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ABSTRACT

Recent image machinery delivers sequences of large scale three-dimensional (3D) images with a considerably small
sampling width in time. In medical as well as in engineering applications the interest lies in underlying deformation,
growth or motion phenomena. A robust method is presented to extract motion velocities from such image sequences.
To avoid an ill-posedness of the problem one has to restrict the study to certain motion types, which are related to
the concrete application. The derived formulas for the motion velocities clearly reflect the geometry of the motion.
Robustness of the presented implementation is based on local regularizations in space-time. Thereby geometric quantities
on the image sequences are evaluated on the local regularizations. Examples outline the potential of the proposed method
in medical applications (3D ultrasound sequences) and experimental fluid dynamics (3D flow in porous media). As an
improved regularization approach an effective denoising method based on anisotropic geometric diffusion for 3D data
sets is discussed, which respects important features on levelsets such as edges and corners and accelerated motions anc
preserves them during the smoothing process. Its application as a pre-processing step turns out to be especially advisable
for image sequences with a considerably small signal to noise ratio.
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1. INTRODUCTION

Processing three dimensional (3D) images is a task of growing interest in various applications. In medical imaging
different image generation hardware such as computed tomography (CT) or magnetic resonance imaging (MRI), and
recently also 3D ultrasound (US) devices deliver not only single large scale images but often 3D image sequences. They
allow the study of motion, growth, and deformation on small time scales ranging from seconds or minutes up to large time
scales of days or years. Furthermore one observes previously hidden temporal physical processes in different media via
3D imaging devices. As an example we mention the flow in porous media where isotope marking is applied to measure a
3D concentration distribution via an MRI device. Again the aim is to study the underlying physical motion and to compare

it with model predictions and computed simulations.

The aim of this paper is to present a robust method to extract motion velocity fields from 3D image sequences. Thus,
the focus is on the actual extraction and not on the final visualization of the velocity fields. Extracting motion from
image sequences is known as the optical flow problem in image processing and has been studied extensively for 2D
image sequencés!! 16:23:27 The contribution of this paper is to extend the methodology to 3D, to express the resulting
velocities in concise geometric terms, and to focus on an effective and robust implementation. Already a large bunch of
literature dealing with visualization of vector fields: Most popular are methods which generate textures aligned to the flow
field.5:12.18:32:35 The visualization of time-dependent vector fields, which appear in our setting here, has been discussed
in.4:5 21,31 Recently van WijR® presented the IBFV approach, which visualizes vector fields in real time using graphics
hardware of modern computers.

In image analysis the interest frequently lies in the extraction of certain level surfaces bounding volumes or specific
regions of interest, and their temporal change within the image sequence. Then the actual intensity value is of minor
importance and anyway dependent on the modality of the image acquisition process. Therefore it is desired to derive
morphologicalmethods, which are not affected by a transformation of the intensity. We ask for a motion extraction
method which shares this property. At first, we give the classical optical flow equation to extract the normal component of
the velocity. In special cases, for instance in case of a physical phenomenon obeying a model like Darcy’s law, where the
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flux vector is pointing in the direction of the pressure gradient, the normal component completely describes the motion.
But in applications such a simplification is not feasible. Unfortunately, the extraction of tangential velocities, turns the
task into an ill-posed probleRf. Thus, the set of possible solution velocities has to be restricted and instead we deal
with the apparent velocity — the velocity which arises from a motion locally constant in space. Especially in case of
moving objects, or structures with significantly curved details and small variations of the velocity normal to levelsets,
the apparent velocity turns out to be meaningful. Alternatively, motivated by modeling in continuum mechanics one can
ask for regularizations resulting in deformations controlled by elastic stresses or viscous fluidefféets: 293¢ But

this approach is computationally rather expensive and pays off in case of large deformations in between frames of the
sequence, which we rule out in our applications here.

