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A PHASE-FIELD MODEL FOR COMPLIANCE SHAPE OPTIMIZATION IN
NONLINEAR ELASTICITY

Patrick Penzler, Martin Rumpf, Benedikt Wirth1

Abstract. Shape optimization of mechanical devices is investigated in the context of large, geomet-
rically strongly nonlinear deformations and nonlinear hyperelastic constitutive laws. A weighted sum
of the structure compliance, its weight, and its surface area are minimized. The resulting nonlinear
elastic optimization problem differs significantly from classical shape optimization in linearized elas-
ticity. Indeed, there exist different definitions for the compliance: the change in potential energy of
the surface load, the stored elastic deformation energy, and the dissipation associated with the defor-
mation. Furthermore, elastically optimal deformations are no longer unique so that one has to choose
the minimizing elastic deformation for which the cost functional should be minimized, and this com-
plicates the mathematical analysis. Additionally, along with the non-uniqueness, buckling instabilities
can appear, and the compliance functional may jump as the global equilibrium deformation switches
between different bluckling modes. This is associated with a possible non-existence of optimal shapes
in a worst-case scenario.
In this paper the sharp-interface description of shapes is relaxed via an Allen–Cahn or Modica–Mortola
type phase-field model, and soft material instead of void is considered outside the actual elastic ob-
ject. An existence result for optimal shapes in the phase field as well as in the sharp-interface model
is established, and the model behavior for decreasing phase-field interface width is investigated in
terms of Γ-convergence. Computational results are based on a nested optimization with a trust-region
method as the inner minimization for the equilibrium deformation and a quasi-Newton method as the
outer minimization of the actual objective functional. Furthermore, a multi-scale relaxation approach
with respect to the spatial resolution and the phase-field parameter is applied. Various computational
studies underline the theoretical observations.
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Résumé. Nous étudions l’optimisation de forme dans le contexte des grandes déformations décrites
par des lois hyperélastiques non linéaires. Nous minimisons la somme pondérée de la compliance de
la structure, de son poids et de sa surface. Le problème résultant d’élasticité non linéaire diffère con-
sidérablement du problème d’optimisation de formes en élasticité linéaire. En effet, plusieurs définitions
existent pour la compliance : La variation d’énergie potentielle de la charge de la structure, l’énergie
élastique totale de la structure déformée ou encore la dissipation d’énergie associée à la déformation.
De plus, la position d’équilibre n’étant plus unique, il faut choisir une configuration pour laquelle on
minimise la fonction-coût, ce qui complique l’analyse mathématique. Du fait de la non-unicité, on
peut également observer le phénomène du flambage. La compliance pourrait alors présenter un saut au
passage d’un mode à l’autre et conduire, dans le pire des cas, à la non-existence d’une forme optimale.
Dans ce papier la frontière des objets est représentée de façon relaxée par une interface diffuse de type
Allen-Cahn ou Modica-Mortola et le vide est remplacé par un matériau mou à l’extérieur des objets
élastique. Nous établissons un résultat d’existence d’une forme optimale pour le modèle d’interface dif-
fuse ainsi que pour le problème de départ à interface discontinue. La convergence du modèle d’interface
diffuse lorsque la largeur de l’interface tend vers zéro est étudiée en utilisant des techniques de Γ-
convergence. Les calculs numériques sont effectués par un algorithme comportant deux optimisations
embôıtées : l’optimisation interne pour calculer la déformation d’équilibre utilise une méthode de région
de confiance (trust-region) et l’optimisation externe de la fonction-coût passe par une méthode de quasi-
Newton. De plus on utilise une relaxation multi-échelle pour la résolution spatiale et le paramètre de
champ de phase. Enfin, nous illustrons nos observations théoriques par des résultats numériques.
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1. Introduction

In this paper we investigate shape optimization in the context of nonlinear elastic constitutive laws for
the underlying objects, where an object is defined as an object domain O ⊂ Ω for some open connected set
Ω ⊂ Rd. We are in particular interested in geometrically strongly nonlinear deformations φ : O → R

d which
minimize a certain hyperelastic energy. As hyperelastic energies, we consider polyconvex energy functionals∫

Ω
χOW (Dφ) dx, where the integrand W depends on the principal invariants of the Cauchy–Green strain

tensor DφTDφ and its evaluation is restricted to the actual elastic domain O (with characteristic function χO).
For these functionals a nowadays already classical existence theory has been established [11, 12, 18] and an
effective minimization is also computationally feasible. With respect to the actual shape optimization of the
shape O, we aim at minimizing a compliance cost functional J [φ,O], to be evaluated for φ = φ[O] being an
equilibrium deformation of O and thus a minimizer of the free energy. This type of compliance optimization
has applications in engineering, where mechanical devices or structural components have to be developed that
optimally balance material consumption or component weight with the component stiffness or rigidity. Since
the compliance is related to the energy absorbed by the mechanical structure, minimizing the compliance is also
related to reducing the risk of material failure. Nonlinear elasticity has a strong impact on the behavior of the
optimization problem. Indeed, there exist several possible definitions for the compliance which are all equivalent
in linearized elasticity but now in the context of nonlinear elasticity result in significantly different optimization
problems. We may consider the change in potential energy of the surface load, the stored elastic deformation
energy, or the dissipation associated with the deformation. The deformation induced by the surface load is in
general no longer unique, which complicates the mathematical analysis. Buckling instabilities may appear, in
which structures such as compressed beams can bend to either side, thereby producing non-uniqueness. Since
different buckling deformations generally correspond to different compliance values, one may experience that the
compliance suddenly jumps up during shape optimization as the global equilibrium deformation switches from
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one buckling deformation to another one. This phenomenon may result in non-existence of optimal shapes if
we always pick the worst case from the set of all equilibrium deformations. Furthermore, in nonlinear elasticity,
reversing the surface load (changing its sign) in general influences the mechanical response. As a consequence,
shape optimization problems that yield symmetric shapes in linearized elasticity now result in asymmetric
shapes. Finally, the use of nonlinear elasticity also poses numerical challenges. We typically observe rather
large, geometrically strongly nonlinear deformations. Their computation requires robust numerical minimization
methods that reliably detect local rotations and bypass saddle points which frequently appear between two
buckling deformations.

To render the optimization problem computationally feasible we replace the void outside the actual elastic
object O by a (some orders of magnitude) softer material. Indeed, we take into account the energy functional∫

Ω
((1− δ)χO + δ)W (Dφ)dx for a small positive constant δ. Furthermore, we propose a double well phase-field

model of Allen–Cahn [8] or Modica–Mortola [27] type for an implicit description of the elastic object with a
diffusive interface. Indeed, we describe elastic shapes by a phase-field function v : Ω→ R and take into account
an energy

∫
Ω
ε|∇v|2 + 1

εΨ(v) dx, where Ψ(v) = 9
16 (v2 − 1)2 is a double well potential with minima at v = −1

and v = 1, representing the two material phases O and Ω\Ō. For this model, we prove the existence of optimal,
shape-encoding phase fields and study the model behavior for decreasing parameter ε, which describes the width
of the diffusive interface, in terms of Γ-convergence. Furthermore, a variety of 2D numerical examples enables
a detailed discussion of the impact of the nonlinear elasticity model on the shape optimization problem.

Overall, this article focusses on three issues. The first is an analytical examination of the compliance min-
imization problem in nonlinear elasticity. We will show that optimal shapes do exist if in case of multiple
equilibrium deformations we only consider a certain, “optimal” deformation. Otherwise—in particular in a
worst case scenario—we cannot expect the existence of optimal shapes (except for particular objective func-
tionals). This seems to be a quite general phenomenon associated with non-uniquely solvable optimization
constraints. The second focus lies on the examination of a phase-field approximation to the compliance mini-
mization problem. Here, too, we obtain the same existence result as for the sharp interface case. However, for
general objective functionals we do not obtain the Γ-convergence of the phase-field model to the sharp interface
problem. This again is due to the above non-uniqueness phenomenon or general nature of pde-constrained
optimization and thus is already interesting in itself. Of course, this renders the phase-field approximation
questionable since the optimal phase field is not guaranteed to converge against an optimal shape for decreasing
interface width. Nevertheless, due to the validity of a Γ− lim inf inequality, the phase field will at least converge
against a comparatively good shape, which makes the approximation sensible for engineering purposes. Finally,
we intend to prove the feasibility of the approach by numerical simulations.

The organization of the paper is as follows. Section 2 presents an overview over the related shape optimization
literature. After presenting the optimization problem and its phase-field approximation in Section 3 we will
briefly examine the nature of nonlinear elasticity in the compliance minimization context in Section 4. The
existence of minimizers and the sharp-interface limit of the phase-field model are studied in Section 5 before
presenting the implementation in Section 6 and finally showing a few experiments in Section 7.

2. Related Work

In shape optimization frequently not only the geometry of the shape contour ∂O of an elastic mechanical
device O is of interest, but also the topology of O is subject to optimization. Typically, one considers as
underlying state problem the system of equations of linearized elasticity,

divσ = 0

on O, where the Cauchy stress σ is given by C ε[u] = 1
2C(Du + DuT) for the fourth-order elasticity tensor C

and the displacement u. As boundary conditions, one might impose Dirichlet conditions u = 0 on a fixed region
ΓD ⊂ ∂O, Neumann boundary conditions σ ν = F on a fixed region ΓN ⊂ ∂O with ΓD∩ΓN = ∅ for a prescribed
surface load F , and zero surface force boundary conditions σ ν = 0 on the remaining boundary ∂O\ (ΓD ∪ΓN ).
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With respect to the modeling, ΓD and ΓN are usually a priori fixed parts of the boundary, whereas the remaining
boundary is subject to the actual shape optimization. For the sake of simplicity, we ignore volume forces here.
The range of usual objective functionals J [u,O] is relatively diverse. The mechanical work of the load, the
so-called compliance C = 1

2

∫
ΓN

F · uda, is very popular [2, 3, 5, 6, 24, 32–35] since it equals the energy to be
absorbed by the elastic structure. A related choice is the L2-norm of the internal stresses [2, 5, 6],

∫
O ‖σ‖

2
F dx.

If a specific displacement u0 is to be reproduced, then the L2-distance
∫

Ω
|u− u0|2 dx serves as the appropriate

objective functional [6]. Other possibilities include functionals depending on the shape eigenfrequencies or the
compliance for design-dependent loads [7, 13, 30]. Typically, the optimization problem is complemented by a
volume constraint for O (otherwise, especially for compliance minimization, O = Ω would be optimal). An
equality constraint |O| = V is either ensured by a Cahn–Hilliard-type H−1-gradient flow [37] or a Lagrange-
multiplier ansatz [7, 13, 25]. A quadratic penalty term or an augmented Lagrange method is employed in [35].
An inequality constraint |O| ≤ V is implemented in [24, 32, 34], using a Lagrange multiplier. Chambolle [16]
exploits the monotonicity of the compliance C (in the sense C(O1) ≥ C(O2) for O1 ⊂ O2) to replace the equality
by an inequality constraint. Finally, the volume may just be added as a penalty functional ν|O| for some
parameter ν [2].

