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ABSTRACT

Recent image machinery delivers sequences of large scale three-dimensional (3D) images with a considerably small
sampling width in time. In medical as well as in engineering applications the interest lies in underlying deformation,
growth or motion phenomena. A robust method is presented to extract motion velocities from such image sequences.
To avoid an ill-posedness of the problem one has to restrict the study to certain motion types, which are related to
the concrete application. The derived formulas for the motion velocities clearly reflect the geometry of the motion.
Robustness of the presented implementation is based on local regularizations in space-time. Thereby geometric quantities
on the image sequences are evaluated on the local regularizations. Examples outline the potential of the proposed method
in medical applications (3D ultrasound sequences) and experimental fluid dynamics (3D flow in porous media). As an
improved regularization approach an effective denoising method based on anisotropic geometric diffusion for 3D data
sets is discussed, which respects important features on levelsets such as edges and corners and accelerated motions and
preserves them during the smoothing process. Its application as a pre-processing step turns out to be especially advisable
for image sequences with a considerably small signal to noise ratio.
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1. INTRODUCTION

Processing three dimensional (3D) images is a task of growing interest in various applications. In medical imaging
different image generation hardware such as computed tomography (CT) or magnetic resonance imaging (MRI), and
recently also 3D ultrasound (US) devices deliver not only single large scale images but often 3D image sequences. They
allow the study of motion, growth, and deformation on small time scales ranging from seconds or minutes up to large time
scales of days or years. Furthermore one observes previously hidden temporal physical processes in different media via
3D imaging devices. As an example we mention the flow in porous media where isotope marking is applied to measure a
3D concentration distribution via an MRI device. Again the aim is to study the underlying physical motion and to compare
it with model predictions and computed simulations.

The aim of this paper is to present a robust method to extract motion velocity fields from 3D image sequences. Thus,
the focus is on the actual extraction and not on the final visualization of the velocity fields. Extracting motion from
image sequences is known as the optical flow problem in image processing and has been studied extensively for 2D
image sequences.2, 11, 16, 23, 27 The contribution of this paper is to extend the methodology to 3D, to express the resulting
velocities in concise geometric terms, and to focus on an effective and robust implementation. Already a large bunch of
literature dealing with visualization of vector fields: Most popular are methods which generate textures aligned to the flow
field.6, 12, 18, 32, 35 The visualization of time-dependent vector fields, which appear in our setting here, has been discussed
in.4, 5, 21, 31 Recently van Wijk36 presented the IBFV approach, which visualizes vector fields in real time using graphics
hardware of modern computers.

In image analysis the interest frequently lies in the extraction of certain level surfaces bounding volumes or specific
regions of interest, and their temporal change within the image sequence. Then the actual intensity value is of minor
importance and anyway dependent on the modality of the image acquisition process. Therefore it is desired to derive
morphologicalmethods, which are not affected by a transformation of the intensity. We ask for a motion extraction
method which shares this property. At first, we give the classical optical flow equation to extract the normal component of
the velocity. In special cases, for instance in case of a physical phenomenon obeying a model like Darcy’s law, where the
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flux vector is pointing in the direction of the pressure gradient, the normal component completely describes the motion.
But in applications such a simplification is not feasible. Unfortunately, the extraction of tangential velocities, turns the
task into an ill-posed problem.27 Thus, the set of possible solution velocities has to be restricted and instead we deal
with the apparent velocity16 — the velocity which arises from a motion locally constant in space. Especially in case of
moving objects, or structures with significantly curved details and small variations of the velocity normal to levelsets,
the apparent velocity turns out to be meaningful. Alternatively, motivated by modeling in continuum mechanics one can
ask for regularizations resulting in deformations controlled by elastic stresses or viscous fluid effects.7, 9, 15, 19, 20, 34 But
this approach is computationally rather expensive and pays off in case of large deformations in between frames of the
sequence, which we rule out in our applications here.