Concerning the robust implementation, we apply loE&lprojection onto suitable polynomial spaces in space and
time, which can be regarded as a linear filter improving the signal to noise ratio. On these projections we evaluate
all geometric quantities necessary to compute the velocity components (cf. Fig. 1) . This approach turns out to be
consistent but computationally expensive. We therefore also consider the convolution with derivatives of smoothing
kernels as a further linear filtering variant. Typically, the images of a recorded image sequence — especially ultrasound
images — are characterized by significant high frequent noise due to measurement errors. Here, linear filtering turns
out not to be the appropriate approach. Therefore, we apply a morphological multiscale method for image-sequence
processing® which combines the image processing methodology based on nonlinear diffusion equations and the theory
of geometric evolution problems (cf. Fig. 2). Such nonlinear and anisotropic multiscale methods have proven to be
successful tools in image denoising, edge enhancement and shape récovény. 37 Thereby, the image is considered
as initial data of a suitable evolution problem. The aim of the method we apply here, is to smooth levelsets of an image
while simultaneously preserving geometric features such as edges and corners on the levelsets. This is obtained by an
anisotropic curvature evolution!%17:33  Spatially depended evolution velocities in mean curvature motion models
already have been considered by Alvarez ét ahd Sapir@® but the model we use here additionally considers the
directions of spatial edges and the motion velocity and therefore is anisotropic in space and sequence time.

2. EXTRACTING MOTION (THE SMOOTH CASE)

At first, we will consider a continuous family of images on some time intdfyal'] and derive expressions for the motion
velocity in terms of spatial and temporal derivatives of this continuous image sequence. Let us denote the continuous
image sequence with : [0, 7] x Q — R, (s,x) — ¢(s,x). HereQ) := [0, 1]% is the image domain in thé-dimensional
Euclidean space faf = 2 or d = 3 (which we assume to be fixed) ards the sequence time parameter. We will always
denote sequence parametersrtand s respectively, whereas andy respectively stand for the spatial coordinates. We
assumep to be smooth in time and space. The perspective of levelsets on images of the sequence will play a central role
in our motion analysis. We denote byl¢(s) the levelset — the isosurface — ¢fs, -) corresponding to the level value

c € R,i.e. M(s) = {zeQ|d(s,z) =c}. For the sake of simplicity we will skip the indexindicating the level

value and the sequence parameatarthenever they are clear from the context. If the image is not locally flat, the normal
N(s,z) atz in the imagep(s, -) is given byN (s, z) = |V¢(s,x)| "V (s, z). The tangent space aton M is denoted

by 7, M = span{N}-+.
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Figure 1. As input data the process takes a 2D respectively 3D image sequence, resulting e.g. from the observation of a physical
experiment. Due to the insufficient regularity of the data it has to be regularized before the extraction of the motion quantities. The
final output is a vector field, describing the motion of the temporally changing level-sets of the sequences. As a sophisticate alternative
to the linear regularization, one can apply a spatio/temporal coupled anisotropic smoothing process, which denoises the data, but keeps
significant spatial edges and temporal accelerations (dashed lines).



Figure 2. The noisy initial frame (left) is pre-processed by an an anisotropic geometric smoothing method. On the smoothed data
(middle left) we compute the motion of the levelsets (middle right). A color ramp from blue (moving inward) to red (moving outward)
indicates the normal component of the velocity. On a magnified section (right) we have depicted the splittingasfgential (red

arrows) and normal (blue arrows) components. All computations were performetsa grid.

Figure 3. As a test case we extract the motion from the evolution of ellipsoidal levelsets with oscillating half axes. I.e. we consider the
image sequenc@(s, 1, T2, 23) = x5 /a(s) + x3/b(s) + =3, wherea(s) := 4s — (1 — s), b(s) := s — 4(1 — s) for s € [0, 1]. We

have depicted the results of the velocity computation on the same levelset (isosurface) in different frames of the sequence. In the upper
row a color ramp from blue (moving inward) to red (moving outward) indicates the normal component of the velocity. In the lower row
the color ramp from blue to red indicates the absolute value of the tangential component of the velocity. The large picture on the right
shows the decomposition ofin its tangential and normal part.