The above class of shape optimization problems is generically ill-posed since microstructures tend to form,
which are associated with a weak but not strong convergence of the characteristic functions χOi along a min-
imizing sequence (Oi)i=1,.... In particular, rank-d sequential laminates with the lamination directions aligned
with the stress eigendirections are known to be optimal for compliance minimization [3]. The above ill-posedness
calls for regularization, for which there are several possibilities. A widespread approach is to penalize the shape
perimeter by adding a term ηHd−1(∂O) to the objective functional, which (if the void is replaced by some weak
material) also results in existence of optimal shapes as studied in [9] for a scalar problem. An alternative consists
in the relaxation of the problem: The set of admissible shapes can be extended to allow for microstructures, and
a quasi–convexification of the integrand in J [u,O] (by taking the infimum over all possible microstructures)
then ensures existence of minimizers [3].

There are various approximations and implementations of the elastic shape optimization problem, each of
which more or less corresponds to a particular type of regularization. A direct triangulation of O or its boundary
would probably work with all regularizations, but would require remeshing during the optimization and induce
technical difficulties with topological changes. The so-called evolutionary structural optimization (ESO) is based
on discretizing the computational domain by finite elements and successively removing those elements which
contribute least to the structural stiffness (or another chosen objective, see for example [10]). This corresponds
to a regularization via discretization and thereby introduces a mesh dependence.

The implicit representation of shapes via level sets and corresponding shape optimization approaches are
investigated by various authors [6, 23, 25, 29]. In particular Allaire and coworkers [1, 3, 4, 6] studied level-set
methods in two- and three-dimensional structural optimization and combined this approach with a homoge-
nization method. In [5] they also investigated topological optimization in the context of minimizing the expected
elastic stress. Shape sensitivity analysis as introduced by Sokolowski and Zolesio [31] can be phrased elegantly
in terms of level sets. For the relaxation of the shape functional O 7→ J [u[O],O] gradient-descent schemes
have been investigated, where the actual shape gradient and thus the performance of the relaxation scheme
significantly depend on the underlying metric g. Burger and Stainko [15] provide examples for different g such
as the inner product in H1(∂O) (Laplace–Beltrami flow), H1/2(∂O) (Stefan flow), L2(∂O) (Hadamard flow),
H−1/2(∂O) (Mullins–Sekerka flow), and H−1(∂O) (surface diffusion flow). Allaire et al. [7] also propose to use
H1-, L2-, or H−1-type inner products. Indeed, during the gradient flow, topology changes can only happen
by merging or eliminating holes (whereas in 3D, holes may appear by pinching a thin wall) [2, 7] so that the
maximum number of holes is prescribed by the initialization. In order to allow the level-set method to create
holes in 2D, the topological derivative is sometimes used to identify and remove rather inactive interior material
parts [4, 20,24].

An implicit description of shapes via phase fields—the approach also employed in this paper—is both an-
alytically and numerically an attractive alternative. Phase-field models originated in the physical description
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of multiphase materials: The chemical bulk energy of the material is given by 1
ε

∫
Ω

Ψ(v) dx for some chemical
potential Ψ. The minima of Ψ represent two material phases. This energy is complemented by an interfacial
energy of the form ε

∫
Ω
|∇v|2 dx. Optimal profiles of v show a diffusive transition region between the two ma-

terial phases whose width scales with the parameter ε. For ε → 0, the above integral forces the phase field v
towards the pure phases, and for appropriate choices of Ψ it Γ-converges to the total interface length. Hence,
the approach lends itself to a perimeter regularization. This technique is employed by Wang and Zhou [33]
who minimize the compliance of an elastic structure using a triphasic phase field (with one void and two ma-
terial phases) for which the potential Ψ is equipped with a periodically repeated sequence of three minima to
allow for all three possible types of phase transitions. Furthermore, they replace the term

∫
Ω
|∇v|2 dx by an

edge-preserving smoothing and perform a multiscale relaxation, starting with large ε and successively decreas-
ing it—remarkably beyond the point up to which the grid can still resolve the diffusive interface in a usual
fashion. Zhou and Wang [37] compute the Cahn–Hilliard evolution of the shape to be optimized, also using a
multiphase material. They solve the elastic equations with finite elements and the resulting fourth-order Cahn–
Hilliard-type partial differential equation with a Crank–Nicolson finite–difference scheme in which nonlinear
terms are approximated by Taylor series expansion and the resulting linear system is solved by a multigrid
V-cycle. Burger and Stainko [15] minimize the volume |O| under a stress constraint and show existence of a
corresponding minimizer. They use a double obstacle potential Ψ to reformulate the shape optimization as a
quadratic programming problem with linear constraints. Finally, Bourdin and Chambolle [13] find minimum
compliance designs for (design-dependent) pressure loads, using a solid, liquid, and void phase, which they
describe by a scalar phase field allowing for the transitions void–solid–liquid. They also prove existence of min-
imizers for the sharp-interface model and implement the optimization as a semi-implicit descent scheme with
linear finite elements on a triangular unstructured mesh.

Guo et al. [24] describe the characteristic function of O by the concatenation of a smoothed Heaviside function
with a level-set function, where the smoothed Heaviside function acts like a phase-field profile. Wei and Wang [35]
encode O in a piecewise constant level set function v, which is also closely related to the phase-field method:
They regularize v via total variation, which in conjunction with the penalty

∫
Ω

(v − 1)2(v − 2)2 dx for the
constraint v ∈ {1, 2} has a similar effect as the phase-field perimeter term 1

2

∫
Ω
ε|∇v|2 + 1

εΨ(v) dx. Xia and
Wang [36] compute functionally graded structures, where the shape is described by a level set function and
the smoothly varying material properties by a scalar field (that actually describes the mixture of two material
components from which the physical properties are computed under an isotropy assumption).

3. The nonlinear elastic shape optimization model

In this section, we will briefly recapitulate the mechanical framework of nonlinear elasticity and discuss the
different associated compliance cost functionals.

3.1. The hyperelastic constitutive law

Let us assume we are given a sufficiently regular, elastic body O ⊂ Rd (in the following, we will only consider
d = 3, the transfer to d 6= 3 being obvious) which is fixed at part of its boundary, ΓD ⊂ ∂O, and subjected to
a sufficiently regular surface load F : ΓN → R

d on ΓN ⊂ ∂O (Figure 1). Throughout the paper we will only
consider dead loads that do not change their intensity or direction during a deformation. The body deforms
under the surface load, and the equilibrium deformation φ : O → Rd minimizes the total free energy

E [O, φ] =W[O, φ]− C[φ]

within a set of admissible deformations φ with trace φ|ΓD = id, where

W[O, φ] =
∫
O
W (Dφ) dx
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O·x
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ΓD

ΓN

F

φ(O)
·φ(x)

Figure 1. A surface load F induces a deformation φ of the body O.

describes the elastic energy stored inside the material and

C[φ] =
∫

ΓN

F · (φ− id) da

is the (negative) potential of the surface load. Here, we postulated the existence of a Gibbs free energy density
which only depends on the Jacobian Dφ of the deformation, also denoted the deformation gradient. Materials for
which this assumption holds are called hyperelastic. From the frame-indifference principle and the assumption
of an isotropic material one deduces that the energy density W only depends on the singular values, the so-
called principal stretches, λ1, λ2, λ3 of the deformation gradient Dφ. Instead of the principal stretches, we can
equivalently describe the local deformation using the so-called invariants of the deformation gradient or the
Cauchy–Green strain tensor DφTDφ,

I1 = ‖Dφ‖F =
√
λ2

1 + λ2
2 + λ2

3 , I2 = ‖cofDφ‖F =
√
λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 , I3 = detDφ = λ1λ2λ3 ,

where ‖A‖F =
√

tr(ATA) for A ∈ Rd×d and the cofactor matrix is given by cofA = detAA−T for A ∈ GL(d),
so that overall, for an appropriately chosen Ŵ we obtain

W (Dφ) = Ŵ (I1, I2, I3) .

I1, I2, and I3 can be interpreted as the locally averaged change of an infinitesimal length, area, and volume
during the deformation, respectively.

The elastic energy densities have to fulfill further conditions. First, we require the identity, Dφ = 1I, (which
corresponds to no displacement) to be the global minimizer. Second, the energy density shall converge to
infinity as I3, the determinant of the deformation gradient (which describes the volume change), approaches
zero or infinity. Negative values of I3 correspond to local interpenetration of matter and are not allowed at
all. Thus, W (Dφ) = Ŵ (I1, I2, I3) is strongly nonlinear and can in addition not be convex in the deformation
gradient Dφ, since the set of matrices with positive determinant is not even a convex set [18]. This makes the
problem of existence of minimizers a subtle one, but it can be treated using the direct method of the calculus
of variations [11]: Assuming W (Dφ) ≥ C1‖Dφ‖pF − C2 for some p > 1, C1, C2 > 0, as well as F ∈ Lp′(ΓN )
for 1 = 1

p + 1
p′ , and using the boundedness of the trace operator W 1,p(O) → Lp(ΓN ), we directly verify the

weak coercivity of E [O, ·] on W 1,p(O). For the weak lower semi-continuity of E [O, ·] we have to require lower
semi-continuity of W, which translates into quasiconvexity of W [21]. We will here employ a slightly stronger
requirement [11], the polyconvexity of W (that is, W (Dφ) can be rewritten as a convex function of all minors of
the deformation gradient Dφ) so that W[O, ·] is weakly lower semi-continuous on W 1,p(O) for p ≥ d [14], and
the variational problem minφ E [O, φ] indeed admits a minimizer in {φ ∈ W 1,p(O) : φ|ΓD = id}. By imposing
growth conditions of the form W (A) ≥ C1(‖A‖pF + ‖cofA‖qF + |detA|r)−C2 one can obtain existence results for
smaller p under appropriate conditions on q and r [28]. Typical energy densities of the above type are given by

W (Dφ) = Ŵ (I1, I2, I3) = a1‖Dφ‖pF + a2‖cofDφ‖qF + Z(detDφ)
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for a1, a2 > 0, p, q > 1, and a convex function Z : R→ R with lims→∞ Z(s) = lims→0 Z(s) =∞. For example,
p = 2 and q = 0 yields a neo-Hookean material law, while p = q = 2 results in a Mooney–Rivlin material
law [18]. In our computations, we will employ the particular material law W (Dφ) = µ

2 ‖Dφ‖
2
F + λ

4 detDφ2 −(
µ+ λ

2

)
log detDφ − dµ

2 −
λ
4 for material parameters λ and µ, whose second order Taylor expansion about

Dφ = 1I (which reveals the small-strain behavior) yields the standard energy from isotropic linearized elasticity,
W lin(Dφ) = λ

2 (trε)2 + µtr(ε)2, with ε = 1
2 ((Dφ− 1I) + (Dφ− 1I)T) and the Lamé constants λ and µ.

In general linearized elasticity the energy density of the material is a quadratic function

W lin(Dφ) =
1
2
C(Dφ− 1I) : (Dφ− 1I)

of the displacement gradient (Dφ − 1I), where C denotes a fourth order symmetric positive (semi-)definite
(elasticity) tensor and A : B = trATB. Hence, we obtain the equilibrium condition 0 =

∫
OC(Dφ − 1I) :

Dθ dx −
∫

ΓN
F · θ da for all test displacements θ. In particular, this holds for θ = φ − id, which implies

2W lin[O, φ] = C[φ] for the equilibrium deformation φ. Here, 2W lin[O, φ] = C[φ] represents a measure of the
deformation strength and is denoted the compliance of the object O, which may be seen as some kind of inverse
rigidity. As discussed in Section 2 it is mostly this compliance which has been minimized in elastic shape
optimization. Obviously, in linearized elasticity, it does not matter whether we describe the compliance via
2W lin[O, φ] or C[φ]. However, in the case of a nonlinear hyperelastic constitutive law, this is no longer true as
we will see later and it makes a difference which term we choose to minimize.

