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Abstract
A novel variational time discretization of isotropic and anisotropic Willmore flow combined

with a spatial parametric finite element discretization is applied to the evolution of polygonal
curves and triangulated surfaces. In the underlying natural approach for the discretization of gra-
dient flows a nested optimization problem has to be solved at each time step. Thereby, an outer
variational problem reflects the time discretization of the actual Willmore flow and involves an
approximate L2-distance between two consecutive time steps and a fully implicit approxima-
tion of the Willmore energy. The mean curvature needed to evaluate the integrant of the latter
energy is replaced by the time discrete, approximate speed from an inner, fully implicit varia-
tional scheme for mean curvature motion. To solve the resulting PDE constrained optimization
problem at every time step duality techniques from PDE optimization are applied. Computa-
tional results underline the robustness of the new scheme, in particular with respect to large
time steps, and show applications to surface restoration and blending.
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1 Introduction

This paper presents a new variational schemes for the time and space discretization of parametric
isotropic and anisotropic Willmore flow. Willmore flow is defined as the geometric gradient flow of
the Willmore energy with respect to the L2-metric, where the Willmore energy for a d-dimensional
surface M embedded in Rm with m ≥ d+ 1 is defined as

w[x] :=
1

2

∫
M[x]

h2 da,
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with x denoting a parametrization ofM = M[x], h the mean curvature, and theL2-metric gx(v1, v2) =∫
M[x]

v1v2 da is defined on variations x+vin of the surfaceM in the direction of the surface normal
n. Here, the mean curvature h itself represents the L2-gradient of the area functional a[x] =

∫
M da

and equals the sum of the principal curvatures. In the hypersurface case (m = d+ 1) Willmore flow
leads to the fourth order parabolic evolution problem

∂tx = ∆Mhn+ h (|S|22 −
1

2
h2)n ,

which defines for a given initial surface M0 a family of surfaces M(t) for t ≥ 0 with M(0) = M0

[51, 49, 30]. Here, ∆M is the Laplace Beltrami operator on a surface M, S denotes the shape
operator on M, and | · |2 the Frobenius norm on the space of endomorphisms on the tangent bundle
TM. Applications of a minimization of Willmore energy and of Willmore flow evolution as the
corresponding gradient flow include the modeling of edge sets in imaging [37, 35, 53, 10], surface
modeling [50, 6, 5, 52] and extending the Willmore energy to the Helfrich energy the mathematical
treatment of biological membranes [28, 48, 20]. The analytic treatment of the Willmore flow was
investigated by Polden [42, 43]. Sharp estimates on long time existence and regularity were obtained
by Kuwert and Schätzle [30, 31]. Willmore flow of curves has been studied by Dziuk, Kuwert,
and Schätzle in [26]. Recently, Rivière [46] extended results of Kuwert and Schätzle [32] for co-
dimension 3 to arbitrary co-dimension. He proved a weak compactness result for Willmore surfaces
with energy less than 16π and a strong compactness of Willmore tori below the energy level 16π. He
provided also a new formulation for the weak Euler–Lagrange equation of the Willmore functional
for immersed surfaces in Rm. The numerical results of Mayer and Simonett [34] suggest that the
above estimate is optimal in the sense that the flow develops a singularity if the initial surface has
energy greater than 16π.

In Finsler geometry the focus is on anisotropic area measurement encoded in the functional
aγ[x] =

∫
M γ(n) da where the local area weight γ(n) depends on the surface orientation via a

positive 1–homogeneous anisotropy function γ. Now, in analogy to the isotropic case the anisotropic
mean curvature hγ is defined as the L2-gradient of the anisotropic area aγ[·] and can be evaluated as
hγ = divM (γz(n)). Hence, the anisotropic Willmore functional is given by wγ[x] = 1

2

∫
M h2

γ da .
Clarenz [12] has shown that Wulff shapes are the only minimizers. Recently, Bellettini & Mugnai [3]
investigated the first variation of this functional in the smooth case. Clarenz [11] and Palmer [40, 41]
studied variational problems involving anisotropic bending energies for surfaces with and without
boundaries. Anisotropic Willmore flow of hypersurfaces can be rephrased as the following parabolic
fourth order PDE

∂tx = ∆γ hγ n+ hγ

(
|S|2γ −

1

2
hhγ

)
n ,

where ∆γ := divM(γzz(n) ∇M) is the generalized Laplace–Beltrami operator with divM and ∇M

being the tangential divergence and gradient, respectively. Furthermore, |S|2γ = tr(γzz(n)S2) is the
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weighted, squared Frobenius norm of the shape operator, and γzz = D2γ the second derivatives of
the anisotropy function γ.

Concerning the numerical approximation of Willmore flow in the isotropic case, Rusu [47] pro-
posed a mixed method for the surface parametrization x and the mean curvature vector hn as
independent variables, see also [13] for an application to surface restoration. A level set formulation
in the hypersurface case was presented in [19]. Deckelnick and Dziuk [14] investigated the conver-
gence of a space discrete related scheme in the case of graph surfaces and Deckelnick and Schieweck
demonstrated convergence of a conforming finite element approximation for axial symmetric sur-
faces [16]. An error analysis in the case of the elastic flow of curves was recently presented by Dziuk
and Deckelnick in [15]. Furthermore, we refer to Barrett, Garcke and Nürnberg [1], Bobenko and
Schröder [7] and Dziuk [25] for alternative numerical methods for Willmore flow on triangular sur-
faces. Diewald [17] has extended the approach of Rusu [47] to the parametric anisotropic Willmore
flow for closed surfaces and Droske [18] and Nemitz [36] investigated a level set discretization. In
[44] Pozzi discussed the Willmore flow of curves in higher co-dimension. The time discretization of
the anisotropic mean curvature flow has been considered by Dziuk already in [23, 24] and he gave
convergence results for curves.

Contrasting with fully explicit time discretizations — not mentioned here — the above numerical
approaches are all characterized by some type of semi-implicit time discretization and require the
solution of linear systems of equations at each time step. Roughly spoken geometric differential
operators are assembled at the previous time step. Even though discrete energy estimates exist in
many cases one observes practical restrictions on the time step size. This shortcoming motivated the
development of a new concept for the time discretization of Willmore flow leveraging the variational
time discretization of general gradient flows (first preliminary results on this approach have been
presented in the proceedings article [39]). Given an energy e[·] on a (in general infinite dimensional)
manifold with metric g and the gradient flow ẋ = −gradge[x] with initial data x0 one defines
a sequence of time discrete solutions (xk)k=0,··· with xk ≈ x(kτ) for the time step size τ via a
variational problem, to be solved in each time step, i.e.

xk+1 = arg minx dist(x, xk)2 + 2τ e[x] ,

where dist(x, xk) = inf
γ∈Γ[xk,x]

∫ 1

0

√
gγ(s)(γ̇(s), γ̇(s)) ds is the Riemannian distance on the manifold

from x to xk defined as the length of the shortest path, where Γ[xk, x] denotes the set of smooth
curves γ with γ(0) = xk and γ(1) = x. As an immediate consequence, one obtains the energy
estimate e[xk+1] + 1

2τ
dist(xk+1, xk)2 ≤ e[xk] . For geometric problems, this approach has already

been considered by Luckhaus and Sturzenhecker [33] in the case of mean curvature motion via
a fully implicit variational time discretization in BV . Chambolle [8] investigated a reformulation
of this approach in terms of a level set method. A related method for anisotropic mean curvature
motion is discussed in [2, 9].