Concerning the robust implementation, we apply localL2 projection onto suitable polynomial spaces in space and
time, which can be regarded as a linear filter improving the signal to noise ratio. On these projections we evaluate
all geometric quantities necessary to compute the velocity components (cf. Fig. 1) . This approach turns out to be
consistent but computationally expensive. We therefore also consider the convolution with derivatives of smoothing
kernels as a further linear filtering variant. Typically, the images of a recorded image sequence — especially ultrasound
images — are characterized by significant high frequent noise due to measurement errors. Here, linear filtering turns
out not to be the appropriate approach. Therefore, we apply a morphological multiscale method for image-sequence
processing26 which combines the image processing methodology based on nonlinear diffusion equations and the theory
of geometric evolution problems (cf. Fig. 2). Such nonlinear and anisotropic multiscale methods have proven to be
successful tools in image denoising, edge enhancement and shape recovery.1, 8, 24, 30, 37 Thereby, the image is considered
as initial data of a suitable evolution problem. The aim of the method we apply here, is to smooth levelsets of an image
while simultaneously preserving geometric features such as edges and corners on the levelsets. This is obtained by an
anisotropic curvature evolution.3, 10, 17, 33 Spatially depended evolution velocities in mean curvature motion models
already have been considered by Alvarez et al.1 and Sapiro,28 but the model we use here additionally considers the
directions of spatial edges and the motion velocity and therefore is anisotropic in space and sequence time.

2. EXTRACTING MOTION (THE SMOOTH CASE)

At first, we will consider a continuous family of images on some time interval[0, T ] and derive expressions for the motion
velocity in terms of spatial and temporal derivatives of this continuous image sequence. Let us denote the continuous
image sequence withφ : [0, T ]× Ω→ IR, (s, x) 7→ φ(s, x). HereΩ := [0, 1]d is the image domain in thed-dimensional
Euclidean space ford = 2 or d = 3 (which we assume to be fixed) ands is the sequence time parameter. We will always
denote sequence parameters byr ands respectively, whereasx andy respectively stand for the spatial coordinates. We
assumeφ to be smooth in time and space. The perspective of levelsets on images of the sequence will play a central role
in our motion analysis. We denote byMc(s) the levelset — the isosurface — ofφ(s, ·) corresponding to the level value
c ∈ IR, i. e. Mc(s) = {x ∈ Ω |φ(s, x) = c}. For the sake of simplicity we will skip the indexc indicating the level
value and the sequence parameters whenever they are clear from the context. If the image is not locally flat, the normal
N(s, x) atx in the imageφ(s, ·) is given byN(s, x) = |∇φ(s, x)|−1∇φ(s, x). The tangent space atx onM is denoted
by TxM = span{N}⊥.
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Figure 1. As input data the process takes a 2D respectively 3D image sequence, resulting e.g. from the observation of a physical
experiment. Due to the insufficient regularity of the data it has to be regularized before the extraction of the motion quantities. The
final output is a vector field, describing the motion of the temporally changing level-sets of the sequences. As a sophisticate alternative
to the linear regularization, one can apply a spatio/temporal coupled anisotropic smoothing process, which denoises the data, but keeps
significant spatial edges and temporal accelerations (dashed lines).



Figure 2. The noisy initial frame (left) is pre-processed by an an anisotropic geometric smoothing method. On the smoothed data
(middle left) we compute the motion of the levelsets (middle right). A color ramp from blue (moving inward) to red (moving outward)
indicates the normal component of the velocity. On a magnified section (right) we have depicted the splitting ofv in tangential (red
arrows) and normal (blue arrows) components. All computations were performed on a1283 grid.

Figure 3. As a test case we extract the motion from the evolution of ellipsoidal levelsets with oscillating half axes. I.e. we consider the
image sequenceφ(s, x1, x2, x3) := x2

1/a(s) + x2
2/b(s) + x2

3, wherea(s) := 4s− (1− s), b(s) := s− 4(1− s) for s ∈ [0, 1]. We
have depicted the results of the velocity computation on the same levelset (isosurface) in different frames of the sequence. In the upper
row a color ramp from blue (moving inward) to red (moving outward) indicates the normal component of the velocity. In the lower row
the color ramp from blue to red indicates the absolute value of the tangential component of the velocity. The large picture on the right
shows the decomposition ofv in its tangential and normal part.

Now let us suppose that there is a correspondence between the separate time slices of the image sequence due to a
physical motion. This motion influences the image intensity we observe in sequence time. Supposev : [0, T ] × Ω →
IRd, (s, x) 7→ v(s, x) is the velocity field generating the motion in space and time. Thus, for a single motion trajectory
{x(s)} running through a pointx0 ∈Mc(s0) on some levelsetMc(s0), we obtain

x(s0) = x0 , ẋ(s) = v(s, x(s)).

Clearly any velocity vectorv(s0, x0) ∈ IR3 can be decomposed into a normal partvn ∈ span{N} and a tangential part
vtg ∈ TxM, such thatv = vn + vtg andvn = (v ·N)N .

