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Abstract. The estimation of optical flow fields from image sequences is
incorporated in a Mumford—Shah approach for image denoising and edge
detection. Possibly noisy image sequences are considered as input and a
piecewise smooth image intensity, a piecewise smooth motion field, and
a joint discontinuity set are obtained as minimizers of the functional.
The method simultaneously detects image edges and motion field dis-
continuities in a rigorous and robust way. It comes along with a natural
multi-scale approximation that is closely related to the phase field ap-
proximation for edge detection by Ambrosio and Tortorelli. We present
an implementation for 2D image sequences with finite elements in space
and time. It leads to three linear systems of equations, which have to be
iteratively in the minimization procedure. Numerical results underline
the robustness of the presented approach and different applications are
shown.

1 Introduction

The task of motion estimation is a fundamental problem in computer vision. In
low-level image processing, the accurate computation of object motion in scenes
is a long standing problem, which has been addressed extensively. In particular,
global variational approaches initiated by the work of Horn and Schunck [1] are
increasingly popular. Initial problems such as the smoothing over discontinuities
or the high computational cost have been resolved successfully [2,3,4]. Motion
also poses an important cue for object detection and recognition. While a number
of techniques first estimate the motion field and segment objects later in a second
phase [5], an approach of both computing motion as well as segmenting objects
at the same time is much more appealing. First advances in this direction were
investigated in [6,7,8,9,10,11].

The idea of combining different image processing tasks into a single model
in order to cope with interdependencies has drawn attention in several different
fields. In image registration, for instance, a joint discontinuity approach for si-
multaneous registration, segmentation and image restoration has been proposed



by Droske & Ring [12] and extended in [13] incorporating phase field approxi-
mations. Yezzi, Zollei and Kapur [141] and Unal et al. [15] have combined seg-
mentation and registration applying geodesic active contours described by level
sets in both images. Vemuri et al. have also used a level set technique to exploit
a reference segmentation in an atlas [16]. We refer to [17] for further references.

Cremers and Soatto [18,19] presented an approach for joint motion estima-
tion and motion segmentation with one functional. Incorporating results from
Bayesian inference, they derived an energy functional, which can be seen as an
extension to the well-known Mumford-Shah [20] approach. Their functional in-
volves the length of boundaries separating regions of different motion as well as
a “fidelity-term” for the optical-flow assumption. Our approach is in particular
motivated by their investigations, resolving the drawback of detecting edges in
a parametric model, by a non-parametric approach.

Recently, highly accurate motion estimation [21] has been extended to contour-
based segmentation [22] following a well known segmentation scheme [23]. The
authors demonstrate that extending the motion estimator to edge detection in a
variational framework leads to an increase in accuracy. However, as opposed to
our framework, the authors do not include image denoising in their framework.
Including a denoising functional together with motion estimation in a variational
framework has been achieved by [24]. They report significant increases the accu-
racy of motion estimation, particularly with respect to noisy image sequences.
However, edges are not detected, but errors of smothing over discontinueties are
lessened by formulating the smoothness constraint in a L; metric.

We present the first approach of combining motion estimation, image denois-
ing and edge detection in the same variational framework. This step will allow
us to produce more accurate estimations of motion while detecting edges at the
same time and preventing any smoothing across them.

The combination of denoising and edge detection with the estimation of mo-
tion results in an energy functional incorporating fidelity- and smoothness-terms
for both the image and the flow field. Moreover, we incorporate an anisotropic
enhancement of the flow along the edges of the image in the sense of Nagel
and Enkelmann [2]. The model is implemented using the phase-field approxi-
mation in the spirit of Ambrosio’s and Tortorelli’s[25] approach for the original
Mumford—Shah functional. The identification of edges is phrased in terms of a
phase field function, no a-priori knowledge of objects is required, as opposed to
formulations of explicit contours. In contrast to a level set approach, the built-in
multi-scale enables a robust and efficient computation and no initial guess for
the edge set is required. We present here a truly d 4+ 1 dimensional algorithm,
considering time as an additional dimension to the d-dimensional image data.
This fully demonstrates the conceptual advantages of the joint approach. The
characteristics of our approach are:

— The distinction of smooth motion fields and optical flow discontinuities is
directly linked to edge detection, improving the reliability of estimates.