3.2. The shape optimization problem based on compliance minimization

If we ask for elastic domains O ⊂ Ω ⊂ Rd which minimize the compliance, then, certainly, O ≡ Ω yields
the most rigid structure. Hence, we are actually interested in a balance between rigidity, material consumption
(weight), and manufacturing simplicity (smoothness of the shape ∂O). The material consumption is expressed
by the Lebesgue measure of O, V[O] = |O|. Domains O that minimize just a weighted sum of compliance
and volume in general do not exist. Typically, microstructures appear (cf. Section 2), for example higher rank
sequential laminates in which material and void rapidly alternate. Hence, as already discussed above, we replace
the void and adjust the elastic energyW[O, φ] accordingly by definingWδ[O, φ] =

∫
Ω

((1−δ)χO+δ)W (Dφ) dx.
Furthermore, we add the domain perimeter L[∂O] = Hd−1(∂O) as a regularizing prior, which can be interpreted
as introducing manufacturing costs for the production and processing of the object surface. Now, the total free
energy is given by

Eδ[O, φ] =Wδ[O, φ]− C[φ] .
In our computations we choose δ = 10−4. Let us remark that this modification of the free energy in particular
allows to properly define the deformation φ outsideO and (combined with suitable Dirichlet boundary conditions
on ∂Ω) to prevent self-penetration of matter in form of overlapping material parts. In the case of compliance
minimization via the homogenization method, the shape optimization with real void has been examined as the
limit case when the stiffness of the weak material tends to zero [3].

As already explained earlier, the compliance of an object O may be regarded as a kind of inverse rigidity
and can in linearized elasticity be described as 2W lin[O, φ] or equivalently C[φ] for the equilibrium deformation
φ. In nonlinear elasticity, however, W[O, φ] and C[φ] are no longer related by a factor of 2, and the question
arises which one appropriately corresponds to the compliance in the linearized setting and which one should
be chosen for shape optimization. The stored elastic energy W[O, φ] corresponds to the work transferred to
the body O by the surface load, while the total decrease C[φ] in the potential energy of the surface load F is
composed of exactly this work plus the energy dissipation during the system dynamics before the equilibrium is
reached. Allaire et al. [7], who have already computed a nonlinearly elastic shape optimization example, consider
the minimization of the surface load potential C[φ]. Here, we aim at an analysis of the differences and consider
(for parameters η, ν > 0) both cases, the minimization of the total potential energy of the surface load

JC [O, φ] := C[φ] + νV[O] + ηL[∂O] , (1)
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F
F

F

F

φ(x)−x

φ(x)−x

Figure 2. Two possible designs (each shown in the undeformed and the deformed state) to
bear a vertical load. The left design exhibits rather low C[φ], but high W[O, φ] whereas the
right design (with a hinge) yields the reverse.

or the stored elastic deformation energy

JW [O, φ] := 2Wδ[O, φ] + νV[O] + ηL[∂O] . (2)

However, there is a third possibility which also reduces to the standard notion of compliance in linearized
elasticity. Indeed, we might also choose to minimize the dissipation associated with the transition from the
unstressed state to the equilibrium deformation, −2Eδ = 2(C − Wδ). Together with the volume and surface
regularization we obtain

JD[O, φ] := 2C[φ]− 2Wδ[O, φ] + νV[O] + ηL[∂O] . (3)
Independent of the specific cost functional we always consider a minimization for O ∈ {O ⊂ Ω : ΓD,ΓN ⊂ ∂O}
under the constraint that φ : Ω → R

d minimizes the free energy Eδ[O, φ] among all deformations in the
associated admissible set of deformations whose trace is the identity on ΓD.

The following toy problem shall illustrate the conceptual differences at least of the first two cases: Consider
the task to design a structure O which is attached to a wall at its left end and has to bear a vertical load F
at its right end (Figure 2). A cantilever-like design (Figure 2, left half) exhibits a rather small displacement
φ − id and thus a small value of C[φ], but the strong compression of the lower branch causes a relatively high
deformation energy W[O, φ]. A freely rotating rod, on the other hand, allows a strong displacement with high
C[φ] but low W[O, φ] (Figure 2, right half). The former design is more appropriate if the load is supposed to
be sustained without large displacements while the latter design is more related to the material strain and is
useful in systems where the energy dissipation on the way to the final equilibrium configuration is absorbed by
a reasonable damping mechanism. With respect to the applications considered in this paper, we have to keep in
mind that shape optimization with respect to C[φ] will yield results of the same type as in Figure 2, left, while
optimization with respect to W[O, φ] generally allows strong deformations and tends to produce shapes as in
Figure 2, right. Let us remark, however, that minimizing W[O, φ] does not always result in designs with strong
displacements. For instance in case of sufficiently low volume costs, O ≡ Ω will yield the optimal design.

3.3. The approximating phase-field model for shape optimization

Shape and topology optimization based on an explicit parametric description of the mechanical devices is
algorithmically very difficult, as already mentioned above. Hence, we consider an approximating phase-field
representation of the object O via a phase-field function v : Ω → R of Allen–Cahn or Modica–Mortola type.
Such phase fields constitute a convenient implicit representation of the objects and their complement and
allow for a simple approximation of their boundary length. They originate from the description of biphasic
materials with a diffusive interface layer, where v might for example represent the local concentration of a
chemical constituent. The local chemical energy density Ψ(·) has two minima corresponding to the two pure
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phases. The resulting total bulk energy
∫

Ω
Ψ(v)dx is then perturbed by an additional interfacial energy of the

form
∫

Ω
|∇v|2dx. In our context of shape modeling, we assume that the two minima of Ψ are −1 and 1 with

Ψ(−1) = Ψ(1) = 0 representing the two phases void (outside of O) and material (inside of O), respectively.
Using a proper scaling we obtain the free phase-field energy

LεMM[v] =
1
2

∫
Ω

ε|∇v|2 +
1
ε

Ψ(v) dx ,

where the scale parameter ε describes the width of the interfacial region. In the limit ε → 0, the phase field v
is forced towards the pure phases −1 and 1 and Γ-converges to a multiple of the total interface area. In fact,
for Ψ ∈ C1(R) with Ψ(−1) = Ψ(1) = 0 being the global minima, the following rigorous result holds [14]: If
LεMM[v] :=∞ for v /∈W 1,2(Ω), then

Γ− lim
ε→0
LεMM[·] = cΨPer(·), cΨ =

∫ 1

−1

√
Ψ(s) ds,

with respect to the L1(Ω)-topology and for Per(w) := Hd−1(Ω ∩ ∂{x ∈ Ω : w(x) = 1}) if w : Ω → {−1, 1}
almost everywhere and Per(w) := ∞ else. Here, ∂ denotes the measure-theoretic essential boundary. In (1),
(2), and (3) the perimeter term L[∂O] is then replaced by LεMM[v], where we choose the double-well potential

Ψ(v) =
9
16

(v2 − 1)2 ,

which yields cΨ = 1. Furthermore, we introduce an approximation χO(v) to the characteristic function χO,
choosing

χO(v) =
1
4

(v + 1)2 . (4)

With this function at hand we approximate the total volume by V[v] =
∫

Ω
χO(v) dx and the stored elastic

energy by Wδ[v, φ] :=
∫

Ω
((1− δ)χO(v) + δ)W (Dφ) dx, where we use with a slight misuse of notation the same

symbol for the energy terms in the phase-field model as in the original problem. Overall, based on the phase-field
approximation we will now minimize one of the following three functionals

J εW [v, φ] = 2Wδ[v, φ] + νV[v] + ηLεMM[v] , (5)

J εC [v, φ] = C[φ] + νV[v] + ηLεMM[v] , (6)

J εD[v, φ] = 2(C[φ]−Wδ[v, φ]) + νV[v] + ηLεMM[v] (7)

for integrable functions v : Ω → R with v|ΓD∪ΓN = 1 under the constraint that φ : Ω → R
d with φ|ΓD = id

minimizes the total free energy for a phase field v, defined (again with a slight misuse of notation) as

Eδ[v, φ] :=Wδ[v, φ]− C[φ] .

4. Effects of nonlinear elasticity and their impact on the shape optimization

The use of a nonlinear instead of a linearized elasticity changes the nature of the compliance minimization
problem qualitatively. In the following, we will investigate the symmetry-breaking effect of nonlinear elasticity
on the optimal shapes and the presence of buckling instabilities which are typical for the nonlinear models. This
discussion is meant as a motivation for the analytical treatment in Section 5 and underpins the specific design
of the numerical algorithm presented in Section 6.
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F̂

L

L
2

Figure 3. Optimal design of a cantilever according to the sketch top left. The top row
shows optimal designs for loads F̂ = 0.5, 1, 2, 4, 6 (the point load F̂ is approximated by a
tent-like surface load F along a width of 2−3) and η = 25 · 10−5 · F̂ 2, ν = 210 · 10−4 · F̂ 2

(underlying grid resolution 2572, λ = µ = 80, L = 1). The bottom row shows the equilibrium
deformation. In linearized elasticity, all parameter combinations would yield exactly the same
symmetric, optimal shape whereas here, we see strong asymmetries evolving. Computations
were performed using the phase-field model. White indicates full material while black represents
the weak material whose stiffness is reduced by the factor δ = 10−4. Note: In the region at the
left wall where Dirichlet boundary conditions for the deformation are applied, the algorithm
realizes that stiff material in the center of this region does not contribute much to the structural
rigidity and hence removes it.

4.1. Break of symmetry in nonlinear elastic shape optimization

As a first feature that distinguishes nonlinear from linearized elasticity, let us consider the effect of a sign
change of the load F and its nonlinear impact not only on the deformation but also on the optimal geometry
O. In linearized elasticity, the (unique) equilibrium deformation is the minimizer of the free energy

E lin
F [O, φ] =W lin[O, φ]− CF [φ] :=

∫
O

1
2
C(Dφ− 1I) : (Dφ− 1I) dx−

∫
ΓN

F · (φ− id) da

for the symmetric, positive semi-definite elasticity tensor C, where the subscript F indicates the surface load.
Obviously, if φF minimizes E lin

F [O, ·], then φ−F := 2 id − φF minimizes E lin
−F [O, ·], the total free energy for a

reversed direction of the surface load. Indeed, for deformations φ, ψ with φ + ψ = 2 id we have E lin
F [O, φ] =

E lin
−F [O, ψ], W lin[O, φ] =W lin[O, ψ], and CF [φ] = C−F [ψ]. Hence, the optimal geometry O for a prescribed load
F is the same one as for the load −F . As a consequence, if the sign change of F has the same effect as mirroring
the shape optimization problem (for example, for the cantilever design problem in Figure 3), then the resulting
optimal shapes are symmetric. In contrast, in nonlinear elasticity, the material behavior and geometry change
depend strongly on whether we tear at or push against an object. A sign change of the load F no longer simply
implies a sign change of the displacement. Consequently, the symmetry property of linearized elasticity is lost:
Where the shape optimization with linearized elasticity results in a symmetric shape O, the corresponding
optimal geometry for nonlinear elasticity is generally asymmetric. This phenomenon can already be observed
for quite small displacements as shown in Figure 3 for the design of a cantilever, where the effect of gradually
increasing the load F is explored.