2.1. Normal velocity
Our first assumption on the image sequence is now, that intensities are preserved along motion trajectories. This is
reasonable because intensities in image sequences resulting from physical experiments or medical devices are usually
functions of certain physical quantities like density or concentration. If these quantities move in space, so do the image
intensities. In case of moving solid objects with certain intensities the assumption is even more obvious. Thus, we get

φ(s0 + τ, x(s0 + τ)) = φ(s0, x0) ∀τ ∈ [−s, T − s] . (1)



We differentiate this with respect toτ and obtain∂sφ(s, x) +∇φ(s, x) · v(s, x) = 0, where ”·” always denotes the scalar
product. Assuming|∇u| 6= 0 and dividing by|∇φ| we end up with an expression for the normal component of the
velocity:

vn = (v ·N)N = − ∂sφ

|∇φ|
N.

Based on assumptions on the underlying physics of the phenomenon recorded in the image sequence we may know that
the motion velocity is expected to be normal to intensity levels (see Section 4). In this case we havev = vn and the above
equation completely describes the motion. But in general we can not expect the tangential componentvtg of the velocity
to vanish.

2.2. Apparent velocity

Let us assume that the image sequence consists of fixed objects moving in space but not being deformed. Hence, we
consider a motion velocityv(s, x) which is constant in space, i. e.v(s, x) = v(s). Then obviously all levelsets are just
translated. Therefore, not only the intensitiesφ(s, x) but also the normalsN(s, x) on the levelsets stay constant along
motion trajectories:

N(s0 + τ, x(s0 + τ)) = N(s0, x0) ∀τ ∈ [−s, T − s] .

We differentiate this with respect toτ at τ = 0, and get an expression which involves the Jacobian∇N of the normal:

∂

∂τ
N(s+ τ, x(τ))

∣∣∣
τ=0

= 0 ⇒ ∂sN(s, x) +∇N(s, x) v(s, x) = 0. (2)

Before we continue, let us more closely examine the JacobianS := ∇N of the normal, which is the projection of the
second derivativeD2φ onto the tangent spaceTxM. Denoting the tensor productu⊗ v = (uivj)ij , we have25, 26

S = ∇N =
1
|∇φ|

(Id−N ⊗N)D2φ. (3)

The mappingS can be regarded as an extension of the shape operatorSTxM on the levelset8, 13 and has eigenvalues
{κ1, κ2, 0} corresponding to eigenvectors{v1, v2, N}. Indeed we haveSTxM = S(Id−N⊗N). Furthermoreκ1,κ2 turn
out to be the principal curvatures andv1 andv2 are the corresponding principal directions of curvature. From∇NN = 0
we deduce that the orthogonal complementTxM⊥ = span{N} of the tangent space lies in the kernel ofS and from
0 = ∂s(N · N) = 2∂sN · N we observe that∂sN ∈ TxM. Thus, we can rewrite Eq. (2) as an equation on the tangent
bundle:∂sN(s, x) + STxMvtg = 0. If the shape operatorSTxM is invertible one obtains an expression for the tangential
component of the velocity

vtg = −S−1
TxM∂sN .

Finally adding the normal and the tangential part, we have derived theapparent velocity

vapp = vtg + vn = −S−1
TxM∂sN −

∂sφ

|∇φ|
N . (4)

For two dimensional image sequences, this expression was derived by Guichard,16 although he did not express it with
these geometric terms. In our derivation, all geometrical quantities intrinsically describe levelsets in spaces of arbitrary
dimension. Thus (4) is applicable inn-dimensional space and especially forn = 3. Let us emphasize that this velocity
depends on the morphology of images only. Indeed, it is obviously invariant under monotone gray value transformations
φ̃(s, x) := β ◦ φ(s, x).

2.3. General motion

In general an observed motion does not have the simple structure of a spatially constant motion as assumed in the last
section. Nevertheless, an application of the above definition (4) for motions which are not constant in space still can make
sense. In fact, if an image is locally rather complex — the levelsets are significantly curved — and the motion on this



Figure 4. From left to right we show the extracted velocity on several frames from the sequence of echocardiographical images of the
human heart (cf. Fig. 2). Again the color ramp from blue (moving inward) to red (moving outward) codes the normal component of
the velocity. The computations were performed on a1283 grid.

image region is close to being constant, then we expect the above formula to give a good approximation of the actual
velocity.

