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Abstract—Informed machine learning describes the injection
of prior knowledge into learning systems. It can help to improve
generalization, especially when training data is scarce. However,
the field is so application-driven that general analyses about the
effect of knowledge injection are rare. This makes it difficult to
transfer existing approaches to new applications, or to estimate
potential improvements. Therefore, in this paper, we present
a framework for quantifying the value of prior knowledge in
informed machine learning. Our main contributions are three-
fold. Firstly, we propose a set of relevant metrics for quantifying
the benefits of knowledge injection, comprising in-distribution
accuracy, out-of-distribution robustness, and knowledge confor-
mity. We also introduce a metric that combines performance
improvement and data reduction. Secondly, we present a theo-
retical framework that represents prior knowledge in a function
space and relates it to data representations and a trained model.
This suggests that the distances between knowledge and data
influence potential model improvements. Thirdly, we perform a
systematic experimental study with controllable toy problems.
All in all, this helps to find general answers to the question how
knowledge injection helps in informed machine learning.

Index Terms—Hybrid AI, Informed Machine Learning, Prior
Knowledge Injection, Neural Networks

I. INTRODUCTION

Hybrid AI combines data-driven and knowledge-based mod-
els [1]–[3]. A particular approach that recently gained a lot
of popularity is informed machine learning, which describes
the injection of additional prior knowledge into learning
systems [4]. This can help to improve model performance,
especially when relevant training data is scarce [5]–[8]. Other
potential benefits are that it can increase model robustness [9]–
[11], help to ensure knowledge conformity [12]–[14], or can
even improve explainability [15].

There are many applications where informed machine learn-
ing is successfully used – especially in scientific and engi-
neering domains, where data acquisition can be expensive,
but lots of prior knowledge is available. Just to give a few
examples: In neural networks for climate prediction, physical
laws are injected via knowledge-based loss functions [5]. In
robotics, simulations are used as an additional source for
training data [8]. Or in autonomous driving, spatial prototypes
are employed to improve object detection [11].

However, the field is so application-driven that it has led
to the development of many and rather specific approaches.
In contrast, general analyses about informed machine learning
are still missing [4]. This makes it difficult to transfer exist-

(a) Function Space Illustration with Rep-
resentations of Data and Prior Knowledge.

(b) Model Improvement
using Prior Knowledge.

Fig. 1: In Informed Machine Learning, prior knowledge is integrated
into data-based learning [4], [16]. To better understand its effect, we
propose a framework that represents knowledge in a function space
(See a). We analyze how the distances between knowledge, train, and
test data influence the potential model improvements. E.g., we find
that informed learning greatly improves model robustness, especially
when the knowledge is close to out-of-distribution test data (See b).

ing approaches to new applications, or to estimate potential
improvements in advance.

Therefore, in this paper our objective is to find general
answers to the research question of how knowledge injection
via informed machine learning does help. We further subdivide
this into the following subquestions:

• How can knowledge injection improve machine learning?
• What are the requirements for the injected knowledge?
• How should the knowledge be injected?
Our approach is to develop a framework for quantifying the

value of prior knowledge in informed machine learning. For
this, we first define a set of metrics that quantify potential
benefits. Then we propose a theoretical framework that helps
to formalize prior knowledge injection. It is a first step
towards an informed learning theory. Our main idea is to
regard prior knowledge as a function that can be represented
in the same space as the model or the training data (See
Figure 1a). We conjecture that the distance between data
and knowledge determines the potential benefits of informed
machine learning. To illustrate the framework, we perform
a systematic experimental study with toy problems. As the
toy problems we propose a classification task, which allow to
vary the knowledge and the injection method in a controllable
manner. We vary relevant parameters, such as the distance
between data and knowledge (See Figure 1b), and measure the
potential improvements through informed machine learning.



In summary, the main contributions of this paper are:
1) We propose a set of metrics for quantifying the benefits

of informed machine learning.
2) We present a first theoretical framework for informed

machine learning.
3) We perform a systematic experimental study with con-

trollable toy problems.
Each of these contributions helps to answer the above

research questions. The paper is structured accordingly.

II. RELATED WORK

Our work is mainly related to hybrid AI and informed
machine learning, but also reuses concepts from learning
theory.

A. Informed Machine Learning
In informed machine learning, pre-given formalized knowl-

edge is injected into data-driven learning systems [4], [16],
[17]. It is sometimes also called theory-guided data sci-
ence [18], or causally-aware machine learning [19]. The taxon-
omy of informed learning depicts the diversity of applications
and methods in terms of knowledge source, representation
type, and integration method [4].