Now let us suppose that there is a correspondence between the separate time slices of the image sequence due to a
physical motion. This motion influences the image intensity we observe in sequence time. Supf6sé] x Q —
RY, (s,z) — wv(s,z) is the velocity field generating the motion in space and time. Thus, for a single motion trajectory
{z(s)} running through a point, € M¢°(so) on some levelset1°(s,), we obtain

x(89) = 20, x(s) = v(s, z(s)).
Clearly any velocity vecton(sg, zo) € R* can be decomposed into a normal parte span{ N} and a tangential part
vgg € To M, such thab = v, + vy, andv, = (v- N)N.
2.1. Normal velocity

Our first assumption on the image sequence is now, that intensities are preserved along motion trajectories. This is
reasonable because intensities in image sequences resulting from physical experiments or medical devices are usually
functions of certain physical quantities like density or concentration. If these quantities move in space, so do the image
intensities. In case of moving solid objects with certain intensities the assumption is even more obvious. Thus, we get

o(so + 1, 2(s0 + 7)) = ¢(s0,Z0) Vre[—s,T—¢]. Q)



We differentiate this with respect toand obtairds¢(s, z) + V(s, x) - v(s, z) = 0, where *” always denotes the scalar
product. AssumindVu| # 0 and dividing by|Vé| we end up with an expression for the normal component of the
velocity:

9s¢

vn:(v~N)N:—|v¢| .

Based on assumptions on the underlying physics of the phenomenon recorded in the image sequence we may know that
the motion velocity is expected to be normal to intensity levels (see Section 4). In this case we-hayeand the above

equation completely describes the motion. But in general we can not expect the tangential comparfahe velocity

to vanish.

2.2. Apparent velocity

Let us assume that the image sequence consists of fixed objects moving in space but not being deformed. Hence, we
consider a motion velocity(s, ) which is constant in space, i. e(s,z) = v(s). Then obviously all levelsets are just
translated. Therefore, not only the intensitigs, «) but also the normaléV (s, ) on the levelsets stay constant along
motion trajectories:

N(so+7,2(s0 + 7)) = N(s0,x0) V7 e [-s,T—s].

We differentiate this with respect toat+ = 0, and get an expression which involves the Jacoliah of the normal:

0
8—N(S +7,2(7)) 0 0 = OsN(s,x) + VN(s,z)v(s,z) = 0. 2
T T=
Before we continue, let us more closely examine the Jacabiaa VN of the normal, which is the projection of the
second derivativé?¢ onto the tangent spac M. Denoting the tensor produet® v = (u;v;):;, we havé® 26

S=VN = Lud—N@N)D?qb. )

The mappingS can be regarded as an extension of the shape opefatay on the levelsét'® and has eigenvalues
{x!, k2,0} corresponding to eigenvectofs', v?, N'}. Indeed we havér, o, = S(Id— N ® N). Furthermore:!,x? turn

out to be the principal curvatures antlandv? are the corresponding principal directions of curvature. FRaMN = 0

we deduce that the orthogonal complem&pt= = span{N'} of the tangent space lies in the kernel$fnd from

0 =0s(N -N)=20sN - N we observe thad; N € 7, M. Thus, we can rewrite Eq. (2) as an equation on the tangent
bundle:0, N (s, z) + S, mvie = 0. If the shape operatd¥z, o is invertible one obtains an expression for the tangential
component of the velocity

Utg = —S}:M(‘?SN .
Finally adding the normal and the tangential part, we have derivedpparent velocity

_ 059
Vapp = Utg + v, = _STwl./\/lasN - |V¢)| N. (4)
For two dimensional image sequences, this expression was derived by Guithaltipugh he did not express it with
these geometric terms. In our derivation, all geometrical quantities intrinsically describe levelsets in spaces of arbitrary
dimension. Thus (4) is applicable indimensional space and especially for= 3. Let us emphasize that this velocity
depends on the morphology of images only. Indeed, it is obviously invariant under monotone gray value transformations

&(5711) ==fo ¢(Sa :ZJ)

2.3. General motion

In general an observed motion does not have the simple structure of a spatially constant motion as assumed in the last
section. Nevertheless, an application of the above definition (4) for motions which are not constant in space still can make
sense. In fact, if an image is locally rather complex — the levelsets are significantly curved — and the motion on this



Figure 4. From left to right we show the extracted velocity on several frames from the sequence of echocardiographical images of the
human heart (cf. Fig. 2). Again the color ramp from blue (moving inward) to red (moving outward) codes the normal component of
the velocity. The computations were performed ar2&® grid.

image region is close to being constant, then we expect the above formula to give a good approximation of the actual
velocity.

