A Concept for Time-Dependent Processes

K. Polthier
FB 3 Mathematik, Technische Universitat Berlin
Strafle des 17. Juni 136, 10623 Berlin, Germany

M. Rumpf
Institut fur Ang. Mathematik, Albert Ludwigs Universitat
Hermann Herder Strafle 10, 79104 Freiburg, Germany

Abstract

We develop a new concept to extend a static interactive visualization
package to a time-dependent animation environment by reusing as many
as possible of the existing static classes and methods. The discussion
is based on an object-oriented mathematical programming environment
and is applied to parameter-dependent structures, time-dependent adap-
tive geometries and flow computations but most of the ideas apply to
other environments in scientific visualization too. We define new classes
describing dynamic processes (including e.g. time-dependent adaptive ge-
ometries) and specify a protocol mechanism they must understand. This
allows the definition of a class TtmeNode supervising an arbitrary dynamic
processes as a time-dependent node in a formerly static data hierarchy. We
discuss mechanisms of such time-dependent hierarchies, and additionally
the problem of algorithms on time-dependent geometries in a number of
examples.

1 Introduction

Time-dependent processes occur in many different areas as for example in the
description of natural phenomena and their computer graphical visualization,
in computer animation packages, or in mathematics when analyzing parameter-
dependent problems. The paper is centered around the question of how to
describe such phenomena in a software package and what kind of algorithms
operate on such data.

This paper describes a procedure to extend a static graphical programming
environment to handle arbitrary time-dependent processes by easily upgrading
existing classes and methods working on static data. Although this was our
original goal, it turned out that the concept is useful in a more general sense.
The restriction of having to start with a static environment and not to start with
an animation system right from the beginning turned out to be extremely useful



when formulating the principal ideas. This might simply be true because even
in animation packages a user usually is not able to work on an animated object
during its animation but he stops the animation for modeling objects - meaning
that he operates on a static time cut. Surely, this is a simplification and we will
later discuss the problem of algorithms working on complete dynamic processes.

We start our paper with a discussion of the term #ime in chapter 2. For
example, we generalize the meaning of time to be local to an object, which allows
us to view the same dynamic process at two different speeds simultaneously.
Surely, this is very useful when analyzing dynamic process. A major point is
the definition of a new class TimeNode in chapter 3 describing a time-dependent
subclass of the class Node in the static case. Using such nodes we extend a static
hierarchy to a time-dependent hierarchy. A static node has a pointer to a static
geometry. A instance of class TimeNode has (beside other instance variables)
additionally a pointer to a dynamic process and reuses the pointer to the static
geometry to store the current time cut of the dynamic process. If time does not
change the hierarchy behaves as in the static case and all existing tools of the
existing static environment may still be used.

Before discussing in chapter 5 time-control in a time-dependent hierarchy
with multiple nodes of class TtmeNode, we discuss in chapter 4 a number of ex-
ample classes describing dynamic processes. For example, we extend the classical
key-frame technique to allow discretization changes of animated triangulated ge-
ometries. Finally, we discuss in chapter 6 a number of mathematical algorithms
working on dynamic processes. Such algorithms are not pure extensions of static
methods, but may have much more functionality. Consider for instance clipping
at a sphere where the algorithm is static but the sphere may have an animated
diameter, or algorithms integrating over dynamic processes.

Summarizing, our major points are:

¢ Definition of a new class TimeNode as a subclass of the static class Node
which points to a static geometry. The static geometry is now the static
time cut of an attached dynamic process and updated via a simple protocol
mechanism.

e Definition of a time-dependent hierarchy which extends a static hierarchy
in a natural way based on instances of class TimeNode as hierarchy nodes.

e Definition of new classes describing dynamic processes, as for example the
class TimeStep discussed in chapter 4 allowing time-dependent adaptive
geometries.

e Discussion of algorithms for dynamic processes.

Our concept differs strongly from other concepts available in scientific visu-
alization software [8].

The time-concept described in this paper has been implemented in the graph-
ical programming environment GRAPE [2] developed at the Sonderforschungs-
bereich 256 for ”Nonlinear Partial Differential Equations” at the University of



Bonn. GRAPE is an object-oriented, interactive visualization package with a
library of classes and methods supporting besides others mainly solutions of
problems from continuums mechanics [4] and differential geometry [1]. It is
device independent and runs on a variety of workstations.