Here, we build upon this concept and proceed as follows in the case of Willmore flow. We aim at
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balancing the squared distance of the unknown surface at time tk+1 = tk+τ from the current surface
at time tk and a suitable approximation of the Willmore energy at time tk+1 scaled by twice the time
step size. Solving a fully implicit time discrete problem for mean curvature motion for the unknown
surface at time tk+1, we can regard the resulting discrete speed of evolution as a time discrete, fully
implicit approximation of the mean curvature vector. This approximate mean curvature vector is
then used to approximate the Willmore functional. Thus, we resort a nested minimization problem
within each time step, where an inner problem solves for an implicit mean curvature vector, while
an outer problem reflects an actual implicit, variational formulation for a time step of Willmore flow.
As it will be discussed in detail the resulting nested time discretization experimentally turns out to
be unconditionally stable and effectively allows for time steps of the order of the spatial grid size.
Furthermore, the approach can be generalized to anisotropic Willmore flow.

The paper is organized as follows. In Section 2 we derive time discretizations for isotropic Will-
more flow of compact surfaces and for surfaces with boundaries on which C1 boundary conditions
are prescribed. Furthermore, we generalize the approach to anisotropic Willmore flow. Then in Sec-
tion 3 we discuss a fully discrete numerical scheme based on piecewise affine finite elements on
simplicial surface meshes. In Section 4 the duality technique from PDE constraint optimization is
revisited to develop suitable minimization algorithms for the optimization problems to be solved
in each time step. Finally, in Section 5 computational results are presented. An appendix collects
essential ingredients of the corresponding algorithms to facilitate the implementation.

2 Nested time discretization of Willmore flow

In this section we will apply the concept of natural time discretization to Willmore flow and derive
a nested (but still spatially continuous) variational problem for each time step. To begin with, we
recall the corresponding time discretization of mean curvature motion. Let us consider a surface
M = M[x], where x indicates a parametrization of M and can also be considered as the identity
map on M parametrizing M over itself. Following the above abstract approach, we ask for the
next time step M[y] with a corresponding parametrization y = y[x] given as the minimizer of the
functional dist(M[y],M[x])2 + 2τ̃

∫
M[y]

da, where τ̃ denotes the time step size. Here, dist(·, ·)
is the L2-distance between surfaces, and

∫
M[y]

da is the surface area of M[y]. Now, we take into
account the straightforward linearization argument

2

∫
M[y]

da = (2− d)

∫
M[x]

da+

∫
M[x]

|∇M[x]y|2 da+O(‖y−x‖2
C1) (2.1)

for parametrizations y which areC1 close to x (here∇M[x]y denotes the tangential gradient of y with
respect to the surfaceM[x]): For the proof of (2.1) we refer to Appendix A. Furthermore, observing
that the minimization can be restricted to surface parametrizations y for which y − x ⊥ M[x]

we obtain the following approximate variational problem for a single time step of mean curvature
motion:
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Given a surface M[x] parameterized by a mapping x we ask for a mapping y = y[x] which
minimizes the functional

e[x, y] :=

∫
M[x]

(y − x)2 + τ̃ |∇M[x]y|2 da . (2.2)

The resulting weak form of the corresponding Euler-Lagrange equation is

0 =

∫
M[x]

(y − x) · θ + τ̃∇M[x]y : ∇M[x]θ da (2.3)

for smooth test functions θ defined on M[x], where A : B = tr(ATB). Obviously, this equation
coincides with the classical scheme for a single semi–implicit time step of mean curvature motion
proposed by Dziuk in [22].

2.1 Willmore flow on closed surfaces

The abstract variational time discretization of isotropic Willmore flow reads as follows

dist(M[x],M[xk])2 + τ

∫
M[x]

h2 da→ min .

For the first term we consider the same approximation as above for mean curvature motion. For the
Willmore energy, we now make use of the following observation. By definition the mean curvature
h = h[x] is the L2-gradient of the area functional on a surface M[x] and mean curvature motion is
the corresponding gradient flow. Hence, the mean curvature vector h[x]n[x] with n = n[x] denoting
the normal onM[x] can be approximated by the difference quotient in time y[x]−x

τ̃
, where y[x] is the

minimizer of e[x, ·] in (2.2) for time step size τ̃ . Thus, for small τ̃ the functional 1
2

∫
M[x]

(y[x]−x)2

τ̃2 da

is an approximation the Willmore functional on M[x].
This enables us to derive an approximate variational time discretization of Willmore flow, which
does no require the explicit evaluation of the mean curvature on the unknown surface M[y] at the
next time step. In fact, for a given surface parametrization xk of the surface M[xk] at a time step k
we define the functional

w[xk, x, y] :=

∫
M[xk]

(x− xk)2 da+
τ

τ̃ 2

∫
M[x]

(y − x)2 da ,

where we select y = y[x] as the minimizer of (2.2) with time step size τ̃ . Finally, we obtain the
following time discretization of Willmore flow:
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Given an initial surfaceM[x0] with parametrization x0 we define a sequence of surfacesM[xk]

with parametrizations xk for k = 1, . . . via the solution of the following sequence of nested varia-
tional problem

xk+1 = arg minxw[xk, x, y[x]] , where (2.4)

y[x] = arg miny e[x, y] . (2.5)

Thereby, the inner variational problem (2.5) is quadratic. Thus, the resulting Euler–Lagrange
equation (2.3) is a linear elliptic PDE and we end up with a PDE constrained optimization problem
for each time step.

To be more explicit, let us examine circles in the plane. Under Willmore flow circles expand
according to the ODE Ṙ(t) = 1

2
R(t)−3 for the radius. In comparison to this we obtain for the nested

variational time discretization with a slight misuse of notation

w[Rk, R, R̃] = 2πRk(R− R̃)2 + 2πRτ
(R− R̃)2

τ̃ 2
, e[R, R̃] = 2πR

(
(R− R̃)2 + τ̃

R̃2

R2

)
,

for a time discrete radii Rk, R, and R̃. Thus, by a straightforward computation we deduce the
nonlinear equation R−Rk

τ
= 1

2
R4−3R2τ̃

(R2+τ̃)3 Rk
to be solved for R as the radius at the next time step. This

is indeed an implicit first order scheme for the above ODE.