Note that in this example the lower, compressed rods are thinner than the upper, dilated structures, which
might at first sight seem counter-intuitive. However, consider the simple toy problem from Figure 4, where a
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F

a
l

l

u

Figure 4. Simple model of a cantilever with joints at the rod ends. The structure width is 2a
so that l =

√
17
2 a.

load F is suspended from a cantilever consisting of two rods with length l and a square cross-section of width
d1 and d2, respectively, that are connected to each other and to the wall by a joint. Let us assume the rods to
be linearly elastic with elastic modulus E and the force F to be small enough so that the lower rod does not
buckle out (compare the paragraph below as well as the next section). If we denote in a 3D configuration the
rod elongation by λ1 and λ2 and the load displacement by u, then the total free energy is given by

E [λ1, λ2] =
1
2
Eld2

1(λ1 − 1)2 +
1
2
Eld2

2(λ2 − 1)2 − Fu =
1
2
Eld2

1(λ1 − 1)2 +
1
2
Eld2

2(λ2 − 1)2 − 17
8
aF (λ2

1 − λ2
2) ,

and its minimization yields the stretches λ1/2 = (1 ∓
√

17
2

F
Ed21/2

)−1 . Now let the structure volume be fixed,

V = l(d2
1 + d2

2) or equivalently d2 = (Vl − d2
1)

1
2 , and consider as compliance objective functional the work

JC [d1] = Fu = 17
8 aF (λ2

1 − λ2
2). The minimizing d1 is always larger than the corresponding d2 = (Vl − d

2
1)

1
2 ,

which can for example be seen by transforming the optimality condition 0 = δd1JC [d1] into the equation
d21

(d21−
√

17
2

F
E )3

= d22
(d22+

√
17
2

F
E )3

. Hence, for (comparatively) small forces, the lower rod will be thinner than the

upper rod, in accordance with our experiments.
For stronger forces, the lower rod will buckle out if it is too thin, which results in a strong increase of the

objective energy JC . Hence, in the case of stronger forces, the optimal thickness of the lower rod will be just
below the buckling thickness, and the upper rod hence ends up to be thinner than the bottom one due to the
volume constraint, which represents the perhaps more intuitive case that is apparently also obtained in [7]. The
above toy problem can be adapted to a simple approximate geometrically nonlinear model and then will indeed
reflect this buckling phenomenon as well. For even stronger forces, where the bottom rod buckles out anyway,
it would again be optimal to make the upper rod thicker.

4.2. Buckling instabilities

A further, even more striking phenomenon of nonlinear elasticity is associated with the non-uniqueness of
equilibrium deformations: While in linearized elasticity the total free energy E [O, φ] is convex and quadratic in
the deformation φ, the energy landscape is much more complicated in nonlinear elasticity and generally admits
multiple (locally) minimizing deformations φ. Of course, this raises the question which one of the equilibrium
deformations we should actually consider during shape optimization, and this will be investigated theoretically
in Section 5.2. Often, the existence of multiple, locally minimizing deformations comes along with the bending
of structures. The classical example is given by the compression of straight beams [26], which we recapitulate
here to prepare a later discussion of the non-existence of optimal shapes in a worst-case scenario.

Consider a straight bar of length L which is clamped at one end and subjected to a compression load F at the
other end. Let us denote the displacement orthogonal to the bar at position x ∈ [0, L] by u(x), then the bending
moment M(x) inside the bar at x is given by M(x) = F (u(L)− u(x)). Under the assumption of Bernoulli’s
beam hypothesis and Hooke’s law with Young’s modulus E, this moment can also be expressed as M(x) = EI

ρ ,
where I denotes the second moment of the cross-sectional area and ρ is the radius of the osculating circle. Upon
approximating 1

ρ ≈ ∂2
xu(x) we obtain the linear ordinary differential equation EI∂2

xu(x) = F (u(L)− u(x)),
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Figure 5. Buckling of beams of varying thickness and the different associated compliance
components. Top: Sketch of the load configuration (left) and corresponding equilibrium defor-
mations for beams of varying width t (from (a) to (j)). Bottom: E [O, φ], W[O, φ], and C[φ] for
the equilibrium deformation as a function of the beam thickness t (the second graph shows a
logarithmic plot).

which together with the boundary conditions u(0) = 0 and ∂xu(0) = 0 can be solved as u(x) = u(L)(1 −
cos(

√
F/EIx)). Hence, the minimum force allowing for a non-vanishing u(L) is the so-called buckling load

F = EIπ2

4L2 . It is the smallest load for which we expect a bending of the beam towards one side rather than
a symmetric compression. The physical bifurcation associated with this buckling of beams can be reproduced
in a nonlinear elasticity model. Figure 5 shows simulation results for the compression of vertical bars with
height one and varying thickness t (actually performed with the approximate phase-field model introduced
above). The top edge of each bar is subjected to a uniformly distributed surface load such that the total
resulting downward force is the same for all bars. The mechanical energy components belonging to the different
configurations are shown in Figure 5, bottom, as functions of the bar thickness t. Apparently, down to a
width of t = t̂ ≈ 0.28, we seem to stay in the linearly elastic regime: The deformations φ of the beams
O are symmetric, and W[O, φ] ≈ 1

2C[φ] ≈ −E [O, φ] as in linearized elasticity. For smaller thicknesses t, all
energy components strongly increase, and the beams bend outwards. Indeed, the simulation parameters L = 1,
F = 0.05, E = 4µ µ+λ

2µ+λ = 32
3 (with µ = λ = 4) and the relation I = t3

12 yield t̂ = 3
√

48FL2/(π2E) ≈ 0.2836.
Note that there is a beam width t̃ below which the stored elastic energyW[O, φ] decreases again. This behavior
is linked to the observation in Section 3.2 concerning the difference between W[O, φ] and C[φ]. The thinner a
beam the less bending energy is stored, and its base behaves more like a hinge so that the entire configuration
resembles just a hanging, dilated rod, which absorbs relatively little elastic energy.

For the example of a compressed beam, the symmetric minimizing state apparently stops existing at t̂.
However, it is not necessarily true that the state which qualitatively corresponds to the equilibrium deformation
in linearized elasticity does not persist in parallel to other (local) equilibrium states. Indeed in Figure 6 we
consider a shape which emerged as an intermediate result during the relaxation of our nonlinear elasticity and
phase-field model, shown top left. The structure is fixed at the bottom and subjected to a surface load at
its top. As before in Figure 3, white areas correspond to stiff material while black regions represent very soft
material and grey levels indicate some intermediate stiffness. If we now gradually increase the magnitude of
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Figure 6. Top: Sketch of the load carried by the object (left) and the resulting two families (a)-
(e) and [f]-[j] of (pairwise simultaneously existing) equilibrium deformations for an increasing
load. Bottom: E [O, φ] for the equilibrium deformations as a function of the load magnitude
(left). The right figure shows deformation [h] applied to the bottom and the top half of the
object, where the region of material self-penetration is marked by arrows.

the surface load, then we observe two families of deformations, which locally minimize the free energy E . One
of them qualitatively corresponds to the equilibrium of linearized elasticity ((a)-(e) in Fig. 6), whereas the
other, buckling-type family ([f]-[g] in Fig. 6) is a particular outcome of the nonlinear elastic model. As shown
in the energy diagram, the two families (a)-(e) and [f]-[j] lie on two branches, which bifurcate around a scale
value 0.06, and indeed there is a crossover with respect to the free energy at a scale value 0.08, approximately
corresponding to the deformations (b) and [g]. For the computation of these two branches we use a homotopy
method: starting from the deformation of linearized elasticity, we gradually increase the load and compute the
corresponding deformations using the previous deformation as initial guess. At the highest load, the numerical
minimization algorithm for the free energy E suddenly (probably due to some small perturbation) detects the
different equilibrium state which we then take as initial guess to compute the second equilibrium deformations for
successively decreased surface load (for the actual numerical algorithm see Section 6). Incidentally, deformations
[f]-[j] in Figure 6 are non-physical in the sense that the material penetrates itself (cf. the split view of deformation
[h]). As a matter of fact, we do not impose Dirichlet boundary conditions except for the lower boundary but let
the deformation relax freely. The obtained deformation appears to be locally a particular instance of the example
from [12] of a (even locally) non-invertible deformation of the unit disc in R2 of the type (r, θ) 7→ (r, 2θ) in polar
coordinates. The existence of simultaneously existing, geometrically different local equilibria with identical
energy plays a crucial role in the discussion of the existence of optimal shapes in Section 5.1.

5. The existence problem in nonlinear elastic shape optimization

Whether an optimal shape exists or not strongly depends on the objective we aim to minimize. In this section
we first prove existence of optimizing phase fields, where in case of multiple global equilibrium deformations we
always choose the one with least compliance. Likewise, we show existence of optimal shapes in a corresponding
sharp-interface model. Furthermore, for a worst-case optimization, where we aim at minimizing the compliance
with respect to the deformation that, among all global minimizers of the free energy, yields the largest com-
pliance, we show that in general we cannot expect existence of an optimal shape. Finally, the behavior of the
phase-field model in the limit for vanishing phase-field parameter ε will be investigated.
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5.1. Existence of minimizers for a least compliance optimization

We aim to establish the existence of a phase field v that minimizes J εW [v, φ[v]] or alternatively J εC [v, φ[v]]
under the constraint that φ[v] minimizes Eδ[v, ·]. Let us first verify some properties of the functional Eδ. In
what follows we will always assume d ∈ {2, 3} and Ω ⊂ Rd to be bounded, open, and connected with Lipschitz
boundary.

Theorem 1 (Existence of equilibrium deformations for fixed phase field). Let v ∈ L1(Ω). If W : Rd×d → R

is polyconvex with W (A) ≥ C1‖A‖pF − C2, p > d, and F ∈ L1(ΓN ), then the variational problem minφ Eδ[v, φ]
admits a minimizer in {φ ∈W 1,p(Ω) : φ|ΓD = id}.

Proof. For the proof we refer to [11] or the exposition in [21]. The proof relies on the weak lower semi-
continuity of the energy Wδ[v, ·] for fixed phase field v and makes use of the weak continuity of the cofactor
and the determinant of the deformation gradient. �

In the previous theorem, the phase field v was fixed. However, we are interested in the impact of shape
variations and thus in a variation of the shape-describing phase field. Indeed, we will need a weak lower
semi-continuity result with respect to both the deformation and the phase field, as provided by the following
lemma.

Lemma 2. For W : Rd×d → R being polyconvex and bounded from below and for F ∈ L1(ΓN ) the functionals
Wδ[v, φ] and Eδ[v, φ] are sequentially lower semi-continuous along sequences (vi, φi)i∈N with vi → v in L1(Ω),
φi ⇀ φ in W 1,p(Ω), and (Dφi, cofDφi,detDφi) ⇀ (Dφ, cofDφ, detDφ) in Lp(Ω) × Lq(Ω) × Lr(Ω) for p > d,
q, r > 1.