Concerning the tangential part of the velocity one easily sees that its extraction is an ill posed task: Sdpposbes
the motion of the levelsets and ketbe an arbitrary vector field such thats, =) € 7, M. Obviously the motion described
by w results in tangential movements of the levelsets within themselves, and thus can not be recognized by the observer.
Thereforev + w also describes the motion of the levelsets, futan be arbitrarily irregular. The apparent velocity
selects from the set of all possible solutions the one, which minimizes the variation of the normal along the trajectory, i.e.
0-N(so + 7,2(so + 7)) = 0 (cf. Fig. 5).

Concerning the restriction to configura-
tions with an invertible shape operator, one
may ask whether this is a shortcoming of our
formula or if there is one more limitation of
the motion capturing itself. Hence, let us con-
sider an image whose levelsets are concentric
(infinitely extended) cylinders and this set of
cylinders is supposed to move in space gener-
ating an image sequence. On one hand the ve
locity component along the axis of the cylin-
der obviously can not been extracted from the
image sequences. On the other hand this di-

rection is a principal direction of curvatureF_ 5 Left | " ) inder the veloci | h
with curvature valug) (Cf Flg 5). If a Igure o. LeTt: In case orf a moving cylin er the ve OCIty component aongt e

levelset is flat in one direction at least u toaxis of the (infinitely extended) cylinder can not be identified. The image se-
. . P quence is actually invariant under motions in the axial direction. This corresponds
second orderd = 0 for somei € {1,2}),

. R to the observation that the axial direction is a principle curvature direction with
then we are Ipcally in the (?yllndrlcal case an@yrvature0. Right: From the set of all possible solutions, the apparent velocity
reach the limits of the motion capturing. minimizes the variation of the norm&i.

3. AROBUST IMPLEMENTATION

In the formulas to compute the apparent velocity, we have made use of geometric quantities which involve higher
order derivatives in space and time. Typically our image sequences are given as a sequence of temporally equidistant
frames — we denote the temporal distance between the frameg\witiThe image frames usually are given in voxel

or multilinear finite element form. Furthermore, they are overlaid with some noise resulting from measurement errors.
Thus, we have to robustly regularize the measurement results coded in the image sequence, to make the extraction process
more insensitive to noise. Moreover we have to explain how to robustly evaluate derivatives on this low regularity data.
In principle, there are different approaches at h&ndwe will consider two different variants here, which combine the
aspects of regularizing the data and defining higher order derivatives on constant or at most piecewise linear data. First, we
focus on a local projection of the image onto a polynomial space, and secondly we will describe an approach which uses
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Figure 6. The application of the method to experimental data from a fresh and salt water experiment is depicted. First, salt water is
floating into a container filled with fresh water. Then an outlet is opened at the top left corner of the container. During the experiment,
the salt-concentration was measured using an MR imaging device. From left to right several frames of the experiment are shown. A
color ramp again indicates the normal component of the velocity (cf. Fig. 4). The computation was perforntad grich

convolutions with smoothing kernels and their derivati#esDuring the expositions we will indicate quantities resulting
from a regularization process by a superscsipt

In the derivation presented in the previous sections, we have always assumed the definition of a normal was possible,
and moreover we assumed the shape opetstox being invertible. Obviously, for real data the gradi& could
vanish, and we can not divide By | any more. Therefore we repldéethe Euclidean norm bjVé|. := /|V¢| + €2
for a smalle. Moreover, if a levelset is flat at least in one direction (k&= 0 for somei € {1, 2}) we replace the inverse
S,;:M of the shape operator by its pseudo—invefﬁ‘éagM, which only invertsSz, ,, on the subspace where it is invertible.

On the subspace on whicdhy, o is not invertible the pseudo-inver%IM is trivially set to zero.