— Image denoising and segmentation profits from explicit coupling of the se-
quence via the brightness constancy assumption.



— The phase field approximation converges to a limit problem for a vanishing
scale parameter, with a representation of edges and motion discontinuities
without any additional filtering.

— The algorithm is an iterative approach. In each step, a set of three simple
linear systems are solved, requiring only a small number of iterations.

2 Generalized optical flow equation

In image sequences, we observe different types of motion fields: locally smooth
motion visible via variations of object shading and texture in time, or jumps in
the motion velocity apparent at edges of objects moving in front of a background.
We aim for an identification of corresponding piecewise smooth optical flow fields
in piecewise smooth image sequences

w:[0,T] x 2 —R; (t,x)— u(t,x)

for a finite time interval [0,7] and a spatial domain 2 C R? with d = 1,2,3.
The flow fields are allowed to jump on edges in the image sequence. Hence,
the derivative Du splits into a singular and a regular part. The regular part is
a classical gradient V(; ,yu in space and time, whereas the singular part lives
on the singularity set S - the set of edge surfaces in space-time. Time slices
of S are the actual image edges S with respect to space—time. The singular
part represents the jump of the image intensity on S, i. e., one observes that
Déu = (ut —u")ns. Here, u™ and u™ are the upper and lower intensity values on
both sides of .S, respectively. We now suppose that the image sequence u reflects
an underlying motion with a piecewise smooth motion velocity v, which is allowed
to jump only on S. Thus, S represents object boundaries moving in front of a
possibly moving background. In this general setting, without any smoothness
assumption on u and v, we ask for a generalized optical flow equation. Apart
from moving object edges, we derive from the brightness constancy assumption
u(t+s,x+sv) = const on motion trajectories {(t + s,z + sv) : s € [0,T]}, that

Vit,pyu-w =0 and on the edge n; - (wh +w™) =0. (1)

where w = (1,v) is the space—time motion velocity. This in particular includes
the case of a sliding motion without any modification of the object overlap,
where ng - wt =n, - w™ =0.

3 Mumford-Shah approach to optical flow

In their pioneering paper, Mumford and Shah [20] proposed the minimization of
the following energy functional:

Buslu.S) = A [ - wPde + 5 [[VuPac + vmeis), (@)
Q 2\s



where ug is the initial image defined on an image domain 2 C R? and A, pu,v
are positive weights. Here, one asks for a piecewise smooth representation u of
up and an edge set S, such that u approximates ug in the least-squares sense. u
should be smooth apart from the free discontinuity S. In addition, S should be
smooth and thus small with respect to the (d—1)-dimensional Hausdorff-measure
‘H¢~'. Mathematically, this problem has been treated in the space of functions
of bounded variation BV, more precisely in the specific subset SBV [20]. In
this paper, we will pick up a phase field approximation for the Mumford-Shah
functional (2) proposed by Ambrosio and Tortorelli [25]. They describe the edge
set S by a phase field ¢ which is supposed to be small on S and close to 1 apart
from edges, i. e., one asks for minimizers of the energy functional

Bl o] = [ Mu— ol + 5(6* + k)|Vull + vel V0l + 1-(1- 6 dL, (3)
(9]

where € is a scale parameter and k. = o(¢) a small positive regularizing param-
eter, which mathematically ensures strict coercivity with respect to u. Hence,
the second term measures smoothness of u but only apart from edges. On edges,
the weight ¢? is expected to vanish. The last two terms in the integral encode
the approximation of the d — 1 dimensional edge set area and strongly favours
a phase field value 1 away from edges, respectively. For larger €, one obtains
coarse, blurred representations of the edge set and corresponding smoother im-
ages u. With decreasing € we successively refine the representation of the edges
and include more image details.