Proof. Due to the polyconvexity of W , we may write W (A) = W̄ (A, cofA,detA) for a convex function W̄ .
Hence we have to consider the lower semi-continuity of

(vi, φi) 7→
∫

Ω

χO(vi)W̄ (Dφi, cofDφi,detDφi) dx

for i→∞, which can be obtained by a straightforward adaptation of the arguments in [11] taking into account
the continuity of the function χO(·). The lower semi-continuity of C is obvious, as φi → φ strongly in C0(ΓN ),
and the integrand is linear in φ. �

Lemma 3. Suppose W : Rd×d → R is polyconvex with W (A) ≥ C1‖A‖pF − C2 for p > d and F ∈ L1(ΓN ).
Then, for a sequence (vi)i∈N ⊂ L∞(Ω) with ‖vi‖∞ ≤ C and vi → v in L1(Ω) one obtains

Γ− lim
i→∞

Eδ[vi, ·] = Eδ[v, ·]

with respect to the weak W 1,p(Ω)-topology.

Proof. Since the boundary integral C[·] is just a continuous perturbation, we need to show Γ-convergence of
Wδ[vi, ·] only.

Let φi ⇀ φ in W 1,p(Ω) with lim supi→∞Wδ[vi, φi] < ∞. From the growth conditions on W we deduce
the boundedness of (cofDφi,detDφi) in Lp/(d−1)(Ω)×Lp/d(Ω) and thus—due to the reflexivity of the Lebesgue
spaces—the weak convergence of a subsequence. Then, we can apply Ball’s compensated compactness result [11]
to obtain (Dφi, cofDφi,detDφi) ⇀ (Dφ, cofDφ, detDφ) in Lp(Ω)×Lp/(d−1)(Ω)×Lp/d(Ω). The previous lemma
then yields the lim inf-inequality, that is, lim infi→∞Wδ[vi, φi] ≥ Wδ[v, φ].

For the lim sup-inequality, note that Wδ[vi, φ] → Wδ[v, φ]. Otherwise there would be a ρ > 0 and a subse-
quence (vj)j∈J⊂N, such that

∣∣Wδ[vj , φ]−Wδ[v, φ]
∣∣ > ρ for all j ∈ J . Since vj → v in L1(Ω), we can furthermore

assume that vj → v pointwise almost everywhere as j →∞ in J . The integrand of Wδ[vj , φ] is bounded from
above by ((1−δ) 1

4 (C+1)2 +δ)W (Dφ) and converges pointwise to χO(v)W (Dφ). By the dominated convergence
theorem, we obtain Wδ[vj , φ] → Wδ[v, φ] as j → ∞ in J , which is a contradiction. Hence, for the recovery
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sequence φi = φ for all i ∈ N, we obtain lim supi→∞Wδ[vi, φi] =Wδ[v, φ] which proves the lim sup-inequality.
�

Based on these preliminaries we are now able to show the existence of minimizing phase fields v for the shape
optimization problem under the constraint that for fixed phase field v the deformation φ is in the set of global
minimizers of the elastic free energy.

Theorem 4 (Existence of optimal shape-encoding phase fields). Suppose W : Rd×d → R is polyconvex with
W (A) ≥ C1‖A‖pF − C2 for p > d and F ∈ L1(ΓN ). Furthermore, consider phase fields v ∈ W 1,2(Ω) with
−1 ≤ v ≤ 1. Then the variational problem minv J εG [v, φ] with G being W, C, or D admits a minimizer under the
constraint φ ∈ m[v], where m[v] is the set of minimizing deformations of Eδ[v, ·] in {φ ∈W 1,p(Ω) : φ|ΓD = id}.

Proof. At first, note that for v in {v ∈ W 1,2(Ω) : −1 ≤ v ≤ 1} the energy Eδ[v, id] is uniformly bounded from
above by a constant E < ∞. Consequently, Eδ[v, φ] ≤ E for all v and φ ∈ m[v]. Also, due to the embedding
W 1,p(Ω) ↪→ C0(Ω) we have |C[φ]| ≤ C‖φ‖W 1,p(Ω) for some C > 0. Together with the growth conditions on W

and Eδ[v, φ] ≤ E we deduce that ‖φ‖W 1,p(Ω) is bounded and thus |C[φ]| ≤ C and consequently also |Wδ[v, φ]| ≤ W
for W, C <∞. Clearly, J εG [v, φ] with φ ∈ m[v] is then uniformly bounded from below by some constant for all
admissible v ∈W 1,2(Ω).

Now, we consider a minimizing sequence (vi)i∈N in {v ∈W 1,2(Ω) : −1 ≤ v ≤ 1}. Due to the weak W 1,2(Ω)-
coercivity of J εG with respect to the phase field (by virtue of the regularization LεMM[v] and the reflexivity of
W 1,2(Ω)) there is v ∈W 1,2(Ω) with −1 ≤ v ≤ 1 such that vi ⇀ v in W 1,2(Ω) (after extraction of a subsequence),
and thus vi converges strongly to v in L1(Ω) as i→∞.

Next, let φ[vi] ∈ m[vi] denote one sequence of deformations associated with the minimizing sequence (vi)i∈N.
Then, due to the uniform boundedness of φ[vi] in W 1,p(Ω) (by the growth condition on W ) and the reflexivity
of W 1,p(Ω), there is a deformation φ ∈W 1,p(Ω) with φ(x) = x for x ∈ ΓD such that φ[vi] ⇀ φ (after extracting
a subsequence). Since for fixed δ > 0 the free energy Eδ[vi, ·] is equi-mildly coercive, Lemma 3 implies φ ∈ m[v].
Here, note that the Γ-limit is consistent with the Dirichlet boundary conditions at ΓD.

Finally, J εG [vi, φ[vi]] is sequentially weakly lower semi-continuous as vi ⇀ v in W 1,2(Ω) and φ[vi] ⇀ φ in
W 1,p(Ω). In fact, the lower semi-continuity of LεMM[vi] and V[vi] is obvious as their integrands are convex in
∇v and continuous in v. Furthermore, the Γ-convergence of Eδ stated in Lemma 3 ensures that Eδ[vi, φ[vi]]→
Eδ[v, φ]] for i → ∞. Likewise, by the compact embedding of W 1,p(Ω) in L∞(ΓN ), φ[vi] → φ strongly in
L∞(ΓN ) so that C[φ[vi]] converges to C[φ]. Finally, as in the proof of the previous lemma, we may assume
(Dφ[vi], cofDφ[vi],detDφ[vi]) ⇀ (Dφ, cofDφ, detDφ) so that Wδ[v, φ] ≤ lim infi→∞Wδ[vi, φ[vi]] follows from
Lemma 2. From the above, J εG [v, φ] ≤ lim infi→∞ J εG [vi, φ[vi]] with φ ∈ m[v], and hence v is a minimizer. �

Remark 5. In contrast to other phase-field models, the constraint −1 ≤ v ≤ 1 does not follow from a straight-
forward comparison argument. Indeed, Eδ[v, φ] ≥ Eδ[max(0,min(1, v)), φ] does not hold in general. Hence, to be
able to apply Lemma 3 we have to impose an L∞-bound for the phase field v as a constraint. As an alternative,
we might consider a different function χO(·), which is continuous and a priori uniformly bounded on R, for
example

χO(v) := min
(

1,
1
4

(v + 1)2

)
.

In our numerical simulations, however, it was not necessary to cut off χO(v) or to implement an L∞-bound for
v.

The above existence result still holds if instead of describing shapes via phase fields v ∈W 1,2(Ω) we consider
the sharp-interface case and represent shapes by functions of bounded variation v ∈ BV (Ω, {−1, 1}), as shown
in the following theorem. In that case, the shape perimeter is expressed via the total variation of v.
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Theorem 6 (Existence of optimal shapes). Suppose W : Rd×d → R is polyconvex with W (A) ≥ C1‖A‖pF −C2

for p > d and F ∈ L1(ΓN ). Consider the functional

J 0
G [v, φ] := R+ νV[v] +

η

2
|v|TV(Ω)

with R being 2Wδ[v, φ], C[φ], or −2Eδ[v, φ] (for G = W, C, or D, respectively) and | · |TV(Ω) denoting the
total variation. Then the variational problem minv J 0

G [v, φ] admits a minimizer in BV (Ω, {−1, 1}) under the
constraint φ ∈ m[v], where m[v] is defined as in Theorem 4.

Proof. The proof follows along the same lines as that of Theorem 4. The boundedness of the cost functional from
below is obtained just as in the phase-field case. We consider a minimizing sequence (vi)i∈N ⊂ BV (Ω, {−1, 1}),
which is bounded due to the total variation regularization in J 0

G . Hence, there is a weak-∗ convergent subse-
quence, again denoted (vi)i∈N, with weak-∗ limit v ∈ BV (Ω, {−1, 1}). We deduce vi → v strongly in L1(Ω),
and as in the proof of Theorem 4 we can find a sequence of equilibrium deformations φ[vi] ∈ m[vi] and φ ∈ m[v]
such that φ[vi] ⇀ φ in W 1,p(Ω). The lower semi-continuity of J 0

G [vi, φ[vi]] as vi
∗
⇀ v in BV (Ω, {−1, 1}) and

φ[vi] ⇀ φ in W 1,p(Ω) then follows as before, noting the lower semi-continuity of |vi|TV(Ω). �

Remark 7. The growth condition on the elastic deformation energy density W has only been chosen for
simplicity. As already stated earlier, one can just as well impose growth conditions of the form W (A) ≥
C1(‖A‖pF +‖cofA‖qF + |detA|r)−C2, where p ≤ d with appropriately chosen q and r [28]. In this case, however,
stronger restrictions on the load F ; e.g. F ∈ Lp′(ΓN ) with 1

p′ + 1
p = 1, are needed.

5.2. Non-existence of minimizers in a worst case scenario

For the sake of simplicity, the following discussion refers to the phase-field model from Section 3.3. In fact,
we underpin our argumentation with numerical results for the phase-field model. However, the same arguments
also apply to the sharp-interface case from Theorem 6.

The result from the previous section only states that there is a phase field v and one equilibrium deformation
φ ∈ m[v] such that J εG [v, φ] is minimal. There are possibly more equilibrium deformations φ̃ ∈ m[v] for which
J εG [v, φ̃] > J εG [v, φ] in case G is either W or C. Such worst case deformations are expected to represent stronger
strains (cf. Figure 6). For this reason, it might be more interesting to actually consider the (worst case) objective
functional

J εG [v] := sup
φ∈m[v]

J εG [v, φ] .

However, minimizers for J εG seem not to exist in general as the following example illustrates.
We would like to optimize the structure in Figure 7, left. It is composed of two different materials: The

vertical pillar and the crossbeam consist of a stiff material, while the material below the crossbeam, right and
left of the vertical beam, is very soft. The object is clamped at its bottom and subjected to a surface load
from the top. Its right-most edge can move freely in vertical direction, but is fixed in horizontal direction.
Now, instead of optimizing the structure within the set of all possible shapes, we will only consider a simple,
one-dimensional subset which is generated by eroding the vertical and horizontal beam of the original shape
depicted in the sketch. That is, we try to find just the optimal thickness of the stiff components.

The underlying idea of this example is the following: We seek a configuration with two simultaneously existing
equilibrium deformations, which is given by the compressed vertical beam that can buckle to its left or right
side. One configuration should be initially preferred (that is, be the global minimizer of E in the case of rather
thick and thus stiff structures), while the other should take over at some point if the structure becomes less stiff
and is deformed more strongly. The initial preference for rightward buckling is achieved by adding the slight
upward traction at the top right of the shape. If the pillar buckles so strongly that the soft material between it
and the right wall is completely compressed, the structure stiffens (due to the additional support by the wall),
and hence the leftward buckling will at some point yield less free energy and become the global minimizer of
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Figure 7. Left: Sketch of the shape optimization problem under consideration. Black repre-
sents a stiff, grey a very soft material. Middle: Equilibrium deformations for shapes of different
thickness, starting from a reference shape on the left and gradually eroding the stiff material to
the right (the soft material is not displayed). The top and bottom row represent two different
equilibria. Right: Energy components of the different configurations.