The first author wants to thank Charlie Gunn for fruitful comments on the
paper.

Before we start with more detailed explanations let us clarify the term time.

2 What is Time?

This question may seem a little bit curious to some people, especially to scien-
tists studying physical dynamic phenomena. Such problems carry in general an
inherent time, just the physical time of nature. Also a video animator usually
has this notion of time in his mind when designing a video. This is manifested
for example in the unique time slider in many software animation packages.

In the above example the term time is always used as the physical time, or
at most to some extent modified, which nature gives us. We extend this char-
acterization of time and define: #ime is an arbitrary but emphasized parameter
of the object we study.

As the first consequence of the extended meaning of time let us assume
our object depends on a set of parameters. We can emphasize one of those
and consider the object as a dynamic process depending on this parameter,
now called the time-parameter. During interaction we may choose a different
parameter or the other parameters may for instance also depend on the time-
parameter.

A second characteristic of our time-parameter is locality. In the extreme for
example, every object belonging to a hierarchy may have an own time-parameter.
This may seem unnecessary when creating a video which relies on a global time.
But when analyzing dynamic processes it is important to see for example the
same process running at different speeds or times simultaneously, or fix the time
of one of the processes while keeping the others running.

Our definition of a time parameter extends the term ¢ime from the physi-
cal time to include any real parameters. This arbitrariness for instance allows
in multi-parameter systems changing between parameters to analyze different
aspects of the problem with the same tools. Surely, the new freedom in the
definition of ¢ime shall not make things more complicated and possibly only in-
troduce a new parameter. When studying flow problems one would still choose
the physical time as time. But even here one might want to see two copies of
the flow evolving simultaneously with different times, i.e. speeds.

Summarizing, we use time as follows:

e time is a word for an arbitrary emphasized parameter of a parameter-
dependent object

e fime is a parameter belonging locally to an animated object.



3 The Class TimeNode Supervising Dynamic Pro-
cesses

In this chapter we discuss the concept of the class TimeNode to manage and
supervise dynamic processes. Instances of class TimeNode will be nodes of the
time-dependent hierarchy in chapter 5. Since our time-concept shall work to-
gether with existing software tools i.e. especially tools for handling static geome-
tries, one of our guiding threads was to integrate the time-concept naturally with
existing static tools. This includes continued use of our well-proved static classes
for discretized geometries and tools operating on them as well as continued use
of our data hierarchy.

An additional important advantage of building upon a static system was
already mentioned in the introduction: a user working with a time-dependent
system usually stops the animation when he tries to manipulate it. That means,
he naturally works on a time-cut rather than on the animated system. Since the
time-cut is a static object with respect to the current animation, static objects
are still important.

Before we start extending a static hierarchy node to a TimeNode let us at
first review our static object-oriented environment. All geometric objects are
organized in a tree and each node may store a geometry object. One node of
the tree is emphasized as the current object and methods are usually sent to
this node. The node will then pass the message to his children and so on. In
particular the principle applies to the method display, therefore only the subtree
having current object as root node is usually visible. The user may choose any
hierarchy node as current object.

The new class TimeNode 1s a subclass of the class Node with additional
instance variables dynamicProcess, localTtme, currentTime, and syncFlag as
shown in a following pseudo code and in figure 1. The instance variable dy-
namicProcess points to an arbitrary dynamic process which we consider as a
black box at first. The detailed description of such processes as for example an
animated real variable, a deforming surface or a flow in a volume will be dis-
cussed in chapter 4. The major feature of such a black box will be to generate a
static time cut on request via the getObject-protocol mechanism. In this chapter
the instance variable currentTime shall be a global time. Later in chapter 5 we
generalize its interpretation. localTime is used to store the value of currentTime
each time a new time cut is generated. The instance variable syncFlagis a switch
to prohibit updating of the time cut staticObject, we refer to chapter 5.

The instance variable staticObject inherited from the superclass Node will
now be the current time cut of the attached dynamic process. Such a time cut
is a static geometry in our former sense and can be handled by our existing
system. The only difference to the staticObject of a static node is that here it
is updated behind the scenes if currentTime changes. If currentTime is fixed
(at the moment the global time) the TimeNode acts as a static object since all
display methods as for example display or clip being sent to the TimeNode will be
passed on to its instance variable staticObject by the same forwarding mechanism



as used by static nodes. On the other side, if the currentTime changes, an update
mechanism assures that staticObject is updated before receiving any method.