However, related work about the general, application-
independent, effect of knowledge injection in informed ma-
chine learning is rare. We shortly describe the works that
go in this direction, ordered by our contributions in terms
of 1) metric quantification, 2) theoretical framework and 3)
experimental study.

A first work that presents an approach for the quantification
of domain knowledge in informed machine learning is given
by Yang et al. [20]. They proposed a method based on the
Shapley value to quantify the contribution of injected prior
knowledge to the model performance improvement. The main
difference to our work is that they consider a set of knowledge
pieces and attribute the contribution of the individual pieces,
whereas we consider knowledge as an abstract unit and
analyze which properties it needs to have.

A first theoretical study about physics-informed neural
networks was presented by Shin et al. [21]. They provide
a convergence theory with respect to the number of data
samples. Yang et al. have also presented a theoretical study
on informed learning by wide neural networks [22]. They
especially investigate the trade-off between knowledge and
data labels.

A first experimental comparison of informed learning meth-
ods is given by Monaco et al. [23]. They consider three
application examples and on each they evaluate two informed
learning methods. In particular they measure the performance
for variations of the training data size. The difference to our
work is that they investigate pre-given applications, whereas
we investigate toy problems, which allow us to adapt the
experiments and the knowledge in a controllable manner.
Moreover, they only measure the prediction error for various
data sizes, whereas we develop and measure a total catalogue
of metrics.

B. Learning Theory
The foundations of statistical learning theory have been

developed already many years ago by Vapnik et al. [24].
Overviews about learning theory can be found in [25], [26]. At
the heart of it is the principle of empirical risk minimization,
which we shortly recap. The goal of a learning task is to find a
model f : X → Y , with f ∈ F , based on some given training
data D = {(xi, yi)}i=1...n, with features x ∈ X , labels y ∈ Y
and sample size n. The model can then be approximated by
minimizing the empirical risk R(f) with a given loss function
l:

f̂ := argmin
f∈F

RD(f), RD(f) =
1

|D|
∑

(x,y)∈D

l(f(x), y) (1)

Recently, an extension of the statistical learning theory was
proposed in terms of also taking into account the preservation
of invariants [27], also called invariant risk minimization [28],
[29]. This approach can be motivated by the goal of out-
of-distribution generalization [30]: Assuming training data
is collected in various environments, then statistical invari-
ants across them should also hold in novel testing environ-
ments [31]. This idea is similar to our understanding of
informed machine learning: Prior knowledge describes causal
relationships that are underlying a given data distribution,
i.e. invariants. Integrating these into a learning task can thus
improve model performance. The main difference is that in
invariant risk minimization the invariants still need to be
learned, whereas in informed machine learning they are given
by prior knowledge.

III. METRICS FOR INFORMED LEARNING

As described in [4], the main goals of informed machine
learning are to train with less data, to achieve a better model
performance, to increase knowledge conformity, or to increase

Fig. 2: Illustration of Performance vs. Size of Training Data. Models
that are trained with informed machine learning usually achieve a
higher performance, e.g. accuracy or robustness, for smaller training
data sizes [5], [6], [11]. We propose a new metric that quantifies
performance and data need in a single metric in terms of the
area under the curve: Performance-by-Data AUC, in short PD (see
Section III-A). All in all, we suggest to quantify improvements in
terms of four metric flavours: Increase in Performance-by-Data AUC
(M0), increase in performance at max. and min. data size (M1 and
M2), as well as data reduction for a specific performance (M3).



interpretability. However, most works about informed learning
methods present individual metrics to quantify the benefits of
their method. For example, [5] reports test error and phys-
ical inconsistency for various data sizes, [20] compares test
accuracy for full data size, or [11] reports ouf-of-distribution
robustness for various data sizes.

Here, we propose a systematic metric catalogue, as well as a
new metric that combines performance improvement and data
efficiency. These allow a more transparent, and standardized
comparison of various methods. Moreover, they provide the
basis for future benchmarks of informed learning methods.

A. Performance-by-Data AUC

We propose to measure performance (e.g., test accuracy) for
various train data sizes and summarize the results in a single
metric that we call Performance-by-Data AUC. As illustrated
in Figure 2, the metric quantifies the area under the curve of
performance p vs. training data size n.

Definition 1 (Performance-by-Data AUC).