3.1. Regularization via Local Projections

We base the local regularization on a lo¢al projection of the data onto spaced* of sufficient smoothness. Since

we need first order derivatives in sequence time and second order derivatives in space, weXhosentain tensor
products of first order polynomials in sequence-time and second order polynomials in space. Then we will replace the
derivatives of the image in the computatior@f,, by the derivatives of the projection. To this end for the projection we

take all monomials into account that give a contribution to the desired derivatives. Thus, we consider

Q = span{y?, ¥3, Y3, Y1y2, Y193, Y23, Y1, Y2, Y3, TY1,TY2, Y3, 7 C Q. (5)
Without loss of generality let us now fix a sequence parameter 0, a pointz = 0 and a small neighborhood
Bs(s,x) of (s,z). Denoting the basis functions in (5) witfy;};, and considering a representatiof, ,(r,y) :=

BT, oy (11,2, y3) = S @igi(ryn, ya, ys) for a == (a;); € R the local projectiony, ,(r, y) is defined such
that it fulfills the orthogonality relation (=linear system of equations)

Ha=R  whereR = < | strat i dy> and H = ( [ atwae dy> . ®
Bs (s,z) . B (s,z) .
[ )
Based on the coefficients; of the projectiorkgﬁg’m)(r, y) we can compute the desired derivatives and evaluate them in
(r,y) = (0,0) to obtain

2000 g4 Qs

V&7 = y ) Tv D2 ( - 2 ’
yd’(s,m) 00 (a7, s, ag) y¢’(s,:c) (r,)=(0,0) 34 52 20;6
P T ©
1 az I—N°gNo) [ @10
('57I) - s as ; aTN(US,I) = g 11 ’

rn)=00)  yoZ+ai+ad \ o r=00)  yaZ+aitag \ 4,

and finallya,«qb‘(fs’z)|(r7y):(070) = a13. Moreover we obtairb” from (3), and therbZ. , - by restrictingS” to the tangent
space(N?)+. Substituting these quantities into (4) we get the regularized apparent velfigity This regularization



approach delivers a consistent way of computing curvature on piecewise lined? dats.unfortunately it is computa-
tionally very expensive, since it involves a lot of integrations on the neighborh8gods

3.2. Regularization via derivatives of convolution kernels

The regularization presented in the following paragraph is much cheaper in terms of computational costs. For a fixed
o € R, we take theC5° kernel K (s, z) := Z =L exp((|z]? + s?)/(|z|? — s*> — ¢?)) having compact support and use the
convolution property for any spatial or temporal derivativé

D7 (K x ¢) (s,x) = D7 (/ K(r,y)p(s —r,x —y) dr dy) =K« DV¢(s,x) = DK * ¢(s,x). (8)

The constantZ is chosen such thaf K = 1 and agains is a measure for the support &f and — for largero the
regularization will be stronger. For the computation of the velocity, we replace all derivatives by convolutions with
the corresponding derivatives of the smoothing kefgK. According to the convolution property (8) we thus obtain
the derivatives of data smoothed withi:

VK xu
Ti=———— (s, OsN)? = (0sK « N7)(s,x
N7 i e (s,a), (.N)7 = (0. * N7)(5,2) o
S ! (Id = N? @ N°)(D?K xu)(s,z), (0:¢)° = (0K * ¢)(s, )

T VK *ul.

Again we obtain the shape operatsf ,, by restrictingS° to the tangent spacg, M and the regularized apparent
velocity vy, from (4).

3.3. Implementation

Let us now focus on the implementational aspects of the regularization approaches we have discussed before. Since we
assume the frames of the sequence being given on quadtree respectively octtree grids, it is naturabtindefiltgples
of the gridwidthh.

Projection approach. To keep the computational effort moderate, we confine ourselves with two additional sequence
frames in the definition oB, (s, x) : Forl € {2m|m € IN}, we defineB, (s, ) as the patch containind + 1) x (I +
1) x (I + 1) nodes of each of the framdgs — As, ), ®(s,-), and®(s + As, ) such that(s, z) is in the center of the
patch. We relate to the spatial extend d$, by settingo := [h.