The pointers to dynamicProcess and staticObject are of arbitrary type, there-
fore the TimeNode needs to know nothing about the class of the dynamic process
or the returned time-cuts.

The following pseudo code summarizes the class TimeNode. The type in-
stance defines a variable of arbitrary type. The method forward is called if a
node does not understand a received method, it allows a node to forward meth-
ods to staticObject, like e.g. display or clip. Hierarchy instance variables are

hidden.

class TimeNode : Node { /* TimeNode is subclass of Node */
instance staticObject; /* inherited from superclass */
instance dynamicProcess;
float currentTime, localTime;
int syncFlag;

forward(Method method, Argument arg)
{ /* 'method’ is arbitrary */
if (localTime '= currentTime) {
/* generate a new time cut */
staticObject = dynamicProcess:getObject(currentTime);
localTime = currentTime;

}

staticObject:method(arg); /* invoke method of staticObject */

}

setTime(float time){/* invoked e.g. when changing a time slider */
if (syncFlag == UPDATE ON)
currentTime = time;

}

setSyncFlag(int newFlag) {syncFlag == newFlag;}

}

An instance of class TimeNode may be used as a dynamic node in a static
hierarchy in the same way as any static node. In chapter 5 we discuss the update
mechanism in a hierarchy in more detail as well as the use of different current
times.

The update mechanism of the time-cut staticObject is as simple as possible.
It is realized by sending the method

getObject(currentTime)

to the dynamic process and getting returned a new time-cut. Sending getObject
and updating the time-cut is done by the TimeNode itself, immediately when



static hierarchy node time-dependent node

Node TimeNode

dynamicProcess
localTime
currentTime

static static
Object Object

Figure 1: The class TimeNode

receiving a method and currentTime of the TimeNode is different from the time-
cut’s time.

This simple mechanism allows to consider dynamic processes as a black box.
A dynamic process is not a class definition, we only require that on each dynamic
process exists the method getObject(time) returning a time-cut. That is, the
dynamic process observes the getObject()-protocol. We will see in the following
examples how powerful this simple mechanism is and which wide class of dynamic
processes can be handled with it.

It is obvious how to extend this protocol to include for example keyframing
where the user modifies the staticObject at a specific time and forces the dynamic
process to store it as a new key frame.

Remark The instance variable localTimeis the time at which the actual time-
cut has been generated. One might want to store that time inside the time-cut
object, but this would require modifying each of the existing static geometry
classes (for example putting a wrapper around the static classes), which we
prefer to avoid.

4 Examples of Dynamic Processes

In the previous chapter we discussed the new class TimeNode supervising a
dynamic process. The dynamic process was considered as a black box and every
object understanding the protocol mechanism

getObject(time)

may serve as a dynamic process in a TimeNode. Let us now consider a few
characteristic examples of dynamic processes in more detail. It will turn out



that their nature may be quite different.

4.1 The Class TimeStep Extending Keyframe Techniques

Let us discuss an example where the dynamic process of a TimeNode consists of
a sequence of discrete geometries as in the keyframe technique and later extend
it to allow changing of the discretization. As an example in mind we assume a
triangulated surface in R3 deforming over the time. In our description we call
such a dynamic process TimeStep. The purpose of this example is at first to
demonstrate classical keyframe technique in our approach and at second extend
it to include adaptive techniques of varying discretization in time direction.

The dynamic process TimeStep consists of a doubly-linked list and each node
having also an instance variable #ime and a pointer to an arbitrary object. The
value of time is obviously the time of the key-object, which is in our example
the surface at this specific time. For the moment we assume all surfaces to
have the same underlying discretization. Linear interpolation between two key
surfaces is therefore done by simply interpolating corresponding vertices in R3.
With this information we can describe the action of the method getObject (time)
being sent to the dynamic process TimeStep: the method returns a key-object
if time is identical to the corresponding key-time. Otherwise time is between
two key-times and we apply the mentioned interpolation algorithm to generate
a time-cut. Linear interpolation may be extended to higher order techniques,
but would only complicate the current discussion.