Now, we ask for a simultaneous denoising, segmentation and flow extraction
on image sequences. Hence, we will incorporate the motion field generating an
image sequence into a variational method. We first formulate a corresponding
minimization problem in the spirit of the Mumford-Shah model:

Mumford—Shah type optical flow approach. Given a noisy initial image
sequence ug : D +— R on the space time domain D = [0,T] x §2, we ask for a
piecewise smooth image sequence u, which jumps on a set S, and a piecewise
smooth motion field w = (1,v), which is allowed to jump on the same set S, with
the constraint ng - (wt +w™) =0, such that (u,w,S) minimize the energy

2
D D

A Aw u
Elu,w, S| = / —(u—uo)z—i—? (w - V(t,z)u)g d£+/ %(¢2+/€6)||V(t7z)u||2 ac

+/%““||P[¢}V(t,z)w\|q d£+/(y6|‘v¢u2+i(1_¢>2) 0. (4
D D

The first and second term of the energy are fidelity terms with respect to the
image intensity and the regular part of the optical-flow—constraint, respectively.
The third and fourth term encode the smoothness requirement of u and w.
Finally, the last terms represents the area of the edge surfaces .S, parameterized
by the phase file 7. The projection operator P[¢] couples the smoothness of the



motion field w to the image geometry:

2 2y Vo) 9 Vi) ¢
pit =t (1- sy o ety )
Here, ke = o(€) is a ”safety” coefficient, which will ensure existence of solutions of
our approximate problem. o : R — Rg and 8: R — Rg are continuous blending
functions. For vanishing ¢ and a corresponding steepening of the slope of wu,
this operator basically leads to a ’one sided diffusion’ in the energy relaxation.
The fidelity weights A, Ay, the regularity weights g, p, and the weight v
controlling the phase field are supposed to be positive and ¢ > 2. We emphasize
that, without any guidance from the local time—modulation of shading or texture
on both sides of an edge, there is still a undecidable ambiguity with respect to

foreground and background.

4 Variations of the energy and an algorithm

In what follows, we will consider the Euler-Lagrange equations of the above en-
ergies. Thus, we need to compute the variations of the energy contributions with
respect to the involved unknowns u, w, ¢. Using straightforward differentiation
for sufficiently smooth u, w, ¢ and initial data uy and summing up the resulting
terms, we can integrate by parts and end up with the following system of PDEs

. u )\’LU
—dIV(t’x)<l)j\/7 (¢2+ke)v(m:)u +)\—w(v(t7x)u~w)> +u = uo (5)
1 1
~euno+ (g + Vel 6 = 4 ©)
—i—“’div@,z) (Pl]V(t.m)w) + Vit - w) Vi myu = 0 (7)

as the Euler-Lagrange equations characterizing the necessary conditions for a
solution (u,w, @) of the above stated phase field approach. Let us emphasize
that the full Euler—Lagrange equations, characterizing a global minimizer of the
energy, would in addition involve variations of Eieg  With respect to ¢.

Following again Ambrosio and Tortorelli, our resulting algorithm involves an
iteration solving three linear partial differential equations:

Step 0. Initialize u = ug, ¢ = 1, and w = (1,0).
Step 1. Solve (5) for fixed w, ¢.

Step 2. Solve (6) for fixed u, w.
Step 3. Solve (7) for fixed u, ¢, return to Step 1 if not converged.

5 Finite Element Discretization

We proceed similarly to the Finite Element method proposed by Bourdin and
Chambolle [27,28] for the phase field approximation of the Mumford-Shah func-
tional. To solve the above system of PDEs, we discretize [0,T] x {2 by a regular
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Fig. 1. Top to bottom two frames of the test sequence (a) and corresponding

smoothed image (b), phase field (c¢) and optical flow (color coded) (d).

hexahedral grid. In the following, the spatial and temporal grid cell sizes are de-
noted by h and 7 respectively, i.e. image frames are at a distance of 7 and pixels
of each frame are sampled on a regular mesh with cell size h. To avoid tri-linear
interpolation problems, we subdivide each hexahedral cell into 6 tetrahedra. On
this tetrahedral grid, we consider the space of piecewise affine, continuous func-
tions V and ask for discrete functions U,® € V and V € V2, such that the
discrete and weak counterparts of the Euler Lagrange equations (5), (6) and (7)
are fulfilled. This leads to solving systems of linear equations for the vectors of
the nodal values of the unknowns U,®,V. Using an efficient custom-designed
compressed row sparse matrix storage, we can treat datasets of up to K = 10
frames of N = 500, M = 320 pixels in less than 1GB memory. The linear systems
of equations are solved applying a classical conjugate gradient method. For the
pedestrian sequence (Fig. 5), one such iteration takes 47 seconds on a Pentium
IV PC at 1.8 GHz running Linux. The complete method converges after 2 or
3 such iterations. Large video sequences are computed by shifting a window of
K = 6 frames successively in time. Thus temporal boundary effects are avoided.