2.2 Willmore flow with boundary conditions

Next, with the application to surface restoration in mind let us consider the case of bounded surfaces
M[x] with a fixed boundary Γ[x] = ∂M[x] and aim at prescribing boundary conditions both for x
and for the normal n[x] — at least in an approximate sense — on Γ[x]. Therefore, we modify the
inner minimization problem and consider an energy

e∂[x, y] =

∫
M[x]

(y − x)2 + τ̃ |∇M[x]y|2 da− 2τ̃

∫
Γ[x]

nco · y ds (2.6)

for given x and nco, where nco is the co-normal perpendicular to n and to the boundary ∂M. Indeed,
for smooth boundary Γ[x] prescribing the co-normal is equivalent to prescribing the surface normal.
The resulting weak form of the Euler Lagrange equation for fixed x and a minimizer y[x] of e∂[x, ·]
in (2.6) is

0 =

∫
M[x]

y − x

τ̃
· ψ +∇M[x] y∇M[x] ψ da−

∫
∂M[x]

nco · ψ ds

for all test functions ψ ∈ C∞(M[x]). Hence, we obtain the time discrete mean curvature motion
equation y−x

τ̃
= ∆M[x] y on M[x] and the boundary condition ∂nco[x]y = nco on Γ[x], where nco[x]
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denotes the actual co-normal ofM[x]. If we assume that y[x]−x converges to 0 in C1 for τ̃ → 0 for
x being the minimizer of the energy w[xk, x, y] and for y[x] minimizing e∂[x, y], then we observe
that

∂nco[x]y = ∇M[x]y · nco[x] → ∇M[x]x · nco[x] = nco[x]

for τ̃ → 0. Therefore, we obtain the approximate boundary condition nco[x] = nco + o(1) on Γ[x]

with the usual Landau symbol o(1) → 0 for τ → 0.
Alternatively, in particular in the context of surface restoration, we may assume that M[x] is

the varying part of a larger surface M̃[x] with an outer part Mext being fixed. Correspondingly,
the parametrization x is extended to some parametrization xext outside of M[x]. As before Γ[x]

is supposed to denote the boundary of M[x]. Then, we again reformulate the inner minimization
problem and take into account the energy

ẽ∂[x, y] =

∫
fM[x]

(y − x)2 + τ̃ |∇M[x]y|2 da ,

which coincides with the original energy e[x, y] except that it is now integrated over the whole
surface M̃[x] and y is allowed to vary on M̃[x]. In this case we obtain as an Euler Lagrange
condition ∂nco[x]y[x]− ∂nco[xext]y[x] = 0 on Γ[x]. Here, nco[xext] is the outer co-normal of Mext on
Γ[x]. If, we assume as above that y[x]− x→ 0 for τ̃ → 0, then

∂nco[x]y[x] → ∂nco[x]x = nco[x] , and

∂nco[xext]y[x] → ∂nco[ext]x
ext = nco[xext] .

Hence, once again, nco[x] = nco[xext] + o(1) on Γ[x] with o(1) → 0 for τ → 0, where in this case
the co-normal nco[xext] is induced by the prescribed outer surface M[xext].

2.3 Anisotropic Willmore flow of closed surfaces

Finally, let us investigate the time discretization of anisotropic Willmore flow in the co-dimension 1

case for m = d+ 1. The corresponding abstract variational time discretization reads as follows

dist(M[x],M[xk])2 + τ

∫
M[x]

hγ
2 da→ min ,

where hγ = divM(nγ) = divM(γz ◦ n) denotes the generalized mean curvature. This time we
again replace the L2-distance between the two manifolds M[x] and M[xk] by

∫
M[x]

|y − x|2 da

under the assumption of sufficient regularity of x and y. Moreover, as in the isotropic case, we
make use of the fact that the L2-gradient of the anisotropic area functional is the generalized mean
curvature and hence, the time discrete speed y[x]−x

τ̃
extracted from a variational time discretization
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of anisotropic curvature motion approximates the generalized curvature vector hγ[x]n[x] and can
be used to approximate the anisotropic Willmore energy. In the anisotropic case we do not con-
sider a linearization of the variational approach for generalized curvature motion as in the isotropic
approach, but we define y[x] to be the minimizer of the nonlinear functional

eγ[x, y] =

∫
M[x]

(y − x)2 da+ 2τ̃

∫
M[y]

γ(n[y]) da

in y for given parametrization x. Then, collecting the different building blocks we end up with the
following fully nonlinear variational time discretization of anisotropic Willmore flow:

xk+1 = arg minxw[xk, x, y[x]], where

y[x] = arg miny eγ[x, y] .

Let us remark, that this variational time discretization does not involve derivatives of the anisotropy.
Nevertheless, as we will see below, differentiation is indispensable to set up a descent algorithm for
this functional.

3 Finite element discretization in space

In this section we introduce a suitable space discretization based on piecewise linar finite elements.
Here, we follow the guideline for finite elements on surfaces introduced by Dziuk [21]. Thus, we
consider simplicial meshes M[X] — polygonal curves for d = 1 and triangular surfaces for d =

2 — as approximations of the d dimensional surfaces M[x]. Thereby, X is a parametrization of
the simplicial mesh M[X] which is uniquely described by a vector X̄ of vertex positions of the
mesh. To clarify the notation we will always denote discrete quantities with upper case letters to
distinguish them from the corresponding continuous quantities in lower case letters. Furthermore, a
bar on top of a discrete function indicates the corresponding nodal vector, i.e. X̄ = (X̄i)i∈I , where
X̄i = (X1

i , · · · , Xm
i ) is the coordinate vector of the ith vertex of the mesh and I denotes the index

set of vertices. For d = 1 each element T of a polygonal curve is a line segment with nodes X1

and X2 (using local indices) and for d = 2 elements T of a triangulation are planar triangles with
vertices X0, X1, and X2 and edge vectors F0 = X2 −X1, F1 = X0 −X2, and F2 = X1 −X0.

Given a simplicial surface M[X] we denote by

V(M[X]) :=
{
U ∈ C0(M[X]) |U |T ∈ P1 ∀T ∈M[X]

}
the associated piecewise affine finite element space. With a slight misuse of notation the mapping
X itself is considered as an element in V(M[X])m. Let {Φi}i∈I be the nodal basis of V(M[X]).
For U ∈ V(M[X]) we obtain U =

∑
i∈I U(Xi)Φi and Ū = (U(Xi))i∈I—in agreement with our

previous definition as we recover X̄ = (Xi)i∈I .
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Next, let us introduce the mass matrix M [X] and the stiffness matrix L[X] of the discrete sur-
face M[X], whose entries are given by Mij[X] =

∫
M[X]

ΦiΦj da and Lij[X] =
∫
M[X]

∇M[X]Φi ·
∇M[X]Φj da. The corresponding block structured matrices, which act in an identical way simulta-
neously on the m coordinates of a vector with m components for each node, are denoted by M[X]

and L[X], respectively. As usual all matrices are assembled from corresponding local matrices com-
puted on the simplices T of M[X].