The concept of TimeStep allows to include classical keyframe techniques in
our time-concept in a natural way. As before, we only require the method
getObject(time) to exist on TimeStep, i.e. the objects on which each TimeStep
key points need to allow some kind of interpolation mechanism.

Let us discuss the keyframe type approach again, and this time assume a
geometry with adaptive discretization in time. Classical keyframe techniques do
not apply since interpolation now has to deal with different discretizations. Since
such situations occur quite naturally in time-dependent adaptive techniques we
have expanded the concept of TimeSteps: each key of a TimeStep list has not
only one pointer to an object, but it has two pointers: a preObject and a pos-
tObject. If the discretization needs to change at a time we put at this time a
key and store the same object twice: the object with the initial discretization is
assigned to preObject of the key and the object with the modified discretization
is assigned to postObject. It is essential that the geometry of the object does not
change at this key, only its internal discretization. And it is also essential that
the discretization of the postObject of a key is identical to the discretization of
the preObject of the next key. Compare figure 2.

class TimeStep {
float time;
TimeStep preStep, postStep;



TimeStep: Adaptive Time-Dependent Discretizations

<09 >< 0@ | o > 01 o >

time t0 time t1 time t2

J, Q\‘ \/ Q\I J, Q\‘

preObject postObject preObject postObject preObject postObject
L] L |

same discretization same geometry but
different discretization

Figure 2: The Class TimeStep

instance preObject, postObject;

getObject (float time){

step = self; /* first link of list */

/* find two keys enclosing ’time’ */

while (step.postStep.time < time)

step = step.postStep;

/* interpolate between two keys (sloppy notation) */

object = interpolate(step.postObject,
step.postStep.prelObject, time)

return object;

}

This technique allows us to change the discretization of an object during
an animation. Every change of discretization happens exactly at a keyframe.
Between two keyframes we interpolate by linear interpolation between the two
identical discretizations of the postObject of a key-step and the preObject of the
next step. Therefore interpolation between two successive keys works as in the
non adaptive case. When during the animation we pass over a key-step where
the discretization changes, we also have no problems. Since the geometry of the
preObject and postObject at a key is identical, the user will not recognize the
change of the internal discretization (assuming he is watching a shaded model).
Compare figure 3.

In the case the discretization before and after a keyframe are identical, we
need to store only one object at the key. Both instance variables preObject and



Time = t0 Time =tl Time = t2

Geometry at
different timesteps:

Underlying
Triangulations:

different triangulation \——/

interpolate for same geometry interpolate

Figure 3: Interpolation Mechanism Between Adaptive Triangulations

postObject may point to the same object.

4.2 Time-dependent Variables and Functions

Very simple time-dependent geometric objects are for example animated points.
But we will discuss an even simpler example: a float variable. As mentioned
before, the dynamic process can be arbitrary, so we can animate continuous
variables as for example a real number. Such a variable may be in the static
case a constant with a fixed value, or it may have different values. In the latter
case the software environment may support sliders to control and modify the
variable during run-time. We will attach to the variable a slider and call this
variable/slider pair the static situation in the following, despite the variability
of the variable’s value.

Let us create an instance of class TimeNode to handle the situation. We need
a dynamic process controlling our animated variable: a time-dependent variable
is simply a real-valued function depending on the time. As a dynamic process
we therefore take a function curve (e.g. a spline) depending on the time. The
required method getObject(time) sent to the function curve simply returns the
function value at the requested argument time. The TimeNode has the function
curve as dynamic process and the variable is the time-cut stored in the instance
variable staticObject. When time changes, the variable/slider is updated by
evaluating the function curve, i.e. sending of getObject(time).



The user e.g. may still use only the variable, i.e. staticObject, in his program
code and has nothing to do with the update mechanism. He uses the variable as
an ordinary variable available in his programming language. Except that there
is an intelligent control mechanism working in the background to allow control
of the variable over the time. The function curve may for instance be a spline
curve and interactively modifiable by the user. When initially defining such a
time-dependent variable, the underlying function curve might be set to a vari-
able’s initial value on default.