Concerning the tangential part of the velocity one easily sees that its extraction is an ill posed task: Supposev describes
the motion of the levelsets and letw be an arbitrary vector field such thatw(s, x) ∈ TxM. Obviously the motion described
byw results in tangential movements of the levelsets within themselves, and thus can not be recognized by the observer.
Thereforev + w also describes the motion of the levelsets, butw can be arbitrarily irregular. The apparent velocity
selects from the set of all possible solutions the one, which minimizes the variation of the normal along the trajectory, i.e.
∂τN(s0 + τ, x(s0 + τ)) = 0 (cf. Fig. 5).

Concerning the restriction to configura-

���������τ
r

2
2

1 1
	

κ  = 0

κ  =1/r 

	

�
�����










� � ���	

axial

Figure 5. Left: In case of a moving cylinder the velocity component along the
axis of the (infinitely extended) cylinder can not be identified. The image se-
quence is actually invariant under motions in the axial direction. This corresponds
to the observation that the axial direction is a principle curvature direction with
curvature0. Right: From the set of all possible solutions, the apparent velocity
minimizes the variation of the normal.16

tions with an invertible shape operator, one
may ask whether this is a shortcoming of our
formula or if there is one more limitation of
the motion capturing itself. Hence, let us con-
sider an image whose levelsets are concentric
(infinitely extended) cylinders and this set of
cylinders is supposed to move in space gener-
ating an image sequence. On one hand the ve-
locity component along the axis of the cylin-
der obviously can not been extracted from the
image sequences. On the other hand this di-
rection is a principal direction of curvature
with curvature value0 (cf. Fig. 5). If a
levelset is flat in one direction at least up to
second order (κi = 0 for somei ∈ {1, 2}),
then we are locally in the cylindrical case and
reach the limits of the motion capturing.

3. A ROBUST IMPLEMENTATION

In the formulas to compute the apparent velocityvapp we have made use of geometric quantities which involve higher
order derivatives in space and time. Typically our image sequences are given as a sequence of temporally equidistant
frames – we denote the temporal distance between the frames with∆s. The image frames usually are given in voxel
or multilinear finite element form. Furthermore, they are overlaid with some noise resulting from measurement errors.
Thus, we have to robustly regularize the measurement results coded in the image sequence, to make the extraction process
more insensitive to noise. Moreover we have to explain how to robustly evaluate derivatives on this low regularity data.
In principle, there are different approaches at hand.25 We will consider two different variants here, which combine the
aspects of regularizing the data and defining higher order derivatives on constant or at most piecewise linear data. First, we
focus on a local projection of the image onto a polynomial space, and secondly we will describe an approach which uses



Figure 6. The application of the method to experimental data from a fresh and salt water experiment is depicted. First, salt water is
floating into a container filled with fresh water. Then an outlet is opened at the top left corner of the container. During the experiment,
the salt-concentration was measured using an MR imaging device. From left to right several frames of the experiment are shown. A
color ramp again indicates the normal component of the velocity (cf. Fig. 4). The computation was performed on a643 grid.

convolutions with smoothing kernels and their derivatives.26 During the expositions we will indicate quantities resulting
from a regularization process by a superscriptσ.

In the derivation presented in the previous sections, we have always assumed the definition of a normal was possible,
and moreover we assumed the shape operatorSTxM being invertible. Obviously, for real data the gradient∇φ could
vanish, and we can not divide by|∇φ| any more. Therefore we replace14 the Euclidean norm by|∇φ|ε :=

√
|∇φ|+ ε2

for a smallε. Moreover, if a levelset is flat at least in one direction (i.e.κi = 0 for somei ∈ {1, 2}) we replace the inverse
S−1
TxM of the shape operator by its pseudo-inverseS†TxM, which only invertsSTxM on the subspace where it is invertible.

On the subspace on whichSTxM is not invertible the pseudo-inverseS†TxM is trivially set to zero.

3.1. Regularization via Local Projections

We base the local regularization on a localL2 projection of the dataφ onto spaceQ∗ of sufficient smoothness. Since
we need first order derivatives in sequence time and second order derivatives in space, we chooseQ∗ to contain tensor
products of first order polynomials in sequence-time and second order polynomials in space. Then we will replace the
derivatives of the image in the computation ofvapp by the derivatives of the projection. To this end for the projection we
take all monomials into account that give a contribution to the desired derivatives. Thus, we consider

Q := span{y2
1 , y

2
2 , y

2
3 , y1y2, y1y3, y2y3, y1, y2, y3, ry1, ry2, ry3, r} ⊂ Q∗. (5)