3.1 Willmore flow of closed surfaces

Now, we have all the ingredients at hand to derive the fully discrete nested time discretization of
Willmore flow, as the spatially discrete counterpart of (2.4) and (2.5):

Given an discrete initial surface M[X0] with discrete parametrization X0 we compute a se-
quence of surfaces M[Xk] with parametrizations Xk by solving the following nested finite dimen-
sional variational problem:

Xk+1 = arg minX∈V(M[Xk])m W [Xk, X, Y [X]], where (3.1)

Y [X] = arg minY ∈V(M[X])m E[X, Y ] . (3.2)

Here, the discrete functionals are given by

E[X,Y ] :=

∫
M[X]

(Y −X)2 + τ̃ |∇M[X]Y |2 da

= M[X](Ȳ − X̄) · (Ȳ − X̄) + τ̃L[X]Ȳ · Ȳ ,

W [Xk, X, Y ] :=

∫
M[Xk]

(X −Xk)2 da+
τ

τ̃ 2

∫
M[X]

(Y −X)2 da

= M[Xk](X̄−X̄k) · (X̄−X̄k) +
τ

τ̃ 2
M[X](Ȳ −X̄) · (Ȳ −X̄)

as straightforward spatially discrete counterpart of the functionals e[x, y] and w[xk, x, y], respec-
tively. Analogously to the spatially continuous case in (2.3), for a given X , the nodal vector Ȳ [X]

solves the linear system of equation

(M[X] + τ̃L[X]) Ȳ [X] = M[X] X̄ .

Appendix B provides explicit formulas for the entries of the mass and stiffness matrices.

3.2 Willmore flow with boundary conditions

In case of a discrete surface restoration application we consider a discrete simplicial surface M̃[X]

consisting of the actual surface patch M[X] — to be modified for instance in a surface restoration
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Figure 1: Discrete isotropic Willmore flow is applied to a curve segment and a surface patch (plotted
in red on the left at the initial time) with boundary conditions for the position and the co-normal.
From left to right the solution together with the underlying triangulation is shown at time 0.0, 0.02,
0.45, and 1.12, where the underlying sphere radius is 1 and we have applied the time step size
τ = h = 0.02.

application — and a polygonal ringMext[X] consisting of one layer of simplices around the discrete
boundary Γ[X] = ∂M[x] on which X has a given fixed parametrization Xext. We split the set of
nodesN ofM[X] into the set of interior nodesN int ofM[X], and boundary nodesN ∂, and denote
the corresponding index sets by I , I int, and I∂ , respectively. Let us emphasize that the nodal vectors
for functions in V0(M̃) and in V(M) can be identified because of the single layer assumption on
Mext[X]. Furthermore, V int(M[X]) denotes the subspace of V(M[X]) of functions vanishing on
Γ[X] and we introduce the obvious restriction operator R : R|I| → R|Iint| and a corresponding
extension operators E : R|Iint| → R|I| with (EŪ)i = 0 for i ∈ I∂ . The corresponding block
operators acting on nodal vectors are denoted by R and E, respectively. Hence, a valid nodal vector
in R3|I| can be written as EX̄ + X̄ext, where X̄ext is the vector with prescribed vertex positions at
boundary nodes and zero entries for all interior nodes.

To prescribe a discrete co-normal we proceed as follows. On simplicial faces of Γ[X] we com-
pute N co as the (piecewise constant) co-normal lying in the plane of the boundary elements of
Mext[X] and define a corresponding (non unit length) nodal vector

N̄ co[X] :=

( ∫
∂M[X]

N co Φi ds

)
i∈I

in Rd|I|. Then discrete counterpart E∂[·, ·] on V int(M[Xk])× V(M[X]) of the functional e∂[·, ·] is
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given by

E∂[X, Y ] :=

∫
M[X]

(Y −X)2 + τ̃ |∇M[X]Y |2 da− 2τ̃

∫
∂M[X]

N co · Y ds

= M[X](Ȳ − EX̄ − X̄ext) · (Ȳ − EX̄ − X̄ext)

+τ̃L[X]Ȳ · Ȳ − 2τ̃ N̄ co · Ȳ ,

with X̄ ∈ Rm]Iint and X̄ext, Ȳ ∈ Rm|I|, whereas the corresponding functional W [Xk, ·, ·] on the
finite element space V int(M[Xk])× V(M[X]) can be rephrased as

W ∂[Xk, X, Y ] :=

∫
M[Xk]

(X −Xk)2 da+
τ

τ̃ 2

∫
M[X]

(Y −X)2 da

= M[Xk](EX̄ − X̄k) · (EX̄ − X̄k)

+
τ

τ̃ 2
M[X](Ȳ − EX̄ − X̄ext) · (Ȳ − EX̄ − X̄ext) .

Hence, to compute Ȳ [X] we have to solve the linear system of equation

(M[X] + τ̃L[X]) Ȳ [X] = M[X] (EX̄ − X̄ext) + τ̃ N̄ co .

In case of the alternative approach, one defines the discrete functional Ẽ∂[·, ·] on V int(M[Xk]) ×
V0(M̃[X]) by

Ẽ∂[X, Y ] :=

∫
fM[X]

(Y −X)2 + τ̃ |∇M[X]Y |2 da

= M̃[X](Ȳ − EX̄ − X̄ext) · (Ȳ − EX̄ − X̄ext) + τ̃ L̃[X]Ȳ · Ȳ ,

where M̃[X] and L̃[X] are the block mass and stiffness matrices on V(M̃[X]). Hence, now the
nodal vector Ȳ [X] is still in Rm|I| and solves(

M̃[X] + τ̃ L̃[X]
)
Ȳ [X] = M̃[X] (EX̄ − X̄ext) .

3.3 Anisotropic Willmore flow of closed surfaces

The spatial discretization of the anisotropic Willmore flow of hypersurfaces is based on the discrete
functional

Eγ[X, Y ] :=

∫
M[X]

(Y −X)2 da+ 2 τ̃

∫
M[Y ]

γ(N [Y ]) da (3.3)

= M[X](Ȳ − X̄) · (Ȳ − X̄) + 2τ̃ Aγ[Y ] ,
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with Aγ[Y ] =
∫

M[Y ]

γ(N [Y ]) da being the anisotropic area functional. Here, γ(N [Y ]) is piecewise

constant on M[Y ] and thus can be integrated exactly. Furthermore, the functional W [Xk, ·, ·] re-
mains the same as in the isotropic case. Now, for fixed X the discrete Euler Lagrange equation with
respect to Y is obviously nonlinear and we obtain that Ȳ solves

0 = M[X](Ȳ − X̄) + τ̃gradAγ[Y ] (3.4)

where the gradient is assembled via the evaluating of

∂YAγ[Y ](Θ) =

∫
M[Y ]

γ(N [Y ])∇M[Y ]Y : ∇M[Y ]Θ da−
∫

M[Y ]

d+1∑
l=1

γz(N [Y ]) · ∇M[Y ]Θl Nl[Y ] da

for all basis functions Θ = Φiej . Here, N [Y ] is the piecewise constant normal field on M[Y ] and
the first integral on the right hand side represents the variation of the anisotropic area functional with
respect to the integration domain taking into account the linearization argument from Appendix A.
Furthermore, the second integral reflects the variation of the integrant making use of the observation

d

dε
γ(N [Y + εΘ])|ε=0 = −

d+1∑
l=1

γz(N [Y ]) · ∇M[Y ]ΘlNl[Y ] .

For a given X, equation (3.4) can be solved by a Newton method.