On B, we now perform the integration of the right hand side of (6), by splitting the integral into a sum of integrals
on the quadtree/octtree-elemenits— B,. On each elemenft we thereby use a tensor product quadrature rule, with two
nodes in each spatial coordinate direction and a simple trapezoidal rule in the sequence-time direction. Having the image
shifted locally such thafs,z) = (0,0) and¢(s,z) = 0 we can precompute the inverse of the matfffxin advance,
since it does not change with, x) and¢ for a fixed stencil witho. This speeds up the computation significantly in an
implementation. We proceed with substituting the coefficientmto the formulas (7) and (4) from which we proceed
with simple computations to obtain the regularized apparent velogityvia the definition (4).

Let us remark here that for a single frame the formula for computation of the shape operator — which is needed to
evaluate curvature of levelsets — does not chafgdélthough the matrix to compute the projection is tier 9. For a
comment on the optimal choice ofwe refer the reader to an earlier wétlof the authors.

Convolution approach. For a fixedos, we assume the image again to be translated sucli¢het = (0, 0), Then the
kernel K has support i, (s, z) := [—o, 0]+, As usual we replace the convolutions with the derivatiésof K with
a weighted summation

(DK< 0)sa) = [ DK Gu)o(s = riw =) drdy~ 3 olsr) [ DK () drdy
o ECB,

over the values of) at the centesy of the involved element®’. The weights are thus obtained by integrating the
derivativesD” K over the element®& C B, (0,0) and therefore can be precomputed in advance for a fixedich again

speeds up the computation significantly. We proceed as before with substituting the convoluted quantities into (9) and (4)
from which we again obtain the regularized apparent velagjty.



Figure 7. As a test case we consider the functiof) = |z1| + |z2| + |z3| whose levelsets are octahedrons. This function was
perturbed and then taken as initial data for the anisotropic geometric diffusion method. From left to right an original perturbed levelset
and the corresponding first, second, and fifth time step of its evolutior6ah grid are visualized extracting levelsets.

4. APPLICATIONS

Understanding of the physical phenomenon of a process delivering an image sequence may give more information on
the splitting of the velocity in normal and tangential component. In Fig. 4 we have considered a sequence acquired by

echocardiography of the human heart. The whole sequence consists of one complete cardiac cycle, in which the heart fills
itself with blood and pumps it out again. From the physical point of view this is an elastic deformation.

In many cases one can obtain further information directly from the underlying physics. If we e.g. consider the flow
in a porous medium (cf. Fig. 6), we know that Darcy’s law applies: The flow of matter will always be in direction of the
pressure gradient (here, = norniélto the levelset). Thus, the velocity will have no tangential component and it suffices
to consider the normal component. Other physical contexts (e.g. Fick’s law, presence of a potential flow) may also apply.

Unavoidably the observations of physical processes via electronic image acquisition devices carry measurement errors
resulting in low signal quality. Especially in medical imaging ultrasound- and low dose computed tomography-imaging
suffer from high frequent noise (cf. Fig. 2, left). The robustness of the method presented so far relies on the fact that the
L? projection onto quadratic polynomials on a stergil respectively the convolution can be regarded as a linear filter.

With increasing parameter the damping of noise will be intensified. As in most image processing applications linear
filters are pretty good in the damping of noise but simultaneously they are known to destroy important features of the
levelsets, as corners and edges. Instead one can apply nonlinear multiscale filtering techniques, as they already proved
successful in various image processing applicatiotts24:2%:37 |n the next section, we will consider more sophisticate
regularization variant®)> 25 which have a nonlinear and anisotropic behavior. The results (cf. Fig. 2, middle left) then

can be used to extract better regularized apparent velocities (cf. Fig. 2, middle right and Fig. 1).

5. FAIRING BY ANISOTROPIC GEOMETRIC DIFFUSION
5.1. A steady image approach

We consider here a morphological levelset method for the pre-processing of noisy 3D images from sequences before we
evaluate velocity terms (with a rather small stencil wiadh It is closely related to the anisotropic geometric diffusion
method for the fairing of triangulated surfaces. Indeed, we consider eigenvalues and eigendirections of the shape operator
St, m as feature indicators in a diffusion process. In the levelset formulation we simultaneously deal with all levelsets —
hence we actually process a complete 3D image. Up to now this nonlinear smoother works only on a single frame from
the 3D image sequence and does not correlate different time steps appropriately. An extension being presented in section
5.2 takes into account the whole image sequence. Let us fix a sequencs timd consider the correponding frame