Without loss of generality let us now fix a sequence parameters = 0, a pointx = 0 and a small neighborhood
Bσ(s, x) of (s, x). Denoting the basis functions in (5) with{qi}i, and considering a representationφσ(s,x)(r, y) :=

φσ(s,x)(r, y1, y2, y3) :=
∑13
i=1 αiqi(r, y1, y2, y3) for α := (αi)i ∈ IR13 the local projectionφσ(s,x)(r, y) is defined such

that it fulfills the orthogonality relation (=linear system of equations)

Hα = R whereR =

(∫
Bσ(s,x)

φ(r, y) qi(r, y) dr dy

)
i

and H =

(∫
Bσ(s,x)

qi(r, y) qj(r, y) dr dy

)
ij

. (6)

Based on the coefficientsαi of the projectionφσ(s,x)(r, y) we can compute the desired derivatives and evaluate them in
(r, y) = (0, 0) to obtain

∇yφσ(s,x)

∣∣∣
(r,y)=(0,0)

= (α7, α8, α9)T , D2
yφ

σ
(s,x)

∣∣∣
(r,y)=(0,0)

=

 2α1 α4 α5

α4 2α2 α6

α5 α6 2α3

 ,

Nσ
(s,x)

∣∣∣
(r,y)=(0,0)

=
1√

α2
7 + α2

8 + α2
9

 α7

α8

α9

 , ∂rN
σ
(s,x)

∣∣∣
(r,y)=(0,0)

=
(1I−Nσ ⊗Nσ)√
α2

7 + α2
8 + α2

9

 α10

α11

α12

 ,

(7)

and finally∂rφσ(s,x)|(r,y)=(0,0) = α13. Moreover we obtainSσ from (3), and thenSσTxMσ by restrictingSσ to the tangent

space(Nσ)⊥. Substituting these quantities into (4) we get the regularized apparent velocityvσapp. This regularization



approach delivers a consistent way of computing curvature on piecewise linear data.25 But unfortunately it is computa-
tionally very expensive, since it involves a lot of integrations on the neighborhoodsBσ.

3.2. Regularization via derivatives of convolution kernels

The regularization presented in the following paragraph is much cheaper in terms of computational costs. For a fixed
σ ∈ IR, we take theC∞0 kernelK(s, x) := Z−1 exp((|x|2 + s2)/(|x|2 − s2 − σ2)) having compact support and use the
convolution property for any spatial or temporal derivativeDγ

Dγ (K ∗ φ) (s, x) = Dγ

(∫
K(r, y)φ(s− r, x− y) dr dy

)
= K ∗Dγφ(s, x) = DγK ∗ φ(s, x). (8)

The constantZ is chosen such that
∫
K = 1 and againσ is a measure for the support ofK and — for largerσ the

regularization will be stronger. For the computation of the velocityvapp we replace all derivatives by convolutions with
the corresponding derivatives of the smoothing kernelDγK. According to the convolution property (8) we thus obtain
the derivatives of dataφ smoothed withK:

Nσ :=
∇K ∗ u
|∇K ∗ u|ε

(s, x), (∂sN)σ = (∂sK ∗Nσ)(s, x)

Sσ =
1

|∇K ∗ u|ε
(Id−Nσ ⊗Nσ)(D2K ∗ u)(s, x), (∂sφ)σ = (∂sK ∗ φ)(s, x)

(9)

Again we obtain the shape operatorSσTxM by restrictingSσ to the tangent spaceTxM and the regularized apparent
velocityvσapp from (4).

3.3. Implementation

Let us now focus on the implementational aspects of the regularization approaches we have discussed before. Since we
assume the frames of the sequence being given on quadtree respectively octtree grids, it is natural to defineσ in multiples
of the gridwidthh.

Projection approach. To keep the computational effort moderate, we confine ourselves with two additional sequence
frames in the definition ofBσ(s, x) : For l ∈ {2m |m ∈ IN}, we defineBσ(s, x) as the patch containing(l + 1) × (l +
1) × (l + 1) nodes of each of the framesΦ(s − ∆s, ·), Φ(s, ·), andΦ(s + ∆s, ·) such that(s, x) is in the center of the
patch. We relateσ to the spatial extend ofBσ by settingσ := lh.