/* static case */

float variable;

/* dynamic case */

TimeNode *timeNode;
timeNode.staticObject = variable;
timeNode.dynamicProcess = spline;

/* class Spline must understand the method 'getObject’ */
spline:getObject (float time){

/* call evaluation routine */

return evaluateSplineAtTime(time);

}

The above description sounds as if the slider is superfluous in the time-
dependent case, since the function curve directly updates the variable. But
assume, time is fixed for a short moment. Then we might still want to vary the
variable at this specific fixed time-cut to found an optimal value. Having found
such we might edit the function curve and incorporate the value permanently,
otherwise changing the time of the system would reset the variable and the
slider via the update mechanism according to the function curve. Therefore, the
function curve controls the time-dependency of the variable and the slider may
still be used to control the variable temporary at an arbitrary time-cut.

The example of a time-dependent variable may be easily extended to higher
dimensions. Moving points in R3 may be controlled by three function curves,
one for each coordinate. Or one may even enlarge the domain of the function
curve to allow parameterized, time-dependent curves or surfaces:

f:TxQ— R3,
where T is the time interval and Q C R for curves or Q C R? for surfaces.

Obviously = Q(¢) may also depend on the time.

4.3 Further Examples

Dynamic processes may be quite different. We have already seen this in the two
proceeding examples. The action of the method getObject(time) was once the



evaluation of one or more functions at the requested time, and in the other exam-
ple TimeStep an interpolation mechanism between two discretized geometries.
As mentioned there, the interpolation mechanism may become quite complex
when geometries carry additional information as for instance finite-element de-
scriptions or general functions as shown in figure 3. Another possibility of a
dynamic process would be a request to a data base. But the dynamic pro-
cess may even be a hierarchy of dynamic processes, and sending getObject(time)
would return a time-cut of the whole hierarchy.

5 Time-Dependent Hierarchies

Our concept of TimeNodes suggests an obvious definition of a time-dependent
data hierarchy:

e a time-dependent hierarchyis a static hierarchy where TimeNodes are
allowed as nodes in the tree.

Using this definition a time-dependent hierarchy is perfectly conforming with
standard static hierarchies. We only allow an additional class of objects, namely
TimeNodes, to occur as hierarchy nodes.

How does one work with such a hierarchy? As mentioned in chapter 3 in
the static case the user chooses an arbitrary hierarchy node as the current node,
i.e. as the current root node, to work on this branch of the hierarchy. If this
is now a TimeNode its currentTime will be the global time for the currently
chosen branch. A global time slider will be attached to the current node and
may be used to modify its currentTime. Modifying the slider will send an
update method to the current node, which in turn will send further updates to
its children updating the whole branch of the hierarchy, i.e. the currentTime off
all children are set to the currentTime of the current root node.

The handling of methods being sent to a hierarchy node is identical to the
static case: a node receiving a method will apply it to its staticObject and then
send it to its children. If a node happens to be of class TimeNode, it will
at first update its staticObject if necessary and then apply the method to the
staticObject (methods working on dynamic processes will be discussed in the next
chapter). Therefore, the only different action compared to static hierarchies is
the additional update performed by TimeNodes, regardless of the type of method
being send to it.

5.1 Using currentTime of TimeNodes

The major use of the instance variable localTime is to store the time at which
the current time-cut has been taken. As an additional use the currentTime of a
node may be set to a fixed specific value to display the dynamic process always
at the same time while other nodes in the hierarchy are changing in time. To
accomplish this, choose the desired node as current object, set its currentTime



using the time-slider, set its syncFlagto UPDATE OFF and change back to your
previous current object.

There exist a number of methods to control currentTime of each hierarchy
node. For instance setTime(time) will set the currentTime instance variable of
all nodes to the value #izme. Such an action might be forbidden on some nodes if
they shall always show a fixed time-cut: this is done by switching the syncFlag
of such a node, therefore not allowing to change his currentTime variable.

5.2 Animation Control Panel

An easy implementation of an animation control panel with play, playback etc.
functionality works as follows: using the control panel buttons and its time-slider
the user might interactively change the slider’s time or let the slider automat-
ically change by pressing a play button. This releases the sending of multiple
method pairs setTime(time) and display to the current active hierarchy node.
As a result an animated video will be shown on the screen.