4 Optimization algorithm for the time steps

In Section 2 we have derived a variational time discretization for different Willmore flow models
leading to a constrained optimization problem, where the constraint is associated with the approxi-
mation of the isotropic or anisotropic mean curvature via the time discrete speed of a corresponding
curvature motion model. Through spatial discretization we formulated in Section 3 a finite dimen-
sional constrained optimization problem to be solved in each time step of Willmore flow. Here,
we now use classical duality techniques from optimization to solve the resulting time step prob-
lem efficiently. For a general overview on these techniques we refer to Nocedal & Wright [38] or
[4, 27, 29].

4.1 Duality approach and gradient descent

To simplify the exposition we first restrict ourselved to the isotropic Willmore flow model for closed
surfaces. Afterwards, we will generalize this approach for surfaces with boundaries and anisotropic
Willmore flow. Slightly rephrasing (3.1) and (3.2) we aim at minimizing the functional

Ŵ [X] = W [Xk, X, Y [X]]
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with Y [X] being a solution of the inner minimization problem (3.2). A straightforward differentia-
tion leads to

∂XŴ [X](Θ) = ∂XW [Xk, X, Y [X]](Θ) + (∂YW ) [Xk, X, Y [X]] (∂XY [X](Θ)) .

Hence, computing the full gradient of Ŵ in this way requires the evaluation of ∂XY [X](Φiej) for
every finite element basis function Φi and any canonical basis vector ej in Rm. To derive a compu-
tational efficient representation of the gradient as an essential ingredient of any descent algorithm,
we apply the following duality argument. From the optimality of Y [X] in the inner problem, we
deduce the equation 0 = ∂YE[X, Y [X]](Ψ) for any test function Ψ ∈ V(M[X])m. Differentiating
with respect to X we obtain

0 = ∂X (∂YE[X, Y [X]](Ψ)) (Θ)

= ∂X∂YE[X, Y ](Ψ,Θ) + ∂2
YE[X, Y [X]](Ψ, ∂XY [X](Θ)) . (4.1)

Now, one defines P ∈ V(M[Xk])m as the solution of the dual problem

∂2
YE[X, Y [X]](P,Ψ) = ∂YW [Xk, X, Y [X]](Ψ) . (4.2)

for all test functions Ψ ∈ V(M[Xk])m. Choosing Ψ = ∂XY [X](Θ) in (4.2) and Ψ = P in (4.1)
yields

(∂YW ) [Xk, X, Y [X]] (∂XY [X](Θ)) = −∂X∂YE[X, Y ](P,Θ) .

Thus, we can finally rewrite the variation of Ŵ as

∂XŴ [X](Θ) = ∂XW [Xk, X, Y [X]](Θ)− ∂X∂YE[X, Y ](P,Θ). (4.3)

In the case of our basic Willmore flow model (3.1) and (3.2) the solution P of the dual problem
(4.2) requires to solve the linear system of equations

(M[X] + τ̃L[X]) P̄ =
τ

τ̃ 2
M[X](Ȳ − X̄) .

Furthermore, the terms on the right hand side of (4.3) are evaluated as follows

(∂XW ) [Xk, X, Y ](Θ) = 2M[Xk](X̄ − X̄k)·Θ̄ + 2
τ

τ̃ 2
M[X](X̄ − Ȳ )·Θ̄

+
τ

τ̃ 2
(∂XM[X](Θ))(Ȳ − X̄)·(Ȳ − X̄) , (4.4)

∂X∂YE[X, Y ](P,Θ) = 2(∂XM[X](Θ))(Ȳ − X̄)·P̄ − 2M[X]Θ̄·P̄

+2τ̃(∂XL[X](Θ))Ȳ ·P̄ . (4.5)

Hence, we need to compute the variation ∂XM[X](Θ) and ∂XL[X](Θ) of the block matrices M

and L, respectively, where Θ represents a variation of the simplicial mesh. The variation of these
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block matrices composes of diagonal blocks of the variations of the corresponding matrices from
the scalar case defined as ∂XM [X](Θ) = d

dε
M [X + εΘ]|ε=0 and ∂XL[X](Θ) = d

dε
L[X + εΘ]|ε=0.

They are computed using a standard finite element assembly. We refer to Appendix B for the actual
differentiation of the corresponding local matrix entries. With these ingredients at hand we can
finally compute the descent direction in Rm|I| of the energy Ŵ for a given simplicit mesh M[X]

described by the nodal vector X̄ to obtain

gradXŴ [X] =
(
∂XŴ [X](Φres)

)
r∈I, s=1,··· ,m

,

where es denotes the sth coordinate direction in Rm.
With this gradient evaluation at hand we can already apply a gradient descent scheme with the
Amijo step size control, choosing as initial data the nodal vector X̄k from the previous time step.

In the case of Willmore flow with boundary conditions, we investigate the functional Ŵ ∂[X] :=

W ∂[Xk, X, Y [X]]. Using the same duality argument P solves

(M[X] + τ̃L[X]) P̄ =
τ

τ̃ 2
M[X](Ȳ − EX̄ − X̄ext) ,

or in the alternative approach(
M̃[X] + τ̃ L̃[X]

)
P̄ =

τ

τ̃ 2
M[X](Ȳ − EX̄ − X̄ext) .

Furthermore, in this case given ∂XŴ
∂[X](Θ) =∂XW

∂[Xk, X, Y [X]](Θ) − ∂X∂YE
∂[X, Y ](P,Θ)

the gradient components on the right hand side are evaluated as follows

∂XW
∂[Xk, X, Y ](Θ) = 2M[Xk](EX̄−X̄k)·EΘ̄ + 2

τ

τ̃ 2
M[X](EX̄ + X̄ext−Ȳ )·EΘ̄

+
τ

τ̃ 2
(∂XM[X](Θ))(Ȳ −EX̄−X̄ext)·(Ȳ −EX̄−X̄ext) ,

∂X∂YE
∂[X, Y ](P,Θ) = 2(∂XM[X](Θ))(Ȳ −EX̄−X̄ext)·P̄−2M[X]EΘ̄·P̄

+2τ̃(∂XL[X](Θ))Ȳ ·P̄ ,

whereas in the alternative approach the mass matrix M[X] and the stiffness matrix L[X] are re-
placed by M̃[X] and L̃[X], respectively.

Let us finally investigate the fully nonlinear, anisotropic model. Now, the dual solution P solves
the

(M[x] + τ̃HessAγ(Y )) P̄ =
τ

τ̃
M[X](Ȳ − X̄) .