OnBσ we now perform the integration of the right hand side of (6), by splitting the integral into a sum of integrals
on the quadtree/octtree-elementsE ⊂ Bσ. On each elementE we thereby use a tensor product quadrature rule, with two
nodes in each spatial coordinate direction and a simple trapezoidal rule in the sequence-time direction. Having the image
shifted locally such that(s, x) = (0, 0) andφ(s, x) = 0 we can precompute the inverse of the matrixH in advance,
since it does not change with(s, x) andφ for a fixed stencil withσ. This speeds up the computation significantly in an
implementation. We proceed with substituting the coefficientsαi into the formulas (7) and (4) from which we proceed
with simple computations to obtain the regularized apparent velocityvσapp via the definition (4).

Let us remark here that for a single frame the formula for computation of the shape operator — which is needed to
evaluate curvature of levelsets — does not change.25 Although the matrix to compute the projection is then9× 9. For a
comment on the optimal choice ofσ we refer the reader to an earlier work25 of the authors.

Convolution approach. For a fixedσ, we assume the image again to be translated such that(s, x) = (0, 0), Then the
kernelK has support inBσ(s, x) := [−σ, σ]d+1. As usual we replace the convolutions with the derivativesDγ of K with
a weighted summation

(DγK ∗ φ)(s, x) =
∫
Bσ
DγK(r, y)φ(s− r, x− y) dr dy ≈

∑
E⊂Bσ

φ(sE)
∫
E

DγK(r, y) dr dy

over the values ofφ at the centersE of the involved elementsE. The weights are thus obtained by integrating the
derivativesDγK over the elementsE ⊂ Bσ(0, 0) and therefore can be precomputed in advance for a fixedσ, which again
speeds up the computation significantly. We proceed as before with substituting the convoluted quantities into (9) and (4)
from which we again obtain the regularized apparent velocityvσapp.



Figure 7. As a test case we consider the functionφ(x) = |x1| + |x2| + |x3| whose levelsets are octahedrons. This function was
perturbed and then taken as initial data for the anisotropic geometric diffusion method. From left to right an original perturbed levelset
and the corresponding first, second, and fifth time step of its evolution on a643 grid are visualized extracting levelsets.

4. APPLICATIONS

Understanding of the physical phenomenon of a process delivering an image sequence may give more information on
the splitting of the velocity in normal and tangential component. In Fig. 4 we have considered a sequence acquired by
echocardiography of the human heart. The whole sequence consists of one complete cardiac cycle, in which the heart fills
itself with blood and pumps it out again. From the physical point of view this is an elastic deformation.

In many cases one can obtain further information directly from the underlying physics. If we e.g. consider the flow
in a porous medium (cf. Fig. 6), we know that Darcy’s law applies: The flow of matter will always be in direction of the
pressure gradient (here, = normalN to the levelset). Thus, the velocity will have no tangential component and it suffices
to consider the normal component. Other physical contexts (e.g. Fick’s law, presence of a potential flow) may also apply.

Unavoidably the observations of physical processes via electronic image acquisition devices carry measurement errors
resulting in low signal quality. Especially in medical imaging ultrasound- and low dose computed tomography-imaging
suffer from high frequent noise (cf. Fig. 2, left). The robustness of the method presented so far relies on the fact that the
L2 projection onto quadratic polynomials on a stencilBσ respectively the convolution can be regarded as a linear filter.
With increasing parameterσ the damping of noise will be intensified. As in most image processing applications linear
filters are pretty good in the damping of noise but simultaneously they are known to destroy important features of the
levelsets, as corners and edges. Instead one can apply nonlinear multiscale filtering techniques, as they already proved
successful in various image processing applications.1, 22, 24, 29, 37 In the next section, we will consider more sophisticate
regularization variants,25, 26 which have a nonlinear and anisotropic behavior. The results (cf. Fig. 2, middle left) then
can be used to extract better regularized apparent velocities (cf. Fig. 2, middle right and Fig. 1).

5. FAIRING BY ANISOTROPIC GEOMETRIC DIFFUSION

5.1. A steady image approach

We consider here a morphological levelset method for the pre-processing of noisy 3D images from sequences before we
evaluate velocity terms (with a rather small stencil widthσ). It is closely related to the anisotropic geometric diffusion
method8 for the fairing of triangulated surfaces. Indeed, we consider eigenvalues and eigendirections of the shape operator
STxM as feature indicators in a diffusion process. In the levelset formulation we simultaneously deal with all levelsets —
hence we actually process a complete 3D image. Up to now this nonlinear smoother works only on a single frame from
the 3D image sequence and does not correlate different time steps appropriately. An extension being presented in section
5.2 takes into account the whole image sequence. Let us fix a sequence times0 and consider the correponding frame
ψ(x) := φ(s0, x). Since we assumeψ and thus the levelsets ofψ to be noisy, we seek for a family of successively filtered
intensity functions{ψt(·) | t ∈ IR+} with ψt(·) : Ω → IR. The parametert serves as the scale parameter as common in
multiscale calculus on images and surfaces andψ•(·) obeys the following partial differential equation