5.3 Viewing Different Time-Cuts Simultaneously

An additional feature is viewing different time-cuts of the same process simulta-
neously: just create a number of TimeNodes under the same parent and instanc-
ing the same dynamic process. Then modify the instance variables currentTime
of each TimeNode to the requested different times. Notice that the dynamic
process itself exists only once. This is not only useful for large data sets but
also allows modifications of the dynamic process to take immediate effect on all
different time-cuts. The same procedure might also be chosen if for instance one
would like to always look at the same dynamic process but using different display
methods (e.g. clips, iso-lines, grid-model,...). In such a case we leave the different
TimeNodes synchronized but change their local display-method to the requested
tasks. Compare figure 4 where different time-cuts are shown simultaneously and
additionally the trace of some points are drawn.

6 Algorithms on Dynamic Processes

In this paragraph we discuss some algorithms on dynamic processes. The main
reason of this paragraph is not to explain the algorithms in detail, but to discuss
their working principles in connection with the idea of TimeNode. Therefore
we take a few example algorithms and see how they are applied to dynamic
processes, how they work on TtmeNode and behave in a hierarchical tree.

The algorithms can be divided into several groups:

e working on the entire dynamic process, e.g. reflecting a time-dependent
geometry at a time-dependent symmetry plane

e integrative algorithms on dynamic processes, e.g. computing particle traces
of a time dependent vector field on a surface or in a volume



Figure 4: Simultaneous View of Several Time-Cuts

e algorithms generating dynamic processes, e.g. computing the evolution of
a surface under some force including adaptive refining in time direction

e extraction of time-cuts by interpolation techniques(see discussion in the
previous chapter)

6.1 Dynamic Processes are Single New Objects

The first class of algorithms is best suited to underline an important differ-
ence between keyframe techniques and our concept of TimeNode and dynamic
processes. In our approach we consider a TimeNode as a unity, a single new
object to which we can apply geometric and dynamic operations to obtain other
TimeNodes. Also the dynamic process appears as a new object which it is best
indicated by its black box behavior. This is in strong contrast to an ordinary
collection of keyframes. To make this claim more concrete consider the following
example.



Let us see how this point of view conceptually simplifies operations working
on these objects.

Assume a time-dependent surface, which can be extended to a larger surface
by reflection at a part of their boundary lying on a symmetry plane. The plane
is therefore determined by the boundary arc. In the keyframe technique one
needs to take an arbitrary key-surface, specify the symmetry plane and apply
the reflection to all other keys. This operation will extend each key-surface
to a larger surface and one ends up with a modified keyframe sequence. This
operation is very technical and determined by the internal representation of the
data.

In the time-concept we apply now the same operation: the user might see
an arbitrary time-cut on the screen and decide to execute a reflection operation.
For the user the actual time-cut represents the whole dynamic object, so if he
operates on the time-cut, then internally the TimeNode itself should control and
automatically invoke the necessary actions on the dynamic process. Instead of
working with the internal representation of the dynamic process, which might
be very complicated, we only act on an arbitrary time-cut as a representative.

This provides us not only with a very natural interface (operate on the data
you see on the screen and not on technical details, [7]) but also gives us a
necessary degree of abstraction in the passing of information from an action on
the time-cut to the dynamic process: in the above example of reflecting a time-
dependent surface one has to specify in an abstract way the symmetry plane on
the time-cut such that it has a meaning for all objects of the dynamic process.
Picking just three points on the time-cut and passing their positions is not unique
since the symmetry plane might vary during the dynamic process. It is also not
sufficient to pass to the dynamic process the indices of the picked points since
the dynamic process may be adaptively refined during time. A solution would
be to pass a unique identifier for a boundary component.

So, the user will pick a boundary component of an arbitrary time-cut which
is then passed to the dynamic process together with the reflect message. The
dynamic process has now the necessary information how to reflect itself, for
example to reflect all members of a time-step. At the end we have duplicated
the whole TimeNode. At no time the user has to be aware of the underlying
dynamic process in background. He only operates on the currently visible time-
cut of a TimeNode.

The further difference to an ordinary keyframe approach is also, that we gen-
erate an additional new TimeNode in contrast to extending each of the keyframes
to a bigger one and preserving just one sequence. At first sight the difference
may look not too big, but at the end the different point of view leads to many
simplifications.

Our point of view as described in the above example has also big limitations.
Surely many operations can not be decided on a single time-cut as a representa-
tive of the whole TtmeNode. For example, if the picked symmetry plane vanishes
somewhere in the sequence. This are problems for future research.