Y(x) = ¢(sp,x). Since we assume and thus the levelsets gfto be noisy, we seek for a family of successively filtered
intensity functions{+,(-) |t € Rt} with ¢,(-) : © — R. The parametet serves as the scale parameter as common in
multiscale calculus on images and surfaces@g(d) obeys the following partial differential equation

O — |Vl div (a” V| ' V) = 0.



givenyy(-) = ¢(so,:). Fora® = 1 we obtain an evolution of all levelsets by mean curvature motion, which is the
most natural pure smoothing process on surfatesOur method operates more sophisticate to preserve not only im-
portant levelsets (2D edge-surfaces) but also essential features on these levelsets, such as 1D edge-lines. Indeed we
assume:’ to depend on a regularized shape operatolcf. Section 2.2), where we consider the same regularizations

as above. In abstract notation we choaeSe= (B?)"G(S5. \()B° where B° is the basis-transformation from the

frame {v7,v*7 N} of principal directions of curvature to the standard Euclidean basisG{ag = (1 + s222)~!

for some positive constanthere applied to the endomorphisss. 4. In the basigv!7,v%7, N°} we therefore obtain

a’ = diag(G(k*7),G(k*7),0), wherex!?, k%7 are the corresponding regularized principal curvatures. Thus, in the
direction of a large principal curvature — which is expected to indicate the direction perpendicular to an edge — we apply
a significant damping of the diffusion to preserve this edge feature. On the other hand in a orthogonal direction frequently
corresponding to a smaller curvature value we allow for a tangential smoothing along the edge. Further details on the
method and a finite element implementation can be found in a previous paper by the &utRigs. 2 and 7 show results
obtained by this smoothing method.

5.2. Fairing of image sequences

Still the anisotropic levelset method presented above does not take into account the sequence direction. Thus, there
is in general no correlation between successive frames although the original data is temporally correlated, being the

observation of a temporal process. We consider an extension of the latter model, which results in a coupled spatio-

temporal problem?® Additionally to the eigenvalues and eigendirections of the shape operator on leveisgtsas

feature indicators in a diffusion process, we moreover consider the apparent direction of tggsiohthe levelsets and

their apparent acceleratiancel” := d,vg,, as the driving forces for the diffusion process. We end up with a multiscale

of image sequences : [0,7] x © — R fort € R, which obeys the following (d+1)-dimensional PDE problem:

3#/) - |v(s,r)¢| diV(s,z) (a((js,z)|v(s,r)w|_lv(s,m)¢) =0

with the initial conditioniy (s, z) = ¢(s,z). HereV , ) denotes the spatio-temporal gradiéfif, V) anddiv, .y :=
0s + V its dual operator. In the spatial direction, the diffusion temz{ggﬁ) still enables for a good preservation of edges as
in the above model, but in direction of,,, the diffusion will depend on the apparent acceleratiarel” of the levelsets:

Qs ) = Ay o )
(o) ‘ ngp vgpp a1, M

wheread = G(|0svapp|). This choice of the diffusion tensor will enable for a good preservation of the temporal coupling
of the levelsets via the underlying motion phenomenon. The linear system resulting from a finite element discretization
and an operator splitting scheme will be solved by a symmetric block stiver.

6. CONCLUSIONS

We have presented a robust method to extract motion information from 3D image sequences. Formulas to compute
the normal and the apparent velocity have been presented in concise geometric terms and an analysis of the relation
of a general motion field and the apparent velocity is given in the appendix. Different applications demonstrate the
effectiveness and robustness of the method. The focus of this paper was not to derive a new visualization of a given motion
field but to demonstrate the possibility to extract such fields from rather noisy image sequences as they are frequently
observed in experimental settings. In addition we considered a nonlinear multiscale filtering for steady images as well
as image sequences as an often indispensable pre-processing step. The core of the methods are anisotropic geometric
diffusion processes in levelset formulation, driven by geometrical features like edges and corners of the levelset and
their acceleration in sequence-time. Interesting future research directions (partially already in progress) are to study the
physical role of the apparent velocity in different applications, and to ask for assumptions on physical models underlying
the observed motion, which in more cases may help to compute a good approximation of the true physical velocity from
the image sequence.