PD =

∫ nmax

nmin

p(n) dn (2)

This metric can be normalized through dividing by the
maximum possible area, i.e. by pmax ∗ (nmax−nmin), where
pmax is the maximum possible performance (e.g., 100% test
accuracy). Then PD ∈ [0.0, 1.0] and the larger the better.

For comparing two models, e.g., a (knowledge-)informed
model with performance pK and a default, data-based model
with performance pD, the difference between the two area
integrals can be computed.

Definition 2 (Improvement of Performance-by-Data AUC).

∆PD =

∫ nmax

nmin

∆p(n) dn (3)

=

∫ nmax

nmin

(pK(n)− pD(n)) dn (4)

The proposed ∆PD metric has the advantage that it encap-
sulates the performance for all data set sizes in a single metric.
This means, one does not need to choose a specific data set
size for which to compare the performance, or vice versa.

B. Metrics Catalogue

For evaluating informed learning methods, we focus on
metrics that are especially relevant for model generalization:
In-Distribution Test Accuracy, Out-of-Distribution Robustness,
and Knowledge Conformity. The generic performance p from
above can be any of these 3 metric types. As indicated in
Figure 2, we specifically evaluate each metric in 4 metric
flavours: The above described Performance-by-Data AUC (M0

in Figure 2), but also the performance at max. and min. data
size (M1 and M2), as well as the data amount that is required
to achieve a specific performance (M3). Further metric types
for evaluating informed methods are training time and model
size. Also a measurement of the model interpretability is

Box 1: Metrics Catalogue: Improvements through
Informed Learning
This catalogue represents the various goals of informed
learning and depicts how knowledge injection can improve
machine learning.

1) Increase of In-Distribution (IID) Test Accuracy
a) Increase: IID Accuracy-by-Datasize
b) Increase: IID Accuracy for Max. Datasize
c) Increase: IID Accuracy for Min. Datasize
d) Reduction: Training Datasize for specific IID Accu-

racy
2) Increase of Out-of-Distribution (OOD) Robustness

a) Increase: OOD Robustness-by-Datasize
b) Increase: OOD Robustness for Max. Datasize
c) Increase: OOD Robustness for Min. Datasize
d) Reduction: Training Datasize for specific OOD Ro-

bustness
3) Increase of Knowledge Conformity

a) Increase: Knowledge Conf.-by-Datasize
b) Increase: Knowledge Conf. for Max. Datasize
c) Increase: Knowledge Conf. for Min. Datasize
d) Reduction: Training Datasize for specific Knowl-

edge Conf.
4) Reduction of Training Data *
5) Reduction of Training Time
6) Reduction of Model Size
7) Improvement in Interpretability

* Please note that the important goal of data reduction is
represented below each of first three metric types (See 1a+d,
2a+d, 3a+d).

interesting, however, such a quantification is currently still an
open research question [15].

In summary, we suggest the metric catalogue that is shown
in Box 1 for evaluating informed learning methods.

IV. A FRAMEWORK FOR AN INFORMED LEARNING
THEORY

We want to better understand what influences the expected
performance gains of informed learning. In particular, it is of
great interest what the requirements on the injected knowledge
are. To investigate this, we employ and extend concepts from
statistical learning theory [25], [26]. This way, we hope to
make a first step in the direction of an informed learning
theory.

A. Knowledge in Function Space

The question about the requirements on the injected knowl-
edge is non-trivial, because knowledge can be represented
in versatile forms. As depicted in the informed learning
taxonomy [4], typical representations of prior knowledge are
algebraic equations, logic rules, knowledge graphs, simulation
results, or human feedback. An investigation on the require-
ments for each type could already be exhaustive.

Here, we therefore take an abstract view and conjecture:



Fig. 3: Function space with representations of prior knowledge fK ,
data fD , and OOD test data food (right), and decomposition in
generalization error terms (left). The circle illustrates the function
space F used by a learning algorithm. Beyond the circle is the
space of all possible functions. f̂D is the empirical best solution of
the algorithm (See Equation 1). fF (D) is the best possible solution
in F . fD represents the (unknown) data distribution. The blue
elements show the respective representations for prior knowledge (our
proposed informed learning extension). Particularly, fK represents
the (known) prior knowledge.

Axiom 3 (Prior Knowledge). Prior knowledge describes
relations between concepts and can be represented as a
function.

We use this to relate it to given data:

Axiom 4 (Knowledge Representation in Function Space).
Prior knowledge can be represented in the same function
space as given data representations.