E . Here, the soft material between the pillar and the wall obviously just serves to transmit a force from the
wall onto the pillar. In fact, this soft material in our numerical setup just represents a means to transmit forces
which increase as the pillar gets close to the right wall.

The top and bottom row of the table in Figure 7 depict two different equilibrium deformations for the
prescribed loading (that is, stable deformations which are local minimizers of E), where each column belongs
to a different object thickness: From left to right, the original shape (whose vertical pillar has a width of six
length units) is eroded by zero up to four length units (in the underlying computations, one length unit actually
corresponds to a grid cell). The corresponding total free energy E as well as the stored elastic energyW and the
change in external potential C are shown in the right graph, where triangles and circles represent the energies
of the configurations in the upper and lower table row, respectively. For ease of reference, we shall denote the
deformations by φ.p and φ◦p, 0 ≤ p ≤ 4.

We start the optimization from the thickest shape (left end of table and graph). The equilibrium deformation
which globally minimizes E is obviously given by φ.0 (compare Figure 7, right). Assume that the volume penalty
parameter ν is chosen large enough so that the objective functional J εG decreases for increasing erosion parameter
p. Then φ.p stays the global equilibrium deformation up to a point p = p̂ between 2 and 3, where suddenly φ◦p
takes over as the global equilibrium deformation. At this point, the objective functional jumps discontinuously
to a higher value, since W as well as C are larger for the deformations φ◦p than for φ.p. Hence, if the weight
ν of the volume term is chosen such that—neglecting the existence of the equilibrium deformations φ◦p—the
optimal thickness would lie exactly at the crossing point p̂, then there will be no minimizer (cf. the qualitative
sketch in Figure 8). Indeed, from the left we can get arbitrarily close to p̂ and thus the objective functional gets
arbitrarily close to its infimum value, but we cannot reach it since at p̂, the cost functional suddenly jumps up.

A nice feature of the above example is that the equilibrium deformation φ◦p initially yields a positive value
of E or, in other words, that the stored elastic energy W is larger than the external potential change C. This is
associated with a self-locking mechanism: Even without loads, a deformation of the type φ◦p would be stable
and the object cannot be deformed into a less strained state without intermediately increasing the strain.

Having presented this example, the question arises naturally whether one should actually go even further
and consider W and C for all local equilibrium deformations, that is, extend the set m[v] to the set of all
local minimizers of E [v, ·]. However, this complicates the system even further, and one would also have to pay
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Figure 8. Qualitative sketch of the energies belonging to the ◦- and .-deformations from
Figure 7. The curves belonging to the global equilibrium deformation (the global minimizer of
E) are highlighted in grey. At p = p̂, the global equilibrium deformation switches from φ.p to
φ◦p, which is associated with a jump in W or in C and a corresponding jump in J εG (thick grey
curve in the rightmost graph).

Figure 9. Local equilibrium deformation for the mechanical problem in Figure 7 which re-
verses the orientation of the crossbeam and cannot be reached mechanically starting from the
configuration in Figure 7, left.

attention to exclude unphysical states that, for example, imply a local reversion of orientation such as shown
in Figure 9 for the example above.

Remark 8. So far we have investigated the compliance functionals J εW and J εC . For the compliance functional

J εD[v, φ] = 2C[φ]− 2Wδ[v, φ] + νV[v] + ηLεMM[v] = −2Eδ[v, φ] + νV[v] + ηLεMM[v] ,

which represents the dissipation associated with the transition from the unstressed state to the equilibrium de-
formation, existence of minimizing phase fields can be established also for the worst case scenario

J εD[v] := sup
φ∈m[v]

J εD[v, φ] .

Indeed, we observe that supφ∈m[v](−2Eδ[v, φ]) = −2 infφ∈m[v] Eδ[v, φ] = −2 inf{Eδ[v, φ] |φ ∈W 1,p, φ = id on ΓD} .

5.3. Phase-field model behavior in the sharp-interface limit for ε→ 0

In the phase-field model, we have so far assumed the phase-field parameter ε to be fixed. However, we are
actually interested in the limit case of sharp interfaces, for which existence of optimal shapes has already been
shown in Theorem 6 and which we hope to recover when we let ε→ 0. Unfortunately, the non-uniqueness of the
equilibrium deformation prevents us from proving a general Γ-convergence result: It might theoretically happen
that—as ε reaches zero and the phase-field interface gets ultimately sharp—suddenly an additional equilibrium
deformation occurs which results in a sudden increase or decrease of the objective functional value. For this
reason, we can only state the following two weaker results.
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Let us define for v ∈ W 1,2(Ω) with −1 ≤ v ≤ 1 the compliance functionals J εG [v] := infφ∈m[v] J εG [v, φ]

and as above J εG [v] := supφ∈m[v] J εG [v, φ] for G = W or G = C and extend these definitions by ∞ on L1(Ω).
Furthermore, define on L1(Ω)

J 0
G [v] :=

{
infφ∈m[v] G[v, φ] + νV[v] + η

2 |v|TV(Ω), v ∈ BV (Ω, {−1, 1})
∞, else ,

J 0
G [v] :=

{
supφ∈m[v] G[v, φ] + νV[v] + η

2 |v|TV(Ω), v ∈ BV (Ω, {−1, 1})
∞, else

,

where | · |TV(Ω) denotes the total variation.

Theorem 9. Under the conditions of Theorem 4, we have

Γ− lim inf
ε→0

J εG ≥ J 0
G

with respect to the L1(Ω)-topology.

Proof. Let vε → v in L1(Ω) as ε→ 0, then obviously V[vε]→ V[v]. Furthermore,

lim inf
ε→0

LεMM[vε] ≥
{

1
2 |v|TV(Ω), v ∈ BV (Ω, {−1, 1})
∞, else

as already discussed in Section 3.3 (cf. also [14]). Finally, either lim infε→0 infφ∈m[vε] G[vε, φ] = ∞, in which
case there is nothing left to prove, or there is a sequence (εi)i∈N with εi → 0 as i→∞ and a sequence φi with
φi ∈ m[vεi ] such that

lim
i→∞

G[vεi , φi] = lim inf
ε→0

inf
φ∈m[vε]

G[vε, φ] <∞ .

From Lemma 3 we deduce that
Γ− lim

i→∞
Eδ[vεi , ·] = Eδ[v, ·] .

Furthermore, applying the same arguments as in Theorem 4 we obtain that (φi)i∈N is uniformly bounded in
W 1,p(Ω). Hence, for a subsequence we get φi ⇀ φ in W 1,p(Ω) for some φ ∈ m[v] and Eδ[vεi , φi]→ Eδ[v, φ]. Also,
C[φi]→ C[φ] due to the continuity of C and thus alsoWδ[vεi , φi] = Eδ[vεi , φi]+C[φi]→ Eδ[v, φ]+C[φ] =Wδ[v, φ]
so that

lim inf
ε→0

inf
φ∈m[vε]

G[vε, φ] = lim
i→∞

G[vεi , φi] = G[v, φ] ≥ inf
φ∈m[v]

G[v, φ] ,

which altogether yields the desired result. �

Theorem 10. Under the conditions of Theorem 4, we have

Γ− lim sup
ε→0

J εG ≤ J 0
G

with respect to the L1(Ω)-topology.

Proof. Let vε → v be a recovery sequence in L1(Ω) with respect to the Γ-convergence of LεMM [14], for which
we obtain

lim sup
ε→0

LεMM[vε] ≤
{

1
2 |v|TV(Ω), v ∈ BV (Ω, {−1, 1})
∞, else .

As before, we have V[vε] → V[v]. Finally, as in the previous proof, there are sequences εi and φi with εi → 0,
φi ∈ m[vεi ], and φi ⇀ φ for some φ ∈ m[v] such that

lim sup
ε→0

sup
φ∈m[vε]

G[vε, φ] = lim
i→∞

G[vεi , φi] = G[v, φ] ≤ sup
φ∈m[v]

G[v, φ] ,
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which concludes the proof. �

If for a given phase field v there is just one single unique equilibrium deformation, then, obviously, J 0
G [v] =

J 0
G [v], which immediately implies following corollary.

Corollary 11. Let the conditions of Theorem 4 hold, and let v ∈ BV (Ω, {−1, 1}) be given. If the equilibrium
deformation is unique, that is, m[v] = {φ[v]} for a unique φ[v] ∈ W 1,p(Ω), then the Γ-limit of J εG and J εG for
ε→ 0 with respect to the L1(Ω)-topology is defined at v and is given by

J 0
G [v] = J 0

G [v] .

As mentioned earlier, since the equilibrium deformation in general is not unique, we cannot state a general
Γ-convergence result. However, note that the above results also hold with the obvious modifications in the case
of linearized elasticity, that is, for

Wδ[v, φ] =Wδ,lin[v, φ] :=
∫

Ω

((1− δ)χO(v) + δ)
1
2
Cε[φ− id] : ε[φ− id] dx

with a symmetric positive definite elasticity tensor C and ε[u] = 1
2 (Du+DuT). In this case, where the choices

G =W or D are equivalent to G = C as already discussed, we actually do obtain Γ-convergence of the objective
functional.

Corollary 12. For Wδ =Wδ,lin and F ∈ L2(ΓN ), we have

Γ− lim
ε→0
J εC = Γ− lim

ε→0
J εC = J 0

C = J 0
C

with respect to the L1(Ω)-topology.

Proof. By Korn’s first inequality, Wδ,lin[v, ·] is coercive on {φ ∈ W 1,2(Ω) : φ|ΓD = id}; furthermore, it is
bounded so that the Lax–Milgram lemma implies the existence of a unique minimizer φ[v] of the associated free
energy Eδ,lin[v, ·] for which 2Wδ,lin[v, φ[v]] = C[φ[v]]. Hence, in this case we obtain J εC = J εC , J 0

C = J 0
C and thus

the desired result applying Theorems 9 and 10. �

Finally, let us consider one particular compliance function. If we choose the dissipation associated with
the transition from the unstressed state to the equilibrium deformation as compliance, G = D, instead of the
internal elastic energy, G = W, or the change of external potential, G = C, we also obtain J εD = J εD as well as

J 0
D = J 0

D by definition of Eδ[v, φ] and m[v] (cf. also Remark 8). Hence, we again obtain the following.

Corollary 13. Under the conditions of Theorem 4, we have

Γ− lim
ε→0
J εD = Γ− lim

ε→0
J εD = J 0

D = J 0
D

with respect to the L1(Ω)-topology.