Here, as in the gradient case, the Hessian is assembled via evaluation of ∂2
YAγ[Y ](Φiej,Φkel) for

all vector valued basis functions Φiej and Φkel, respectively. In the Appendix C we give formulas
for the computation of the local entries HessAγ[Y ] on single elements in the case of polygonal
curves (d = 1 and m = 2). Finally, for the second term in the gradient formula ∂XŴ

∂[X](Θ) =

∂XW
∂[Xk, X, Y [X]](Θ)− ∂X∂YEγ[X, Y ](P,Θ) we obtain

∂X∂YEγ[X, Y ](P,Θ) = 2(∂XM[X](Θ))(Ȳ − X̄)·P̄ − 2M[X]Θ̄·P̄ .
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4.2 Lagrangian and SQP method

A more efficient strategy to solve the constrained optimization problem in each time step is to apply
a Newton method for the corresponding Lagrangian, which can also be phrased as a sequential
quadratic programming (SQP) approach. For an introduction to the SQP method and the basic
convergence theory we refer to Nocedal & Wright [38]. In our context we consider the following
Lagrangian function for problem (3.1), (3.2)

L[X̄, Ȳ , P̄ ] = W [Xk, X, Y ]− ∂YE[X, Y ](P )

for the now independent unknowns X̄, Ȳ ∈ Rm|I| and the Lagrange multiplier P̄ ∈ Rm|I|. Here, with
a slight misuse of notation, we either use a finite element function notation with Z in V(M[Xk])m

andV(M[X])m, respectively, or the corresponding nodal vector notation with Z̄ ∈ Rm|I|. Now,
we ask for critical points (X̄, Ȳ , P̄ ) of L. Indeed, 0 = ∂P̄L[X̄, Ȳ , P̄ ](Θ̄) = ∂YE[X,Y ](Θ̄) is
the Euler Lagrange equation of the inner minimization problem with respect to Ȳ for given X

and 0 = ∂ȲL[X̄, Ȳ , P̄ ](Θ̄) = ∂YW [Xk, X, Y ](Θ) − ∂2
YE[X,Y ](P,Θ) is the defining equation

for the dual solution P given Y as the solution of the above Euler Lagrange equation. Finally,
0 = ∂X̄L[X̄, Ȳ , P̄ ](Θ̄) = ∂XW (Xk, X, Y )(Θ)− ∂X∂YE[X, Y ](P,Θ) = ∂XŴ (X) coincides with
the Euler Lagrange equation for the actual constraint optimization problem. The Hessian ofL, which
is required to implement a Newton scheme, is given (in abbreviated form) by

HessL =

 ∂2
XW − ∂2

X∂YE(P ) ∂X∂YW − ∂X∂
2
YE(P ) −∂X∂YE

∂X∂YW − ∂X∂
2
YE(P ) ∂2

YW − ∂3
YE(P ) −∂2

YE
−∂X∂YE −∂2

YE 0

 .

By a straightforward Lagrangian multiplier argument a Newton step coincides with the solution of
the quadratic program(1

2
Hess (X̄,Ȳ )L[X̄k,l, Ȳ k,l, P̄ k,l](∆X̄,∆Ȳ ) + grad (X̄,Ȳ )W [X̄k,l, Ȳ k,l]

)
· (∆X̄,∆Ȳ ) → min

subject to the linearized constraint ∂ȲE[X̄k,l, Ȳ k,l] + grad (X̄,Ȳ )∂ȲE[X̄k,l, Ȳ k,l] · (∆X̄,∆Ȳ ) = 0,
where the index l indicates the lth Newton step with X̄k,l+1 = X̄k,l + ∆X̄ , Ȳ k,l+1 = Ȳ k,l + ∆Ȳ

and P̄ k,l+1 appears as the Lagrangian multiplier with respect to the linear constraint.
For the Willmore flow of closed surfaces leading to the optimization problem (3.1), (3.2) the

different terms in HessL are evaluated as follows:

∂2
XW (Θ,Ψ) = 2(M[Xk]+

τ

τ̃ 2
M[X])Ψ̄·Θ̄ +

τ

τ̃ 2

(
∂2

XM[X](Θ,Ψ)(Ȳ−X̄)·(Ȳ−X̄)

+2∂XM[X](Θ)(X̄−Ȳ )·Ψ̄ + 2∂XM[X](Ψ)(X̄−Ȳ )·Θ̄
)
,

∂X∂YW (Θ,Ψ) = 2
τ

τ̃ 2
(∂XM[X](Ψ)(Ȳ−X̄) · Θ̄−M[X]Θ̄ · Ψ̄) ,

∂2
YW (Θ,Ψ) = 2

τ

τ̃ 2
M[X]Θ̄ · Ψ̄ ,
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∂2
X∂YE(Θ,Ψ,Ξ) = 2(∂2

XM[X](Ψ,Ξ)(Ȳ−X̄)·Θ̄−∂XM[X](Ψ)Θ̄·Ξ̄
−∂XM[X](Ξ)Ψ̄·Θ̄ + τ̃ ∂2

XL[X](Ψ,Ξ)Ȳ ·Θ̄) ,

∂X∂
2
YE(Θ,Ψ,Ξ) = 2(∂XM[X](Ξ) + τ̃ ∂XL[X](Ξ))Θ̄·Ψ̄ ,

∂X∂YE(Θ,Ψ) = 2(∂XM[X](Ψ)(Ȳ−X̄)·Θ̄
−M[X]Ψ̄·Θ̄ + τ̃ ∂XL[X](Ψ)Ȳ ·Θ̄) ,

∂3
YE = 0 ,

∂2
YE(Θ,Ψ) = 2(M[X] + τ̃L[X])Θ̄·Ψ̄ ,

where ∂X∂YE has already been given in (4.5). The different subblocks of the block structured
Hessian HessL are again assembled in the usual way from local contribution on single elements of
the polygonal mesh. Detailed formulas for the local derivatives are given in Appendix B.

The adaptation in the case of Willmore flow with boundary conditions is obvious, whereas for
anisotropic Willmore flow we obtain for the derivatives of the energy Eγ from (3.3) appearing in
HessL

∂2
X∂YEγ(Θ,Ψ,Ξ) = 2(∂2

XM[X](Ψ,Ξ)(Ȳ − X̄)·Θ̄
−∂XM[X](Ψ)Ξ̄·Θ̄− ∂XM[X](Ξ)Ψ̄·Θ̄)

∂X∂
2
YEγ(Θ,Ψ,Ξ) = 2∂XM[X](Ξ)Ψ̄·Θ̄
∂X∂YEγ(Θ,Ψ) = 2(∂XM[X](Ψ)(Ȳ − X̄)·Θ̄−M[X]Ψ̄·Θ̄)

∂3
YEγ(Θ,Ψ,Ξ) = 2τ̃ ∂Y HessAγ[Y ](Ξ)Ψ̄·Θ̄
∂2

YEγ(Θ,Ψ) = 2(M[X] + τ̃HessAγ[Y ])Ψ̄·Θ̄

For the (now necessary) third derivatives of the local anisotropic area functional Aγ we refer to
Appendix C.

5 Numerical results

We have applied our numerical algorithm for Willmore flow to the evolution of curves in R2 and
in R3, and to two dimensional surfaces in R3. We study curve and surface blending problems and
investigate the numerical solution of anisotropic Willmore of curves. A particular emphasis is on
the robustness and stability of the proposed approach in particular for large time steps τ up to the
order the spatial grid size h.

5.1 Willmore flow of closed curves and surfaces

At first, we numerical solve the Willmore flow problem for curves in 2D and simulate the evolution
of circles, where the explicit solution has already been discussed in Section 2.1. The continuous and
discrete evolution is compared in Fig. 2 and an experimental study of convergence in the L2 norm
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Figure 2: The evolution of a circle under Willmore flow is displayed. On the left, the initial circle of
radius R(0) = 2 (red) and the discrete solution (green) are plotted at times t = 0.01, 0.05, 0.1. The
computation is based on a polygonal approximation with 200 vertices and τ = τ̃ = h. Furthermore
on the right, the evolution of the average radius (green) is compared with the radius of the exact
solution (blue) over time.

is presented in Table 1 in agreement with the consistency error of our model O(h2 + τ + τ̃). For the
actual numerical solution of the discrete variational problem to be solved at each time step we have
used the Newton scheme for the Lagrangian.