∂tψ − |∇ψ|div
(
aσ |∇ψ|−1∇ψ

)
= 0 .



givenψ0(·) = φ(s0, ·). For aσ = 1I we obtain an evolution of all levelsets by mean curvature motion, which is the
most natural pure smoothing process on surfaces.17 Our method operates more sophisticate to preserve not only im-
portant levelsets (2D edge-surfaces) but also essential features on these levelsets, such as 1D edge-lines. Indeed we
assumeaσ to depend on a regularized shape operatorSσ (cf. Section 2.2), where we consider the same regularizations
as above. In abstract notation we chooseaσ = (Bσ)TG(SσTxM)Bσ whereBσ is the basis-transformation from the
frame{v1,σ, v2,σ, Nσ} of principal directions of curvature to the standard Euclidean basis andG(s) = (1 + s2λ2)−1

for some positive constantλ here applied to the endomorphismSTxM. In the basis{v1,σ, v2,σ, Nσ} we therefore obtain
aσ = diag(G(κ1,σ), G(κ2,σ), 0), whereκ1,σ, κ2,σ are the corresponding regularized principal curvatures. Thus, in the
direction of a large principal curvature — which is expected to indicate the direction perpendicular to an edge — we apply
a significant damping of the diffusion to preserve this edge feature. On the other hand in a orthogonal direction frequently
corresponding to a smaller curvature value we allow for a tangential smoothing along the edge. Further details on the
method and a finite element implementation can be found in a previous paper by the authors.25 Figs. 2 and 7 show results
obtained by this smoothing method.

5.2. Fairing of image sequences

Still the anisotropic levelset method presented above does not take into account the sequence direction. Thus, there
is in general no correlation between successive frames although the original data is temporally correlated, being the
observation of a temporal process. We consider an extension of the latter model, which results in a coupled spatio-
temporal problem.26 Additionally to the eigenvalues and eigendirections of the shape operator on levelsetsSTxM as
feature indicators in a diffusion process, we moreover consider the apparent direction of motionvapp of the levelsets and
their apparent accelerationaccelσ := ∂sv

σ
app as the driving forces for the diffusion process. We end up with a multiscale

of image sequencesψt : [0, T ]× Ω→ IR for t ∈ IR+, which obeys the following (d+1)-dimensional PDE problem:

∂tψ − |∇(s,x)ψ|div(s,x)

(
aσ(s,x)|∇(s,x)ψ|−1∇(s,x)ψ

)
= 0

with the initial conditionψ0(s, x) = φ(s, x). Here∇(s,x) denotes the spatio-temporal gradient(∂s,∇) anddiv(s,x) :=
∂s+∇ its dual operator. In the spatial direction, the diffusion tensoraσ(s,x) still enables for a good preservation of edges as
in the above model, but in direction ofvapp the diffusion will depend on the apparent accelerationaccelσ of the levelsets:

aσ(s,x) = aσv

(
1

vσapp

)
⊗
(

1
vσapp

)
+
(

0
aσTxM

)
,

whereaσv = G(|∂svapp|). This choice of the diffusion tensor will enable for a good preservation of the temporal coupling
of the levelsets via the underlying motion phenomenon. The linear system resulting from a finite element discretization
and an operator splitting scheme will be solved by a symmetric block solver.26

6. CONCLUSIONS

We have presented a robust method to extract motion information from 3D image sequences. Formulas to compute
the normal and the apparent velocity have been presented in concise geometric terms and an analysis of the relation
of a general motion field and the apparent velocity is given in the appendix. Different applications demonstrate the
effectiveness and robustness of the method. The focus of this paper was not to derive a new visualization of a given motion
field but to demonstrate the possibility to extract such fields from rather noisy image sequences as they are frequently
observed in experimental settings. In addition we considered a nonlinear multiscale filtering for steady images as well
as image sequences as an often indispensable pre-processing step. The core of the methods are anisotropic geometric
diffusion processes in levelset formulation, driven by geometrical features like edges and corners of the levelset and
their acceleration in sequence-time. Interesting future research directions (partially already in progress) are to study the
physical role of the apparent velocity in different applications, and to ask for assumptions on physical models underlying
the observed motion, which in more cases may help to compute a good approximation of the true physical velocity from
the image sequence.