6. Numerical Algorithm

In the following paragraphs, we will first state the optimality conditions of the minimization problem and
its discretization by finite elements. We then briefly describe the computation of equilibrium deformations via
a trust region method and the optimization for the phase field by a quasi-Newton method, embedded in a
multiscale approach.
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6.1. Optimality conditions and finite element discretization

A necessary condition for φ to satisfy the constraint of static equilibrium is that it fulfills the Euler–Lagrange
condition

0 = δφEδ(θ) =
∫

Ω

((1− δ)χO(v) + δ)W,A(Dφ) : Dθ dx−
∫

ΓN

F · θ da

for all test displacements θ : Ω→ Rd with θ|ΓD = 0, where δzF(ζ) denotes the Gâteaux derivative of an energy
F with respect to z in some test direction ζ. Hence, by the first order optimality conditions, the solution to our
shape optimization problem can be described as a saddle point of the Lagrange functional

L[v, φ, p] = J εG [v, φ] + δφEδ[v, φ](p) ,

where G stands for W, C, or D, p denotes the Lagrange multiplier, and (φ− id)|ΓD = p|ΓD = 0. The associated
necessary conditions are given by 0 = δvL = δφL = δpL with δvL = δvR + νδvV + ηδvLε + δvδφEδ(p) (R here
stands for 2Wδ, C, or −2Eδ), δφL = δφR+ δφδφEδ(p), δpL = δφEδ, and

δvV(ϑ) =
∫

Ω

∂χO(v)
∂v

ϑdx ,

δvLεMM(ϑ) =
∫

Ω

ε∇v · ∇ϑ+
1
2ε
∂Ψ(v)
∂v

ϑ dx ,

δvWδ(ϑ) =
∫

Ω

(1− δ)∂χO(v)
∂v

ϑW (Dφ) dx ,

δφWδ(θ) =
∫

Ω

((1− δ)χO(v) + δ)W,A(Dφ) : Dθ dx ,

δφC(θ) =
∫

ΓN

F · θ da ,

δvδφEδ(p)(ϑ) =
∫

Ω

(1− δ)∂χO(v)
∂v

ϑW,A(Dφ) : Dp dx ,

δφδφEδ(p)(θ) =
∫

Ω

((1− δ)χO(v) + δ)W,AA(Dφ)Dθ : Dpdx

for scalar and vector-valued test functions ϑ and θ, respectively, with θ|ΓD = 0.
Furthermore, for a sufficiently smooth phase field v and a deformation φ satisfying the equilibrium constraint,

we may locally regard φ as a function φ[v]. Then, by the adjoint method, the derivative of J̃ εG [v] := J εG [v, φ[v]]
with respect to v in direction ϑ is given as

δvJ̃ εG (ϑ) = δvJ εG (ϑ) + δvδφEδ(p)(ϑ) ,

where for fixed v, the deformation φ[v] and the Lagrange multiplier p solve 0 = δφL = δpL with the corresponding
Dirichlet boundary conditions at ΓD. This directional derivative can be used in gradient descent type algorithms
to find the optimal phase field v.

Concerning the discretization, we restrict ourselves to problems in two dimensions (d = 2) and approximate
the phase field v and deformation φ by continuous, piecewise multilinear finite element functions V and Φ on a
regular mesh on Ω = [0, 1]2 with 2L + 1 nodes in each space direction. The different energy terms Wδ, V, and
LεMM are approximated by third-order Gaussian quadrature on each grid cell. For the ease of presentation, in
what follows we implicitly assume that the evaluation of every functional on finite element input functions is
performed only approximately using this quadrature. In our applications, for the sake of simplicity we restrict
both ΓD and ΓN to a union of several grid cell faces so that in particular ΓN is discretized in the canonical way
by a regular mesh on which a continuous, piecewise multilinear finite element approximation of the surface load
F can be defined. C is then also computed on this lower dimensional finite element mesh.
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Figure 10. Left: Eigendisplacement of a symmetrically compressed beam (height L = 1,
thickness t = 0.25, Young’s modulus E = 4) corresponding to the negative eigenvalue of the free
energy Hessian. Right: Energetic changes for the perturbation of the symmetric compression
in direction of the eigendisplacement. The coordinate s indicates the perturbation strength,
and s = 0 corresponds to the symmetric deformation.

6.2. Inner minimization to find equilibrium deformation

We aim at a gradient descent type algorithm for the (discretized) phase field V , where in each step we first
minimize Eδ[V,Φ] to obtain a finite-element approximation Φ[V ] of the equilibrium deformation and then use
this deformation to evaluate the compliance functionals J εW [V,Φ[V ]] or J εC [V,Φ[V ]] and their Gâteaux derivative
with respect to V . The inner minimization of Eδ[V,Φ] for Φ has to meet particularly strong requirements. First
of all, the optimal deformation Φ[V ] has to be accurately found in order to enable a correct evaluation of the
objective energy and to obtain a good approximation of the Gâteaux derivative which can then be used to
compute a descent direction. Second, since the minimization has to be performed for each energy evaluation,
we need a fast converging method. Finally, the optimization method has to be very robust and should reliably
lead to a (local) minimum.

The robustness requirement is particularly related to the use of the nonlinear elastic energy: In the presence
of buckling instabilities, there is typically an unstable or metastable (meaning that small perturbations suffice to
abandon the state), non-buckled state of the deformation Φ which more or less corresponds to the deformation
in the linearized elastic setting. This state is associated with a saddle point of the energy Eδ[V,Φ], which has
to be robustly bypassed by the minimization method. While simple gradient descent type methods tend to
slow down considerably in the vicinity of such points, the basic Newton algorithm is prone to converge exactly
to this saddle point. Indeed, recalling the simulations of buckling rods from Figure 5, for symmetry reasons
we know that the symmetric deformation in between buckling deformations to both sides must be a critical
point of Eδ[O, ·]. This deformation is readily obtained by a simple Newton iteration to find the zero of the
derivative of Eδ[O, ·]. The corresponding stiffness operator, that is, the Hessian of Eδ[O, ·] at this symmetric
deformation then is indeed indefinite and has a negative eigenvalue, classifying the symmetric deformation as
a saddle point of the free energy. For the bar of height L = 1, thickness t = 0.25, and Young’s modulus E = 4
the eigendisplacement u1 belonging to the negative eigenvalue λ1 = −2.7 · 10−5 is shown in Figure 10, as well
as the decrease of Eδ[O, id + su1], Wδ[O, id + su1], and C[ id + su1] along this direction for increasing values of
s. In fact, the eigendisplacement can easily be recognized as a (linearized) bending deformation.

Due to the above-mentioned problems of simple gradient-descent or Newton methods, we will need a more
sophisticated technique. Furthermore, the energy landscape in the nonlinear regime is typically characterized
by long, deep, narrow and bent valleys. These valleys may be interpreted as the paths along which the ma-
terial can be deformed, and leaving these valleys will rapidly lead to unphysical states such as local material
interpenetration and thus the break-down of the minimization.

Trust region methods represent a very reliable minimization technique that satisfies all the above issues.
At each step i, the objective functional is approximated by a quadratic model mi which is minimized inside
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a so-called trust region around Φi to obtain a new guess Φi+1. If the decrease of the objective functional
agrees sufficiently with the decrease of the quadratic model, the step is accepted and the trust region enlarged;
otherwise, the trust region is shrunken.

The subtleties of a trust-region method lie in the treatment of the so-called trust region subproblem to
minimize the quadratic model within the trust region. In our computations, we chose to implement the algorithm
proposed in [19, Algorithm 7.3.4]. At step i, the quadratic model mi is given as the second order Taylor
expansion of the discrete energy Eδ[V, ·] about Φi, which involves the Hessian H(Φi) of Eδ[V, ·]. To minimize
this model within a circular trust region around Φi of radius ∆, the smallest positive scalar ξ is sought such that
Hi(ξ) := H(Φi)+ξ id becomes positive definite and the global minimum of the correspondingly modified Taylor
expansions lies within the trust region. The positive definiteness of the quadratic operator is checked via a
Cholesky factorization Hi(ξ) = LLT, which also serves to find the minimum by solving the corresponding linear
system of equations that results from the optimality conditions. Additionally, the eigendirection belonging to
the smallest eigenvalue of Hi(ξ) is approximated by a technique which aims to find a vector Y such that L−1Y
is large. This eigendirection is essentially employed to bypass saddle points. The scalar ξ is itself obtained by
a Newton iteration which is safeguarded by a number of sophisticated bounds on ξ (see [19] for details). The
Cholesky factorization is performed using the CHOLMOD package from Davis et al. [17, 22], where a matrix
reordering ensures a minimum fill-in.

In our setting, the discrete energy gradient and the Hessian matrix H(Φ) are evaluated as

(
δφEδ(ϕiej)

)
(i,j)∈I0h×{1,2}

=
(∫

Ω

((1− δ)χO(V ) + δ)W,A(DΦ) : D(ϕiej) dx−
∫

ΓN

F · (ϕiej) da
)

(i,j)∈I0h×{1,2}

and

H =
(
δφφEδ(ϕiej , ϕkel)

)
(i,j),(k,l)∈I0h×{1,2}

=
(∫

Ω

((1−δ)χO(V )+δ)W,AA(DΦ)D(ϕiej) : D(ϕkel) dx
)

(i,j),(k,l)∈I0h×{1,2}

for the set I0
h of node indices in Ω \ΓD, the finite element basis functions {ϕi}i∈I0h , and the canonical Euclidean

basis {e1, e2} in R2.

6.3. Optimization for the phase field

Concerning the outer optimization for V , we apply a Davidon–Fletcher–Powell quasi-Newton method, which—
expressed for the minimization of a function f : RN → R, x 7→ f(x)—uses the update formula

Bk+1 = Bk +
∆xk∆xTk
gTk ∆xk

− Bkgkg
T
k B

T
k

gTk Bkgk

to approximate the inverse of the Hessian of f in the (k + 1)th step using the latest update ∆xk = xk+1 − xk
and the difference gk = ∇f(xk+1)−∇f(xk) between the gradients. The descent direction pk is then chosen as
−Bk∇f(xk), and the step length τk is determined to satisfy the strong Wolfe conditions,

f(xk + τkpk) ≤ f(xk) + c1τk∇fk · pk,
|∇f(xk + τkpk) · pk| ≤ c2|∇f(xk) · pk|

for c1 = 0.5, c2 = 0.9. Furthermore, we reset Bk to the identity every tenth step to restrict memory usage and
to ensure a descent at least as good as gradient descent.
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The gradient of the objective functional J̃ εG [V ] = J εG [V,Φ[V ]] (for G = W or G = C) with respect to V is
computed via the adjoint method as described in Section 6.1. We first solve

δφδφEδ(Ψ)(P ) = −δφJ εG (Ψ)

for the finite-element Lagrange multiplier P under the constraint P |ΓD = 0, where Ψ runs over all vector-valued
finite-element functions that are zero on ΓD. In terms of finite-element operators, this can be expressed as the
linear system HP = R, where P denotes the vector of nodal values of P on Ω \ ΓD, the matrix H has been
given above, and the right-hand side reads

R =
(∫

Ω

((1− δ)χO(V ) + δ)W,A(DΦ[V ]) : D(ϕiej) dx
)

(i,j)∈I0h×{1,2}

or R =
(∫

ΓN

F · (ϕiej) da
)

(i,j)∈I0h×{1,2}
,

depending on whether J εW [V,Φ[V ]] or J εC [V,Φ[V ]] is minimized. Then we obtain the gradient of the objective
functional with respect to V as (

δvJ εG (ϕi) + δvδφEδ(P )(ϕi)
)
i∈Ih

for all i ∈ Ih, where Ih represents the set of all node indices in Ω except those at which V is fixed by a Dirichlet
condition, and where the expressions for the Gâteaux derivatives are provided in Section 6.1.