6 Results and Discussion

We present here several results of the proposed method for two dimensional
image sequences. In the considered examples, the parameter setting e = h/4,
fo = h72 ey = Ay = 1, Ay = 10°h72 and C(€) = ¢, § = € has proven to give
good results.

We first consider a simple example of a white disk moving with constant speed
v = (1,1) on a black background (Fig. 1). A small amount of smoothing results
from the regularization energy Fy,, , (Fig. 1(b)), which is desirable to ensure
robustness in the resulting optical flow term V; ,yu-w and removes noisy artifacts
in real-world videos, e.g. Fig. 4 and Fig. 5. The phase field clearly captures the
moving object’s contour. The optical flow is depicted in Fig. 1(c) by color coding
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Fig. 2. Noisy circle sequence: From top to bottom, frames 3 and 9 — 11 are

shown. (a) original image sequence, (b) smoothed images, (c) phase field, (d)
estimated motion (color coded)

the vector directions as shown by the lower-right color wheel. Clearly, the method
is able to extract the uniform motion of the disc. The optical flow information,
available only on the motion edges (black in Fig. 1(c)), is propagated into the
information-less area inside the moving disk, yielding the final result.

In the next example, we revisit the simple moving circle sequence, but add
noise to it. We also completely destroy the information of frame 10 in the se-
quence (Fig. 2). Figure 2 shows the results for frames 3 and 9 — 11. We see that
the phase field detects the missing circle in the destroyed frame as a temporal
edge surface in the sequence, i.e. ¢ drops to zero in the temporal vicinity of
the destroyed frame. This is still visible in the previous and next frames, shown
in the second and third row. However, this does not hamper the restoration of
the correct optical flow field, shown in the fourth column. This result is due to
the anisotropic smoothing of information from the frames close to the destroyed
frame. For this example, we used € = 0.4h.

A second synthetic example is shown in Fig. 3, using data from the publicly
available collection at [29]. Here, a textured sphere spins on a textured back-
ground (Fig. 3(a)). Again, our method is able to clearly segment the moving
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Fig. 3. Rotating sphere: smoothed image (a), phase field (b), optical flow (color

coded) (c), optical flow (vector plot, color coded magnitude) (d)
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Fig. 4. Taxi sequence: smoothed image (a), phase field (b), and flow field (c)

object from the background, even though the object doesn’t change position.
We used a phase field parameter ¢ = 0.15h. The extracted optical flow clearly
shows the spinning motion (Fig. 3(d)) and the discontinuous motion field.

We next consider a known real video sequence, the so-called Hamburg taxi
sequence. Figure 4 shows the smoothed image (u), phase field ¢ and color-coded
optical flow field (w). Our method detects well the image edges (Fig. 4 b).
Also, the upper-left rotating motion of the central car is extracted accurately
(Fig. 4 ¢). As it should be, the edges of the stationary objects, clearly visible
in the phase field, do not contribute to the optical flow. Moreover, the moving
car is segmented as one single object in the optical flow field, i.e. the motion
information is extended from the moving edges, i.e. car and car windscreen
contours, to the whole moving shape.

Finally, we consider a complex video sequence, taken under outdoor condi-
tions by a monochrome video camera. The sequence shows a group of walking
pedestrians (Fig. 5 (top)). The human silhouettes are well extracted and cap-
tured by the phase field (Fig. 5(middle)). We do not display a vector plot of the
optical flow, as it is hard to interpret it visually at the video sequence resolution
of 640 by 480 pixels. However, the color-coded optical flow plot (Fig. 5(bottom))
shows how the method is able to extract the moving limbs of the pedestrians.
The overall red and blue color corresponds to the walking directions of the
pedestrians. The estimated motion is smooth inside the areas of the individual
pedestrians and not smeared across the motion boundaries. In addition, the al-
gorithm nicely segments the different moving persons. The cluttered background
poses no big problem to the segmentation, nor are the edges of occluding and
overlapping pedestrians, who are moving at almost the same speed.



Fig. 5. Pedestrian video: frames from original sequence (top); phase field (mid-
dle); optical flow, color coded (bottom)
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