More information about the project including color figures and more examples can be found on our web page
http://www.numerik.math.uni-duisburg.de/exports/velocity/index.html



Figure 8. For a continuous test image sequence showing a square bouncing at an invisible object (indicated by the red line), i.e.
φ(s, x) = |x+ d(s))|1 whered(s) is the motion of the center of the square, we show the evolution under the coupled spatio temporal
diffusion. From left to right several frames near the accelerated point of the motion (= the square bounces) are depicted. The upper row
shows the noisy image sequence, whereas in the lower row the sequence resulting from the third scale step of the evolution is shown.
Clearly the shape is smoothed significantly but its corners are preserved.

R�
��

Figure 9. We consider a noisy continuous test sequence showing a ball bouncing at some invisible object (left) indicated by the thick
line, i.e.φ(s, x) = |x+ d(s)|2, whered(s) is the motion of the center of the ball. The improvement of the extracted velocities during
the evolution are depicted. From middle left to right the extracted velocities of the noisy data and scale steps 1 and 3 are depicted.
We have drawn the normalized velocities for always the same frame of the sequence and the region indicated by the dashed area in
the image left. Clearly the extracted motion becomes more regular during the evolution and is closer to the real motion, which for this
frame goes diagonally from top left to bottom right.
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APPENDIX A. THE CASE OF A GENERAL MOTION

Let us in this additional section consider a motion described by an arbitrary velocity field. As described in Section 2.2,
given solely the image sequence resulting from the motion, it turns out to be an ill-posed problem to extract the original
velocity. However, let us describe, which information according tangential movements can be extracted and what the
apparent velocity really describes.

The simultaneous motion of all points inΩ obeying the velocity fieldv induces a fluxΘτ (s0, x0) = x(s0 + τ), with
x(s0) = x0 and ẋ(s) = v(s, x(s)). We can regard this flux also as the deformation of the image at times0 + τ with



respect to the initial state at times0. The levelset normals at times0 + τ transform under the flux. This transformation is
controlled by the inverse transpose of the Jacobian of the flux:

N(s0 + τ, x(s0 + τ)) = |(∇Θτ )−TN |−1(∇Θτ )−TN(s0, x0), (10)

We can express this transformation in terms ofv using a development inτ up to first order. Expanding the Jacobian of the
flux we obtain

∇Θτ = Id + τ∇v + o(τ2), ⇒ (∇Θτ )−T = Id− τ(∇v)T + o(τ2).

The differentiation of the identity (10) with respect toτ at τ = 0 will lead us further. Recalling that for some vector
valued functionA(τ)

∂

∂τ
|A(τ)|

∣∣∣
τ=0

=
A(0)
|A(0)|

·
(
∂

∂τ
A(τ)

∣∣∣
τ=0

)
holds, we can compute from (10) the relation (omitting the arguments for the clearness of the presentation)

0 =
[
∂τN(s0 + τ, x(s0 + τ))+ ∂τ |(∇Θτ )−TN |N− ∂τ (∇Θτ )−TN

] ∣∣∣
τ=0

= ∂sN+∇Nv− (∇v)TN ·NN+ (∇v)TN.

Using∇N = S and∇(v ·N) = (∇v)TN + (∇N)T v = (∇v)TN + Sv, we can rewrite the latter result as

0 = [∂sN + Sv] + (Id−N ⊗N) (∇(v ·N)− Sv) . (11)

This is the (implicit) expression to compute the tangential velocity for arbitrary motion. Whenever the last term vanishes,
i.e. v solves the differential equation(Id − N ⊗ N) (∇(v ·N)− Sv) = 0, we have a coincidence of apparent velocity
and true velocityvapp = v, since the remaining left term0 = [∂sN +Sv] exactly definesvapp. Unfortunately there is not
more information contained in (11) because it again is an equation on the tangent bundle. And since the equation itself is
implicit in v it is not possible to obtain any measure for the difference betweenvapp andv.

A last observation concerning the casev = vapp is the following: Substitutingvapp into (11) and using the fact that
(Id−N ⊗N)S = S one obtains

(vapp)tg = S−1(Id−N ⊗N)∇((vapp)n),

because the term in brackets vanished forvapp in (11). This means, the tangential component of the apparent velocity is
the variation of the normal velocity weighted on the tangent space according to the shape of the levelset.
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