here, which applies to gen-
eral hierarchical nested grids. The implementation of
the corresponding visualization algorithms is confined
to an appropriate depth first traversal of the grid hi-
erarchy, combined with the recursive calculation of
continuous adaptive data projections. A correspond-
ing stopping criterion, which indicates if the current
data projection will locally remain unchanged on finer
grid levels, allows a stopping on coarser grid levels and
thereby a considerable saving of CPU and rendering
time. This enables interactive visualization even for
very large data sets. Combined with a procedural ac-
cess to the user data, especially economically stored
hierarchies of millions of elements can be handled effi-
ciently on standard workstations. The presentation is
stimulated mainly by the strong relations to adaptive
numerical methods and multiscale numerical analysis.
The presented concept covers very general grid types,
different methods of local error measurement, and local
data focusing. It applies to time dependent data as well
and allows a continuous level of detail. Algorithmic de-
tails have been kept at a minimum to concentrate on a
compact conceptional discussion. We especially regard
hierarchical and adaptive methods for non nested func-
tion spaces, gridless discretizations and particle tracing
type methods as interesting fields for future research.
Furthermore the application of related methods to di-
rect volume rendering will be subject of a forthcoming
publication.

The authors thank W. Kinzelbach and S. Os-
wald from Ziirich, G. Wittum and K. Johannsen from
Stuttgart, A. Schmidt and K. G. Siebert from Freiburg
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They especially acknowledge many stimulating discus-
sions and other, especially implementational support
from A. Dahr, T. Gerstner, R. Neubauer, M. Metscher,
W. Rosenbaum, A. Schmidt, R. Schworer, U. Weikard,
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