Figure 3 illustrates the knowledge representation in a func-
tion space. Here, we also illustrate the distance |dK−D|
between the known knowledge representation fK and the un-
known data representation fD. In addition to the in-distribution
data, we also consider an out-of-distribution data, which is
represented by the unknown data representation food. The
illustration in function space depicts how prior knowledge can
give hints about the unknown data representations.

B. Knowledge-to-Data Distance

Let us consider the case for in-distribution (IID) generaliza-
tion. This means that a model is tested on data that follows
the same underlying distribution as the training data.

We are interested in the expected performance improvement
through informed learning by using the prior knowledge fK . In
the statistical learning theory, maximizing model performance
is equivalent to minimizing the empirical risk (see Equation 1).
We thus regard the risks R(f̂D) and R(f̂K). The generalization
error for the default, data-based model can be decomposed as
follows (see black drawing in Figure 3):

R(f̂D)−R(fD)︸ ︷︷ ︸
generalization error

=
(
R(f̂D)−R(fF (D))

)
︸ ︷︷ ︸

estimation error

+
(
R(fF (D))−R(fD)

)︸ ︷︷ ︸
approximation error

(5)

We propose to also formalize the error for a purely informed
model with respect to generalization to the in-distribution data
(see blue drawing in Figure 3):

R(f̂K)−R(fD)︸ ︷︷ ︸
know. generalization error

=
(
R(f̂K)−R(fF (K))

)
︸ ︷︷ ︸

know. estimation error

+
(
R(fF (K))−R(fK)

)︸ ︷︷ ︸
know. approximation error

+(R(fK)−R(fD))︸ ︷︷ ︸
know.-to-data error

(6)

For the model distance in terms of their generalization errors
follows then:

R(f̂K)−R(f̂D) = C + (R(fK)−R(fD))︸ ︷︷ ︸
know.-to-data error

∝ C + |dK−D|︸ ︷︷ ︸
know.-to-data distance

(7)

Conjecture 5 (Informed IID-Generalization Improvement).
The smaller the distance between knowledge and data, the

larger the improvement through informed learning on in-
distribution generalization.

C. Knowledge-to-OOD Distance
Let us consider the case of out-of-distribution general-

ization. Out-of-distribution generally refers to the evaluation
on test data that follows another distribution then the train
data [30].

Here, for the model distance in terms of their out-of-
distribution generalization errors follows then:

Rood(f̂K)−Rood(f̂D) ∝ Cood + |dK−ood|︸ ︷︷ ︸
know.-to-ood dist.

− |dD−ood|︸ ︷︷ ︸
data-to-ood dist.

(8)

Conjecture 6 (Informed OOD-Generalization Improve-
ment). The smaller the distance between knowledge and
the OOD data, and the larger the distance between IID and
OOD data, the larger the potential improvement through
informed learning on the OOD generalization.

V. SYSTEMATIC EXPERIMENTAL ANALYSIS

We performed a systematic experimental study of the effect
of knowledge injection in informed machine learning. For
this, we defined a controllable toy problem. We measured the
performance metrics as defined in Section III and employ the
theoretical framework from Section IV.

A. Experimental Setup

1) Toy Datasets: Let us consider a toy problem for the
task of classification, as illustrated in Figure 4b. We have also
investigated a toy problem for regression, which shows similar
results. Since the effects of knowledge injection, especially the
influence of the distances between knowledge and data, can
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Fig. 4: Toy dataset for classification with 3 classes. We use distinct
sets for in-distribution data (grey), out-of-distribution data (blue), and
prior knowledge (yellow). The distance can be varied between the sets
(as motivated by the theoretical framework in Section IV). (a) shows
the case when the centers of IID data, OOD data, and knowledge
overlap, i.e. for |dK−D| = 0, |dK−OOD| = 0. (b) shows an example
with distances between them (Here: |dK−D| = 1.5, |dK−OOD| =
0.75). In our experimental study, we measure the effect of informed
machine learning for various distance setups.

be more clearly with the classification problem, we consider
this in the following.

The toy dataset contains three classes. Each blob in Fig-
ure 4b represents another class (i.e. the top blob, lower left
blob, and middle right blob). The number of samples is 288,
with 96 samples per class.

In addition to the main (IID) data, we also consider a smaller
sets of OOD data, and of prior knowledge representations.
Here, the original prior knowledge representation can be un-
derstood as class prototypes, similar as in [11]. In applications,
such prototypes can, e.g., be structural templates (e.g. traffic
sign templates for image recognition). Such knowledge can
be transformed into a data format by rendering. Since prior
knowledge is more concise than data, we consciously chose
smaller standard deviations for the knowledge set.