More information about the project including color figures and more examples can be found on our web page
http://www.numerik.math.uni-duisburg.de/exports/velocity/index.html
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Figure 8. For a continuous test image sequence showing a square bouncing at an invisible object (indicated by the red line), i.e.
o(s,z) = |z + d(s))|1 whered(s) is the motion of the center of the square, we show the evolution under the coupled spatio temporal
diffusion. From left to right several frames near the accelerated point of the motion (= the square bounces) are depicted. The upper row
shows the noisy image sequence, whereas in the lower row the sequence resulting from the third scale step of the evolution is shown.
Clearly the shape is smoothed significantly but its corners are preserved.
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Figure 9. We consider a noisy continuous test sequence showing a ball bouncing at some invisible object (left) indicated by the thick
line, i.e.¢(s,z) = |z + d(s)|2, whered(s) is the motion of the center of the ball. The improvement of the extracted velocities during

the evolution are depicted. From middle left to right the extracted velocities of the noisy data and scale steps 1 and 3 are depicted.
We have drawn the normalized velocities for always the same frame of the sequence and the region indicated by the dashed area in
the image left. Clearly the extracted motion becomes more regular during the evolution and is closer to the real motion, which for this
frame goes diagonally from top left to bottom right.
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APPENDIX A. THE CASE OF A GENERAL MOTION

Let us in this additional section consider a motion described by an arbitrary velocity field. As described in Section 2.2,

given solely the image sequence resulting from the motion, it turns out to be an ill-posed problem to extract the original

velocity. However, let us describe, which information according tangential movements can be extracted and what the
apparent velocity really describes.

The simultaneous motion of all points §hobeying the velocity field induces a flux®, (sg, z¢) = z(sg + 7), with
z(so) = zp andi(s) = v(s,z(s)). We can regard this flux also as the deformation of the image atdimer with



respect to the initial state at timg. The levelset normals at timg + 7 transform under the flux. This transformation is
controlled by the inverse transpose of the Jacobian of the flux:

N(so+7,2(s0 + 7)) = [(VO) T N|7H(VO,) "N (s0, 0), (10)

We can express this transformation in terms oiing a development in up to first order. Expanding the Jacobian of the
flux we obtain

VO, =ld 4 7Vv + o(7?), = (VO,) T =1d - 7(Vo)T + o(r?).

The differentiation of the identity (10) with respecttoat = = 0 will lead us further. Recalling that for some vector
A(0) 0

valued functionA(r)
0
a- A0 = A0 (EA(T) T_o>
g

holds, we can compute from (10) the relation (omitting the arguments for the clearness of the presentation)

0= [0;N(so+7,2(s0 + 7))+ 9-|(VO,) T NIN—-09,(VE,) "N| = 9,N+ VNv— (Vo)IN - NN+ (Vo)TN.

7=0

UsingVN = S andV(v- N) = (Vv)I'N + (VN)Tv = (Vu)T N + Sv, we can rewrite the latter result as
0= [0,N + Sv] + (Id — N © N) (V(v- N) — Sv). (11)

This is the (implicit) expression to compute the tangential velocity for arbitrary motion. Whenever the last term vanishes,
i.e. v solves the differential equatiofid — N @ N) (V(v- N) — Sv) = 0, we have a coincidence of apparent velocity

and true velocity,,, = v, since the remaining left terth= [0, N + Sv] exactly defines,,. Unfortunately there is not

more information contained in (11) because it again is an equation on the tangent bundle. And since the equation itself is
implicit in v it is not possible to obtain any measure for the difference betwggrandv.

A last observation concerning the case= v,p,, is the following: Substituting,,,, into (11) and using the fact that
(Id— N ® N)S = S one obtains
(Vapp )tg = S_l(ld = N ® N)V((Vapp)n)s

because the term in brackets vanishedufgy, in (11). This means, the tangential component of the apparent velocity is
the variation of the normal velocity weighted on the tangent space according to the shape of the levelset.
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