Furthermore, we investigate spheres in R3, which are known to be stationary solutions of Will-
more flow. The Willmore energy is invariant with respect to Möbius transformation. These invari-
ants might lead to degeneracies of the numerical grid in long time simulations as observed for the
semi-implicit algorithm of Rusu [47]. On the same time scale and with the same underlying time
step size the nested time discretization turned out to be more robust as depicted in Fig. 3. Even for
significantly larger times the new scheme remains stable.

n L2 error (τ = τ̃ = h2) L2 error (τ = τ̃ = h)

4 0.1255 0.1632
5 0.0425 0.0697
6 0.0098 0.0294
7 0.0032 0.0137
8 0.0006 0.0057

Table 1: The L2 error between the exact solution R(t) for t = 0.01 and the corresponding discrete
radius function Rh(X

k) := |Xk| with τ = t
k

is computed on M[Xk], where τ = τ̃ = h2 (left
column) and τ = τ̃ = h (right column) for a varying grid size h resulting form a initial polygon
M[X0] with 2n edges of equal length with n = 4, 5, 6, 7, 8.
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Figure 3: Results of the semi-implicit scheme [47] (top row) are compared with the proposed algo-
rithm using a Newton method (bottom row). The mesh size of the discrete spheres is h = 0.02, and
as time step size we consider τ = 16 · 10−8 in both methods (τ̃ = τ in the our scheme). From left to
right the triangulations are rendered at times t = 0.0, t = 2381.9, t = 2442, 2, t = 2472, 4.

Figure 4: The evolution of a planar hypocycloid towards a fivefold covering of a circle is shown
at times t = 0.0, t = 685.7, t = 2987.4, t = 4850.1, t = 7965.8, t = 10630.6. The curves
are graphically rescaled to have similar size. The computational parameters were λ = 0.025, and
τ = h = 0.5493 and a gradient descent method was used.

Next, we consider an example already proposed by Dziuk and Deckelnick in [15], where a
hypocycloid is considered as initial data. Here, the parametrization of the initial curve is given
by X0(t) =

(
−5

2
cos(t) + 4 cos(5t),−5

2
sin(t) + 4 sin(5t), δ sin(3t)

)
. In R2 for δ = 0 the initial

curve evolves to a fivefold covering of a circle (cf. Figure 4) since multiple coverings of a circle are
stable stationary solutions in the codimension one case [43]. This is not true in the case of higher
codimension for m ≥ 3. If we start with an initial curve slightly perturbed in vertical direction, we
have chosen δ = 0.1, the curve begins to unfold and evolves to a single circle (cf. Figure 5). Here,
we use a gradient descent method to solve the optimization problem for each time step.

Furthermore, we depict in Figure 6 the evolution of a coarse polygonal approximation of a torus
towards the Clifford torus M = {x ∈ R3|(1−

√
x2

1 + x2
2)

2 + x2
3 = 1

2
}. In Figure 7 we compare the

discrete evolution at a fixed time for different choices of the time step τ (τ̃ = τ ).

5.2 Curve and surface blending

Figure 8 shows different solutions of a curve blending problem. The Willmore energy for a circular
segment with an opening angle α and radius r is given by α

r
. Thus, for two given curve segments
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Figure 5: The evolution of a vertically perturbed hypocycloid towards a circle under Willmore flow
with δ = 0.1, h = 0.005 at t = 0, and τ = 0.005 is shown at times t = 0.0, t = 1348.9, t = 4467.1,
t = 5511.4, t = 6555.7, t = 7406.6, t = 8257.2, t = 9108.4, t = 9297.0, t = 9361.3, t = 9426.8,
t = 9489.1.

Figure 6: Different Willmore flow time steps are depicted from the evolution of a coarse polygonal
torus model towards the Clifford torus. The Newton scheme for the Lagrangian is applied, where
h = 0.0977 (1st row), h = 0.0745 (2nd row), and h = 0.0089 (3rd row), respectively. From left to
right the surfaces are rendered at times t = 0.0, t = 0.09, t = 0.15, and t = 0.97.

Figure 7: For the Willmore flow evolution in Figure 6) we render the triangulated discrete surfaces
at time t = 0.3735 resulting from computations with different time step sizes τ = h4, τ = h2, and
τ = h, where the initial grid size is h = 0.0745.
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Figure 8: Discrete stationary solutions of different curve blending problem are shown. Here, τ =
h = 0.01386, τ̃ = 1.386 ·10−5, and λ = 1.0. The initial curve is plotted as a dotted line. On the right
we compare the scheme with prescribed co-normal N co (red) and the alternative approach with an
additional ring of triangles (blue) in an enlargement of the previous plot.

Figure 9: For the solution of a surface blending problem with a blending region marked in red (left)
we compare the semi-implicit scheme from [13] (middle block) and the new method using a SQP
approach (right block) with a blow-up zoomed view onto the corresponding triangulation. Here,
the (almost stationary) solution is rendered at time t = 1.4 and the computational parameters are
h = τ = 0.14, τ̃ = 0.002 (first blow-up in on the right) and τ = τ̃ = 0.0004 (second blow-up on
the right).

which have to be blended we can continue these segments by straight line segments and connect
them by such a circular arc. As the length of the straight line segments tends to infinity the Willmore
energy of the whole blending construction tends to zero. To avoid this modeling artifact we consider
a slight generalization of the above Willmore flow model. We add λ a[x] to the Willmore energy,
where λ is a fixed constant and a[x] denotes the length of the curve. Here, λ can be regarded as
a Lagrangian multiplier with respect to a length constraint. Hence, for proper choices of λ the
generalized model avoids expansion. If X represents a discrete closed curve as above, we obtain for
the discrete length functional A[X] =

∑
i∈I Qi. Furthermore, its gradient vector in Rm|I| is given

by gradXA[X] = L[X]X̄ . Figures 9 shows a blending surface generated by the proposed method
and a comparison with the restoration method by Clarenz et al. [13] based on the semi-implicit
discretization of Willmore flow.

In curve and surface restoration the two variants of our approach give very similar results and
differ only slightly in the corresponding parameterization. The second variant appears to more nat-
ural for surface restoration with a given outer triangular mesh, whereas the first variation is more
suitable for blending problems with explicitly given co-normal.

Finally, in Figure 10 we address further blending and surface restoration problems using the
second variant of our method. For a comparison with the semi-implicit approach and a discrete
geometry approach we refer to Clarenz et al. [13] and Bobenko & Schröder [7], respectively.
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Figure 10: Results of the second variant of the new method for Willmore flow are shown for a higher
genus blending problem and two different surface restoration applications using the SQP approach.