The distances between the main (IID) data, the OOD data,
and the prior knowledge can be controlled and varied. An
example for a distance setup is shown in Figure 4b.

2) Systematic Analysis: In our systematic study, we vary
several parameters: 1) Distances between knowledge and data,
2) Amount of training data, 3) (informed) learning method.
For each setup, we measure the metrics from our metrics
catalogue. Especially, we focus on IID Test Accuracy, OOD
Robustness, and Knowledge Conformity (i.e., accuracy on the
IID data set, accuracy on the OOD data set, and accuracy on
knowledge samples).

We investigate a range of distance setups, as illustrated in
Figure 5. For this, we keep the position of the IID data set
fixed and move the OOD data set and/or the knowledge to
the side. In particular, we consider a maximum distance of
3.5 with a step size of 0.25, i.e. a total of 15 positions. We
combine distances of know-data with distances of know-ood,
resulting in the illustrated position triangles. For every position
we perform separate trainings.

Fig. 5: Illustration of distance variation in systematic experimental
study: Every position represents a unique experimental set up in
terms of distances between prior knowledge, (IID) data, and OOD
data. For every setup, we perform a default neural network training
and informed trainings in order to measure the gained performance
improvements. In addition, we train every setup for a range of training
data sizes.

Furthermore, we vary the size of the training data. We
consider 6 unique sizes from 10 to 300 data samples with
an exponential growth. By taking into account various training
data sizes, we can measure the metric flavours, as described in
Section III: Performance-by-Data AUC, performance at max.
data, performance at min. data, and data need to reach a
specific performance.

As informed machine learning, we apply two methods,
similar as in [11]: Combining training data and knowledge
samples in terms of 1) Concurrent Training, 2) Informed Pre-
Training.

3) Learning Setup: We apply a neural network with 1
hidden layer with 100 neurons. We use stochastic gradient
descent and cross entropy loss for the learning algorithm. As
the hyperparameters we use: batch size = 18, learning rate
= 0.01, momentum = 0.9, early stopping after 3 stagnating
epochs, regularization with weight decay = 0.2. Each experi-
ment is repeated 10 times. For every run the data samples are
generated randomly.

B. Results

The complete results in terms of improvements of informed
learning over the default setup can be found in Figure 7.
Results for Informed Pre-Training are shown in Figure 8. Both
informed learning methods show that our distance theorems
from Section IV are confirmed. We also nicely see, that our
introduced metric of Performance-by-Data AUC (Definition 2)
is a good summary of the other metrics. In general, we see
that informed learning can greatly improve OOD robustness.

A subset of the results is shown for a closer look in Figure 6.
The left subfigure shows the improvement in IID general-
ization. We observe that the smaller the distance between
knowledge and training data (upper pixel rows) the larger the
improvement. This confirms our Conjecture 5 from above. The
right subfigure shows the improvement in OOD robustness.
Here, we can see that the the improvement is largest when the
distance between knowledge and training data is large (lower
pixel rows) and the distance between knowledge and OOD test
data is small (closer to diagonal). This confirms our Conjecture
6 from above.



Fig. 6: Experimental Results: Improvements in IID-Generalization
and OOD-Robustness through Informed Training. The left plot con-
firms our Conjecture 5, and the right our Conjecture 6. (Complete
Results can be found in Figures 7 and 8.)

VI. CONCLUSION

In this paper, we presented a framework for quantifying
the value of prior knowledge in informed machine learning.
We first proposed a set of relevant metrics for quantifying the
benefits of knowledge injection, comprising in-distribution ac-
curacy, out-of-distribution robustness, and knowledge confor-
mity. We also introduced a metric that combines performance
improvement and data reduction, called performance-by-data
AUC. Secondly, we presented a theoretical framework that
represents prior knowledge in a function space and relates
it to data representations and a trained model. Thirdly, we
performed a systematic experimental study with controllable
toy problems. These confirmed our theories about the influence
of the distances between knowledge and data on potential
model improvements. All in all, our contributions hopefully
help to find general answers to the question how knowledge
injection helps. In particular they form the basis for potential
benchmarks of informed machine learning.
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Fig. 7: Experimental Results: Improvements through Informed Training.



Fig. 8: Experimental Results: Improvements through Informed Pre-Training.