6.2 Integrative Algorithms

The type of algorithms in this and the following section are not new, but they
demonstrate the working principles of our new objects. Integrative algorithms
on TimeNodes are for example the integration of a time-dependent vector-field
on a surface or in a volume. As an input we take for example a finite element
description of a vector field in a volume as objects in a TwmeStep, which varies
over the time. This is an ordinary differential equation [5][3]. The user may
want to insert test particles in such a system and study their traces. In the
time-concept this is realized by picking an initial point or choosing an initial
test surface on an arbitrary time-cut. This initial condition is then passed to
the dynamic process which performs the necessary computations and returns
the trace of the test set. In this case the trace is also a dynamic process and
will be inserted somewhere in the data hierarchy as a TimeNode. Its time-cuts
are just a test set at a position corresponding to the current time.

Integrative algorithms take a TimeNode and generate a new one usually
of different type. In the example we took a time-dependent vector field and
generated an animated particle. See figure 5 for integration of vector fields on
static geometries.

6.3 Generating Dynamic Processes

During the previous discussion we have already seen a few algorithms generating
new TimeNodes and new dynamic processes. A further important example is to
start with a static object, and apply a sequence of operations, each generating
a new static object. Arranging this sequence as objects in a time-step creates
a dynamic process which can be used to expand the original static object to a
dynamic process.

More precise, take a surface in R3 as a static object and for example let it
flow in normal direction with a certain speed. This is a very common procedure
in mathematics to obtain solutions of differential equations [6]: constant speed
leads to solutions of the eikonal equation, speed equal to the mean curvature
leads to minimal surfaces, one could study wave propagation of let the surface be
driven by arbitrary energy gradients. Collecting the surface at different stages
of the evolution in a time-step, the user is free to interactively refine the sur-
face discretization in evolution direction, according to areas with high or low
curvature for example or criteria derived from the behavior of the underlying
differential equation. Compare figure 5.

This way the user is able to store the evolution of the surface in a TimeNode
with a TimeStep attached. The interpolation techniques inherent in the object
TimeStep allow the surface not only to change discretization. It also includes
change of the topological structure, e.g. splitting a long cylindrical bone into
two spheres by letting the small waist shrink.



Figure 5: Flow along Vectorfield on Surface

7 Conclusion

Summarizing, we discussed a new concept to extend a graphical environment
for static mathematical problems to an animation system. We introduced the
new class TtmeNode as an extension of a static hierarchy node without a need
to change the existing classes and methods, and we discussed descriptions of
dynamic processes and dynamic algorithms.

We have assumed in our description that the geometry data is organized in
a tree. A more general discussion should be made allowing dynamic data to be
organized in different ways although this does not seem to be a principal problem.
The concept using time-cuts as representatives of a whole dynamic process and
interact only with a single time-cut as in the reflection example surely has its
limitations as already remarked in chapter 6.1. This is a large area with open
problems for future research since many static algorithms wait for being made
dynamic. For example consider time-dependent clipping, boolean operations
or picking. Also our concept of TimeStep allowing keyframe techniques with
adaptive triangulation should be extended, for example to higher order degree
of interpolation - both in time direction and in the approximation of the static
geometry steps.

References

[1] A. Arnez, B. Oberknapp, K. Polthier, M. Steffens, C. Teitzel, Time-
dependent Curves and Surfaces in Differential Geometry, in preparation

[2] GRAPE Manuals, Vol. 4.1, SFB256 University of Bonn, Aug. 94

[3] M. Geiben, M. Rumpf, Moving and Tracing in Time-dependent Vector Fields
on Adaptive Meshes, Report No. 12, SFB256 Bonn



[4] M. Geiben, M. Rumpf, Visualization of Finite Elements and Tools for Nu-
merical Analysis, Eurographics Workshop on Scientific Visualization, Delft

1991
[6] B. Oberknapp, K. Polthier, Vector Fields on Surfaces, in preparation

[6] U. Pinkall, K. Polthier, Computing Minimal Surfaces and Their Conjugates,
J. Experim. Math., Vol. 2 (1), 1993

[7] K. Polthier, M. Rumpf, WYSIWYO in Differential Geometry, Report No.
10, SFB256 Bonn

[8] C. Upson, et. al., The Application Visualization System: A Computa-
tional Environment for Scientific Visualization, IEEE Computer Graphics

and Appl. July 1989