Figure 11: Different time steps of the evolution of a bunny shape with 436 nodes towards a circle
(first row), an ellipse (second row) In all three cases we have chosen τ = h = 0.00865 (h being the
initial grid size), λ = 0.025, and τ̃ = 7.5 · 10−5.

5.3 Simulation of anisotropic Willmore flow of curves

We have implemented our numerical algorithm for the anisotropic Willmore flow of polygonal
curves in R2. Here, we present results for three different types of Wulff shapes and correspond-
ing anisotropies γ0(z) = |z| , γ1(z) =

√
z2
1 + 4 z2

2 , and γ2(z) =
∑2

l=1

√
10−7|z|2 + z2

l for z =

(z1, z2) ∈ R2. In addition, we take into account a length energy as in Section 5.2. The results un-
derline that time steps up to the order the spatial grid size h are feasible also in the anisotropic case.
Figure 11 shows the evolution of a bunny shaped model towards a circle, an ellipse and a square with
slightly rounded corners. We used the Newton method for the Lagrangian to solve the optimization
problem at each time step.
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Appendix

A. Linearization of surface area

Here, we show that for two d-dimensional surfacesM[x] andM[y] in Rm with smooth parametriza-
tions x and y which are close in C1, the approximation result (2.1) holds. To see this, let us consider
x and y as two charts defined on a parameter domain ω ⊂ Rd of M[x] and M[y], respectively.
Then,

∫
y(ω)

da =
∫

ω

√
det(DyTDy) dξ. Taking into account that d

ds

√
d (1 + s)|s=0 = 1

2

√
d and

using Taylor expansion we obtain√
det(DyTDy) =

√
det(DxTDx) det(1I + (DxTDx)−1(DyTDy−DxTDx))

=
√

det(DxTDx)

(
1+

tr((DxTDx)−1(DyTDy−DxTDx))

2

)
+O(‖y−x‖2

C1)

=
√

det(DxTDx)

(
1− d

2
+

1

2
tr(Dy(DxTDx)−1DyT )

)
+O(‖y−x‖2

C1) .

Hence, we get∫
ω

√
det(DyTDy) dξ =

(
1− d

2

)∫
ω

√
det(DxTDx) dξ

+
1

2

∫
ω

tr(Dy(DxTDx)−1DyT )
√

det(DxTDx) dξ

+O(‖y − x‖2
C1) ,

which together with the observation |∇M[x]y|2 = tr(Dy(DxTDx)−1DyT ) finally proves our claim.

B. Local finite element matrices and their derivatives

Here, we derive formulas for the derivatives of the local mass and stiffness matrices. For simplicity
we assume that we deal only with a single d dimensional, non degenerate simplex T with vertices
X0, · · · , Xd in Rm. Then, the mass and stiffness matrix are given by

M [X] =
√

detG[X]M̂ , L[X] =
1

d!

√
detG[X]

(
G[x]−1∇̂Φ̂i · ∇̂Φ̂j

)
i,j=0,...,d

.

Here, M̂ is the usual mass matrix on the reference simplex T̂ in Rd with vertices 0 and e1, · · · , ed.
Furthermore, Φ̂k (k = 0, . . . , d) are the corresponding basis function on T̂ and the gradient of
Φ̂k is given by ∇̂Φ̂k =

(
(1− δk0)δkj − δk0d

− 1
2

)
j=1,...,d

. Furthermore, G[X] = DXTDX is the

(discrete) metric tensor, where X is the mapping from the reference simplex T̂ to the simplex T .
For the derivatives of the metric tensor we obtain

∂Xk
G[X](V ) = (∂Xk

DX(V ))T DX +DX (∂Xk
DX(V ))T

∂Xl
∂Xk

G[X](V,W ) = (∂Xl
DX(W ))T (∂Xk

DX(V )) + (∂Xk
DX(V ))T (∂Xl

DX(W ))
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for V, W ∈ Rm, where ∂Xk
DX(V ) = (((1− δk0)δkj − δk0)Vi)i=1,...,m

j=1,...d
is the derivative of the Jaco-

bian of X with respect to the position of the vertex Xk. From this we immediately deduce

∂Xk

√
detG[x] =

1

2

√
detG[x] tr(G[X]−1∂Xk

G[X](V )),

∂Xk
(G[x]−1)(V ) = −G[x]−1∂Xk

G[X](V )G[x]−1,

∂Xl
∂Xk

(G[x]−1)(V,W ) = −G[x]−1∂Xl
∂Xk

G[X](V,W )G[x]−1

+G[x]−1∂Xl
G[X](W )G[x]−1∂Xk

G[X](V )G[x]−1

+G[x]−1∂Xk
G[X](V )G[x]−1∂Xl

G[X](W )G[x]−1,

∂Xl
∂Xk

√
detG[x](V,W ) =

1

4

√
detG[x] tr(G[X]−1∂Xl

G[X](W ))

· tr(G[X]−1∂Xk
G[X](V )) +

1

2

√
detG[x] tr(∂Xl

(G[x]−1)(W )∂Xk
G[X](V )

+G[X]−1∂Xl
∂Xk

G[X](V,W )).

Finally, we get the following formulas for the derivative of the mass and stiffness matrix

∂Xk
M [X](V ) = ∂Xk

√
detG[x]M̂,

∂Xl
∂Xk

M [X](V,W ) = ∂Xl
∂Xk

√
detG[x](V,W )M̂,

∂Xk
L[X](V ) =

1

d!

(
∂Xk

√
detG[x](V )G[x]−1∇̂Φ̂i · ∇̂Φ̂j

+
√

detG[x] ∂Xk
(G[x]−1)(V )∇̂Φ̂i · ∇̂Φ̂j

)
i,j=0,...,d

,

∂Xl
∂Xk

L[X](V,W ) =
1

d!

(
∂Xl

∂Xk

√
detG[x](V,W )G[x]−1∇̂Φ̂i · ∇̂Φ̂j

+
√

detG[x] ∂Xl
∂Xk

(G[x]−1)(V,W )∇̂Φ̂i · ∇̂Φ̂j

)
i,j=0,...,d

.

C. Derivatives of the local anisotropic area functional

We restrict ourselves here to the evolution of polygonal curves under discrete Willmore flow and
focus on the local area functional on a single line segment connecting points X0 and X1 in R2.
We have Aγ[X] = 1

2

√
detG[X]γ(N), where N = D90(X1−X0)

|X1−X0| denotes the discrete normal and for
d = 1 this time G[X] = |X1 − X0|. Due to the 1-homogeneity of γ we can rewrite Aγ and obtain
Aγ[X] = 1

2
γ̃(X1 −X0) with γ̃ = γ ◦D90. Hence, via straighforward differentiation we obtain

∂Xi
Aγ(V )= γ̃,z(X1−X0) · V (δ1i−δ0i),

∂Xj
∂Xi

Aγ(V,W )= γ̃,zz(X1−X0)V ·W (δ1i−δ0i)(δ1j−δ0j),

∂Xk
∂Xj

∂Xi
Aγ(V,W,Z)= γ̃,zzz(X1−X0)(V,W,Z) (δ1i−δ0i)(δ1j−δ0j)(δ1k−δ0k).
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