6.4. Embedding the optimization in a multiscale approach

In order to enhance convergence and to avoid local minima, we pursue a multiscale approach, using a hierarchy
of dyadic grid resolutions with 2l + 1 nodes in each direction and multilinear interpolation as prolongation
technique. We first perform the minimization for a coarse spatial discretization and then successively prolongate
and refine the result on finer grids. The phase-field scale parameter ε is coupled to the grid size h via ε = h
in order to allow a sufficient resolution of the interface. Finally, it is sometimes advantageous to take a smaller
value for ν on coarse grids in order not to penalize the value V = 1 so strongly that intermediate values of V
between −1 and 1 are preferred. As the grid gets finer, ν can be increased since the smaller value of ε forces
the phase-field values towards the pure phases −1 and 1.

The multiscale approach has the advantage that coarse structures already develop on a coarse scale so that
the finer scales only have to recover the details. If these coarse structures have to be found directly on the
finest level, much more quasi-Newton iterations are needed since the interfaces propagate much more slowly.
In general, quite few iterations on each coarse level already suffice to roughly position all coarse structures
(typically far less than 100 steps in our experiments). The iteration on the finest level then needs up to several
hundred steps. In contrast, an iteration directly started on the finest grid needs more than ten times as many
steps (compare Figure 15).

A brief overview over the entire algorithm in pseudo code notation reads as follows (bold capital letters
represent vectors of nodal values, and G stands for W, C, or D):

EnergyRelaxation {
initialize Φ = id and V = 0 on grid level l0;
for grid level l = l0 to L {

do {
Vold = V;
minimize Eδ[V,Φ] for Φ by a trust region method to obtain Φ[V ];
evaluate J εG [V,Φ[V ]];
compute the dual variable P by solving the linear system
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δφδφEδ(Ψ)(P ) = −δφJ εG (Ψ) ∀Ψ;
compute the derivative of J̃ εG [V ] := J εG [V,Φ[V ]] with respect to V as

S :=
(
δvJ εG (ϕi) + δvδφEδ(P )(ϕi)

)
i∈Ih

;
compute an approximate inverse Hessian B by the Davidon–Fletcher–Powell method;
compute a descent direction D := −BS;
perform a descent step

V = Vold − τ D
with Wolfe step size control for τ ;

} while(|Vold −V| ≥ Threshold);
if (l < L) prolongate V , Φ onto the next grid level;

}
}

7. Experiments

The effect of using nonlinear instead of linearized elasticity has already been explored in Figure 3, where we
compared optimal cantilever shapes for loads of different magnitudes, using J εC as objective functional. White
and black regions correspond to the phases v = 1 and v = −1, respectively. Of course, increasing the load results
in stronger deformations and thus higher values of C (andW) so that the shapes would naturally become thicker
and more strutted in order to balance the compliance with the volume costs V and the perimeter regularization
LεMM. To make the optimal designs comparable and to reveal the pure influence of introducing geometric and
material nonlinearity, the weights ν and η of V and LεMM have to be increased in parallel. Since the compliance
scales quadratically with the load (at least for small deformations in the regime of linearized elasticity), ν and
η are chosen such that F 2

ν and F 2

η stay constant.
As discussed in Section 4, compared to optimal designs for linearized elasticity, the symmetry of the cantilever

design is broken due to the nonlinear influence of the loading direction. We observe that as the load increases, a
structure evolves which exhibits a single thick beam at the top that is supported from below by several thinner
struts extending from the wall to the point where the load is applied as well as to two or three other points
along the beam. These struts are themselves suspended from thread-like structures.

In the beginning, we have stated and discussed the different possibilities to extend the notion of compliance
to the setting of nonlinear elasticity. In particular we have considered the change of external potential C and
the internally stored elastic energy W. The compliance minimization yields different results depending on our
choice: While the use of C will produce rather rigid constructions that allow only small displacements, the use
of W does in principle allow for large deformations as long as the final equilibrium state is not heavily strained.
As a third possibility we have introduced the energy dissipation −2E = 2C − 2W.

A comparison of the three possibilities reveals a complex interplay between the volume costs and the me-
chanical energy (Figure 11). We first observe that the obtained shapes are plausible in the sense that each of
them indeed has the minimum value of its associated objective function (J εC , J εW , or J εD, respectively) among
all three. However, we also notice that the various energy contributions do not differ significantly between
the three designs. Nevertheless, they do look quite different: While the minimizer of JD is almost symmetric,
the minimizer of JW is strongly asymmetric. In particular, the bottommost beam, which will be compressed
during the deformation, becomes thinner from JD to JC to JW , thereby allowing stronger displacements. This
agrees with the simplified model example in Section 3. The internal energy W seems to be not very sensitive to
the thickness of the bottommost beam, while the potential change C strongly is. Therefore, it pays off to save
volume at the cost of a slightly increasing W in order to minimize JW . In fact, the model example in Section 3
already suggests that the middle design in Figure 11 is only locally optimal. Indeed, if we initialize the shape
as a simple rod similar to Figure 2, then we obtain the design shown in Figure 12 with a much lower objective
function value.
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LεMM[u] = 9.9525

V[u] = 0.3590

C[φ[u]] = 0.6687

Wδ[v, φ[u]] = 0.3308

E [u, φ[u]] = −0.3380

J εC [u, φ[u]] = 1.3078

J εW [u, φ[u]] = 1.3007

J εD[u, φ[u]] = 1.3150

LεMM[u] = 10.0343

V[u] = 0.3481

C[φ[u]] = 0.6896

Wδ[v, φ[u]] = 0.3383

E [u, φ[u]] = −0.3514

J εC [u, φ[u]] = 1.3113

J εW [u, φ[u]] = 1.2982

J εD[u, φ[u]] = 1.3244

LεMM[u] = 10.0863

V[u] = 0.3648

C[φ[u]] = 0.6599

Wδ[v, φ[u]] = 0.3284

E [u, φ[u]] = −0.3314

J εC [u, φ[u]] = 1.3092

J εW [u, φ[u]] = 1.3062

J εD[u, φ[u]] = 1.3122

Figure 11. Optimal cantilever design for minimizing J εC , J εW , J εD (from left to right), taking
the same parameters as in Figure 3 for the case F̂ = 4 (in these computations, ε was chosen half
the grid size h in order to obtain acceptable phase fields already for a resolution of 129× 129).
Minimization of J εD (right) yields the most symmetric shape, while minimization of J εW (middle)
yields the most asymmetric one with the compressed struts being significantly thinner than in
the other cases.

LεMM[u] = 3.9006

V[u] = 0.1385

C[φ[u]] = 4.3841

Wδ[v, φ[u]] = 0.2077

E [u, φ[u]] = −4.1764

J εC [u, φ[u]] = 4.6310

J εW [u, φ[u]] = 0.6623

J ε−E [u, φ[u]] = 8.5997

Figure 12. Initialising the phase field as a single rod, a minimization of J εW retrieves the
above optimal cantilever design with a much lower objective function value than the design in
Figure 11, middle.

Apart from the employed hyperelastic material law, there are two weighting parameters that need to be
tuned in order to obtain sensible results. Consequently, we have to study the influence of the different energy
contributions. The impact of volume penalization and perimeter regularization seems clear; the former prefers
thinner structures while the latter tends to reduce the degree of cross-linking. The question arises how the
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Figure 13. Optimal designs with respect to J εC for the same load case as in Figure 6 with
parameters F = 0.016 ·

√
2, λ = µ = 80, η = 2k · 10−8, ν = 25+k · 10−7 for k = 6, . . . , 1 from

left to right (resolution 512× 512). The load is chosen very small so as to stay in the regime of
linearized elasticity such that buckling cannot occur for the fine shapes on the left.

compliance term affects the optimal shape, whether by thickening its single components or by producing more
strutted shapes. Experiments show that both mechanisms occur until a point at which the different material
parts have grown up to a width that they start to merge and eliminate any fine structure (Figure 13).

To explore the effect of varying the two weight parameters ν and η systematically, let us sample the two-
parameter family of (at least locally) optimal shapes which is generated by η and ν. Before doing so, note that
generally, the maximally reachable resolution of our optimal designs is restricted due to computation time, which
in turn also fixes the smallest resolvable scale parameter ε. Since the phase field v is only forced towards the
pure phases v ∈ {−1, 1} for the limit ε→ 0, there will inherently always remain intermediate values (which can
also be observed in some of the previous examples). One particular reason for this lies in the strong interaction
between the non-convex potential η 9

32
1
ε (v2 − 1)2 with the two energy-minimizing phases v ∈ {−1, 1} and the

convex volume costs ν
4 (v + 1)2. For too large ε, that is, for ε ≥ η

ν
9
4 , their sum becomes convex so that there

are no longer two preferred phases. Due to the significance of ν
η in this lower bound, in our parameter study

we shall choose to vary ν
η and η instead of ν and η.

Figure 14 shows cantilever designs which were obtained by choosing the middle computation as the reference
setting and then doubling or halving ν

η as well as η. Apparently, for fixed ε there is a regime of ν
η for which

reasonable shapes are obtained, corresponding to the middle column. For larger values, phase-field densities
between −1 and 1 are not sufficiently penalized, and for smaller values we obtain bulky designs without any fine
structure. The effect of varying η for a constant volume weight ν can be seen along the descending diagonals;
these designs indeed seem to possess similar volumes, but a distinct amount of fine structure. Along the
horizontal direction, just ν changes, and the design volumes can be seen to decrease to the right.

Naturally, the energy landscape associated with J εC , J εW , and J εD is quite complicated and allows for multiple
local minima. In order to reduce the influence of initialization and to obtain satisfactory results with a sufficiently
low objective function value, in the above examples we pursued a multiscale approach with an initial optimization
on a coarse resolution (to find a good large scale structure) and successive refinement. For initialization on the
coarsest level, each nodal value of the phase field is taken randomly from a uniform distribution on [−0.1, 0.1].
Also, we started with a small value of ν on the coarse grid and then doubled it at each prolongation until its
final value on the finest grid level. In this way we maintain a constant ratio η

εν over all grid levels so that volume
costs and chemical potential already balance each other on the coarser grid levels and the coarse phase fields
are already quite close to an optimal design (compare Figure 15).

Alternatively, one could employ the same value of ν on all grid levels or start the optimization directly on the
finest level without a multiscale approach. While all three approaches yield the same result for many parameter
constellations (which is not too surprising especially for the rightmost column in Figure 14, for example, where
we have reached the regime in which the sum of volume costs and chemical potential are convex), this does not
hold for some cases as for example depicted in Figure 15, where the progress of the optimization algorithm is
shown. In general, however, the achieved objective function values are very close to each other, and in some
cases it seems that at least two of the tree approaches would eventually converge against the same shape if they
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Figure 14. Optimal cantilever designs for different parameter values. The middle design is
the same as in Figure 11, left; the top and bottom row as well as the right and left column are
obtained by doubling and halving η and ν

η , respectively.

were not terminated due to too small progress. Note that for the case in Figure 15, one approach seems not to
be able to create holes inside the bulky shape.

As a final example, we have computed an optimal design for a bridge-like structure with two pointwise
Dirichlet boundary conditions and a uniform downward surface load (Figure 16). Apparently, the optimal
design is to suspend the bottom edge from an arch extending between both fixing points. In order to reduce
computation time for this example (especially during the Cholesky-factorization), we did not use the entire unit
square [0, 1]2 as the computational domain, but instead updated the computational domain every 100 iterations
as the region {x ∈ [0, 1]2 : v(x) > −0.95}, dilated by three grid cells. This update does not hamper convergence,
and the final, actual computational domain is shown in Figure 16, right.
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